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Abstract. Size reduction mechanisms are very important in several
mathematical fields. In rough set theory, bireducts arose to reduce simul-
taneously the set of attributes and the set of objects of the considered
dataset, providing subsystems with the minimal sets of attributes that
connect the maximum number of objects preserving the information of
the original dataset. This paper presents the main properties of bireducts
and how they can be used for removing inconsistencies.
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1 Introduction

Rough Set Theory (RST) is one of the most useful mathematical tools to treat
and manage datasets. In particular, RST was proposed by Pawlak in [7], to
analyze datasets containing incomplete information. The main idea of this theory
is to determine a set from two approximations. These approximations are called
upper approximation and lower approximation.

In this theory, a relational database can be represented from two different
point of view, as an information system or as a decision system. In the case of
information system, the database is simulated by a set of objects and a set of
attributes characterizing the objects. On the other hand, a decision system is a
particular case of information system adding a new attribute that describes an
action over the objects, which is called decision attribute.

Due to the size of databases has increased in late decades, size reduction
mechanisms became into one of the main goals of different mathematical theo-
ries. In the particular case of RST, a reduct is a minimal subset of attributes
preserving the same knowledge as the original set. This notion is deeply studied
in many papers [4–6,11,12]. Therefore, reducts are focused on the reduction of
the set of attributes. In order to reduce also the set of objects, the notion of
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bireduct arose [1–3,9,10]. In a general point of view, the main idea underlying
bireducts is to choose the maximal consistent information subsystem. Moreover,
as all the bireducts are computed, the user can choose the bireduct consistent
subsystem that best suits their needs.

In this paper, we study some properties of bireducts. We will prove that the
set of reducts can be obtained from the set of bireducts. We will analyze the
relation between bireducts and the discernibility classes of the objects of the
dataset. We will also inspect how bireducts can be used for detecting inconsis-
tencies contained in the considered database. The presented study will be carried
out for information systems, as well as for decision systems. All the presented
results will be illustrated by means of examples.

The paper is organized as follows: the notions and results needed in this
study are recalled in Sect. 2. Afterwards, Sect. 3 presents the contribution of this
paper together with some examples. Finally, the conclusions and future works
are presented in Sect. 4.

2 Preliminaries

This section recalls the main notions associated with information and decision
systems and the characterizations of reducts and bireducts. More detailed infor-
mation related to these notions can be found in [3].

2.1 Information Systems

We will recall the notions and results needed to carry out the attribute reduction
in information systems. First of all, we present the definition of information
system and the considered indiscernibility relation.

Definition 1. An information system (U,A) is a tuple, where U = {x1, x2, . . . ,
xn} and A = {a1, a2, . . . , am} are finite, non-empty sets of objects and attributes,
respectively. Each a ∈ A corresponds to a mapping ā : U → Va, where Va

is the value set of the attribute a over U . For every subset D of A, the D-
indiscernibility relation, Ind(D), is defined by the following equivalence relation

Ind(D) = {(xi, xj) ∈ U × U | for all a ∈ D, ā(xi) = ā(xj)}
where each equivalence class is written as [x]D = {xi ∈ U | (x, xi) ∈ Ind(D)}.
These equivalence classes are called indiscernibility class. Ind(D) provides a par-
tition on U denoted as U/Ind(D) = {[x]D | x ∈ U}.

In order to be able to reduce an information system, the notions of consistent
set and reduct are fundamental.

Definition 2. Let (U,A) be an information system and a subset of attributes
D ⊆ A. The subset D is a consistent set of (U,A) if Ind(D) = Ind(A). Moreover,
if for each a ∈ D we have that Ind(D � {a}) �= Ind(A), then D is a reduct of
(U,A).



Towards a Classification of Rough Set Bireducts 761

The following definition presents the idea of discernibility matrix and dis-
cernibility function. In particular, the discernibility matrix is a useful tool which
is used to represent the attributes in which the objects differ.

Definition 3. Given an information system (U,A), its discernibility matrix is
a matrix with order |U | × |U |, denoted by MA, in which the element MA(x, y)
for each pair of objects (x, y) is defined by:

MA(x, y) = {a ∈ A | ā(xi) �= ā(xj)}

and the discernibility function of (U,A) is defined by:

τuni
A =

∧ {∨
(MA(xi, xj)) | xi, xj ∈ U and MA(xi, xj) �= ∅

}

The discernibility function of an information system is a powerful tool which
is used in the following result in order to describe a method to obtain all reducts
from an information system [3,8].

