
This is the accepted version of the following article:

Delgado‐Pérez, P, Segura, S, Medina‐Bulo, I. Assessment of C++ object‐oriented

mutation operators: A selective mutation approach. Softw Test Verif

Reliab. 2017; 27: e1630. https://doi.org/10.1002/stvr.1630

which has been published in final form at:

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1630

This article may be used for non-commercial purposes in accordance with the Wiley Self-

Archiving Policy [http://www.wileyauthors.com/self-archiving].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz

https://core.ac.uk/display/344693466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/stvr.1630
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1630
http://www.wileyauthors.com/self-archiving

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 0000; 00:1–33
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Assessment of C++ Object-Oriented Mutation Operators: A
Selective Mutation Approach

Pedro Delgado-Pérez1*, Sergio Segura2, Inmaculada Medina-Bulo1

1University of Cádiz. Escuela Superior de Ingeniería, Spain.
2University of Sevilla. Escuela Superior de Ingeniería, Spain.

SUMMARY

Mutation testing is an effective but costly testing technique. Several studies have observed that some mutants
can be redundant and therefore removed without affecting its effectiveness. Similarly, some mutants may be
more effective than others in guiding the tester on the creation of high-quality test cases. Based on these
findings, we present an assessment of C++ class mutation operators by classifying them into two rankings:
the first ranking sorts the operators based on their degree of redundancy, and the second regarding the quality
of the tests they help to design. Both rankings are used in a selective mutation study analysing the trade-off
between the reduction achieved and the effectiveness when using a subset of mutants. Experimental results
consistently show that leveraging the operators at the top of the two rankings, which are different, lead to a
significant reduction in the number of mutants with a minimum loss of effectiveness.
Copyright © 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Mutation testing; class mutation operators; C++; selective mutation; quality of mutation
operators

1. INTRODUCTION

Mutation testing [1] is a common fault-based testing technique to assess and enhance the fault-
detection capability of test suites. This technique creates several modified versions (mutants) of the
original program under test (PUT), which differ in a simple syntactic change injected by a mutation
operator. Each mutant is then executed on the same test suite as the original program. If a test case
distinguishes the original program from a mutant we say that the mutant has been killed and the
test case has proved to be effective at finding faults in the program. Otherwise, the mutant remains
alive. Mutants that keep the same program functionality and thus cannot be detected are referred
to as equivalent. Mutation testing has traditionally been applied to procedural programs written in
languages like Fortran [2] or C [3], using traditional or standard mutation operators. However,
the increasing presence of object-oriented programs in industrial systems has progressively drawn

∗Correspondence to: University of Cádiz. Escuela Superior de Ingeniería, Spain. E-mail: pedro.delgado@uca.es

Copyright © 0000 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

2 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

the attention of mutation researchers toward other languages such as Java [4], C# [5] or C++ [6].
Contributions in this context mainly focus on the development of new tools and mutation operators
(named class or object-oriented operators) specifically designed to create faults involving typical
object-oriented features like inheritance or polymorphism.

Mutation testing is mainly used for two purposes: evaluate and refine test suites. During Test Suite
Evaluation (TSE), mutation testing is used to assess how effective a test suite is at detecting faults
in the PUT. The test suite effectiveness is measured using the mutation adequacy score, the ratio of
killed mutants to the total of mutants derived from the PUT (excluding equivalent mutants). A test
suite is said to be adequate if it achieves a mutation score of 100%, and minimal when it contains
the minimum number of test cases that are essential to kill all the mutants. A mutant remaining
alive uncovers a weakness in the test suite. During Test Suite Refinement (TSR), mutation testing
guides the tester on the improvement of the suite by designing new test cases that kill the surviving
mutants.

Mutation testing also suffers from several drawbacks. A key limitation of the technique is its
high cost due to the large number of mutants that can be generated even in the case of small-sized
programs. For instance, applying mutation testing to a numerical program of 78 lines of code written
in Fortran yielded 7,435 mutants using traditional operators [7]. Another limitation is related to
detection of equivalent mutants, which is a time-consuming, error-prone and manual task. In theory,
equivalent mutants should be excluded from the set of mutants, but in practice this is not always
possible since program equivalence is undecidable [8]. Consequently, even when the number of
mutants is manageable, the effort required to identify equivalent mutants could make the application
of the technique not affordable.

Multiple techniques have been propose to reduce the cost of mutation testing including high-order
mutation [9] and mutant clustering [10]. Selective mutation is a well-known cost reduction technique
to exclude some of the mutants without significant loss of effectiveness. We can distinguish two
main selective approaches: operator-based and mutant-based selection [11]. On the one hand,
operator-based mutant selection [12, 13] works under the assumption that not all mutation operators
are equally effective and that there should be a sufficient set of operators that allows us to accurately
predict the overall mutation score. The rationale behind operator-based selection is that some
mutation operators are redundant and they can be therefore discarded. Intuitively, an operator is
redundant if it produces mutants that are always killed by the test cases that kill mutants from other
operators. In the mutation literature, an operator that only generates redundant mutants is said to be
subsumed by the rest of mutation operators in the set [12]. As a notable example, Offutt et al. [7]
found that using 16 mutation operators for Fortran is almost as strong as using the whole set of 22
operators achieving a reduction over 60% in the number of mutants. On the other hand, mutant-
based selection [14, 15] also presumes the existence of redundancy but at the level of mutants
instead of operators. In this way, in random mutant selection only a subset of the mutants from the
full set of operators is randomly analysed, whereas the rest of the mutants are discarded. Although
random selection has drawn less attention than operator-based selection, Zhang et al. [11] recently
produced evidence that the former can be as effective as the latter with the same number of mutants.
Most relevant studies on selective strategies have been reported for traditional operators in languages
like C[11, 13, 16] or Fortran [7, 12, 17]. Some studies have addressed object-oriented languages like
C# [18] or Java [19], where operators at the class level were tackled along with traditional operators.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 3

In a recent study, Estero-Botaro et al. [20] compared the effectiveness of mutation operators from
a different perspective. In particular, the authors noticed that not all operators are equally effective
at inducing the creation of high-quality test cases; these test cases detect non trivial faults which
are not easy to find with a straightforward test case. Based on this premise, the authors proposed a
metric to evaluate the quality of mutation operators according to their ability to generate hard-to-kill
mutants.

Problem. Contrary to traditional mutation operators and well studied languages such as Java,
the applicability of mutation testing to C++ object-oriented features is a research topic under
development. In particular, it remains unclear whether C++ class mutation operators exhibit any
degree of redundancy (percentage of redundant mutants generated by each operator) or to what
extent they contribute to create high-quality test cases. As a result, it is unknown what are the most
promising operators and the loss of accuracy we must concede when using them in a selective
mutation strategy. Overall, the lack of experimental results on C++ class mutation operators hinders
their applicability and discourage researchers and practitioners from using them.

Contribution. In this paper, we present an assessment of mutation operators at the class level
for C++. We conjecture that the value of each mutation operator differs depending whether the test
suite is being evaluated (TSE) or refined (TSR). During TSE, testers aim to reduce the number of
redundant mutants since they add no value in the process. During TSR, testers wish to favour those
operators that contribute to create high-quality test cases able to uncover hard-to-detect faults. Based
on this idea, we rank mutation operators regarding their influence during TSE and TSR respectively.
The first ranking sorts the operators based on their degree of redundancy; the second ranking sorts
the operators regarding their potential to contribute on the creation of high-quality test cases (based
on Estero-Botaro’s metric [20]). These two rankings are used as the basis for a selective mutation
study showing the trade-off between removing mutants and the loss in the effectiveness of the
technique. We apply two selective strategies to this end: an operator-based selection and a rank-
based mutant selection (i.e., favouring the selection of mutants from the top ranked operators).
These outcomes are based on the results of several experiments with six open-source applications.
The following are the main contributions of this paper:

• A double assessment of C++ class mutation operators based on their influence during
TSE and TSR respectively. To the best of our knowledge, this is the first work assessing
mutation operators from this double perspective.

• A selective mutation study for TSE using the ranking based on mutant redundancy.
Among other findings, results show that applying the top 6 operators (out of 24) leads to a
reduction over 31% in the number of mutants with a mutation score of 97.22%. With the same
size of mutants, a rank-based mutant selection obtains 98.87% of adequacy.

• A selective mutation study for TSR using the ranking based on test quality. Among other
results, experiments reveal that applying the top 7 operators leads to a reduction of almost
40% in the number of the mutants assuming a loss of only 13% in the number of test cases in
an adequate and minimal test suite. With the same number of mutants, the percentage of test
cases lost using rank-based mutant selection is under 6%.

• A comparison between the two rankings, where it is revealed that they are quite interrelated,
except for a few operators with a substantially different position in both classifications. This
fact supports the evaluation of mutation operators from a double perspective.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

• A comparison between operator-based and mutant-based selection, where experiments
show that using a subset of mutants from all mutation operators is a preferable option in
the case of class-level mutation testing (in the case of the highest reduction assessed, with a
difference in the average over 5% and 10% in the evaluations for TSE and TSR respectively).

• A comparison between rank-based and random mutant selection, where the results of
the rank-based strategy show that favouring the selection of mutants from the best-valued
operators in both rankings offers a better outcome than the random selection of mutants overall
(in the case of the highest reduction assessed, with a difference in the average of 0.3% and
1.85% in the evaluations for TSE and TSR respectively).

The remainder of this paper is structured as follows. Section 2 exposes the class mutation
operators for C++ and the classification of mutants through the execution matrix. Section 3 and
Section 4 describe the experiments performed for TSE and TSR respectively, and show the reported
results. Section 5 discusses the empirical results and threats to validity. Section 6 studies related
work in the scope of this paper, and last section presents conclusion and future work about the
applied approach.

2. BACKGROUND

2.1. Mutation operators for C++ object-oriented programs

The study of mutation testing at the class level began in 1999 with the definition of the first class
mutation operators by Kim et al. [21]. These mutation operators have been subject of study in recent
years [18, 22, 23, 24]. Class-level operators are known to produce fewer mutants than traditional
operators, and they appear with varying frequency depending on the features of the PUT [24]. In
addition, equivalence is even a more pronounced issue when applying this kind of operators [22].
Still, operators at the class level deserve special attention because they are useful to test structures
related to object-oriented features, which are not targeted by traditional operators.

In a previous work, some of the authors proposed a collection of class mutation operators for
C++ [6]. These operators are similar to the ones defined for other object-oriented languages, such as
Java [4] and C# [5], but taking into account specific features of the language (e.g., default parameters
in a method). Moreover, new operators were defined regarding some characteristics not explored up
to now, such as multiple inheritance or the existence of destructors.

Table I shows the C++ class operators under study classified by operator groups or blocks.
Each block includes those operators addressing similar syntactic elements [4, 6]. These mutation
operators have been implemented in the mutation system MuCPP [25]. We should note that
MuCPP has been optimized towards increasing the percentage of valid mutants (complying with
the grammar rules of the language) over the total number of mutants. Moreover, the system
avoids creating some equivalent and trivial mutants (i.e., killed by every test case exercising the
mutation) in order to enhance the operator effectiveness. This reduction is achieved through different
heuristics, such as the ones proposed by Lee et al. [23].

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 5

Table I. C++ class-level mutation operators under study.

