
Integrated Computer-Aided Engineering 27 (2020) 353–372 353
DOI 10.3233/ICA-200633
IOS Press

Motivation as a tool for designing lifelong
learning robots

Alejandro Romero, Francisco Bellas, José A. Becerra and Richard J. Duro∗
Integrated Group for Engineering Research, CITIC, Universidade da Coruña, Spain

Abstract. Designing robots has usually implied knowing beforehand the tasks to be carried out and in what domains. However, in
the case of fully autonomous robots this is not possible. Autonomous robots need to operate in an open-ended manner, that is,
deciding on the most interesting goals to achieve in domains that are not known at design time. This obviously poses a challenge
from the point of view of designing the robot control structure. In particular, the main question that arises is how to endow the robot
with a designer defined purpose and with means to translate that purpose into operational decisions without any knowledge of
what situations the robot will find itself in. In this paper, we provide a formalization of motivation from an engineering perspective
that allows for the structured design of purposeful robots. This formalization is based on a definition of the concepts of robot
needs and drives, which are related through experience to the appropriate goals in specific domains. To illustrate the process, a
motivational system to guide the operation of a real robot is constructed using this approach. A series of experiments carried out
over it are discussed providing some insights on the design of purposeful motivated operation.

Keywords: Open-ended learning, motivation, lifelong learning, autonomous robots

1. Introduction

Traditional robotic control design has usually in-
volved the determination of a series of use cases for the
robot through the specification of the domain the robot
had to operate in and the tasks it had to perform (goals
it had to achieve) in those domains. Everything was
known beforehand by the designer, who defined how
the task was carried out and the goal to be achieved,
and implemented the appropriate control policy [1–5].

As domains become more complex and the number
and sophistication of the sensors and actuation mech-
anisms of robots grow, it becomes increasingly diffi-
cult for the designer to be able to reliably program in
the policies that are needed in order to perform the
tasks. This is where robot learning and adaptation ap-
proaches come in. Most of these approaches, such as
supervised learning [6], Reinforcement Learning [7],
or others [8,9], define a domain and a task to be car-

∗Corresponding author: Richard J. Duro, Integrated Group for En-
gineering Research, CITIC (Centre for Information and Communi-
cations Technology Research) Universidade da Coruña, Campus de
Esteiro, 15403, Ferrol, A Coruña, Spain. E-mail: richard@udc.es.

ried and provide algorithmic structures that allow the
robot to learn the corresponding policy from a series of
samples of interactions of the robot with the domain.
This way, policies can be obtained, and the role of the
designer is limited to the decision of the domain and
the task the robot must perform.

The problem arises when the objective is to de-
sign robots for autonomous operation. In this case, the
designer does not know beforehand the domains the
robot will face nor the goals it will need to achieve in
those domains. This is called the open-ended learning
problem. The robot is expected to learn an unbounded
sequence of a priori unknown tasks in unknown do-
mains [10]. Obviously, under these conditions, domain
related goals and rewards cannot be provided by the
designer. The robot must figure out what tasks to carry
out in each domain, and how. It must find and achieve
its own goals, which is a much more difficult problem
than the ones presented before.

Thus, the issue is how a designer can go about de-
signing robots that must operate in open-ended learning
settings carrying out tasks that are useful to the robots
and that serve a purpose to the humans that construct
them. A second, but also important question, is how

ISSN 1069-2509/20/$35.00 c© 2020 – IOS Press and the author(s). All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License
(CC BY-NC 4.0).

354 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

this can be achieved in a way that is efficient from a
learning and adaptation point of view.

Thrun and Mitchel [11] postulate that lifelong learn-
ing may allow to do better than simply handling each
learning process in each domain independently. Under
open-ended learning conditions, the robot may benefit
from reusing knowledge acquired in different learning
processes, making posterior learning challenges pro-
gressively more accessible.

Lifelong learning can benefit from the principles
and advances of developmental robotics [12] and, in
particular, those of cognitive developmental robotics
(CDR) [13,14]. This approach addresses the design of
robotic systems based on insights from neuroscience
studies on the ontogenetic development of cognition,
mostly in children [15,16]. It deals with the progres-
sive acquisition of abilities which are later used as scaf-
folding to acquire new, more complex, competences
through interaction with the world.

If one wants to implement domain independent de-
sign processes, as the domains are not known before-
hand, the only available choice is to define purpose in
terms of the robot itself. In other words, we contend
that the purpose of the robot should be introduced with
respect to its internal states, and then a series of proce-
dures defined that allow linking these internal states to
what is achievable in each domain.

One possible way to endow a robot with purpose, is
for the designer to first establish an internal state space
defined by a set of domain independent variables the
robot has access to. This space will be called the mo-
tivational space. Within this space, the designer may
define some areas or points the robot should reach that
reflect its needs in terms of meeting some internal cri-
teria. The criteria can be concrete values of sensors,
increases in values, or any other, just as long as it is
measurable. Hence, needs can be defined as internal
states in motivational space the robot seeks to achieve
or maintain. The deviation from a criterion, represented
as a variable, is called a drive, and its functional form
must be defined by the designer.

Once the robot needs and associated drives have been
set, it must figure out what tasks to carry out to fulfill
them when confronted with an unknown domain. In
other words, it must self-discover and self-select goals
within the domain that will lead to the fulfillment of its
needs.

All these aspects are related to motivation, i.e. what
makes a system act to achieve some type of purpose,
and motivational structures, i.e. what are the data struc-
tures and the operational mechanism that are necessary

to implement motivation. These structures have been
studied for decades in the psychological and educa-
tional literature [17–20] and, more recently, a profu-
sion of papers have addressed their effects on cognitive
structures in the computational literature [21,22]. How-
ever, most of the work has concentrated on studying
the effects of different motivational strategies [23,24],
especially those related to intrinsic motivation [24,25],
or how to construct mathematical representations that
could be used to support them [26,27]. Very little work
has been devoted to the design and engineering of mo-
tivational structures to endow robots with purpose in
lifelong open-ended settings.

This paper is an extension of [28], presented at
IWINAC 2019, in which we dealt with how to induce
learning of basic skills (needed to perform tasks) us-
ing cognitive motivations. Here, we try to address and
formalize the problem of engineering a complete mo-
tivational structure that drives a cognitive architecture.
Unlike other approaches, we describe a structured path
to the design of robots that can learn to operate in open-
ended settings producing behaviors that comply with
the purpose the designer has in mind for the robot.

In this line, Section 2 addresses the issue of how
motivation can be engineered. It describes the differ-
ent elements that make up a motivational system and
how they are organized. Section 3 studies how drives
can be categorized and proposes a basic motivational
management structure. A series of experiments with
the motivational structure are described in Section 4
with the objective of clarifying how a lifelong learning
system can be designed and tested in a real robot setup.
Finally, Section 5 presents a series of conclusions and
open research lines.

2. Engineering motivation

According to Barto [29], motivation consists of a se-
ries of “processes that influence the arousal, strength,
and direction of behavior”. A robot designed to operate
in open-ended learning settings [10] must possess some
type of motivational structure in charge of determining
what it should strive for in a given domain each moment
in time [21]. Motivation provides structure to the evalu-
ation of states, required by decision processes, through
the determination of the goals the robot must achieve
at each point in time. Once a goal is set, the robot can
evaluate different alternative paths of action, estimate
their usefulness in achieving that goal, and choose the
optimal one.