Theorem 1. Let (U,A) be a boolean information system. An arbitrary set D,
where D ⊆ A, is a reduct of the information system if and only if the cube∧

a∈D a is a cube in the restricted disjunctive normal form.

Next, we introduce an example, which will be developed throughout the
paper.

Example 1. Let us consider the information system (U,A), where the set of
objects represents six patients U = {1, 2, 3, 4, 5, 6}, the set of attributes A =
{fever(f), cough(c), tonsil inflam.(t),muscle ache(a)} and the relation between
them is shown in Table 1.

Table 1. Relation of Example 1.

R fever(f) cough(c) tonsil inflam.(t) muscle ache(a)

1 High No No No

2 High No Yes Yes

3 Low Yes Yes No

4 Low Yes Yes No

5 High Yes Yes Yes

6 No Yes Yes No

If we compare the objects, considering the indiscernibility relation presented
in Definition 1, we can build the following discernibility matrix:
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⎛

⎜⎜⎜⎜⎜⎜⎝

∅

{t, a} ∅

{f, c, t} {f, c, a} ∅

{f, c, t} {f, c, a} ∅ ∅

{c, t, a} {c} {f, a} {f, a} ∅

{f, c, t} {f, c, a} {f} {f} {f, a} ∅

⎞

⎟⎟⎟⎟⎟⎟⎠
(1)

Now, we will use the discernibility matrix to build the unidimensional dis-
cernibility function:

τuni = {t ∨ a} ∧ {f ∨ c ∨ t} ∧ {c ∨ t ∨ a} ∧ {f ∨ c ∨ a} ∧ {c} ∧ {f ∨ a} ∧ {f}
= {f ∧ c ∧ a} ∨ {f ∧ c ∧ t}

Therefore, by Theorem 1, we obtain two reducts:

D1 = {fever, cough,muscle ache}
D2 = {fever, cough, tonsil inflam.}

�	
The idea of bireducts arose as a path to prevent incompatibilities and elimi-

nate noise in the original data by means of a reduction in the set of objects and
the set of attributes, simultaneously.

Definition 4. Given an information system (U,A), we consider a pair (X,D),
where X ∈ U is a subset of objects and D ∈ A is a subset of attributes. We
say that (X,D) is an information bireduct if and only if every pair of objects
i, j ∈ X are discernible by D and the following properties hold:

– There is no subset C � D such that C discerns every pair of objects of X.
– There is no subset of objects X � Y such that D discern every pair of objects

of Y .

Since we will work simultaneously with reducts and bireducts of an infor-
mation system, we will use the notation (X,B) to denote bireducts in order to
distinguish the subset of attributes from reducts and bireducts.

In order to generalize the mechanism to obtain reducts presented in Theo-
rem 1, we need to improve the idea of discernibility function as follows:

τbi
A =

∧ {
xi ∨ xj ∨

∨
(M(xi, xj)) | for all xi, xj ∈ U,M(xi, xj) �= ∅

}

Now, we can introduce the following theorem, in which a mechanism to obtain
all the bireducts of an information system is presented.

Theorem 2 ([3]). Given a boolean information system (U,A). An arbitrary pair
of sets (X,D), where X ⊆ U , D ⊆ A, is a bireduct of the information system
if and only if the cube

∧
a∈D a ∧ ∧

xi /∈X xi is a cube in the restricted disjunctive
normal form (RDNF) of τbi

U,A.
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Example 2. We are going to compute all the bireducts from the information
system described in Example 1. In order to do that, we consider the discerni-
bility matrix described in Expression (1), obtaining the following bidimensional
discernibility function:

τbi = {1 ∨ 2 ∨ t ∨ a} ∧ {1 ∨ 3 ∨ f ∨ c ∨ t} ∧ {1 ∨ 4 ∨ f ∨ c ∨ t} ∧ {1 ∨ 5 ∨ c ∨ t ∨ a}
∧ {1 ∨ 6 ∨ f ∨ c ∨ t} ∧ {2 ∨ 3 ∨ f ∨ c ∨ a} ∧ {2 ∨ 4 ∨ f ∨ c ∨ a} ∧ {2 ∨ 5 ∨ c}
∧ {2 ∨ 6 ∨ f ∨ c ∨ a} ∧ {3 ∨ 5 ∨ f ∨ a} ∧ {3 ∨ 6 ∨ f} ∧ {4 ∨ 5 ∨ f ∨ a} ∧ {4 ∨ 6 ∨ f}
∧ {5 ∨ 6 ∨ f ∨ a}