Block Oper. Description

Inheritance IHD Hiding variable deletion
IHI Hiding variable insertion
ISD Base keyword deletion
ISI Base keyword insertion
IOD Overriding method deletion
IOP Overriding method calling

position change
IOR Overriding method rename
IPC Explicit call of a parent’s

constructor deletion
IMR Multiple inheritance replacement

Polymorphism PVI virtual modifier insertion
and dynamic PCD Type cast operator deletion
binding PCI Type cast operator insertion

PCC Cast type change
PMD Member variable declaration

with parent class type
PPD Parameter variable declaration

with child class type
PNC New method call with child class type

Method OMD Overloading method deletion
overloading OMR Overloading method contents replace

OAN Argument number change
OAO Argument order change

Exception EHC Exception handling change
handling EHR Exception handler removal

Object MCO Member call from another object
and member MCI Member call from another
replacement inherited class

Miscellany CTD this keyword deletion
CTI this keyword insertion
CID Member variable initialization deletion
CDC Default constructor creation
CDD Destructor method deletion
CCA Copy constructor and assignment

operator overloading deletion

2.2. Execution matrix

An execution matrix contains the whole information about mutant execution, being useful for
classifying mutants according to the values in the matrix [20]. We will resort to execution matrices
throughout the paper to illustrate examples about the used metrics. Being M the set of mutants and
T the set of test cases, the execution matrix with size |M | × |T | stores the result of running each
mutant against each test case. That result depends on the behaviour of the mutant when compared
with the original program. A mutant x killed by a test case y is represented with the value 1 in the
intersection of the row x and the column y. On the contrary, the value 0 denotes that the mutation
was not revealed by that test case.

A mutant, represented by a row in the execution matrix, is said to be:

• Alive when the row is filled with the value 0.
• Dead when there is at least one entry with the value 1 in the row.

Furthermore, Estero-Botaro et al. [26] defined two more specific terms to classify mutants:

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Operator Mutant
Test cases

sp test1 test2 test3 test4 test5

o1 m1 1 0 0 0 0
m2 0 0 1 0 0

o2 m3 0 0 1 0 0
m4 0 0 0 1 0

o3 m5 0 0 0 0 1
m6 1 0 0 1 1

o4 m7 1 0 1 0 1
m8 0 0 1 1 1

o5 m9 0 1 0 0 0
m10 0 0 0 1 0

Figure 1. Example of matrix execution with size 10× 5.

• A resistant mutant is killed by a single test case, and is identified as a row filled with the
value 0 except for one entry with the value 1. In Figure 1, the mutant 1 from the operator 1
(m1) is a resistant mutant.

• A resistant hard to kill mutant is killed by a single test case which only kills that mutant.
In the execution matrix, it is identified as a row with a single entry y with the value 1 (just
as a resistant mutant), where the rest of the entries in the column y are filled with the value
0. In Figure 1, m1 is resistant but not resistant hard to kill because the test1, which kills that
mutant, also kills the mutants m6 and m7. The mutant 9 generated by the operator 5 does
represent a resistant hard to kill mutant.

As mentioned in the introduction, a test suite is adequate when it detects all non-equivalent
mutants. The execution matrix can also be useful to ascertain some properties of a test suite:

• Non-redundant test suite: when none of the test cases in an adequate test suite can be
removed without losing the adequacy of the test suite. The test suite in Figure 1 is adequate
and non-redundant, as we cannot discard any of the test cases maintaining the same mutation
score.

• Minimal test suite: when a non-redundant test suite is of the minimum size, that is, there are
no other non-redundant test suites of smaller size. The test suite in Figure 1 is also a minimal
test suite.

We have to note that our concepts of non-redundant and minimal test suite are called as minimal
and minimum test suite respectively by Amman et al. [27]. Therefore, in our work we focus on
minimal test suites, which are called minimum test suites by the aforementioned authors.

3. ASSESSMENT BASED ON MUTANT REDUNDANCY

In this section, we assess the value of each mutation operator for TSE. To that end, we first
present the addressed research questions followed by the evaluation metric, subject case studies
and experiments performed.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 7

3.1. Research questions

The goal of this section is to answer the following research questions:

• RQ1: What is the degree of redundancy of each mutation operator? We aim to rank
mutation operators based on the number of their mutants which are redundant regarding some
of the mutants generated by the rest of operators in the set.

• RQ2: Is a subset of mutants with low degree of redundancy sufficient for TSE? We intend
to know the loss of mutation score when selecting (1) a subset of the top ranked operators
based on the degree of redundancy and (2) a subset of mutants in which the selection of
mutants from the top ranked operators is favoured. This fact would allow us to analyse
the trade-off between the reduction in the number of mutants and the effectiveness of the
technique when evaluating a test suite.

3.2. Evaluation metric

We propose to measure the degree of redundancy of a mutation operator as the number of redundant
mutants generated by the operator with respect to the mutants generated by the rest of operators.
Roughly speaking, an operator is redundant if all its mutants are killed by test cases that are
necessary to kill mutants from other operators. Formally, we define the metric operator redundancy
to measure the degree of redundancy of a mutation operator o as follows:

Ro(TMO) =

∣∣D(TMO\o)

∣∣
|D(TMO)|

× 100, Do 6= ∅

100, Do = ∅
(1)

Where:

• Do is the set of dead mutants from operator o.
• MO is the set of mutation operators.
• TMO is an adequate test suite for the set of mutants in MO .
• D(TMO) is the set of dead mutants with TMO.
• D(TMO\o) is the set of dead mutants when using an adequate and minimal test suite derived

from TMO without considering the mutants from operator o (as we will discuss later in this
paper, minimality is desirable to exclude test cases that may cause deviations in the values).

Equation 1 measures the operator redundancy (Ro) as the percentage of mutants killed by an
adequate test suite for all the mutants excluding the mutation operator under evaluation. The lower
the value of Ro, the less number of redundant mutants and therefore the more valued is that mutation
operator. The value of Ro can range from 100 to 0:

• Ro = 100: all the mutants from the mutation operator o are redundant. This happens when
the test cases that kill the mutants generated by o are still necessary to kill the mutants from
other operators, i.e., |D(TMO)| =

∣∣D(TMO\o)
∣∣. Another possibility is that all the mutants are

equivalent (Do = ∅), as stated in Equation 1.
• Ro = 0: the analysed mutation operator is the only operator in the set generating non-

equivalent mutants (i.e., TMO\o = ∅).

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Operator Mutant
Test cases

test1 test2 test3

o1 m1 0 1 0
m2 1 0 0

o2 m3 1 1 1
m4 0 1 1

o3 m5 0 0 1
m6 1 0 1

Figure 2. Execution matrix to illustrate the metric operator redundancy.

As an example, consider the execution matrix in Figure 2. The set {test1, test2, test3} is an
adequate and non-redundant test suite for the set of operators {o1, o2, o3} (TMO) because all of those
test cases are necessary to kill the mutants from those operators (in this case, it is also minimal).
Then, we can compute the following adequate and minimal test suites when excluding an operator
each time:

• TMO\o1 = {test3}
• TMO\o2 = {test1, test2, test3}
• TMO\o3 = {test1, test2}

The subset {test1, test2} is an adequate and minimal test suite for TMO\o3 as this subset kills
all the mutants without considering o3 (m1-m4). Once those adequate and minimal test suites are
known, we can calculate the set of dead mutants associated with those test suites:

• D(TMO\o1) = {m3,m4,m5,m6}
• D(TMO\o2) = {m1,m2,m3,m4,m5,m6}
• D(TMO\o3) = {m1,m2,m3,m4,m6}

Finally, the value of the operator redundancy metric for these three operators can be calculated as
follows (Do 6= ∅ in all cases):

• Ro1 = (4/6)× 100 = 66.6

• Ro2 = (6/6)× 100 = 100

• Ro3 = (5/6)× 100 = 83.3

Interpreting these results:

• The operator o1 presents the lowest redundancy: only 66.6% of the mutants (4 out of 6) would
be killed with an adequate test suite for the subset of operators {o2, o3}.

• The mutants from o2 are redundant with regard to the mutants created by o1 and o3 (Ro2 =

100).
• The mutant 5 from o3 is a non-redundant mutant as it would remain alive after using the subset
{test1, test2} (Ro2 = 83.3).

As a conclusion, a mutation operator with a low degree of redundancy increases the probability of
losing effectiveness if mutants from that operator are discarded when following a selective mutation
strategy. Therefore, the operators with the lowest Ro should be at the top of our ranking.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 9

Table II. Features of the case studies used in the experiments.

Tcl Rpc Dph Txm Kmy Dom Total

Classes 9 13 13 20 17 11 83
Lines of code 3,228 2,194 3,667 2,620 13,709 2,117 27,535
Avg. Methods 21.1 11.2 16.4 15.6 35.6 23.6 20.6
Mutants 135 127 208 433 284 681 1,868
% Equivalent 14.8 31.5 33.2 21.0 30.6 34.7 29.1
% Undecided 0 0 4.8 7.4 1.4 1.5 3.0
|Original T | 17 26 61 57 241 46 -
|Adequate T | 24(3) 34(5) 70(5) 62(3) 248(10) 56(4) -
|Minimal T | 15 15 22 15 36 25 -

3.3. Case studies and test suites

For the experiments, we applied mutation testing on six different real open-source applications and
libraries, namely:

• Matrix TCL Pro (Tcl) [28]: library for performing matrix algebra calculations in C++
programs.

• XmlRpc++ (Rpc) [29]: library implementing the XML-RPC protocol to incorporate client-
server communication through HTTP support into other C++ programs.

• Dolphin (Dph) [30]: default navigational file manager used by desktop applications in KDE.
• Tinyxml2 (Txm) [31]: lightweight and efficient XML parser that can be integrated into C++

applications.
• KMyMoney (Kmy) [32]: the personal finance manager by KDE.
• QtDom (Dom) [33]: Qt module that provides a C++ implementation of the DOM standard.

The test suites accompanying these programs were used and completed with additional test cases
designed by hand until reaching an adequate test suite. This is a laborious task because a mutant may
require complex scenarios involving different classes to be killed. In the process of generating new
test cases, surviving mutants must be examined, taking often a long time to distinguish equivalent
mutants from those whose semantic is very similar to the original program. There is an intrinsic
bias in determining equivalence, as not always a tester can establish this state with high confidence.
To minimize this threat in the calculations, we opted for classifying as undecided the mutants for
which we were not sure whether they are equivalent or not, as Segura et al. [24] proposed in a
previous study. In this regard, the concept of undecided mutant prevents skewing of results in the
experiments.

For these experiments, we used the random adequate and minimal test suite generated by the
exact algorithm that Estero-Botaro et al. [20] used in their study. Any metric is dependent on the
test suite. Thus, we make use of minimal test suites because that property prevents the results from
being distorted by unproductive test cases, as pointed by Estero-Botaro et al. [26].

Table II depicts several metrics about the aforementioned case studies: number of classes, lines
of code, mean of methods in the analysed classes, the total of mutants, the percentage of equivalent
and undecided mutants. The size of the original test suite, adequate test suite after adding new test
cases (between parentheses, the number of test cases additionally modified) and minimal test suite
are also shown.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Table III. Mutants generated in each case study by operator (M: mutants; D: dead; E: equivalent).

Oper.
Tcl Rpc Dph Txm Kmy Dom Total

D E D E D E D E D E D E M D E

IHD 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
IHI 0 0 2 2 0 0 41 6 8 15 21 25 120 72 48
ISD 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
ISI 0 0 2 1 9 2 0 0 0 3 1 1 19 12 7
IOD 0 0 1 2 15 3 24 1 1 0 28 2 79 69 8
IOP 0 0 0 0 0 0 8 0 0 0 0 2 10 8 2
IOR 0 0 0 15 3 27 10 1 0 0 0 1 57 13 44
IPC 0 0 1 0 2 3 0 0 12 6 8 0 32 23 9
PCI 0 0 2 1 0 0 138 20 14 1 293 155 659 447 177
PMD 0 0 0 0 0 0 0 3 0 1 0 4 8 0 8
PPD 0 0 0 1 0 0 5 2 4 14 2 12 42 11 29
PNC 0 0 0 0 0 0 0 0 0 0 2 0 2 2 0
OMD 38 8 9 1 2 1 23 14 9 4 16 6 131 97 34
OMR 33 1 10 0 5 1 0 0 32 0 16 0 98 96 2
OAN 0 0 0 0 0 0 0 0 3 4 0 0 7 3 4
MCO 3 0 38 10 68 7 18 1 76 7 36 7 285 239 32
MCI 0 0 0 0 0 0 13 26 0 0 0 0 39 13 26
EHC 0 0 1 1 0 0 0 0 1 5 0 0 8 2 6
CTD 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
CTI 0 0 0 0 2 0 0 0 0 0 1 0 3 3 0
CID 38 2 14 3 23 18 24 10 26 22 6 9 196 131 64
CDC 0 0 2 0 0 0 3 0 4 1 0 0 10 9 1
CDD 0 2 2 3 0 2 3 3 2 2 0 4 23 7 16
CCA 3 7 2 0 0 5 0 4 0 2 4 8 37 9 26

Total 115 20 87 40 129 69 310 91 193 87 435 236 1,868 1,269 543

Finally, Table III shows a breakdown of the total number of mutants and their classification into
dead (D) and equivalent (E) for each case study and mutation operator. In Total, the number of
undecided mutants corresponds to the cases where the sum of dead and equivalent mutants is not
equal to the number of mutants (M).