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 355

Fig. 1. Deliberative model.

2.1. Needs and drives

Looking at this more formally, and from a delibera-
tive point of view (Fig. 1), given a robot in a state St at
time t, it will always try to choose the best action to per-
form, A∗

t , by prospectively exploring the consequences
of a number of different possible actions {A1, A2,
An} from its action repertoire. These consequences can
be expressed as the set of end-states achieved by the
actions, Si

t+1 with i ε (0, n]. The usefulness of these
end-states towards achieving the desired goal is usually
given in the form of a utility value or, in general, a util-
ity vector, U , assigned to the state. U reflects, either di-
rectly or through ranking, how convenient reaching that
state is for the robot’s purposes. Thus, once the utility of
these end-states towards the goal is calculated, the one
with the highest utility, S∗

t+1, can be chosen, leading to
the determination of the best action to be applied (i.e.
the one that led to the most useful reachable state). Of
course, performing prospection requires the availability
of a world model and determining the utility of states
implies a need for a utility model as shown in Fig. 1.

In the field of reinforcement learning (RL) [7], the
functions used for calculating utility are called value
functions. Value functions [30,31] represent the ex-
pected utility of each point in state space concerning a
goal. That is, the probability of achieving utility starting
from that point. In RL it is generally assumed that the
robot will operate in a known domain. Consequently,
at design time, the robot designer can decide on the
goal or goals that must be achieved as points in the
robot-domain state space that need to be reached.

State utility and goals, as well as world models, are
domain dependent elements. However, in open-ended
learning, the domains the robot will operate in are not
known at design time. Therefore, they cannot be used
by the designer to design purpose. Another approach
must be found to define purpose that does not involve
knowing domain dependent goals beforehand.

One possible way to produce meaningful oriented
behavior in robots is related to the definition of a mo-
tivational structure based on needs and drives [32,33].
Needs are defined as internal states the robot seeks to
achieve or maintain. They live in the motivational state
space of the robot, M, which is, by definition, indepen-
dent of the domain. Thus, M is different from what is
usually called the robot state space S, whose topology
depends on the specific domain the robot is in. To make
this difference clear, we will call S the operational state
space.

A drive, Dj , is assigned to each need nj εM. Dj re-
flects how far the system is from satisfying nj through
a function fj of the distance of the point xt εM, repre-
senting the current motivational state of the system, to
the point nj εM, where the need is met:

Dj = fj(xt − nj)

This function fj is defined by the system designer for
each need and it allows prioritizing and balancing the
importance of needs in the final operation of the robot.

2.2. Utility and expected utility

From the point of view of this approach to purpose,
robots always strive to fulfill their internal needs by
reducing the value of their drives. Consequently, they
need to find perceptual situations, St (i.e. points in S),
that result in need satisfaction in M (e.g. robot energy
plug in wall socket in a particular domain is a perceptual
situation that a robot can associate with a reduction
in the battery level replenishment drive). Therefore, in
this context, a goal in a domain can be defined as a
point or area Gr ε S that, when reached, reduces the
value of a drive Dj . Thus, goals become desired end-
states of action in that domain as defined by Rolf and
Asada in [34]. From this ensues a definition for the
utility (or operational utility), U , of any point, St ε S,

356 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

Fig. 2. Diagram showing the relationship between motivational and operational state space. Left: Motivational state space is domain independent
and constructed from a series of designer provided drives through drive functions that relate them to the satisfaction of their associated needs. A
robot always seeks to satisfy needs. Right: From a robot perspective, each domain implies an Operational state space in which some points (goal
points) provide utility, which imply increase in need satisfaction. These goals must be found and to be able to consistently reach them, the robot
must generate and store an Expected Utility function leading to each goal.

in the operational state space given by a domain, and in
particular for goal points, Gr ε S, as a measure of the
variation of the corresponding drive value, Dj , when
that point is reached.

It thus follows that a utility model UM could be
defined that provides values for the components of the
utility vector (each one related to one drive) of each
state.

UM : Rn → Rm

Where n is the dimension of the state space of the
robot andm the dimension of the utility vector (number
of drives). Following this notation U

Dj

Si
, or U j

i for sim-
plicity, denotes the utility value of state Si with respect
to drive Dj .

In most real operational state spaces, only a few
points or areas actually provide utility. This means that
UM is seldom very informative with regards of how the
robot must get to those points in state space. That is why
many authors resort to modeling state space in terms
of expected utility [26,27]. The expected utility Û with
respect to Gi of a point in Si is defined as the proba-
bility of reaching Gi starting from that point times the
utility provided by the goal. It follows that an expected
utility model, denoted as ÛMi, can be constructed for
each goal, Gi, by somehow determining Ûi for every
point in Si.

One prominent feature of ÛMi is that, by construc-
tion, its value increases monotonously along the paths
that lead to Gi. This is a very simple way of represent-
ing efficient paths towards the goal and, consequently,
it can be used in a deliberative process for the robot to
choose actions that take it to the goal.

Now we have a tool available to the system designer
that allows defining purpose within the robot in a man-
ner that is independent from any domain the robot may

find itself in. Each drive reflects how far the system is
from satisfying a need the designer has put in because
it was deemed important for the robot, regardless of
how this need can be satisfied in a specific domain.
The satisfaction of these needs is achieved by finding
points in the different operational state spaces (those
corresponding to the different domain the robot faces)
that lead to a reduction in the corresponding drive val-
ues. Different domains may lead to different ways of
satisfying the same need and, thus, to different goals
requiring different skills.

Consequently, in a motivational architecture for
open-ended operation, the system designer defines what
the robot must do in terms of needs that must be fulfilled
and balances the importance of these needs by means
of the appropriate definition of the drive functions as-
sociated to them. Each drive function may behave dif-
ferently, that is, one drive function may be linear with
respect to the distance to its associated need and another
may be quadratic. Figure 2 displays a diagram of the
ideas presented in this section.

Even though in this structure the only control over
the purpose of a cognitive robot a designer has is by
defining needs and creating the appropriate drives, a
motivational structure needs more components than
these in order to be able to actually lead the robot to
some result. Basically, it must have components that
allow to efficiently explore for goals, to construct utility
models, and to contextually recall previously learnt
situations. The last two mechanisms are preset by the
cognitive architecture. Hence, they are not controllable
by the robot designer when attributing purpose to a
robot, but they must be considered for any robot to be
able to actually operate in open-ended learning settings.

In this paper, as the objective is to explore how a
robot can be attributed domain independent purpose,

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 357

we will not go into the details of the different mathe-
matical and algorithmic approaches to the modeling of
utility. Neither will we go into how the relationships
between goals in particular domains and drives can be
contextually related in a memory structure. These as-
pects have been addressed by us and other authors in
the literature [27,35,36]. Here we will just make use
of the corresponding components and concentrate on
those aspects the system designer has access to. These
aspects allow the designer to give purpose to the robot
and induce the efficient exploration of domains.