Now, we compute the reduced disjunctive normal form of τbi obtaining

= {1 ∧ 2 ∧ f} ∨ {1 ∧ 5 ∧ f} ∨ {1 ∧ f ∧ c} ∨ {2 ∧ 5 ∧ f} ∨ {2 ∧ f ∧ c} ∨ {2 ∧ f ∧ t}
∨ {2 ∧ f ∧ a} ∨ {5 ∧ f ∧ t} ∨ {5 ∧ f ∧ a} ∨ {6 ∧ c ∧ a} ∨ {f ∧ c ∧ t} ∨ {f ∧ c ∧ a}
∨ {1 ∧ 2 ∧ 5 ∧ 6} ∨ {1 ∧ 2 ∧ 6 ∧ a} ∨ {1 ∧ 5 ∧ 6 ∧ c} ∨ {1 ∧ 5 ∧ 6 ∧ a}
∨ {2 ∧ 3 ∧ 5 ∧ c} ∨ {2 ∧ 3 ∧ c ∧ a} ∨ {2 ∧ 5 ∧ 6 ∧ c} ∨ {2 ∧ 5 ∧ 6 ∧ t}
∨ {2 ∧ 6 ∧ t ∧ a} ∨ {5 ∧ 6 ∧ c ∧ t} ∨ {4 ∧ c ∧ t ∧ a} ∨ {5 ∧ 6 ∧ t ∧ a}
∨ {3 ∧ 4 ∧ c ∧ a} ∨ {2 ∧ 3 ∧ f ∧ a} ∨ {1 ∧ 2 ∧ 3 ∧ 4 ∧ 5} ∨ {1 ∧ 2 ∧ 3 ∧ 4 ∧ 6}
∨ {1 ∧ 2 ∧ 3 ∧ 4 ∧ a} ∨ {1 ∧ 3 ∧ 4 ∧ 5 ∧ 6} ∨ {1 ∧ 3 ∧ 4 ∧ 5 ∧ c}
∨ {1 ∧ 3 ∧ 4 ∧ 5 ∧ a} ∨ {1 ∧ 3 ∧ 4 ∧ 6 ∧ c} ∨ {2 ∧ 3 ∧ 4 ∧ 5 ∧ 6}
∨ {2 ∧ 3 ∧ 4 ∧ 5 ∧ c} ∨ {2 ∧ 3 ∧ 4 ∧ 5 ∧ t} ∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ a}
∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ c} ∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ t} ∨ {2 ∧ 3 ∧ 4 ∧ t ∧ a}
∨ {3 ∧ 4 ∧ 5 ∧ 6 ∧ t} ∨ {3 ∧ 4 ∧ 5 ∧ c ∧ t} ∨ {3 ∧ 4 ∧ 5 ∧ t ∧ a}
∨ {3 ∧ 4 ∧ 6 ∧ c ∧ t} ∨ {3 ∧ 4 ∧ 5 ∧ 6 ∧ a} ∨ {3 ∧ 4 ∧ 6 ∧ a ∧ c}

Therefore, there are 47 bireducts in the information system (U,A). Some of them
are described in Table 2 �	

Table 2. Some bireducts of information system (U, A) of Example 1

Bireduct Subset of objects Subset of attributes

(X1, B1) {1, 2, 3, 4, 5, 6} {f, c, t}
(X2, B2) {1, 2, 3, 4, 5, 6} {f, c, a}
(X3, B3) {3, 4, 5, 6} {f}
(X4, B4) {2, 3, 4, 5, 6} {f, c}
(X5, B5) {3, 4} ∅

(X6, B6) {1} ∅

(X7, B7) {2} ∅

(X8, B8) {5} ∅

(X9, B9) {6} ∅
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2.2 Decision Systems

In this section, we recall the main notions and results we will need in the frame-
work of decision systems. First of all, we present the formal definition of a deci-
sion system.

Definition 5. A decision system (U,A ∪ {d}) is a special kind of information
system, in which d �∈ A is called the decision attribute, and its equivalence class
[x]d is called decision class.