3.4. Experiment #1: Ranking mutation operators

In this experiment, we measure the operator redundancy as described in Section 3.2 for each of the
studied mutation operators.

3.4.1. Setup We first determined an adequate and minimal test suite for the set of mutants (see
Section 3.3). Then, the following process was performed for each mutation operator o generating at
least one dead mutant:

1. Remove from the execution matrix the mutants generated by the mutation operator o

(MO \ o).

2. Compute an adequate and minimal test suite for the remaining operators (TMO\o).

3. Include again in the execution matrix the mutants generated by the mutation operator o.

4. Remove from the execution matrix the columns of the test cases which were not in the
computed adequate and minimal test suite.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 11

5. Calculate the operator redundancy of o (Ro(TMO)).

This procedure was carried out for each of the case studies and then a mean was calculated with
the values obtained for each operator. Finally, a ranking was prepared in descending order of Ro.

3.4.2. Results The results of the operator redundancy metric of each operator and case study appear
in Table IV. The mean calculated per operator is used to form the ranking, where MCO is the most
valued operator on average. The standard deviation (SD) has also been included to show how much
the metric varies among PUTs. The operators at the bottom of the table (Ro = 100) do not affect
the TSE process when excluding one of them from the set of operators. The figures marked with ‘*’
represent operators only producing equivalent mutants in that case study.

As illustrated, although ten operators have an operator redundancy of 100, the rest of operators
show a redundancy degree between 89.67 and 99.92. The operator redundancy on average for all
the mutation operators is high: 18 out of 24 mutation operators present a value over 99. This is
explained by the fact that a test case usually reveals the mutations injected by different operators,
so removing an operator does not always lead to a reduction in the number of test cases. These high
values have also been observed in similar works when only one operator is removed [34].

The top 4 ranked operators are the ones producing the highest number of mutants (see Table III); it
seems unlikely that removing a great quantity of mutants does not lead to a decrease in the number of
necessary test cases. However, IHI is the fifth most prevalent operator and ranks at number 13 out of
24 operators. We run the Spearman’s correlation test to know how the number of mutants influences
this metric. The results in each of the programs range from -0.56 in Rpc to -0.73 in Kmy (95%
confidence level except for Tcl). These results suggest that indeed there is an inverse correlation
between the number of mutants generated by the operators and the value that the redundancy metric
(TSE) assigns them, but the correlation is not very strong, which means that the operator redundancy
not only depends on the number of mutants generated by each operator. The top 5 operators are from
different operator groups (see Table I). “Exception handling” is the only block not represented in
that top 5. This fact suggests that the operators at the top of the ranking partially subsume the rest
of operators in the same group. It also suggests that each operator block tackles different features,
so it is less probable that operators from different groups are redundant among them.

3.5. Experiment #2: Selective mutation based on the ranking

This second experiment aims to leverage the ranking of mutation operators obtained in the previous
experiment to undertake selective mutation. The goal is to observe the loss in the mutation adequacy
score when some of the mutants are not included for TSE.

3.5.1. Setup In a first step, we grouped together the operators with a similar rate into five
categories. We set the following ranges with a view to balance the number of operators in each
category (see Table IV):

Category 1: 98 > Ro

Category 2: 99 > Ro ≥ 98

Category 3: 99.5 > Ro ≥ 99

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Table IV. Ranking of mutation operators based on mutant redundancy (SD: standard deviation).

Operator Tcl Rpc Dph Txm Kmy Dom Mean SD

MCO 100 83.90 91.47 100 64.76 97.93 89.67 13.70
PCI 100 94.83 97.92 80.22 93.24 8.94
OMD 89.56 98.85 100 100 97.92 99.76 97.68 4.06
CID 100 97.70 96.12 98.06 96.89 100 98.13 1.60
IOD 100 96.12 98.70 99.48 98.62 98.58 1.49
OAN 98.96 98.96 -
MCI 99.03 99.03 -
IPC 100 99.22 97.92 100 99.28 0.98
OMR 98.26 100 100 98.96 100 99.44 0.80
CDC 98.85 100 100 99.62 0.66
EHC 100 99.48 99.74 0.37
CDD *100 98.85 *100 100 100 *100 *99.81 0.47
IHI 100 100 99.48 100 99.87 0.26
IOR *100 100 99.67 *100 *99.92 0.17
IHD 100 100.00 -
ISD 100 100.00 -
PNC 100 100.00 -
CTD 100 100.00 -
CTI 100 100 100.00 0.00
ISI 100 100 *100 100 *100.00 0.00
IOP 100 *100 *100.00 0.00
PMD *100 *100 *100 *100.00 0.00
PPD *100 100 100 100 *100.00 0.00
CCA 100 100 *100 *100 *100 100 *100.00 0.00

Category 4: 100 > Ro ≥ 99.5

Category 5: Ro = 100

Once defined these categories, we applied two different selective mutation strategies:

Operator-based selection We performed the following steps for each case study from i = 4 to i = 1

(being i a variable to refer to a category†):

1. Select from the execution matrix the operators encompassed within categories [1...i]
(MO[1...i]).

2. Compute an adequate and minimal test suite for the selected operators (TMO[1...i]
).

3. Include again in the execution matrix the mutants from the operators that were not in MO[1...i].

4. Calculate the mutation score associated with the test suite TMO[1...i]
and the reduction in the

number of mutants.

Rank-based mutant selection In this strategy, we follow a similar approach to the two-round random
selection technique proposed by Zhang et al. [11]. While in the two-round random technique the
number of mutants selected from each operator is probabilistically speaking about the same, in
rank-based mutant selection we seek to generate more mutants from the top ranked operators than
from the operators at the bottom of the ranking based on mutant redundancy. Our rank-based mutant
selection comprises two steps:

†The operators classified in the category 5 are removed in the first loop as we select the categories 1–4.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 13

1. Operator selection: The probability of being selected for an operator is proportional to its
position in the ranking. As an example for three operators, the 1st operator in the ranking will
be selected with probability 3/6, the 2nd with 2/6 and the 3rd with 1/6.

2. Mutant selection: A mutant is randomly selected from the operator previously selected.

We performed the following steps for each case study from i = 4 to i = 1 (being i a variable to
refer to a category):

1. Select using rank-based mutant selection with all operators as many mutants from D (set of
dead mutants) as dead mutants are contained in the operators encompassed within categories
[1...i] (

∣∣DMO[1...i]

∣∣)‡. We call the set of selected mutants MR from now on.

2. Compute an adequate and minimal test suite for the selected mutants (TMR
).

3. Include again in the execution matrix the mutants that were not in MR.

4. Calculate the mutation score associated with the test suite TMR
.

We applied the above process 30 times with different seeds and computed the average.

3.5.2. Results Table V classifies mutation operators into the five categories enumerated in
Section 3.5.1 and presents the mutation score after performing the experimental procedure explained
in that section. Each value of this table is the result of removing the operators within the categories
under that row. As an example, only the operators MCO, PCI and OMD were applied to compute
the mutation scores shown in the first row (category 1). Using these three operators, we achieved a
mutation score over 90% in 4 out of 6 case studies. The second row presents the results of selecting
the operators within category 1 and 2 (MCO, PCI, OMD, CID, IOD and OAN), where the mutation
score was greater than 90% for all the case studies. We should note that the last row shows the
data for the whole set of operators (the mutation score is therefore 100% because the test suite is
adequate). We computed the mean (Mean) and the standard deviation (SD) of the results in all the
case studies.

Table VI shows the reduction in the percentage of generated mutants because of the operators
removed in each step, as well as the mean and the standard deviation (SD). As illustrated, applying
the three operators in category 1, we achieve over 90% of the original mutation score with a
reduction of more than half of the mutants (52.63%). Analogously, using the six operators from
the categories 1 and 2 results in a mutation score of 97.22% on average (the standard deviation is
2.76) with a reduction in the number of mutants of 31.7% (standard deviation: 8.06). The mutation
score gradually decreases when removing each of the categories, except for the operators in category
5. In this latter case, there is no lost of mutation score accuracy while achieving an average reduction
in the number of mutants of 7.02%.

Table VII contains the results of the rank-based mutant selection technique. The mean mutation
score (M) in each of the categories and the standard deviation (SD) are shown. As an example of the
meaning of the values in this table, the average in Rpc in category 2 (98.8%) is the mutation score

‡We select the same number of mutants in both selective strategies in order to compare them later on in this paper.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Table V. Mutation score when performing operator-based selective mutation based on
the ranking of mutant redundancy (SD: standard deviation).

C. Operators Tcl Rpc Dph Txm Kmy Dom Mean SD

1 MCO-PCI-OMD 93.0 92.0 89.1 94.8 79.3 94.9 90.52 5.89

2 CID-IOD-OAN 98.3 97.7 99.2 98.7 91.7 97.7 97.22 2.76

3 MCI-IPC-OMR 100 97.7 100 99.7 99.0 100 99.40 0.92

4 CDC-EHC-CDD-IHI-IOR 100 100 100 100 100 100 100 0

5 IHD-ISD-PNC-CTD-CTI 100 100 100 100 100 100 100 0
ISI-IOP-PMD-PPD-CCA

Table VI. Reduction in the number of mutants by categories when applying operator-based
selective mutation based on the ranking of mutant redundancy (SD: standard deviation).

Category Tcl Rpc Dph Txm Kmy Dom Mean SD

1 63.7 52.0 69.6 46.6 60.4 23.5 52.63 16.47
2 34.1 36.2 30.8 31.9 40.4 16.8 31.70 8.06
3 8.9 27.6 25.3 22.2 22.5 13.3 20.00 7.28
4 7.4 5.5 9.1 5.5 8.9 5.7 7.02 1.70
5 0 0 0 0 0 0 0 0

Table VII. Rank-based selection results based on the ranking of mutant redundancy
(M: mean; SD: standard deviation).

PUT
1 2 3 4

M SD M SD M SD M SD

Tcl 92.3 2.88 98.4 1.80 100 0.00 100 0.00
Rpc 95.1 3.61 98.8 1.86 99.8 0.42 99.9 0.58
Dph 93.1 2.57 98.2 1.39 99.1 0.97 99.3 0.75
Txm 99.8 0.49 100 0 100 0 100 0
Kmy 95.0 1.91 97.9 1.45 99.6 0.49 100 0.13
Dom 100 0 100 0 100 0 100 0

Total 95.89 3.30 98.87 0.92 99.77 0.35 99.87 0.27

Figure 3. Comparison of the mutation score when using operator-based and
mutant-based (rank-based) selection for the categories 1–4.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 15

when selecting the same number of dead mutants as dead mutants are generated by the operators
included in the categories 1 and 2. In this way, the effectiveness of this strategy is comparable to
the effectiveness of the operator-based strategy (97.7%) for the same case study and category (see
Table V). As remarkable results, we can observe that in category 2 we achieve the full mutation
score in two case studies and a total average score of 98.87%. The mutation score declines by 3%
(95.89%) in category 1, but it is over 92% for all case studies. A comparison of the average results
of the operator-based and rank-based strategy can be graphically seen in Figure 3 for each of the
categories.