2.3. Operational and cognitive drives

In the previous section, we have described a formal-
ization of the relationship between domain independent
needs and drives and domain dependent goals in order
to provide a designer with the tools to design in pur-
pose in a robot cognitive structure. A drive related to
endowing a robot with purpose is called an operational
drive (opDj). As indicated before, for the robot to be
able to fulfil it, it requires finding utility (goals) in the
different domains it faces.

Utility is generally very sparse in most operational
state-spaces, which display extensive areas that are bar-
ren of utility. This affects the definition of needs and
drives that the system designer must put in. In fact, to
be able to find a point that produces real utility, it is
often necessary to first acquire some skills that do not
lead to utility producing goals. If the designer wants
the robot to explore and acquire those skills, it needs
to provide it with motivations (needs and drives) that
will allow establishing some type of “virtual goal” that
permits performing these learning processes.

In the classical psychological and educational lit-
erature on motivation, most authors distinguish be-
tween two classes of motivations from an external ob-
server’s point of view. On the one hand, when the agent
is perceived as trying “to obtain some separable out-
come” [37], it is said to be extrinsically motivated [38].
The observer sees the agent seeking goal states where
some observable explicit utility can be obtained. On the
other hand, animals and humans spend time and effort
carrying out behaviors that produce no observable ex-
plicit utility. This has been explained away as driven
by intrinsic motivations [20,39,40]. Intrinsic motiva-
tions are said to drive the autonomous, open-ended ac-
quisition of knowledge and competence in the absence
of direct operational goal related feedback [25,41,42].
Ryan and Deci’s words this implies: “the doing of an
activity for its inherent satisfaction rather than for some

separable consequence” [37]. This type of motivations
are purported as very important for animals and humans
to be able to acquire knowledge such as models or skills
that allow them to later on establish strategies to reach
goals [21].

When the objective is to engineer motivational sys-
tems, intrinsic motivations only differ from extrinsic
ones in the fact that their needs and drives are generally
related to cognitive aspects of the system rather than
operational or maintenance aspects. They are there to
induce learning and thus satisfy learning needs. Their
satisfaction may be related to how much is explored
(e.g. novelty [43]), to obtaining models of the world
(e.g. curiosity [44]), or to generating virtual goals by
seeking to find ways to produce effects over the envi-
ronment (e.g. effectance [41]). These cognitive drives
(cgDj) reflect how the designer wants the system to
regulate its learning process. Note that, as they are re-
lated to cognitive aspects of the robot, they make use
of measures of the internal operation of the cognitive
architecture. Therefore, their associated utilities can be
defined over some domain independent internal percep-
tual space created by the system designer according to
its wishes.

Summarizing, the purpose of a robot is determined
by the operational drives the designer puts in, which
will try to exploit the, often sparse, utility landscape
of the different domains. However, an adequately de-
signed cognitive drive set results in a denser distribution
of utility when interacting with the operational state
space. Additionally, the actions chosen by the system
to achieve utility in the cognitive state space, induce di-
rected and efficient exploration in the operational state
spaces. Thus, cognitive drives indirectly allow the robot
to explore its operational environment and learn how it
works through the acquisition of models as well as to
find operational goals within it.

3. Designing drives

When designing the motivational structure of a robot,
the system designer must address the design of two
different types of drives: operational drives (opDj) and
cognitive drives (cgDj). In general, defining a drive im-
plies two main steps. First, choosing sensors that pro-
vide measurements that can be used to determine the
distance towards satisfying the need. Second, defining
a function that quantifies the level of need achievement,
that is, that provides the final value of distance to need
satisfaction. This function may take the drive to zero

358 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

Fig. 3. Examples of drive functions. Left: Energy drive represented with a power function opDe = abe. Right: Motor Intensity integrity drive,
corresponding to opDi = tanh(aIm).

Table 1
Types of needs and drives considered

Type Need Drive
Operational Energy (ne) opDe

Maintenance (nm) opDm

Integrity preservation (ni) opDi

Purpose dependent (ntask) opDtask
Cognitive Once interesting (noi) cgDo

Temporarily Interesting (nti) cgDt

at some point, leading to a homeostatic drive, or not,
leading to a heterostatic drive. In the former, the need
will be satiated once the goal or goals associated to a
corresponding drive are reached. In the latter, hetero-
static, the drive will never reach a value of zero, and the
system must try to fulfill the need continuously. Table 1
contains a summary of the specific types of needs and
drives proposed in this work, which will be explained
in detail in the following sections.

3.1. Operational drives

Operational drives can be very diverse, as they are re-
lated to what the designer wants the purpose of the robot
to be. In the most basic case, the designer just wants
the robot to survive. Survival usually involves three
main categories of drives associated to three types of
needs: energy needs (ne), maintenance needs (nm) and
integrity preservation needs (ni). Whatever domains
the robot faces during its lifetime, without appropriate
drives for these needs, the robot may not survive. Thus,
it is quite typical to introduce a need for a minimum
level of energy (e.g. battery charge level). Its associated
drive (opDe) may be defined by a drive function that
looks something like what is shown in the left of Fig. 3.
Such a function could be a power function like:

opDe = abe

where a and b are coefficients that should be adjusted by
the designer according to the scale it aims to manage,

and e is the energy level provided by a sensor of the
robot, for instance, a battery level. As indicated above,
the designer must know the sensor that will provide a
measurement of the need satisfaction, and she must de-
fine the relation between this sensor and the drive value
through a parametrized function. This drive could be
easily defined as homeostatic, because once the energy
level is full (or a level is exceeded), the need is satiated,
and it will take some time to “activate” it again.

Maintenance needs have to do with certain preven-
tive or predictive maintenance operations that need to
be carried out over the robot at certain times. They are
very specific to each robot. However, they must be con-
sidered and an associated drive (opDm) must be in-
troduced. Again, the designer must identify the sensor
that can provide a measurement towards the mainte-
nance need. Just to exemplify this case, the designer
could consider simply the number of operation hours
as a sensor. Thus, when a threshold is exceeded, the
robot should finish every pending task and proceed with
maintenance operations. This is, clearly, a homeostatic
drive.

Finally, a drive or set of drives need to be imple-
mented to detect and avoid situations in which the in-
tegrity of the robot is compromised (opDi). One way of
doing this is to associate abnormal operational values
that could damage the robot to a value of “pain”. That
is, a need for no pain is introduced and when any of
these abnormal sensed values is perceived, it is asso-
ciated to a deviation from that zero-pain situation, i.e.
an increase in the pain drive. The robot will try to find
ways to reduce this pain drive in its environment. For
instance, the designer could define an integrity preser-
vation need (ni) associated to an electrical current in-
tensity (Im) sensor in a motor, and the corresponding
integrity drive function could look like the one on the
right of Fig. 3.

opDi = tanh(aIm)

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 359

Other examples of sensors associated to this situa-
tion could be motor encoders, vibration detectors, or
distance sensors to avoid collisions.

Apart from the three categories of survival drives
commented in the previous paragraphs, many more op-
erational needs and drives may be included in a cogni-
tive developmental architecture depending on the pur-
pose the designer aims to instill in the robot. The defi-
nition of purpose-dependent operational needs (ntask)
follows the same principles as the survival ones. The
designer must associate a need to a sensor, so that a
distance measurement can be defined to create the drive.