In this framework the role of reduct is a little bit different, since only objects
with different decision attribute values are compared.

Definition 6. The subset B ⊆ A is called a decision reduct for the decision
system (U,A ∪ {d}) if it is an irreducible subset, such that B discerns all pairs
xi, xj ∈ U satisfying d(xi) �= d(xj).

As we did in an information system, we use the notions of discernibility
matrix an function in order to compute all reducts [8]. Therefore, the discerni-
bility matrix of a decision system (U,A∪{d}) is a square and symmetric matrix
defined as:

M(xi, xj) =
{

∅ if d(xi) = d(xj)
{a ∈ A | a(xi) �= a(xj)} otherwise (2)

Therefore, there are two possibilities of obtaining the empty set: objects have the
same decision value or are indiscernible by characteristic attributes. In addition,
the discernibility function of (U,A∪{d}) is the map τ : {0, 1}m → {0, 1}, defined
by

τuni =
∧{∨

M∗(xi, xj) | 1 ≤ i < j ≤ n and M(xi, xj) �= ∅

}
(3)

It can be shown that the prime implicants of f constitute exactly all the decision
reducts of (U,A ∪ {d}), as the generalization of Theorem1 to a decision system.

Now, we present the definition of decision bireduct of a decision system:

Definition 7. Given a decision system (U,A ∪ {d}), the pair (B,X), where
B ⊂ A and X ⊂ U , is called decision bireduct if and only if B discern every
pair xi, xj ∈ X where d(xi) �= d(xj) and the following properties are verified:

1. There is no subset C � B such that C discern every pair xi, xj ∈ X where
d(xi) �= d(xj).

2. There is no subset X � Y such that B discern every pair xi, xj ∈ Y with
d(xi) �= d(xj).

In order to generalize the process to compute all bireducts, we consider the
discernibility function:

τ bir =
∧

xi,xj∈U |d(xi) �=d(xj)

(
xi ∨ xj ∨

∨
{a ∈ A | a(xi) �= a(xj)}

)
(4)

The corresponding characterization theorem for bireducts from the discerni-
bility function is as follows.
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Theorem 3 ([3]). Given a boolean information system (U,A ∪ {d}). An arbi-
trary pair of sets (X,D), where X ⊆ U , D ⊆ A, is a decision bireduct of
a decision system if and only if the cube

∧
a∈D a ∧ ∧

xi /∈X xi is a cube in the
restricted disjunctive normal form (RDNF) of τbi.

Now that all the needed notions and results have been presented, we present
the different kinds of bireducts that we can find in an information and decision
systems.

3 Threshing Bireducts

This section highlights the main properties of bireducts. First of all, the following
result shows that the reducts of an information system are particular cases of
bireducts.

Proposition 1. Let (U,A) an information system and (X ,B) the family of
bireducts from the information system. If a bireduct (X,B) verifies that X = A,
then B is a reduct from the information system.

Proof. This proof is straightly obtained from Definitions 2 and 4.

Moreover, we can assert that the decision reducts of a decision system are
also decision bireducts due to the definitions of these notions.

The following example illustrates this result by means of the information
system given in Example 1.

Example 3. Let us focus in the bireduct (X1, B1) and (X2, B2) obtained in
Example 2, due to they have the whole set of objects. If we compare the set of
attributes from the bireducts and the set of attributes described by the reducts
of Example 1, we have that

D1 = B2 = {fever, cough,muscle ache}
D2 = B1 = {fever, cough, tonsil inflam.}

�	
A special type of bireduct appears when the subset of attributes is the empty

set, that is, there are no attribute to distinguish the elements in the subset of
objects. Therefore, the objects are indiscernible. The following result formalizes
this idea.

Proposition 2. Let (U,A) an information system and (X ,B) the family of
bireducts from the information system. If a bireduct (X,B) verifies that B = ∅,
then X is the indiscernibility class of the objects x ∈ X.

Proof. As (X,B) is a bireduct and B = ∅, we have that there is no attribute
distinguishing all objects in the set X. Therefore, for every object x ∈ X, we have
that ā(x) = ā(xj), for all attribute a ∈ A and any object xj ∈ X. Consequently,

x ∈{xj ∈ U | for all a ∈ B, ā(x) = ā(xj)}
which is the definition of [x]A presented in Definition 1. Therefore, X ⊆ [x]A.
By the maximality of X, we obtain that X must be [x]A. �	
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In this example, we present the connection between the indiscernibility classes
of the objects in an information system and the bireducts with no attributes.