4. ASSESSMENT BASED ON TEST QUALITY

This section presents an evaluation of mutation operators for TSR analogous to the assessment
undertaken for TSE in Section 3. In this regard, research questions, evaluation metric and
experiments conducted are tackled.

4.1. Research questions

In this section we intend to answer the following research questions:

• RQ3: What is the potential of each mutation operator for inducing the creation of high-
quality test cases? We aim at ranking mutation operators through their ability to generate
hard to kill mutants, that is, mutants killed by few test cases which in turn kill few other
mutants.

• RQ4: Is a subset of mutants with a high potential to induce the generation of high-
quality test cases sufficient for TSR? We intend to know the loss in the number of test cases
in the test suite when selecting (1) a subset of the top ranked operators based on test quality
and (2) a subset of mutants in which the selection of mutants from the top ranked operators
is favoured. This fact would allow us to analyse the trade-off between the reduction in the
number of mutants and the effectiveness of the technique when refining a test suite.

4.2. Evaluation metric

Non-equivalent mutants that remain alive require additional test cases to be killed. However, a
single test case could suffice to kill all of those surviving mutants if they model faults that are
not difficult to reveal. Indeed, it is known that the more effective the test cases, the less effective
the mutants [5]. The mutants offering resistance to be killed should be the most valued when
determining a classification of operators for TSR. Therefore, giving a greater value to resistant
and resistant hard to kill mutants (see Section 2.2) over other kinds of mutants seems a suitable
approach in order to generate high-quality test cases. Estero-Botaro et al. [20] transformed this
textual description into a mathematical formula. In this way, the formula is used to compute a
quality metric which favours both resistant and resistant hard to kill mutants (see Equation 2). The
use of an adequate, non-redundant and minimal test suite ensures that the calculation of the metric
Qm is not affected by the size of the test suite [20].

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Qm =

0, m ∈ E

1− 1

(|M | − |E|) · |T |
∑
t∈Km

|Ct| , m ∈ D
(2)

Where:

• M is the set of valid mutants.
• E is the set of equivalent mutants.
• D is the set of dead mutants.
• T is an adequate and minimal test suite.
• Km is the set of test cases that kill the mutant m.
• Ct is the set of mutants killed by the test case t.

This metric takes into account not only the number of test cases killing the mutant but also the
number of mutants killed by those test cases at the same time. This is a desirable property because
the fewer the mutants a test case detects, the more specific is that test case and therefore the fewer
the mutants can induce the design of that test case. As a consequence, this metric seeks that the
mutants killed by few test cases that in turn kill few other mutants are included in the subset of
selected mutants: this will increase the probability that the more specific test cases are designed
through the inspection of those mutants.

While resistant and resistant hard to kill mutants provide us with two clear examples of profitable
mutants according to this metric, it is important to note that the rest of the mutants also receive a
mark between 0 and 1 depending on the number of test cases and mutants killed by those test cases:
the lower the number of test cases killing the mutant, the better the mutant. In the same line, the
lower the number of mutants killed by those test cases, the better the mutant.

On this basis, they defined the quality metric of a particular mutation operator as the mean of the
quality metric of the mutants generated with that mutation operator (see Equation 3).

Qo =
1

|Mo|
∑

m∈Mo

Qm (3)

Where Mo is the set of mutants generated by the operator o.
The metric Qo can be used as a means to rate operators by their potential to help the tester to

enhance the fault detection power of the test suite. The operators with the highest quality metric
should be the most valued. Notice that this quality metric penalizes the existence of equivalent
mutants (Qm = 0, as stated in Equation 2); this metric can be computed even when the operator
only generates equivalent mutants (in that case, Qo = 0).

As an example of this metric, consider the execution matrix in Figure 4. Being To an adequate and
minimal test suite for the mutation operator o, we can compute the following adequate and minimal
test suites for each mutation operator:

• To1 = {test1, test2}
• To2 = {test3}

To1 is formed by {test1, test2} because the test cases test1 and test2 can be used to kill the three
mutants from operator o1 (m1, m2, m3). Then, the value of the quality metric for these two operators
is:

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 17

Operator Mutant
Test cases

test1 test2 test3

o1 m1 0 1 0
m2 1 0 0
m3 1 0 1

o2 m4 0 0 0
m5 0 0 1
m6 1 0 1

Figure 4. Execution matrix to illustrate the quality metric.

1. Quality of operator o1 (|Mo1 | = 3, |Eo1 | = 0, |To1 | = 2, Ctest1 = {m2,m3}, Ctest2 = {m1}):

• Qm1 = 1− 1/((3− 0) · 2) = 0.83 where Km1 = {test2}
• Qm2 = 1− 2/((3− 0) · 2) = 0.67 where Km2 = {test1}
• Qm3 = 1− 2/((3− 0) · 2) = 0.67 where Km3 = {test1}

Qo1 = (0.83 + 0.67 + 0.67)/3 = 0.72

2. Quality of operator o2 (|Mo2 | = 3, |Eo2 | = 1, |To2 | = 1, Ctest3 = {m5,m6}):

• Qm4 = 0 (equivalent)
• Qm5 = 1− 2/((3− 1) · 1) = 0 where Km5 = {test3}
• Qm6 = 1− 2/((3− 1) · 1) = 0 where Km6 = {test3}

Qo2 = (0 + 0 + 0)/3 = 0

Interpreting these results, the operator o1 is more valued than o2 with this metric (Qo1 = 0.72 >

Qo2 = 0) because of the following facts:

• The operator o2 generates an equivalent mutant (m4), which is penalized by the metric.
• Both m5 and m6 (o2) can be killed with a single test case (test3), which always results in
Qm = 0.

• As test3 suffices to kill the mutants generated by o3, test1 and test2 may not be generated
without considering o1. Furthermore, test2 would be generated only after analysing the first
mutant (m1) from o1, as m1 is the only mutant killed by test2.

As a conclusion, a mutation operator with a high value of Qo increases the probability of missing
some test cases when performing a selective mutation strategy without mutants generated by that
operator. Therefore, the operators with the highest Qo should be at the top of the ranking.

4.3. Experiment #1: Ranking mutation operators

This first experiment aims to apply the quality metric described in Section 4.2 to each mutation
operator.

4.3.1. Setup The same case studies and adequate test suites presented in Section 3.3 were used in
this experiment. We should note that in the experiments conducted by Estero-Botaro et al. [20], the

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Table VIII. Ranking of mutation operators based on test quality (SD: standard deviation).

Operator Tcl Rpc Dph Txm Kmy Dom Mean SD

IOD - 0.80 0.78 - 0.89 0.82 0.06
MCO - 0.74 0.79 0.72 0.89 0.73 0.77 0.07
OMR 0.88 0.92 0 0.98 0.89 0.73 0.41
OMD 0.80 0.82 - 0.52 0.68 0.71 0.71 0.12
IPC - 0.30 0.65 0.79 0.58 0.25
CID 0.83 0.74 0.52 0.58 0.52 0.29 0.58 0.19
ISI - 0.57 - - 0.57 -
CDC - - 0.47 0.47 -
PCI - 0.71 0 0.60 0.44 0.38
OAN 0.38 0.38 -
IHI 0 0.72 0.29 0.39 0.35 0.30
MCI 0.30 0.30 -
IOR 0 0.07 0.65 - 0.24 0.36
PPD - 0 0.17 0.11 0.14 0.09
CCA 0.17 - 0 0 - 0.25 0.10 0.13
CDD - 0.30 - 0 0 0 0.07 0.15
IOP 0 - 0 -
PMD - - 0 0 -
EHC - 0 0 -

metric was measured only for operators generating at least four mutants. Despite class operators are
known to generate fewer mutants than traditional operators, we have maintained this condition in our
experiments. We calculated the quality metric of the operators for each case study (as explained by
Estero-Botaro et al. [20]) and computed a mean with the values obtained for each operator. Finally,
a ranking was prepared in ascending order of Qo.

4.3.2. Results Table VIII shows the results of applying the quality metric for each operator and
case study, where operators are sorted by the mean in our case studies (the standard deviation is also
calculated). IOD (0.82) is the most valued operator on average, followed by MCO (0.77) and OMR
(0.73). On the contrary, the operators IOP, PMD and EHC present the lowest quality metric, so they
are at the bottom of the classification. Mutation operators which could not be rated with this metric
in a case study are marked with ‘-’ (as aforementioned, the threshold is set in operators generating
at least four mutants). We should remark that five operators (IHD, ISD, PNC, CTD and CTI) are not
shown in the table as they did not generate more than three valid mutants in any of the case studies
(see Table III). The mutation operator OMR, ranked 3rd, was the only operator obtaining values
over 0.9 in some of the subject programs. The quality metric in the rest of operators with Qo > 0

range from 0.07 to 0.71, with varying standard deviations across the ranking. Note that mutants
from operators with Qo = 0 in a case study are either equivalent or all the mutants are killed by all
the test cases in the adequate and minimal test suite for the operator, as shown in the example in
Section 4.2.

4.4. Experiment #2: Selective mutation based on the ranking

As explained in Section 3.5.1, in the second experiment we perform selective mutation using the
ranking obtained in the previous experiment (see Section 4.3). The goal is to observe the loss in the
number of test cases in an adequate and minimal test suite for the full set of mutants when applying
operator-based and rank-based mutant selection for TSR. Recall that the quality metric favours the

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 19

mutants killed by few test cases which kill few mutants at the same time. It is expected that the
mutants produced by the best-valued operators help design test cases that kill few mutants, that is,
high-quality test cases. Therefore, the mutation score will not be representative of the full set of
mutants in this case, yet we will be retaining test cases which are not easy to design.

4.4.1. Setup We gathered the operators with a similar quality metric into five categories, but also
trying to balance the number of operators in each category (see Table VIII):

Category 1: 0.70 < Qo

Category 2: 0.50 < Qo ≤ 0.70

Category 3: 0.25 < Qo ≤ 0.50

Category 4: 0.00 < Qo ≤ 0.25

Category 5: Qo = 0.00

The five mutation operators that could not be assessed are included in the fifth category, as they
are supposed not to have a significant influence on the results.

Operator-based selection Once defined these categories, we performed the following steps for each
case study from i = 4 to i = 1 (being i a variable to refer to a category):

1. Select from the execution matrix the operators encompassed within categories [1...i]
(MO[1...i]).

2. Compute an adequate and minimal test suite for the selected operators (TMO[1...i]
).

3. Calculate the loss of test cases with respect to the original adequate and minimal test suite,
|TMO| −

∣∣TMO[1...i]

∣∣, and the reduction in the number of mutants.

Rank-based mutant selection As in Section 3.5.1, we executed 30 times the following steps for each
case study from i = 4 to i = 1 (being i a variable to refer to a category) and computed the average:

1. Select with the rank-based technique the same size of dead mutants from all operators as
mutants of this kind are contained in the operators encompassed within categories [1...i]
(
∣∣DMO[1...i]

∣∣). Recall, MR represents the set of selected mutants.

2. Compute an adequate and minimal test suite for the selected mutants (TMR
).

3. Calculate the loss of test cases with respect to the original adequate and minimal test suite:
|TMO| − |TMR

|.

4.4.2. Results Table IX classifies mutation operators into the five categories (C) enumerated in
Section 4.4.1. This table shows the percentage of loss in the number of test cases from the original
adequate and minimal test suite as a consequence of removing the mutants from the operators under
that category. Again, we obtained the mean as well as the standard deviation (SD) of the results

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Table IX. Percentage of test cases loss when performing operator-based selective mutation based on the
ranking of test quality (SD: standard deviation).