It is not feasible to provide a complete list of possible
operational drives and needs associated to all the possi-
ble purposes that could be assigned to a robot, although
some examples will be described in Section 4. What is
important is that these needs, and associated drives, will
determine the behavior of the robot when facing new
domains once it has learnt how these domains work.
That is, once it has a world model for them, it has found
goals within them that can minimize the operational
drives, and it has learnt ways to exploit them. A dif-
ferent problem is how to get to that point, and this is
where cognitive drives come into play.

3.2. Cognitive drives

As indicated in the previous sections, cognitive needs
and drives are directly related to the operation of the
cognitive architecture of the robot and how it learns.
Therefore, the state space where cognitive goals are
defined is constructed from virtual sensors that measure
different aspects of how cognition is working (i.e. how
fast it is learning, whether a perception is new, etc.).
This is quite relevant because, given the fact that cog-
nition is internal to the robot, these cognitive measure-
ments are independent from any domain. Consequently,
their utility and expected utility functions can be de-
fined at design time, providing the designer with a set
of very useful tools.

Two objectives must be covered by the cognitive
drives. One of them is direct: provide guidance that
makes learning more efficient whatever domain the
robot may be in. This efficiency is often realized by
generating better domain sampling strategies. The other
one is more indirect: allow for exploration in the oper-
ational state spaces of the domains the robot faces in
order to facilitate the discovery of operational goals and
the construction of appropriate expected utility func-
tions for them.

As presented in Section 2, a series of motivations
inspired by the studies on humans and animals [17–20],

which could be considered cognitive motivations, have
been proposed [21,45]. They result in improvements
on the samples the robot considers for learning and
the learning sequence itself (learning curriculum) [52].
Additionally, this selective sampling induces trajecto-
ries in operational state space that allow for exploration
and finding possible goals. That is, some points in op-
erational state space become more interesting (worth
sampling) than others.

In general, cognitive drives can be divided into two
categories as a function of their influence on the inter-
estingness of operational state space points:

1. Once interesting (cgDo): The points are interest-
ing once – These drives allow for efficient ex-
ploration in operational state space. A point in
operational state space is interesting until it has
been sampled once. After this, it becomes unin-
teresting. An example of this type of drives is
novelty [43].

2. Temporarily interesting (cgDt): The points are
interesting for a limited period – These drives
allow learning models or pre-learning skills that
may be used later for more complex tasks. That is,
the points are interesting until the system knows
how to produce the effect or learns the model.
Examples are surprise [46] or effectance [47].

It is through the appropriate combination of drives
of these two types that the system will become more
proficient. Obviously, when starting from scratch, the
first thing any robot will have to do is explore, and the
drives that provide the most exploratory power are those
related to the once interesting category. Consequently,
from a design point of view, any motivational structure
must contain, at least, one of these drives. In fact, in
most motivational implementations presented in the
literature, whether explicitly or implicitly, the authors
have introduced one of these drives. Examples are [24,
48].

The question now could be which of these drives and
in what cases, but that would be the topic of another pa-
per. Let it suffice to say that most implementations cur-
rently start with a novelty type drive for exploration. A
specific implementation of a novelty drive is described
in Section 4. Nevertheless, other proposals have been
made in terms of this type of drives, such as [49], who
argue in favor of a general surprise drive to establish
this initial exploration process.

However, novelty is usually not enough as a cog-
nitive drive to permit finding and, especially, learning
to exploit goals in the operational state space defined
for the robot by the domain it is facing. It is usually

360 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

better than random sampling, but it does not allow for
learning skills that are not associated to operational
goals. Consequently, more focused cognitive drives are
needed.

In this line, as previously noted, it is often interesting
for a cognitive system to learn models and, especially,
skills that can later be used in order to reach goals. In
these situations, drives leading to temporarily interest-
ing points in operational state space (cgDt) can be very
helpful. These drives allow for the exploration of areas
around points in operational state space that present
some particularity, such as generating an unpredicted
perceptual change or an effect on the environment.

Temporarily interesting points need to be remem-
bered and considered as “virtual goals” for a limited
period. This way, the cognitive architecture can perform
some local exploration processes to generate or adapt a
model that allows predicting the particularity. In fact,
it can even generate a utility model with that point as
a virtual operational goal so that the system can learn
to consistently produce the effect on the environment
when desired.

Once the model or skill have been learnt, these points
become uninteresting, and they lose their condition of
virtual goals. Nonetheless, the expected utility model,
world model or skill learnt while it acted as a virtual
goal can be stored and preserved so that they can be
used in the future by the cognitive architecture. Exam-
ples of these types of drives are curiosity [24,44] and
effectance [41]. Again, in Section 4, a specific imple-
mentation of these types of drives is presented in detail,
in this case, an effectance drive.

3.3. Drive management

Two final aspects must be considered here. The first
one is how the interactions among the multiple drives a
system may be endowed with should be handled. Addi-
tionally, and for the sake of operational efficiency, as the
cognitive architecture gathers experiences in different
domains, it should be able to associate drive activations
and the goals that satisfy the corresponding needs in
specific contexts. This is key to purposeful actuation as
it allows for the reuse of acquired experience in order
to satisfy needs.

Regarding the second issue, it is quite important for
any robot to remember any operational states that led
to an increase in the satisfaction of a need (goal states).
Obviously, this knowledge would be even more useful
if it also specified what drive, or drives, the goal mini-
mizes. This would allow for decision processes able to

Fig. 4. Example of a drive-goal graph. The arrows represent the differ-
ent connections between drives (D1, . . . , Dn), goals and sub-goals.
Thus, the activation of a drive will propagate throughout the tree
activating all its associated goals and sub-goals (as highlighted in the
figure with the activation of (Dn).

determine what goal or goals should be active when a
given drive is active. A very simple way to achieve this
is to progressively generate a drive-goal graph as goals
or sub-goals that reduce specific drives are found.

A diagram of what a representation of this type would
look like is presented in Fig. 4. The robot starts with a
drive vector defined by the designer. As it explores a
domain or a set of different domains, it finds goals and
relates them to the corresponding drive or drives that de-
creased their values when the goal was reached. Some-
times, certain skills acquired using cognitive drives over
temporarily interesting state space points are needed
to reach goals. Remember that these temporarily inter-
esting points did not necessarily lead to the minimiza-
tion of any operational drive, and, consequently, they
were not proper goals. However, when they become
steppingstones towards achieving a proper goal, we can
upgrade them to the category of sub-goal and link them
to the corresponding goal. Other ways to identify sub-
goals and relate them to their associated goals have been
proposed in the literature [50], but this is not the topic
of this paper and we are not going to dwell on them.
Suffice it to say that, whatever the approach used to
identify sub-goals, they can be added to the drive-goal
graph in order to represent their relationships.