Example 4. Let us continue the study of the information system in Example 1.
If we consider the bireducts (Xi, Bi), with i ∈ {5, . . . , 9}, we have that Bi = ∅,
for all i ∈ {5, . . . , 9}.

On the other hand, if we compute the indiscernibility classes of the objects
of the considered information system, we obtain that:

[1]A = {1}
[2]A = {2}

[3]A = [4]A = {3, 4}

[5]A = {5}
[6]A = {6}

Comparing these subsets of objects with the bireducts (Xi, Bi), with i ∈
{5, . . . , 9}, we obtain a correspondence between the sets Xi, with i ∈ {5, . . . , 9}
and the indiscernibility classes [x]A, for all x ∈ U . �	

In the particular case of a decision system, if the subset of attributes of a
birreduct is empty, the subset of objects of that bireduct is the decision class
provided by the decision attribute.

Proposition 3. Given a decision system (U,A∪{d}) and its family of decision
bireducts (X ,B), if a bireduct (X,B) verifies that B = ∅, then X = [x]d, for all
x ∈ X.

Proof. By definition of bireduct in a decision system, B = ∅ if and only if
the value of the decision attribute is the same for all the objects in X. In this
case, since two objects with the same decision attribute value are not compared
further, the assumption B = ∅ automatically implies that all objects are in the
same decision class, that is X = [x]d, for every object x ∈ X.

Moreover, bireducts remove inconsistencies in the data, that is the cases
when two objects have different decision value, but they are indiscernible by the
attributes in A.

Proposition 4. Given a decision system (U,A ∪ {d}), if x, y ∈ U satisfy that
d(x) �= d(y) and ā(x) = ā(y), for all a ∈ A, then x and y do not belong to the
same subset X, for any bireduct (X,B).

Proof. By the definition of discernibility function of decision systems, given in
Expression 4, if x, y ∈ U , such that d(x) �= d(y), the conjunctive normal form
τ bir will contain the clause

x ∨ y ∨
∨

{a ∈ A | ā(x) �= ā(y)}
Since ā(x) = ā(y), for all a ∈ A, the set {a ∈ A | ā(x) �= ā(y)} is empty and so,
the clause is x ∨ y.

Therefore, every cube of the obtained reduced disjunctive normal form will
contain x or y. As a consequence, by Theorem 3, we have that, for every bireduct
(X,B), the set X cannot contain x and y simultaneously, which proves the
result. �	
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As a consequence of this result, all bireducts are consistent and so, the
obtained information from these subsystems is also consistent. The following
example illustrates the previous notions and results in the particular case of a
decision system.

Example 5. From the information system (U,A) in Example 1, we will add a
decision attribute. This decision attribute will represent whether a patient has
flu or not. The relation is shown in Table 3.

Table 3. Relation of Example 5.

R fever(f) cough(c) tonsil inflam.(t) muscle ache(a) flu?

1 High No No No No

2 High No Yes Yes Yes

3 Low Yes Yes No No

4 Low Yes Yes No Yes

5 High Yes Yes Yes Yes

6 No Yes Yes No No

As we can see in Table 3, the objects 3 and 4 have different values in the
decision attribute but the values of these objects coincide for the rest of the
attributes. Therefore, objects 3 and 4 represent an inconsistency in the data.
Now, if we compare the objects considering the indiscernibility relation presented
in Definition 1, we can build the following discernibility matrix:

⎛

⎜⎜⎜⎜⎜⎜⎝

∅

{t, a} ∅

∅ {f, c, a} ∅

{f, c, t} ∅ ∅ ∅

{c, t, a} ∅ {f, a} ∅ ∅

∅ {f, c, a} ∅ {f} {f, a} ∅

⎞

⎟⎟⎟⎟⎟⎟⎠
(5)

There exist two cases to obtain the empty set as an element of the discerni-
bility matrix: the objects have the same value in the decision attribute or, having
different values in the decision attribute, the objects are indiscernible. Therefore,
considering the discernibility matrix, we obtain the unidimensional discernibility
function:

τuni = {t ∨ a} ∧ {f ∨ c ∨ t} ∧ {c ∨ t ∨ a} ∧ {f ∨ c ∨ a} ∧ {f ∨ a} ∧ {f}
= {f ∧ a} ∨ {f ∧ t}

Therefore, we obtain two decision reducts:

D1 = {fever,muscle ache}
D2 = {fever, tonsil inflam.} (6)
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Now, we will compute all bireducts of the decision system (U,A ∪ {d})
from Theorem 2, that is, throughout the following bidimensional discernibility
function.