C. Operators Tcl Rpc Dph Txm Kmy Dom Mean SD

1 IOD-MCO-OMR-OMD 0 20.0 18.2 53.3 30.6 20.0 23.68 17.57

2 IPC-CID-ISI 0 13.3 0 33.3 13.9 20.0 13.42 12,65

3 CDC-PCI-OAN-IHI-MCI 0 6.7 0 6.7 2.8 0 2.70 3.28

4 IOR-PPD-CCA-CDD 0 0 0 0 2.8 0 0.47 1.10

5 IOP-PMD-EHC 0 0 0 0 0 0 0 0
IHD-ISD-PNC-CTD-CTI

Table X. Reduction in the number of mutants by categories when applying operator-based selective mutation
based on the ranking of test quality (SD: standard deviation).

Category Tcl Rpc Dph Txm Kmy Dom Mean SD

1 38.5 44.1 48.5 79.8 53.9 83.5 58.05 19.01
2 8.9 27.6 19.7 71.3 29.3 79.7 39.42 28.99
3 8.9 20.5 19.7 9.7 11.4 6.1 13.20 5.96
4 0 2.4 1 2.7 2.9 1.5 1.75 1.13
5 0 0 0 0 0 0 0 0

Table XI. Rank-based selection results based on the ranking of test quality
(M: mean; SD: standard deviation).

PUT
1 2 3 4

M SD M SD M SD M SD

Tcl 9.6 5.7 0 0 0 0 0 0
Rpc 8.9 7.1 1.6 2.9 0.2 1.2 0 0
Dph 10.9 6.4 1.5 3.0 1.5 3.0 0.5 1.4
Txm 28.0 8.1 19.1 5.7 0 0 0 0
Kmy 6.0 2.4 0.6 1.2 0 0 0 0
Dom 15.5 4.4 11.5 5.2 0 0 0 0

Total 13.14 7.91 5.72 7.82 0.29 0.61 0.08 0.19

Figure 5. Comparison of the percentage of test cases loss when using operator-based
and mutant-based (rank-based) selection for the categories 1–4.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 21

of each case study. Table X depicts the percentage of reduction in the number of mutants by not
considering the operators removed in each step.

From Table IX, we can observe an increasing drop in the number of test cases in the adequate
and minimal test suite, from 0.47% after removing the operators within category 5 to 23.68% only
using the operators within category 1. Considering the 16 operators with Qo > 0 (from category 1
to 4), the same number of test cases remains in the adequate and minimal test suite, except for a
loss of one test case in Kmy (2.8%). The reduction in the number of mutants is not very relevant
when removing the operators within categories 4 and 5, but meaningful when selecting the first 7
operators in the ranking (39.42%). In that case, we assume a loss of 13.42% of test cases. We should
note an increasing standard deviation because of dissimilar results among case studies, especially
Tcl and Txm in the categories 1 and 2. In addition, the number of test cases in the minimal test suite
is not very high in most case studies (from 15 to 36 test cases, as can be seen in Table II), so the
reduction of each test case implies a great percentage.

Table XI shows the results of the rank-based mutant selection. By using the same size of mutants
as in the operators within categories 1 and 2, we assume a mean loss of test cases of 5.72% with a
standard deviation of 7.82. This percentage increases to 13.14% as a consequence of discarding the
number of dead mutants generated by the operators in category 2. Overall, we can also observe that
the standard deviations progressively increase from category 4 to 1: the fewer the mutants selected,
the more varied are the results in the different executions. As in the previous section for TSE, we
show in Figure 5 the average results for operator-based and rank-based selection together.

5. DISCUSSION

5.1. Validation of operator-based selection results

As a sanity check, we compared our operator-based selection results with three new rankings of
operators. We carried out operator-based selective mutation by establishing categories of operators
with these new rankings, as done in Section 3.5.1 and Section 4.4.1. To this end, we followed
classical approaches to selective mutation:

• Random: random sort of mutation operators. For a direct comparison between categories
with the same number of operators, we maintained the same sizes of the categories from the
original experimental results (see Section 3.5.2 and Section 4.4.2).

• Number of mutants (Size): sort of mutation operators by the number of mutants [7, 15],
where the most prolific operators are at the bottom of the ranking.
In order to retain a significant number of mutants at all times, the category size is proportional
to the number of mutants generated in the analysed programs (see Table III). Thus, we divided
the total number of mutants (1,868) by 5 categories, which results in 374 mutants per category.
Then, we included as many operators as needed to complete 374 mutants, which depends on
the mutants produced by each operator. As an example, PCI (the most prolific operator) is
the only operator in the category 5 as it generates 659 mutants, which suffices to reach the
number of mutants set for a category.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

Table XII. Arrangement of the rankings Random, Size and Block classified into categories for TSE and TSR.

Category Random TSE Random TSR Size TSE,TSR Block TSE,TSR

1 IPC,OMR,ISD IPC,OMR, CTD,ISD,IHD,PNC, IHD,IHI,ISD,
ISD,ISI CTI,OAN,EHC,PMD, ISI,IOD,IOP,

CDC,IOP,ISI,CDD, IOR,IPC
IPC,CCA,MCI,PPD,
IOR

2 ISI,CCA,OMD CCA,OMD, IOD,IHI, CTD,CTI,CID,
CTI OMR,OMD CDC,CDD,CCA

3 CTI,PNC,MCI PNC,MCI,IOD, CID PCI,PMD,PPD,
MCO,IOP PNC

4 IOD,MCO,IOP, CDC,PCI, MCO OMD,OMR,
CDC,PCI CID,PMD OAN

5 CID,PMD,IOR, IOR,IHD,IHI, PCI MCO,MCI,EHC
IHD,IHI,CTD, CTD,CDD,
CDD,OAN, OAN,EHC,
EHC,PPD PPD

Table XIII. Comparison of the mutation score when using operator-based selective mutation testing for TSE
with the rankings Random, Size and Block (M: mean; SD: standard deviation).

Category
Original Random Size Block

M SD M SD M SD M SD

1 90.52 5.89 48.89 29.90 56.02 21.47 53.70 31.09
2 97.22 2.76 74.66 14.10 82.76 13.52 78.15 14.77
3 99.40 0.92 78.17 13.94 85.18 13.48 84.36 15.62
4 100 0 97.54 2.12 95.50 7.75 89.43 13.75

Table XIV. Comparison of the percentage of test cases loss when using operator-based selective mutation
testing for TSR with the rankings Random, Size and Block (M: mean; SD: standard deviation).

Category
Original Random Size Block

M SD M SD M SD M SD

1 23.68 17.57 66.71 19.38 66.97 11.76 64.46 22.17
2 13.42 12.65 48.09 23.73 26.56 11.45 37.68 12.38
3 2.68 3.28 19.31 12.98 17.69 9.81 30.79 17.92
4 0.45 1.10 4.07 4.75 5.35 7.34 13.92 10.51

• Operator type (Block): mutation operators of the same operator block are grouped
together [12] (see Table I). These blocks are sorted by the number of operators that they
contain. The block with more operators (“inheritance”) is at the top of the ranking.
The category size in this ranking depends on the number of operators within each group.
In this regard, we only counted operators creating at least one mutant in our case studies.
For instance, 3 out of 4 operators from the “method overloading” block were applied (OMD,
OMR and OAN). Because of the few operators, the groups “exception handling” and “object
and member replacement” were gathered in a category.

The final arrangement of these three rankings and their classification into categories is depicted
in Table XII. We should remark that the categories for TSE and TSR are different in the case of
Random because their category size is related to the number of operators within each category in
the original experiments.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 23

For each ranking, Table XIII shows the mutation score achieved by the operators of each category
following the selective mutation procedure described in Section 3.5.1. Analogously, Table XIV
presents the percentage of reduction in the number of test cases in the adequate and minimal test
suite. The column Original illustrates the mean (M) and the standard deviation (SD) obtained in our
original rankings (see column Mean and SD in Table V and IX).

The results of the original rankings on average are clearly better than the results of the rankings
Random, Size and Block. The ranking Random shows the worst performance in general in both
the calculations of the mutation score and the loss in the percentage of test cases, except when
removing the first turn of operators. The ranking Size gets better results than Block in both selective
strategies in 7 out of 8 cases (four categories for TSE plus other four categories for TSR). On few
occasions, the rankings Random and Size match the outcome of our original results in a pair ‘(case
study, category)’, but the averaged results are still very far from the ones achieved with the original
rankings. As an exception, we have to note that the ranking Block is able to surpass the ranking
based on test quality for Txm when selecting the operators from category 1 and the operators from
the categories 1 and 2. Nevertheless, the high standard deviations in these three rankings suggest
that they are not consistent.

5.2. Validation of rank-based mutant selection results

Similarly to the previous sanity check, we aim to compare our rank-based mutant selection results
with other strategies for the selection of mutants [11]:

• One-round random (One-round): random selection of mutants from all the operators (equal
probability of selecting each of the mutants).

• Two-round random (Two-round): in the first round, one operator is selected randomly; in
the second round, one mutant is selected randomly from the operator selected in the first step
(equal probability of selecting a mutant from each of the operators).

In both strategies, we select the same number of mutants in each category for TSE and TSR as in
the rank-based mutant selection. Figures 6 and 7 show graphically the comparative performances of
the strategies for TSE and TSR respectively (mean and standard deviation).

The original rank-based mutant selection based on the operator classification for TSE and TSR
outperforms in all the cases the One-round strategy on average. One-round also shows a worse
performance than Two-round. While One-round was able to obtain a better result in TSE for the two
first categories when analysing Dph, the original strategy was better in the rest of the cases except
for a few ties (with a remarkable difference of 2.6% in the pair ‘(Kmy, category 2)’). Regarding
TSR, we can find a noteworthy gap between the two strategies in ‘(Dom, category 1)’): 18.1% for
rank-based selection and 30.6% for One-round.

As for Two-round, the original strategy gets better results in 6 out of 8 cases on average and the
gap between the two selective approaches widens as the number of mutants selected decreases. This
outcome is quite interesting as that means that the operator rankings work better for large reductions
of mutants. If we focus on the first category, while in TSE the rank-based strategy surpasses Two-
round by 0.3% on average (note that the margins are narrow because of the nature of the mutation
score), the difference is more notable when measuring the percentage of test cases lost (1.85%). The
standard deviation in Two-round is also higher than in the original strategy for both evaluations in

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

(a) Mean (b) Standard deviation

Figure 6. Comparison of the mutation score when using Rank-based selective mutation testing for TSE
with the rankings One-round and Two-round (left: mean; right: standard deviation).

(a) Mean (b) Standard deviation

Figure 7. Comparison of the percentage of test cases loss when using Rank-based selective mutation testing
for TSR with the rankings One-round and Two-round (left: mean; right: standard deviation).

that category, which means that the former strategy is less stable than the latter when few mutants
are selected. Regarding the individual programs, Two-round only produces better results overall in
Dph. There are relevant differences in favour of rank-based mutant selection in several cases, like
in the pair ‘(Txm, category 1)’) with a difference of 6.6% in the percentage of test cases lost.

5.3. Answer to research questions

Answer to RQ1: What is the degree of redundancy of each mutation operator?
Results show that 14 out of 24 operators generate non-redundant mutants with the test suite used

in the experiments (see Table IV). The most prolific operators are generally the operators with
the lowest degree of redundancy. Moreover, it is interesting to observe that all operator blocks but
“exception handling” are represented in the top 5 of the ranking. This fact conveys that each operator
block indeed targets different object-oriented features, that is, these groups are not redundant among

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 25

them. We should note that the operators IMR, PVI, PCD, PCC, OAO and EHR produce no valid
mutants in these case studies, so we cannot calculate the operator redundancy for them.

Answer to RQ2: Is a subset of mutants with low degree of redundancy sufficient for TSE?
Yes. Results reveal that (1) using the top 6 operators (MCO, PCI, OMD, CID, IOD and OAN)

allows us to reduce the number of mutants (31.7%) with an acceptable measurement of the overall
mutation score (97.22%), as can be seen from Tables V and VI, and (2) favouring the selection of
mutants from the top ranked operators leads to an average mutation score of 98.87% with the same
number of mutants (see Table VII). Different approaches to selective mutation report worse results
on average in all cases (see Table XIII and Figure 6), which supports that the operator redundancy
is a good indicator for TSE when performing a selective strategy.