Now, with regards to the first issue, that is, how to
manage multiple drives and their interactions once a
drive-goal graph is available, the solution can be very
straightforward. Drive values are determined by the
values of whatever sensors the designer has associ-
ated to them through the corresponding drive functions.
Consequently, at any point in time, all the drives of a
robot present a drive activation value. This value will
be propagated down the drive-goal graph, activating
those goals and sub-goals leading to the drive. This is

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 361

shown in Fig. 4 where Dn has been activated, causing
the activation of the goal structure leading up to it.

These activations determine what goals and sub-goals
are worth pursuing from the perspective and experience
of the motivational structure within the cognitive archi-
tecture and, more importantly, to what extent. However,
a choice of goals based only on these activation values
does not consider the contextual aspects of the goal.
That is, in what domain it was found and whether the
robot is now operating in the same domain. Therefore,
other components of the cognitive architecture that deal
with context must come into play in order to filter out
those goals that are not relevant. These mechanisms are
cognitive architecture dependent. However, and as an
example, in [35] we describe a Long-Term Memory
(LTM) structure for the e-MDB cognitive architecture
that provides the context related capabilities that are
required through the use of context nodes.

Whatever the mechanism, this context related filter-
ing will prune the drive-goal graph, leaving just those
goals that are relevant in the current domain and situ-
ation. The cognitive architecture will choose the goal
with the highest activation to guide the operation of the
robot.

Of course, in the initial stages of development, in
order to reduce active drives (both cognitive and opera-
tional), the robot will depend on the goals and associ-
ated utility functions the designer put in at design time.
There may be many drives in the drive-goal graph with-
out any goals connected to them as the robot has not
found them in the domains it has faced. Consequently,
when these drives are activated, the robot will have no
idea on how they can be reduced. This is where the
relevance of the cognitive drives becomes evident.

As indicated before, cognitive drives can be linked
to predesigned goals and skills or utility models at de-
sign time. They only depend on the robot and not on
the domains. In addition, cognitive drives are usually
heterostatic, and thus, always present a certain level of
activation (one can always seek more novelty). Hence,
even when there are no active operational drives that
the robot knows how to minimize, the cognitive drives
will still be active. Consequently, the robot can pursue
their pre-designed associated goals by following their
designed-in expected utility models (or even designed-
in associated policies).

Summarizing, by pursuing goals related to well-
designed cognitive drives, some of which include
designed-in goals and utility models, the robot explores
the different domains it encounters, progressively learn-
ing to model them. While doing this, it finds operational

goals that allow it to construct the drive-goal graph. In
a hypothetical situation in which the robot has found
goals that efficiently minimize all its drives when acti-
vated, there will be no need for exploration. An optimal
stationary state in which any drive is immediately and
efficiently minimized when it becomes active will have
been reached. Obviously, in open-ended learning situa-
tions this will never be the permanent case, but it may
happen for specific domains.

In order to illustrate the application of the concepts
described up to this point, the following section deals
with the construction of a minimal motivational sys-
tem based these premises. The results of testing the
performance of the system under different open-ended
learning situations, both starting from scratch and when
operating in populated drive-goal graph conditions, are
also presented.

4. Experiments and analysis

The aim of this section is to show how, by designing
a coherent set of robot drives, the designer can control
the learning process as well as the behavior of the robot
in different domains. This is the way to assign purpose
to robots in open-ended learning situations, where the
designer has no access at design time to the different
goals the robot is going to find throughout its life.

4.1. Materials and methods

We have considered a robot that must operate in an
industrial scenario that implies several different do-
mains. We, as designers, want the robot to assemble
different parts of a piece in environments where there
are human operators that can modify or interfere with
its behavior. To simplify the study, and to focus on
drive management, the state representation has been
pre-defined.

Figure 5 shows the experimental setup, which in-
cludes a Baxter robot placed in front of a table with
different types of objects on it. The Baxter has two
arms with 7 degrees of freedom each. The sensors used
in the experiments are two RGB cameras, one on the
head of the robot (used to detect the presence and po-
sition of human operators) and another on the ceiling
of the room (in order to see the table that is located
just in front of the robot), a brightness sensor in the
ceiling camera that returns the ambient light level, and
binary sensors in the grippers indicating whether they
are holding something. The ceiling camera information

362 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

Fig. 5. The left image corresponds to the pushing skill, while the right one corresponds to the grasping skill.

was re-described in the form of a distance and angle to
the center of the blobs corresponding to the objects. An
attention mechanism that decides which of the blobs
the robot focuses on has also been introduced. The ve-
locity of the robot arm is computed as a sensor to esti-
mate the correct movement. Finally, the YOLOv3 [51]
identification algorithm is used to identify the objects,
FaceNet [52] to identify people, and a convolutional
neural network (CNN) based detector [53] was used
for gesture recognition. To apply all these vision algo-
rithms, we directly downloaded the pre-trained models
included in the references with no adjustment from our
side.

As explained in the previous section, an open-ended
learning experiment can be divided into two different
types of processes that will take place concurrently.
Cognitive drive led processes will foster exploration and
learning. Operational drive led processes will address
the robot achieving its purpose. To show the operation
of the drive management system proposed in this paper,
the following two sub-sections consider two extreme
cases. In the first one, we analyze the initial learning
stages, where no operational goals have been found
yet, to show how skills and models are learnt. In the
second one, we consider a series of already well-known
domains and analyze how the different drives interact
to determine the behavior of the robot.

4.2. Bootstrapping development using cognitive drives

The specific once interesting (cgDo) and temporar-
ily interesting (cgDt) drives we have defined in this
setup are based on novelty and effectance. The novelty
implementation applied here was originally described
in [54] and it provides a distance measurement between
perceptual states the robot has acquired and stored in

a memory. The cgDo drive tries to steer the robot to-
wards areas of its state space that are most unknown.
To compute it, a trajectory buffer is created. It stores
all the perceptual states the robot has experienced in
the last M instants of time. Formally, the novelty drive
value of the k-th candidate state sc,k is:

cgDo = 1− Novk = 1− 1

M

M∑
i=1

dist (sc,k − si)n with k = 1 to N

where n is a coefficient that regulates the balance be-
tween the relevance of distant and near states, si is the
i-th state on the trajectory buffer, and N is the number
of candidates randomly considered.

Regarding the cgDt drive, we have implemented an
effectance-based procedure that determines when un-
predicted change, or effect, has occurred in the percep-
tual state. The specific function that was implemented
for this drive is displayed in the left part of Fig. 6, which
plots the cgDt value as a function of the prediction er-
ror e. This error is provided by a world model. A high
value of this parameter implies that the model is not
able to predict the corresponding perceptual state, thus
we consider this state to be interesting. As the predic-
tion error decreases, the interest for this perceptual state
decreases.

To induce training, the key aspect here is to try to
make the robot reproduce the effect, that is, to reach
the same state space point as often as possible. This
creates samples to improve the world model making
this effect more predictable and, also, selectable at will.
To this end, we resort to the concept of “temporal goal”
or “virtual goal”. That is, a goal that is only active until
the system can consistently reach it.

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 363

Fig. 6. Left: cgDt drive function. Right: opDe drive function.

Thus, when an effect is fortuitously produced for the
first time, the point in state space where it occurred
becomes a temporarily interesting type of goal. The
associated activation of the goal will be related to the
effectance drive value and, thus, to the world model
error related to it. This activation will be initially high,
thus making this goal salient and inducing the robot
to try to obtain an expected utility model that leads
towards it.