τbi = {1 ∨ 2 ∨ t ∨ a} ∧ {1 ∨ 4 ∨ f ∨ c ∨ t} ∧ {1 ∨ 5 ∨ c ∨ t ∨ a} ∧ {2 ∨ 3 ∨ f ∨ c ∨ a}
∧ {2 ∨ 6 ∨ f ∨ c ∨ a} ∧ {3 ∨ 4} ∧ {3 ∨ 5 ∨ f ∨ a} ∧ {4 ∨ 6 ∨ f} ∧ {5 ∨ 6 ∨ f ∨ a}

From the formula above, the reduced disjunctive normal form is computed.

τbi = {4 ∧ a} ∨ {1 ∧ 3 ∧ f} ∨ {1 ∧ 4 ∧ f} ∨ {3 ∧ f ∧ t} ∨ {4 ∧ f ∧ t} ∨ {3 ∧ f ∧ a}
∨ {1 ∧ 3 ∧ 6} ∨ {2 ∧ 4 ∧ 5} ∨ {3 ∧ 6 ∧ c} ∨ {1 ∧ 4 ∧ 5 ∧ c} ∨ {2 ∧ 4 ∧ f ∧ c}
∨ {2 ∧ 3 ∧ 5 ∧ f} ∨ {2 ∧ 3 ∧ f ∧ c} ∨ {2 ∧ 3 ∧ 6 ∧ c} ∨ {4 ∧ 5 ∧ c ∧ t}
∨ {4 ∧ f ∧ c ∧ t} ∨ {3 ∧ 6 ∧ c ∧ a} ∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ c}

Hence, we obtain 18 decision bireducts, some of them listed in Table 4.

Table 4. Several bireducts of the information system (U, A ∪ {d}) in Example 5

Bireduct Subset of objects Subset of attributes

(X1, B1) {2, 4, 5, 6} {f}
(X2, B2) {1, 2, 3, 5, 6} {a}
(X3, B3) {1, 2, 4, 5, 6} {f, t}
(X4, B4) {1, 2, 3, 5, 6} {f, t}
(X5, B5) {1, 2, 4, 5, 6} {f, a}
(X6, B6) {2, 4, 5} ∅

(X7, B7) {1, 3, 6} ∅

(X8, B8) {1, 2, 3, 4, 5} {c, a}

If we observe the reducts in Table 2, we detect that bireducts (X3, B3),
(X4, B4) and (X5, B5) have the same subsets of attributes as the reducts D1

and D2, listed in Expression 6. Notice that the subsets of objects in these three
bireducts are not the whole set A. This is due to objects 3 and 4 present an
inconsistence in the data, as Proposition 4 asserts, they cannot belong to the
same subset of objects of any bireduct. Therefore, when the considered dataset
presents inconsistencies, a decision reduct is represented as a bireduct with the
set of objects as large as possible without inconsistencies.

On the other hand, bireducts (X6, B6) and (X7, B7) do not consider any
attribute. Comparing with the classes, we obtain that:

[2]d = [4]d = [5]d = {2, 4, 5} = X6

[1]d = [3]d = [6]d = {1, 3, 6} = X7

as Proposition 3 asserts. �	
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4 Conclusion and Future Work

In this paper, we have studied some properties of bireducts and highlighted
specific obtained bireducts. Mainly, we have identified the bireducts that provide
the indiscernibility classes of the objects of the considered dataset. Moreover, it
has been proved that the reducts of information systems and decision systems can
also be obtained from bireducts. Furthermore, in the particular case of decision
systems, we have proven that inconsistencies can be detected with bireducts and
that they consider the largest consistent subsets of objects.

As a future work, we will continue the study of the properties obtained from
the reduction of a formal context by means of bireducts. Also, we will use this
study in order to reduce the number of attribute implications in FCA. In addi-
tion, the notion of fuzzy bireduct will be investigated.
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systems. In: S�lowiński, R. (ed.) Intelligent Decision Support: Handbook of Appli-
cations and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic
Publishers (1992)
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