Answer to RQ3: What is the potential of each mutation operator for inducing the creation
of high-quality test cases?

The potential of 19 mutation operators for TSR with high-quality test cases is presented in
Table VIII. In addition to the operators generating no valid mutants, five operators are not evaluated
(IHD, ISD, PNC, CTD and CTI) and other three operators obtain the lowest value (IOP, PMD
and EHC). The existence of several mutation operators with the lowest metric in different case
studies matches with the few mutants generated by class-level operators and the high equivalence
percentage that they usually present. Unlike the ranking based on mutant redundancy, none of the
operators from the “polymorphism and dynamic binding” group is in the top 5 of the ranking based
on test quality, finding the first one (PCI) in the 9th position.

Answer to RQ4: Is a subset of mutants with a high potential to induce the generation of
high-quality test cases sufficient for TSR?

Yes. (1) Using the top 12 rated operators (see Table IX), 2.7% of the test cases are not included in
the adequate and minimal test suite on average, with a reduction of 13.2% in the number of mutants
(see Table X). When cutting out also the five operators within category 3, we should assume a
decrease of 13.42% of test cases while 39.42% of the mutants are not examined; (2) using rank-
based selection of mutants, we observe a smaller decrease (13.14%) with just the same number of
mutants as in the four operators in category 1 (see Table XI). As in the answer to RQ2, the outcome
when applying selective mutation following other strategies (see Table XIV and Figure 7) shows
that the quality metric is a good indicator for TSR when performing a selective strategy.

5.4. Comparison between rankings

In this section, we compare the rankings arranged in Section 3.4.2 and 4.3.2, discussing similarities
and differences in order to know whether there is a connection between the rankings based on mutant
redundancy for TSE and test quality for TSR.

An overall view of these rankings allows us to observe a patent similarity between them. It can
be observed from the two rankings that MCO, OMD and IOD are fruitful class mutation operators
because these operators occupy the first positions in both classifications, whereas PMD and IOP are
not so useful because they are at the bottom of these two rankings. This fact suggests that the most
suitable mutation operators for TSE are also the most appropriate in terms of TSR.

However, looking at the assessments of each operator more carefully, we can notice some
discordant results between both rankings. PCI falls from 2nd in the ranking based on operator
redundancy (see Table IV) to 9th in the ranking related to test quality (see Table VIII). As a

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

conclusion, while PCI shows a low operator redundancy, test cases are quite effective with the
mutants from this operator, so PCI is not such an useful operator to generate many new test cases
not considered yet. On the contrary, OMR climbs six positions (from 9th in Table IV to 3rd in
Table VIII) and ISI eight positions (from 15th to 7th). EHC, CDD, IOD, OAN and MCI also exhibit
a significant change in their positions. These differences between the rankings validate the need to
undertake a separate study of mutation operators as the one accomplished in this paper.

Finally, regarding the class operators specifically designed for C++ [6], only CDD and CCA
generated mutants in our experiments. CDD is in the 12th and 16th position in the ranking for
TSE and TSR respectively, while CCA is placed the last and the 15th. Consequently, as these two
operators occupy low positions in both rankings, their mutants are candidates to be discarded in
most selective processes regardless of the goal when applying mutation testing.

5.5. Comparison between selective mutation strategies

Comparing the results reported by operator-based and rank-based mutant selection is the goal of
this section. We study this aspect separately for the two evaluations:

• TSE: While operator-based selection obtains 100% in the mutation score when removing
the operators at the bottom of the ranking, the rank-based mutant selection offers better
performance in the other three categories, especially in category 1 where the gap is over 5%
on average (90.52% vs 95.89%).

• TSR: Rank-based mutant selection gets much better results in all of the categories.
Interestingly, the average result of the rank-based strategy in the first category not only
outperforms the result of operator-based selection in the same category but also in the second
category (13.42% vs 13.14%).

In general, rank-based mutant selection also seems a more stable strategy when we analyse the
standard deviations in the different categories. Surprisingly, a simple random selection of mutants
also turned out to be better than operator-based selection except for the fourth category in both TSE
and TSR evaluations (see Section 5.2). We presume that this fact is related with the aforementioned
conclusion that each operator block addresses different object-oriented features (see Section 3.4.2).
Unlike traditional operators, we suspect that several of these class operators are hardly redundant
among them because they target completely different parts of the code. For instance, CDD addresses
destructor methods whereas EHC tackles exceptions. The fact that Two-round random outperforms
One-round random also supports this idea. As a consequence, we might be reducing the coverage
of the test suite when removing some of the class operators, which can diminish the benefits of
selective mutation. Therefore, even though the operator-based selection results are acceptable, a
strategy for the selection of mutants from all operators seems more suitable when it comes to class-
level mutation.

5.6. Threats to validity

There are several aspects that pose a threat to the validity of the results reported in this paper.

Number of mutants. Although we selected six different libraries and applications, some of
the operators were never applied or only produced few mutants in few case studies. As stated,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 27

the appearance of mutants at the class level depends on the object-oriented features used by
the programmer, and these operators are less prolific than traditional operators. As a result, by
maintaining the threshold in the number of mutants to apply the quality metric used by Estero-
Botaro et al. [20], the metric could not be computed for several operators (notably in XmlRpc++,
where Qo could not be measured for eight operators). Altogether, the number of mutants supposes
a threat to the generalization of the results as some operators could not be appropriately evaluated.

Mutant equivalence. Equivalence is an undecidable problem, thus judging a mutant to be
equivalent is an error-prone task, especially when analysing third-party applications for which it is
not trivial to acquire a full insight into the source code. To counter this threat, we used the concept
of undecided so that the mutants of uncertain condition were not recorded as equivalent.

Test suites. To the best of our knowledge, there is no an available test case generator for object-
oriented programs in C++ which tries to produce new test cases specifically with the target of killing
surviving mutants as EvoSuite does for Java [35]. Test cases were therefore manually designed with
a view to kill non-equivalent mutants remaining alive, but we proceeded with the utmost care to
develop consistent test cases. Nonetheless, the metrics used in these experiments, and consequently
the results, are subject to the test suite.

Comparison results. Finally, in order to check that the results when carrying out the selective
strategy based on the rankings are not coincidental, we prepared three combinations of operators
following traditional approaches to operator-based selective mutation and executed other two
strategies for random mutant selection. These strategies yielded worse results, but new combinations
could be arranged to confirm the observed tendency. As a final remark, we should note that we have
compared the techniques under the same number of non-equivalent mutants, as done by Zhang et
al. [11]. However, the rank-based strategy will select a variable number of equivalent mutants in
practice, which might impact the results.

6. RELATED WORK

6.1. Selective mutation testing

Operator-based selective mutation was first conceived by Mathur [36] for the purpose of reducing
the large computation expenses. The approach of removing some of the mutation operators has been
investigated since then by many researchers [7, 12, 13, 15, 16, 17, 37]. In this regard, Wong and
Mathur [15] limited mutation testing to the use of two Fortran operators (ABS and ROR), as they can
achieve similar results than the 22 operators included in Mothra. Offutt et al. [7] performed selective
mutation omitting the N most commonly applied operators. Among other results, by excluding the 6
operators that engendered more mutants, adequate test suites for the remaining mutants (around 40%
of the complete set of mutants) maintain a high correlation with the full mutation score (99.71%).
Shortly after that, they experimented with selective mutation by excluding all the operators that
belong to the same operator block instead [12]. Based on the experimental results, they determined
that only 5 mutation operators (those mutating operators within expressions) suffice to obtain an

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

28 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

average effectiveness value of 99.5%. Offutt et al. [7] defined the operator strength as the number
of mutants killed by a test suite generated only to kill the mutants of that operator. In our paper, we
take a different approach by defining the operator redundancy to count the number of mutants that
remain alive when the test suite is generated for all the operators apart from that operator.

Mresa and Bottaci [17] also changed the traditional approach so far by evaluating operators
regarding two factors: mutation score and cost information about test data generation as well as
equivalent mutant identification. In their experiments considering these cost factors, they found
that operator-based selection is a preferable option when compared to random selection of mutants
but only if low mutation scores are required. They used effective and non-redundant test cases in
their empirical procedure. In the experiments conducted in this paper, the operators are assessed
separately for TSE and TSR regarding redundancy and test quality respectively. Moreover, we go a
step further by imposing minimality to the test suites, as encouraged by Estero-Botaro et al. [20].

The statistical analysis procedure defined by Namin et al. [16] identified 28 operators among 128
implemented in Proteum as sufficient for an accurate measurement of the mutation score for all
the operators. The results of their approach to select a subset of operators executing a large set of
mutants and test cases does not support the intuition that one operator from each operator group
should be selected, as in the guidelines proposed by Barbosa et al. [13]. In our experiments, 5 out
of 6 operator blocks are represented in the top 5 ranked operators for TSE, but only 3 in the case of
TSR. The 10 mutation operators selected by Barbosa et al. [13] showed effectiveness values between
95.8% and 100% when applied to 27 cases studies. Delamaro et al. [37] proposed to use a greedy
algorithm for choosing a reduced set of C mutation operators, successively adding the operators that
increased the overall score the most. They concluded that the high redundancy among the operators
makes difficult to establish a single way to select the best operators. The study directed by Zhang et
al. [38] showed that selective mutation scales with regard to the size of the PUT.

Random mutant selection, also known as mutant sampling, was proposed by Budd [14] and
Acree [39], where they showed that just sampling 10% of the mutants is sufficient to predict the
mutation score for all the mutants with high accuracy. Despite the particular attention received
by operator-based selection in the literature, a growing body of research in recent years gives
evidence that it is not superior to random mutant selection [11, 40, 41]. This conclusion was drawn
by Zhang et al. [11] when comparing random selection of mutants with several sufficient sets of
operators in the literature (5 operators in Offutt et al [12], 10 operators in Barbosa et al. [13] and 28
operators in Namin et al. [16]). The experiments by Gopinath et al. [41] also suggest that removing
operators could offer limited benefit in comparison to random mutant selection. Finally, Zhang et
al. [40] applied 8 different random strategies for the selection of mutants, concluding that operator-
based and random mutant selection can be combined to further reduce the cost. We also study both
selective techniques when used with class-level operators. Mutant-based selection and especially a
rank-based strategy results in more representative results of the full set of mutants in this case.

6.2. Object orientation

Selective mutation testing applied to class mutation operators has been previously studied for other
object-oriented languages. Derezińska and Rudnik [18] conducted their experiments with C# on
18 class operators and 8 standard operators at the same time using three case studies. The results

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 29

evidence that, even with a considerable reduction of object-oriented mutants (using 74% of the
mutants) still 93% of the original mutation score can be achieved.

Likewise, Ma et al. [22] explored the elimination of some unnecessary class operators in Java that
generated very few mutants. Bluemke and Kulesza [19] performed a selective reduction of mutants
generated by Java operators, including class-level operators. In their experiments, they showed that
the strategy can significantly reduce the cost (between 40% and 60% of mutants) while preserving
an acceptable mutation score and code coverage. In our work, by using rank-based mutant selection,
over 30% of the mutants can be excluded but declining less than 1.2% the mutation score. In the
same way, almost 40% of the mutants can be saved but losing 5.72% of test cases.

In previous work using class operators for C++ [6], the mutation score was calculated around
two case studies and the test suites distributed with them, showing which operators spawned more
mutants that remained undetected. Several improvement rules for these operators where proposed
later, analysing their impact in the resources required to generate and execute the mutants for five
applications [25]. In addition, that paper studied how useful class operators are by comparing them
with a set of traditional operators. However, in this paper we evaluate class operators by their
usefulness for TSE and TSR using six different programs with adequate test suites, and finally
we carry out a selective strategy in the light of the results.