As this expected utility model becomes better, the
robot will reach the virtual goal more often, producing
samples that will help to improve the world model. This
will lead to better predictions (lower prediction errors),
reducing the activation of the virtual goal. The more
proficient the robot becomes at achieving a goal, the
less interesting this goal becomes.

Once the robot is very proficient, the skill for achiev-
ing the goal, in the form of a utility model, will have
been acquired and it is stored in memory for future re-
call. It is important to mention that for this experiment
both cognitive drives (novelty and effectance) have the
same priority: their drive functions are weighed equally.

The experimental setup displayed in Fig. 5 has been
created to test how these drives allow to autonomously
learn new skills. It consists of four objects: a green
and an orange block, a button, and a box. The green
block can be grabbed, while the others are too small for
the gripper to grasp them. All the objects may also be
pushed around.

The robot started its operation without any explicit
operational goal or skill apart from. It just had the two
cognitive drives as well as pre-designed goals and poli-
cies for them. Thus, it started moving the right arm
guided by the goal associated to cgDo, novelty in this
case. The robot ended up hitting and pushing the orange
block (displayed in the left image of Fig. 5). This previ-
ously unknown effect increased the activation value of
the effectance drive, cgDt, establishing the point in state
space where the change occurred as a virtual goal to
achieve. This goal is defined by the color of the object,

a distance of zero from the gripper to the object, and a
speed of the arm that is different from zero.

The drive is fulfilled if the robot consistently achieves
the virtual goal, reducing its activation to zero. There-
fore, the robot focused on finding ways to reach the goal
point in state space from any initial point it found itself
in. In this case, the robot started exploring how to make
the orange block move. In parallel, it was progressively
creating an expected utility model (ÛM) that allowed
it to consistently move the block (push the block) by
selecting actions that follow its positive gradient. Here,
the ÛM were encoded as an ANN with 2 inputs (dis-
tance to the object and gripper velocity), 2 hidden lay-
ers of 5 neurons each, and 1 output (expected utility).
The ANN parameters were adjusted on-line, through
a stochastic gradient descent algorithm [55], using the
samples the robot produced as training dataset.

As the ÛM improved, the robot became proficient in
moving the orange blocks, and the world model used
these samples to improve its predictions. This improve-
ment led to a reduction in the activation of the cgDt

drive and, thus, of the goal. When this value was very
low, the novelty drive became dominant again. The ÛM
obtained in this step was stored in memory at this point
as a representation of a push-object skill. The left graph
of Fig. 7 displays a representation of the ÛM response,
where it can be observed that the expected utility is
maximum when the distance to the object is zero and
the gripper velocity is greater than a threshold, so that
it can push it.

The robot continued using novelty guided explo-
ration, until some object ended up between its gripper
pads. This triggered a close gripper reflex action (dis-
played in the right image of Fig. 5), leading to a grasp-
ing behavior [56]. This action only caused an effect in
the case of the green block, because the other blocks
slip from the gripper.

Consequently, again, a previously unknown effect
was detected and a virtual goal, with a high activa-
tion value propagated from the effectance drive, was

364 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

Fig. 7. Learnt ÛMs. Left: push. Right: grasp.

assigned to it. As in the previous case, the cgDt drive
started guiding the robot response, and a new ÛM learn-
ing process was executed, with the same ANN archi-
tecture and learning algorithm as before. This learning
process continued until grasping became very effective.
Grasping effectiveness here is related to the number of
times the grasping sensor is activated, which is directly
related to the task success. This activation is sparse in
the first iterations, but as the ÛM improves, the robot is
continuously grasping the object, dropping it on the ta-
ble and grasping it again, thus increasing the frequency
of this value. The ÛM resulting from this process is
displayed in the right graph of Fig. 7, which shows how
the expected utility is higher the closer the gripper is to
the object, and the lower its speed.

Summarizing, in this first stage of the experiment,
guided only by cognitive drives, the system was able to
learn two primitive skills (grasping and pushing) in a
very efficient manner while it was autonomously inter-
acting with the world. The ÛM corresponding to these
skills are stored in LTM for later use by the architecture.

4.3. Some experiments dealing with operational
drives

Let us now consider the case in which the robot has
already learnt a series of goals with their associated
utility models and policies following the procedures of
the previous section. These are stored in LTM, where
they are related to their contexts. These goals are also
related to the drives they have minimized through a
drive-goal graph the robot has constructed in previous
exploration stages using cognitive drives, as explained
in Section 4.2. In this case, in addition to the elements
described in Section 4.1, the table over which the Baxter
robot operates may contain different types of bricks, a
button, a lamp, a delimited red area and a box.

The main purpose we want to instill the robot with is
to assemble the different objects and place them in the

Table 2
Policies available in LTM

Policy Description
Grasp_object Use a gripper to grasp an object.
Ask_nicely Ask experimenter for help.
Put_object_in Place an object in a new position.
Push_object Push an object to a chosen place.
Show_object Grab an object and show it to a human.
Press_object Use a gripper to press an object.

predefined area while satisfying humans whenever they
are present. During the experiment, at random times,
we introduce different human operators, recognizable
by the robot, to collect the assembled parts or to ver-
ify their correct assembly. Thus, when the operator in
charge of verification approaches, he will only be satis-
fied if the robot shows him the assembled parts so that
they can be verified. In the case of the operator who
collects the assembled parts, he will only be satisfied
when the box (brought by the operator) is full of as-
sembled parts. Finally, since the robot works in a closed
room and its correct operation depends on what it sees
through its cameras, it needs to have a minimum level
of illumination to be able to perform the tasks. Thus,
when the light level is very low, the robot must seek to
increase the light level.

As indicated at the beginning of this section, we are
also assuming that a set of basic knowledge nuggets
(policies, world models, utility models and goals), from
previous interactions with different worlds and under
different goals, are present in the LTM. A total of 6
possible policies (shown in Table 2) are available to
the robot. Even though we are labeling these policies
for clarity in the presentation, there are no such labels
within the cognitive architecture.

As we want the robot to have a purpose, in addition
to the two cognitive drives that were already presented
in Section 4.2 (novelty and effectance), we need a drive
related to this purpose. This operational drive (opDtask),
which is homeostatic, is associated to a sensor that can
detect whether the blocks are assembled and in the

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 365

storage area. This sensor has been implemented using
the YOLOv3 algorithm mentioned above.

Like any other drive, opDtask must be specified by
defining a sensor and a function that produces the acti-
vation level from the sensor value. The specific function
that provides the opDtask value is very simple:

opDtask = 1− assembled_detector * in_storage

where assembled_detector is a Boolean sensor that re-
turns 1 if the blocks are assembled, and 0 if they are
not, which is multiplied by another Boolean sensor
(in_storage) that returns 1 when the assembled piece
position is within the storage area and 0 otherwise. The
temporal behavior of the drive is handled by resetting
to 0 the two sensor values after the time point at which
the drive is minimized (opDtask = 0).

Since we want the robot to heed the operators’ de-
sires, there is also an innate operational drive related
to human satisfaction (opDhuman). Humans will show
their happiness to the robot only when a given situation
occurs, for instance, when the robot has shown all the
assembled parts to the operator in charge of verification,
or when it has filled the other operator’s basket with
assembled parts.

This drive will affect the operation of the robot only
when there are humans nearby. The reason being that
when no humans are detected by the robot, the goals
associated to this drive are contextually inhibited by
the cognitive architecture, that is, the conditions for the
possible activation of these goals are not met. Note that
each operator may want different things, so this drive is
not associated to the performance of a specific task, but
to satisfying the human. This satisfaction is perceived
using a gesture recognition sensor. When the human
produces a thumbs up gesture, this sensor returns 1,
otherwise, it returns 0.

Finally, we must define an energy drive (opDe), as
explained in Section 3.1. This drive will be associated
with the correct operation of the robot in the environ-
ment, that is, it is a survival drive. In the current case,
since the robot’s perception system depends heavily on
the use of cameras, an adequate level of light is essen-
tial to ensure correct operation. Consequently, for this
experiment, the sensor associated with the drive will be
the ambient light sensor, and the specific function for
opDe is displayed in the right part of Fig. 6.

As a summary, Fig. 8 shows the drive-goal graph
from which the experiments are going to start except for
the dashed blue line, which will be explained later. The
meaning of the goal labels can be found in Table 3. The
direction of the arrows is the direction of propagation

Fig. 8. Drive-Goal graph for the experiment. The goals are defined
in Table 3. Solid arrows represent the connections between drives,
goals and sub-goals at the start of the experiment. The dashed arrow
corresponds to a learnt relationship that is explained in Section 4.3.4.

of activation (sub-goals receive from corresponding
goal). The activation of a goal/sub-goal also depends
on context and, therefore, a goal will not be activated if
the context is not the appropriate one.

Context pre-activation is carried out by other parts of
the cognitive architecture that are not the object of this
paper (an implementation can be found in [35]). In the
experiments we will just provide an indication of what
goals are inhibited by context dependent processing.
This goal/sub-goal structure is not necessarily the final
structure, it may change over time as we will see later.

Additionally, bear in mind that, as all drive values
are normalized between 0 and 1, if we want the robot
to give priority to certain drives, a weighting coefficient
must be introduced. Here, the intention is for the robot
to perform the assembly task but giving priority to sat-
isfying humans and to maintaining an adequate level of
light. Thus, the coefficients chosen for the operational
drives were the following: ctask = 0.85, chuman = 0.95
and cenergy = 1.0. In the case of the cognitive drives:
cnovelty = 0.6 and ceffectance = 1.0.

The values of the coefficients have been obtained
from a parametric study over all the different combi-
nations of coefficient values that affect the drives. The
results are shown in Fig. 9. Keep in mind that what is
important here is the order of drives induced by the co-
efficient values and not their absolute value. The same
order will lead to the same behavior regardless of the
specific values. Thus, 7 different parameter combina-
tions (shown in the legend of Fig. 9) and 4 scenarios
have been considered: no human operator appears, only
the verification operator appears, only the collection
operator appears, or both operators appear. To allow

366 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

Table 3
Goals present in the LTM

G1: Novel_state_achieved G7: Assembled_piece_in_storage
G2: Unmodelled_state_achieved G8: Piece_in_gripper
G3: Human_present G9: Piece_in_assembly_area
G4: Light_Switch Pushed G10: Gripper_is_free
G5: Assembled_piece_in_basket G11: Assembled_piece_in_gripper
G6: Gripper_holding_piece_towards

Fig. 9. Representation of the results obtained after the execution of
the experiment during 400 time steps in 4 different scenarios for 7
different combinations of the coefficients. The number of assembled
parts for each of the combinations is shown on the left, while the
number of verified parts for each of these cases is shown on the right.

for the analysis of the robot’s performance, an external
observer has kept track of the number of pieces of each
type produced after each experiment.

In view of the results shown in Fig. 9, three different
behaviors can be inferred. On the one hand, when ctask
is greater than chuman (cases a, c and d) the robot only
assembles parts, ignoring the human operators. This
is observed in the right side of the figure by the fact
that no parts are verified. On the other hand, when
priority is not given to maintaining an adequate level
of illumination for the assembly task, that is, ctask >
cenergy (cases c, d and f), illumination is deficient and
the robot is not able to continue its operation. It is only
able to assemble two pieces in those cases and is not
able to verify any. However, when these conditions are
appropriate (cases b, e and g), the robot is capable of
producing the desired behavior. Out of all these cases,
we have chosen b (marked in yellow) for the rest of the
experimental section as it is the one that produces better
results.

4.3.1. Experiment design
Initially, we consider that the robot is in a room with

an appropriate level of light that progressively decays

and that there are no humans present. This first scenario
is used to describe the operation of the robot following
one drive and what happens when two drives interact
(this occurs when the light level drops below a given
threshold). Then, we will introduce different human
operators at random points in time and analyze the
interaction among the three main operational drives that
come into play in this experiment. We will also show
how context can help select only those goals that are
associated to the domain the robot is currently facing.
Finally, we will address a previously unseen situation in
which no operational goals can be activated (the robot
has run out of pieces on the table). We will show that
this leads to cognitive drives taking control in order to
find a new relevant operational goal. This operational
goal is added to the drive-goal graph, allowing the robot
to continue minimizing its operational drives.

The evolution of the robot behavior over time is pre-
sented in Fig. 10, which contains three graphs with the
data corresponding to a representative execution of the
three stages of the experiment. Thus, Fig. 10a shows
how the value of the different drives has varied over
time. On the other hand, Fig. 10b shows what has hap-
pened in the environment (goal achievements) to mini-
mize the drives of Fig. 10a. Both figures allow us to see
how drives and goals come into play over time. That is,
when a drive is activated to a higher level than the rest,
the robot seeks to achieve its associated goals.

Finally, to provide more details of what is happen-
ing in the environment, Fig. 10c shows the different
policies that have been chosen over time to achieve the
goals. These policies come from the set described in
Table 2. For clarity when analyzing the behavior of the
robot in this environment, the figures have been divided
into different parts. Thus, the moments in which hu-
man operators are seen by the robot are shaded and
between vertical dotted lines. The area marked in gray
indicates the presence of the operator in charge of col-
lecting assembled parts, whereas the area marked in
yellow indicates that the operator is the one in charge
of verification.

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 367

Fig. 10. Evolution of the drive values over time. (b) Goals achieved over time. (c) Policies used over time.

4.3.2. Initial operation
When the experiment begins, at which point no hu-

mans are present and the light level is high, Fig. 10a
shows that the only drive with a value greater than zero
is the one corresponding to the assembly task to be
performed by the robot. Thus, and as discussed in Sec-
tion 3.3, its activation propagates down the drive-goal
graph, activating the goals and sub-goals associated to
the drive that are not inhibited by context.

Looking at Fig. 10c, it can be seen how the robot
executes the policies corresponding to the assembly
task. It first grasps a green object and places it on the
mounting area located in the center of the table, then
grabs the second object and places it on top of the
green one and, finally, moves the assembled piece to the
storage area. This means that goalG7 has been reached,
as shown in Fig. 10b, which leads to the minimization
of the task drive, as shown in Fig. 10a.