6.3. Other related works

Most of the approaches to decrease the overall cost of mutation testing have been collected in the
survey by Jia and Harman [42]. In addition to selective mutation, many authors have concentrated
their efforts on reducing the number of mutants produced. Some helpful techniques are high-order
mutation [9], mutant clustering [10] and evolutionary mutation testing [43].

While the work in this paper aims to obtain a classification of mutation operators generalizable
for every PUT, the mutation tool MuRanker [44] ranks mutants depending on a prediction about
the difficulty to create a test case to kill them. The ranking displayed with this tool is thereby
particular for each PUT. Javalanche [45] remarks the mutants with a high impact (they are less
likely to be equivalent) as those mutants that can really help to improve a test suite because they are
easier to assess by a tester. That mutation tool takes a different approach to the quality metric by
Estero-Botaro et al. [20], where the most difficult to kill mutants are the most valued. Kusano and
Wang [46] developed the mutation tool CCMutator for C++, similar to MuCPP, but they focus on
the generation of mutants for concurrency constructs in multi-threaded applications.

Moghadam and Babamir [47] recently proposed to estimate the mutation adequacy score taking
into account several object-oriented metrics which capture the structural complexity of the analysed
program. Another related work was undertaken by Just et al. [48], analysing how redundancy affects
both the efficiency and effectiveness of mutation testing. Wright et al. [49] use the term redundant
mutant in a broad sense, also considering as redundant those mutations which may be produced
by different operators. This type of ineffective mutants should be removed to avoid consuming
resources unnecessarily.

Yao et al. [50] defined a non-equivalent mutant as stubborn when it is not killed by a branch
adequate test suite. Thus, stubborn mutants are theoretically more difficult to kill than resistant
mutants given that a resistant mutation may not have been executed by the test suite before adding
the test case to detect that mutation. A resistant hard to kill mutant requires that the test case killing

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

it does not kill any other mutants, and this double perspective is not contemplated by stubborn
mutants. Ammann et al. [27] proposed using minimal sets of mutants to avoid redundancy and its
impact when interpreting the mutation score. Resistant mutants, despite being killed by a single test
case, may turn out to be redundant; this does not hold in resistant hard to kill mutants, so they would
be included in a minimal set of mutants.

7. CONCLUSION

In this paper, we presented an evaluation of class mutation operators for the C++ programming
language. To that purpose, mutation operators were separately assessed based on their usefulness
during test suite evaluation and test suite refinement. In particular, mutation operators were classified
into two rankings ordered by the redundancy of their mutants, and the quality of the tests they help to
produce respectively. These two rankings share commonalities but also differences which support
this novel twofold evaluation. Additionally, both rankings were used as the basis for a selective
mutation study showing the trade-off between removing some of the mutants and the loss in the
effectiveness of the technique. In practice, the tester might want to select a subset of mutants
depending on (1) the goal (evaluation or refinement of the test suite) and (2) the exhaustiveness
required in the testing process.

The evaluation results on six open-source applications show that both rankings serve as an
accurate reference of the value of each mutation operator. Thus, just using six operators led to
an average decrease in the number of mutants of 31.7% without a significant loss of mutation score
(2.78%). Similarly, only seven operators were necessary to retain almost 87% of the test cases
contained in the adequate and minimal test suite constructed for the full set of mutants (reduction
of 39.42% in the number of mutants). Rank-based mutant selection (favouring the analysis of
the mutants from the top ranked operators) reported even better results for both evaluations with
the same number of mutants: 98.87% (mutation score) and 5.72% (percentage of test cases loss).
Therefore, in the case of class mutation operators, selection of mutants in a rank-based manner from
all mutation operators has shown to be more beneficial than operator-based selective mutation. The
proposed rank-based strategy also outperformed the random technique for the selection of mutants.

The ongoing work includes the definition of new evaluation metrics derived from the ones
proposed by Estero-Botaro et al. [20]. When computing the quality metric of a mutant, it would be
interesting to know how many mutants from other operators are killed by the test cases killing that
mutant (i.e., measure the operator quality in the context of the complete set of mutation operators
and not only using the mutants from that operator). Also, including which mutants are covered by
which test cases as an additional source of information in the metric can allow for a more accurate
assessment. This evaluation applied to other programming languages can provide insights about the
usefulness of each mutation operator. In addition, we aim at devising an evolutionary approach
in order to better estimate the trade-off between a loss in the mutation score or test cases and
the reduction of the cost of applying mutation testing, including expenses of equivalent mutant
detection.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 31

8. ACKNOWLEDGEMENTS

This paper was partially funded by the research scholarship PU-EPIF-FPI-PPI-BC 2012-037 of the
University of Cádiz, and partially supported by the European Commission (FEDER) and Spanish
Government projects DArDOS (TIN2015-65845-C3-3-R) and CICYT BELI (TIN2015-70560-R),
and the Andalusian Government projects THEOS (TIC-5906) and COPAS (P12-TIC-1867). We
also thank Francisco Palomo-Lozano for allowing us to use his algorithm to find minimal test suites
and his version of Knuth’s algorithm S to select mutants randomly.

REFERENCES

1. Offutt AJ, Untch RH. Mutation 2000: Uniting the orthogonal. Mutation Testing for the New Century, The Springer
International Series on Advances in Database Systems, vol. 24, Wong W (ed.). Springer US, 2001; 34–44, doi:
10.1007/978-1-4757-5939-6_7. URL http://dx.doi.org/10.1007/978-1-4757-5939-6_7.

2. King KN, Offutt AJ. A Fortran language system for mutation-based software testing. Softw. Pract. Exper. Jun 1991;
21(7):685–718, doi:10.1002/spe.4380210704. URL http://dx.doi.org/10.1002/spe.4380210704.

3. Agrawal H, DeMillo R, Hathaway B, Hsu W, Hsu W, Krauser E, Martin R, Mathur A, Spafford E. Design of
mutant operators for the C programming language. Technical Report, Technical Report SERC-TR-41-P, Software
Engineering Research Center, Purdue University, West Lafayette, Indiana Mar 1989.

4. Ma YS, Kwon YR, Offutt AJ. Inter-class mutation operators for Java. Proceedings of XIII International Symposium
on Software Reliability Engineering, Kawada S (ed.), IEEE Computer Society: Annapolis (Maryland), 2002; 352–
363, doi:10.1109/ISSRE.2002.1173287. URL http://dx.doi.org/10.1109/ISSRE.2002.1173287,
ISSRE 2002.

5. Derezińska A. Quality assessment of mutation operators dedicated for C# programs. Proceedings of VI
International Conference on Quality Software, Kellenberger P (ed.), IEEE Computer Society: Beijing (China),
2006; 227–234, doi:10.1109/QSIC.2006.51. URL http://dx.doi.org/10.1109/QSIC.2006.51, ISSN
1550-6002.

6. Delgado-Pérez P, Medina-Bulo I, Domínguez-Jiménez JJ, García-Domínguez A, Palomo-Lozano F. Class mutation
operators for C++ object-oriented systems. Annals of telecommunications 2015; 70(3-4):137–148, doi:10.1007/
s12243-014-0445-4. URL http://dx.doi.org/10.1007/s12243-014-0445-4.

7. Offutt AJ, Rothermel G, Zapf C. An experimental evaluation of selective mutation. Proceedings of 15th
International Conference on Software Engineering, 1993, 1993; 100–107, doi:10.1109/ICSE.1993.346062. URL
http://dx.doi.org/10.1109/ICSE.1993.346062.

8. Budd TA, Angluin D. Two notions of correctness and their relation to testing. Acta Informatica 1982; 18(1):31–45,
doi:10.1007/BF00625279. URL http://dx.doi.org/10.1007/BF00625279.

9. Jia Y, Harman M. Higher order mutation testing. Information and Software Technology Oct 2009; 51(10):1379–
1393, doi:10.1016/j.infsof.2009.04.016. URL http://dx.doi.org/10.1016/j.infsof.2009.04.

016.
10. Hussain S. Mutation clustering. Master’s Thesis, King’s College London 2008.
11. Zhang L, Hou SS, Hu JJ, Xie T, Mei H. Is operator-based mutant selection superior to random mutant selection?

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE ’10,
ACM: New York, NY, USA, 2010; 435–444, doi:10.1145/1806799.1806863. URL http://dx.doi.org/10.

1145/1806799.1806863.
12. Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C. An experimental determination of sufficient mutant operators.

ACM Trans. Softw. Eng. Methodol. Apr 1996; 5(2):99–118, doi:10.1145/227607.227610. URL http://dx.

doi.org/10.1145/227607.227610.
13. Barbosa EF, Maldonado JC, Vincenzi AMR. Toward the determination of sufficient mutant operators for C.

Software Testing, Verification and Reliability 2001; 11(2):113–136, doi:10.1002/stvr.226. URL http://dx.

doi.org/10.1002/stvr.226.
14. Budd TA. Mutation analysis of program test data. PhD Thesis, Yale University 1980.
15. Wong WE, Mathur AP. Reducing the cost of mutation testing: An empirical study. techreport, Purdue University,

West Lafayette, Indiana 1993.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://dx.doi.org/10.1007/978-1-4757-5939-6_7
http://dx.doi.org/10.1002/spe.4380210704
http://dx.doi.org/10.1109/ISSRE.2002.1173287
http://dx.doi.org/10.1109/QSIC.2006.51
http://dx.doi.org/10.1007/s12243-014-0445-4
http://dx.doi.org/10.1109/ICSE.1993.346062
http://dx.doi.org/10.1007/BF00625279
http://dx.doi.org/10.1016/j.infsof.2009.04.016
http://dx.doi.org/10.1016/j.infsof.2009.04.016
http://dx.doi.org/10.1145/1806799.1806863
http://dx.doi.org/10.1145/1806799.1806863
http://dx.doi.org/10.1145/227607.227610
http://dx.doi.org/10.1145/227607.227610
http://dx.doi.org/10.1002/stvr.226
http://dx.doi.org/10.1002/stvr.226

32 P. DELGADO-PÉREZ, S. SEGURA AND I. MEDINA-BULO

16. Namin AS, Andrews JH, Murdoch DJ. Sufficient mutation operators for measuring test effectiveness. ACM/IEEE
30th International Conference on Software Engineering, 2008. ICSE ’08, 2008; 351–360, doi:10.1145/1368088.
1368136. URL http://dx.doi.org/10.1145/1368088.1368136.

17. Mresa ES, Bottaci L. Efficiency of mutation operators and selective mutation strategies: an empirical study. Software
Testing, Verification and Reliability 1999; 9(4):205–232, doi:10.1002/(SICI)1099-1689(199912)9:4<205::
AID-STVR186>3.0.CO;2-X. URL http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:

4<205::AID-STVR186>3.0.CO;2-X.
18. Derezińska A, Rudnik M. Quality evaluation of object-oriented and standard mutation operators applied to C#

programs. Objects, Models, Components, Patterns, Lecture Notes in Computer Science, vol. 7304, Furia C, Nanz
S (eds.). Springer Berlin Heidelberg, 2012; 42–57, doi:10.1007/978-3-642-30561-0_5. URL http://dx.doi.

org/10.1007/978-3-642-30561-0_5.
19. Bluemke I, Kulesza K. Reduction in mutation testing of Java classes. 9th International Conference on Software

Engineering and Applications (ICSOFT-EA), 2014, 2014; 297–304, doi:10.5220/0004992102970304. URL http:

//dx.doi.org/10.5220/0004992102970304.
20. Estero-Botaro A, Palomo-Lozano F, Medina-Bulo I, Domínguez-Jiménez JJ, García-Domínguez A. Quality metrics

for mutation testing with applications to WS-BPEL compositions. Software Testing, Verification and Reliability
2014; doi:10.1002/stvr.1528. URL http://dx.doi.org/10.1002/stvr.1528.

21. Kim S, Clark JA, McDermid JA. The rigorous generation of Java mutation operators using HAZOP. Proceedings
of the 12th International Cofference Software and Systems Engineering and their Applications (ICSSEA 99), Paris,
France, 1999.

22. Ma YS, Kwon YR, Kim SW. Statistical investigation on class mutation operators. ETRI Journal Apr 2009;
31(2):140–150, doi:10.4218/etrij.09.0108.0356. URL http://dx.doi.org/10.4218/etrij.09.0108.

0356.
23. Lee HJ, Ma YS, Kwon YR. Empirical evaluation of orthogonality of class mutation operators. Software Engineering

Conference, 2004. 11th Asia-Pacific, 2004; 512–518, doi:10.1109/APSEC.2004.49. URL http://dx.doi.

org/10.1109/APSEC.2004.49.
24. Segura S, Hierons RM, Benavides D, Ruiz-Cortés A. Mutation testing on an object-oriented framework: An

experience report. Information and Software Technology 2011; 53(10):1124–1136, doi:10.1016/j.infsof.2011.
03.006. URL http://dx.doi.org/10.1016/j.infsof.2011.03.006, special Section on Mutation
Testing.

25. Delgado-Pérez P, Medina-Bulo I, Palomo-Lozano F, García-Domínguez A, Domínguez-Jiménez JJ. Assessment of
class mutation operators for C++ with the MuCPP mutation system. Information and Software Technology 2016;
doi:10.1016/j.infsof.2016.07.002. URL http://dx.doi.org/10.1016/j.infsof.2016.07.002.

26. Estero-Botaro A, Palomo-Lozano F, Medina-Bulo I. Quantitative evaluation of mutation operators for WS-
BPEL compositions. Third International Conference on Software Testing, Verification, and Validation Workshops
(ICSTW), 2010, 2010; 142–150, doi:10.1109/ICSTW.2010.36. URL http://dx.doi.org/10.1109/

ICSTW.2010.36.
27. Ammann P, Delamaro ME, Offutt J. Establishing theoretical minimal sets of mutants. Proceedings of the 2014

IEEE International Conference on Software Testing, Verification, and Validation, ICST ’14, IEEE Computer
Society: Washington, DC, USA, 2014; 21–30, doi:10.1109/ICST.2014.13. URL http://dx.doi.org/10.

1109/ICST.2014.13.
28. Matrix TCL Pro, version 2.2. http://www.techsoftpl.com/matrix/download.php. [Online;

accessed 14-July-2016].
29. XmlRPC, version 0.7. http://xmlrpcpp.sourceforge.net/. [Online; accessed 14-July-2016].
30. Dolphin. https://www.kde.org/applications/system/dolphin. [Online; accessed 14-July-2016].
31. Tinyxml2. https://github.com/leethomason/tinyxml2. [Online; accessed 14-July-2016].
32. KMyMoney, version 4.6.4. https://sourceforge.net/projects/kmymoney2/. [Online; accessed 14-

July-2016].
33. QtDOM. https://github.com/qtproject/qtbase/tree/dev/src/xml/dom. [Online; accessed

14-July-2016].
34. Bluemke I, Kulesza K. Proceedings of the Ninth International Conference on Dependability and Complex Systems

DepCoS-RELCOMEX. June 30 – July 4, 2014, Brunów, Poland, chap. Reductions of Operators in Java Mutation
Testing. Springer International Publishing: Cham, 2014; 93–102, doi:10.1007/978-3-319-07013-1_9. URL http:

//dx.doi.org/10.1007/978-3-319-07013-1_9.

35. Fraser G, Arcuri A. EvoSuite: Automatic test suite generation for object-oriented software. Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://dx.doi.org/10.1145/1368088.1368136
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X
http://dx.doi.org/10.1007/978-3-642-30561-0_5
http://dx.doi.org/10.1007/978-3-642-30561-0_5
http://dx.doi.org/10.5220/0004992102970304
http://dx.doi.org/10.5220/0004992102970304
http://dx.doi.org/10.1002/stvr.1528
http://dx.doi.org/10.4218/etrij.09.0108.0356
http://dx.doi.org/10.4218/etrij.09.0108.0356
http://dx.doi.org/10.1109/APSEC.2004.49
http://dx.doi.org/10.1109/APSEC.2004.49
http://dx.doi.org/10.1016/j.infsof.2011.03.006
http://dx.doi.org/10.1016/j.infsof.2016.07.002
http://dx.doi.org/10.1109/ICSTW.2010.36
http://dx.doi.org/10.1109/ICSTW.2010.36
http://dx.doi.org/10.1109/ICST.2014.13
http://dx.doi.org/10.1109/ICST.2014.13
http://www.techsoftpl.com/matrix/download.php
http://xmlrpcpp.sourceforge.net/
https://www.kde.org/applications/system/dolphin
https://github.com/leethomason/tinyxml2
https://sourceforge.net/projects/kmymoney2/
https://github.com/qtproject/qtbase/tree/dev/src/xml/dom
http://dx.doi.org/10.1007/978-3-319-07013-1_9
http://dx.doi.org/10.1007/978-3-319-07013-1_9

ASSESSMENT OF C++ OBJECT-ORIENTED MUTATION OPERATORS 33

ESEC/FSE ’11, ACM: New York, NY, USA, 2011; 416–419, doi:10.1145/2025113.2025179. URL http://dx.

doi.org/10.1145/2025113.2025179.
36. Mathur AP. Performance, effectiveness, and reliability issues in software testing. Computer Software and

Applications Conference, 1991. COMPSAC ’91., Proceedings of the Fifteenth Annual International, 1991; 604–605,
doi:10.1109/CMPSAC.1991.170248. URL http://dx.doi.org/10.1109/CMPSAC.1991.170248.

37. Delamaro ME, Deng L, Li N, Durelli VHS, Offutt AJ. Growing a reduced set of mutation operators. Brazilian
Symposium on Software Engineering (SBES), 2014, 2014; 81–90, doi:10.1109/SBES.2014.14. URL http://

dx.doi.org/10.1109/SBES.2014.14.
38. Zhang J, Zhu M, Hao D, Zhang L. An empirical study on the scalability of selective mutation testing. IEEE 25th

International Symposium on Software Reliability Engineering (ISSRE), 2014, 2014; 277–287, doi:10.1109/ISSRE.
2014.27. URL http://dx.doi.org/10.1109/ISSRE.2014.27.

39. Acree AT Jr. On mutation. PhD Thesis, Atlanta, GA, USA 1980.
40. Zhang L, Gligoric M, Marinov D, Khurshid S. Operator-based and random mutant selection: Better together.

Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, 2013; 92–102, doi:
10.1109/ASE.2013.6693070. URL http://dx.doi.org/10.1109/ASE.2013.6693070.

41. Gopinath R, Alipour MA, Ahmed I, Jensen C, Groce A. On the limits of mutation reduction strategies. Proceedings
of the 38th International Conference on Software Engineering, ICSE ’16, ACM: New York, NY, USA, 2016; 511–
522, doi:10.1145/2884781.2884787. URL http://dx.doi.org/10.1145/2884781.2884787.

42. Jia Y, Harman M. An analysis and survey of the development of mutation testing. Software Engineering,
IEEE Transactions on Oct 2011; 37(5):649 –678, doi:10.1109/TSE.2010.62. URL http://dx.doi.org/10.

1109/TSE.2010.62.
43. Domínguez-Jiménez JJ, Estero-Botaro A, García-Domínguez A, Medina-Bulo I. Evolutionary mutation testing.

Information and Software Technology Oct 2011; 53(10):1108–1123, doi:10.1016/j.infsof.2011.03.008. URL
http://dx.doi.org/10.1016/j.infsof.2011.03.008.

44. Namin AS, Xue X, Rosas O, Sharma P. MuRanker: a mutant ranking tool. Software Testing, Verification
and Reliability 2015; 25(5-7):572–604, doi:10.1002/stvr.1542. URL http://dx.doi.org/10.1002/stvr.
1542.

45. Schuler D, Zeller A. Javalanche: Efficient mutation testing for Java. Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, ACM: New York, NY, USA, 2009; 297–298, doi:10.1145/1595696.1595750. URL
http://dx.doi.org/10.1145/1595696.1595750.

46. Kusano M, Wang C. CCmutator: A mutation generator for concurrency constructs in multithreaded C/C++
applications. IEEE/ACM 28th International Conference on Automated Software Engineering (ASE), 2013,
IEEE, 2013; 722–725, doi:10.1109/ASE.2013.6693142. URL http://dx.doi.org/10.1109/ASE.2013.

6693142.
47. Moghadam M, Babamir S. Mutation score evaluation in terms of object-oriented metrics. 4th International

eConference on Computer and Knowledge Engineering (ICCKE), 2014, 2014; 775–780, doi:10.1109/ICCKE.2014.
6993419. URL http://dx.doi.org/10.1109/ICCKE.2014.6993419.

48. Just R, Kapfhammer G, Schweiggert F. Do redundant mutants affect the effectiveness and efficiency of mutation
analysis? IEEE Fifth International Conference on Software Testing, Verification and Validation (ICST), 2012, 2012;
720–725, doi:10.1109/ICST.2012.162. URL http://dx.doi.org/10.1109/ICST.2012.162.

49. Wright C, Kapfhammer G, McMinn P. The impact of equivalent, redundant and quasi mutants on database
schema mutation analysis. 14th International Conference on Quality Software (QSIC), 2014, 2014; 57–66, doi:
10.1109/QSIC.2014.26. URL http://dx.doi.org/10.1109/QSIC.2014.26.

50. Yao X, Harman M, Jia Y. A study of equivalent and stubborn mutation operators using human analysis of
equivalence. Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, ACM:
New York, NY, USA, 2014; 919–930, doi:10.1145/2568225.2568265. URL http://dx.doi.org/10.1145/

2568225.2568265.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1145/2025113.2025179
http://dx.doi.org/10.1109/CMPSAC.1991.170248
http://dx.doi.org/10.1109/SBES.2014.14
http://dx.doi.org/10.1109/SBES.2014.14
http://dx.doi.org/10.1109/ISSRE.2014.27
http://dx.doi.org/10.1109/ASE.2013.6693070
http://dx.doi.org/10.1145/2884781.2884787
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1016/j.infsof.2011.03.008
http://dx.doi.org/10.1002/stvr.1542
http://dx.doi.org/10.1002/stvr.1542
http://dx.doi.org/10.1145/1595696.1595750
http://dx.doi.org/10.1109/ASE.2013.6693142
http://dx.doi.org/10.1109/ASE.2013.6693142
http://dx.doi.org/10.1109/ICCKE.2014.6993419
http://dx.doi.org/10.1109/ICST.2012.162
http://dx.doi.org/10.1109/QSIC.2014.26
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1145/2568225.2568265

	1 Introduction
	2 Background
	2.1 Mutation operators for C++ object-oriented programs
	2.2 Execution matrix

	3 Assessment Based on Mutant Redundancy
	3.1 Research questions
	3.2 Evaluation metric
	3.3 Case studies and test suites
	3.4 Experiment #1: Ranking mutation operators
	3.4.1 Setup
	3.4.2 Results

	3.5 Experiment #2: Selective mutation based on the ranking
	3.5.1 Setup
	3.5.2 Results

	4 Assessment Based on Test Quality
	4.1 Research questions
	4.2 Evaluation metric
	4.3 Experiment #1: Ranking mutation operators
	4.3.1 Setup
	4.3.2 Results

	4.4 Experiment #2: Selective mutation based on the ranking
	4.4.1 Setup
	4.4.2 Results

	5 Discussion
	5.1 Validation of operator-based selection results
	5.2 Validation of rank-based mutant selection results
	5.3 Answer to research questions
	5.4 Comparison between rankings
	5.5 Comparison between selective mutation strategies
	5.6 Threats to validity

	6 Related Work
	6.1 Selective mutation testing
	6.2 Object orientation
	6.3 Other related works

	7 Conclusion
	8 Acknowledgements