Note that the execution of the ‘grasp_object’ and
‘put_object_in’ policies do not always have the same
duration in time, while ‘push_object’ does. This is be-
cause the pieces to assemble can be placed in different
positions on the table, making the time needed to pick
them up and place them dependent on the distance from
the robot arm to the piece.

Once the piece has been assembled, if we look again
at what happens in Fig. 10a, none of the other drives
have changed their value, but after some instants of
time, the activation of the task drive increases again as
the effect of the previous assembly on the drive fades.
This is repeated until, at time 50, the light level in the
room has decreased down to a point where the drive
with the highest activation, that is, the one that takes
control, is the energy drive. The activation of this drive
will propagate through the drive-goal graph causing its
associated goals to be activated.

368 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

Figure 10c shows how the policy executed by the
robot is ‘push_object’, which, as shown in Fig. 10b,
leads to reaching goal G4. This means that the lamp is
turned on, leading to an increase in the ambient light
level, which is directly reflected in the sensor associated
to the energy drive, thus making its value return to zero
(see Fig. 10a).

Looking closely at Fig. 10a, it is possible to see how,
depending on the value of the rest of the drives, the
robot turns on the light before or after reaching the
drive limit. Thus, in instants of time 150, 230 and 380,
the drive is minimized at the very moment in which
its value begins to increase, because it is the moment
in which a new part has just been assembled and the
task drive activation value is low. On the contrary, at
other times it is necessary to reach a value for this drive
that is high enough for it to surpass all other drives and
take control. Thus, for example, in instants of time 110
and 340, despite the human operator being present, the
robot abandons what it is doing in order to maintain an
adequate level of light.

4.3.3. Domain changes
Let us analyze what happens when the human sat-

isfaction drive comes into play, that is, when human
operators are detected by the robot. This is, in fact, an
example of domain change, as different operators imply
different goals and policies.

The operator in charge of the verification of assem-
bled parts is detected for the first time around time step
85. The appearance of a human means that, at that point,
the drive with the highest activation value is the human
drive, which takes control of the robot. Its activation
value is propagated along the drive-goal graph making
any of the goals associated with it more active than the
rest. However, considering only the motivational drive-
goal graph, there would be two contradictory active
goals: one having to do with verification, and another
one with assembled piece collection. In this case, the
perception of the robot (through its face recognition
component) allows it to establish that the human is the
one in charge of verification. Consequently, the context
component of the architecture will inhibit those goals
that are not related to the verification operator leaving
onlyG6 active. At that point, the robot stops performing
the assembly task to focus on satisfying the verification
operator.

In this instance, as the robot was already execut-
ing the last policy corresponding to the assembly task
(‘push_object’), the assembled piece goal is reached,
and its associated drive is minimized just when the hu-

Fig. 11. At the end of the verification task the operator (inset image
shows the view from the robot front-facing camera) makes a gesture
of approval to the robot.

man arrives. From that point on, the robot will begin
to show the operator the pieces that were assembled
and stored in the storage area one by one through the
combination of the ‘grasp_object’ and ‘show_object’
policies. In turn, as each piece is verified, the robot
achieves the piece verification goal (Fig. 10b). How-
ever, only when all the pieces have been verified, does
the human operator perform a gesture of approval to the
robot, which reduces the human drive. At that point, the
operator also leaves the room, which is marked by the
second vertical dotted line. Figure 11 shows the robot
finishing the verification task and the operator (upper
left corner of the figure) making the approval gesture
mentioned above.

Figure 10b and c show that the number of pieces
that have been verified coincides with the number of
pieces that have been assembled up to that point, since
both goals, G7 and G6, have been achieved 5 times.
Furthermore, notice that when the operator was in the
room, the light level went down more than was desirable
and the robot had to interrupt the verification task to
reach a goal that would satisfy the energy drive.

After the first operator leaves, the robot continues its
normal operation assembling parts and turning on the
lamp when necessary. This happens until the operator
in charge of collecting the assembled pieces approaches
and is detected at time 200. This makes the human drive
increase in value (indicated in Fig. 10 by another verti-
cal dotted line, now with gray shading). G6 is inhibited
by the context part of the architecture and the only goal
that is active at this point is G5, making the robot move
the pieces from the storage area to the collection basket.

Figure 12 displays how the robot performs the task
of filling the basket while the new operator (upper left
corner) waits for it to be full to give the robot a gesture
of approval leading to a reduction in the value of the
drive. This happens at time = 225, after the robot has

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 369

Fig. 12. The robot executes the ‘place_object_in’ policy to achieve
the ‘assembled_piece_in_basket’ goal.

placed 5 pieces in the collection basket (see Fig. 10b
and c). At this point, the operator leaves (shown in
Fig. 10a).

In order to consider a more explicit domain change,
the button that allows the light to be turned on by the
robot can be removed. This implies that the robot can-
not achieve goal G4. Thus, the robot will have to find
another way of getting enough light, which in this case
is by asking for help from a human. In the experiment,
the button was removed at time 250, which is marked in
Fig. 10 using a black vertical line. From that point on,
when the light level is too low for operation, the robot
activates the only uninhibited goal it has associated to
this drive:G3 (see Fig. 10b). This leads to the execution
of the ‘ask_nicely’ policy, which consists in the robot
asking the operator for help. The operator determines
that the problem is a lack of light and turns the light on.

Summarizing, different domains usually imply dif-
ferent goals associated to the same drive. The context
determination part of the cognitive architecture inhibits
all the goals that have not been learnt in the domain the
robot is currently facing. Consequently, the propaga-
tion of the drive activation level will only activate those
goals that are contextually relevant and, out of those,
the one with the highest activation will be pursued.

4.3.4. Learning new tricks
Finally, we are interested in analyzing what happens

when the robot encounters an unexpected situation in
which there is no active goal that allows reducing its
active drives. To this end, we have considered a situation
in which, after the second human operator leaves for
the second time (time = 370), there will be no bricks
available for assembly. If there are no available bricks
and the gripper is not holding a brick (which is the case
here), the contextual conditions for achieving goals G7,

G8, G9 and G11 will not be met, making these goals
unavailable to the robot when the task drive is activated.
Also, as at this point no human operators are present
and the level of light is high, none of the other known
goals are available or desirable.

Looking at Fig. 10a, we see that what happens is that,
even though the task drive is the one with the highest
activation, as it has no available goals to be pursued.
The goals with the highest activation are those related
to the novelty drive, which, by the way, is always ac-
tive to a certain level as it is a heterostatic cognitive
drive. Consequently, the goals and policies associated
to the novelty drive take control of the robot indirectly
inducing an exploration of the operational state space.
In this case, what happens, according to what is shown
in Fig. 10c (area shaded in pink), is that the robot begins
to randomly test policies trying to reach novel states.
Eventually, this search leads to the robot applying the
‘ask_nicely’ policy, which makes an operator come,
evaluate the situation and notice that the robot needs a
new set of unassembled components on the table. Once
the operator has introduced the new set of components,
some of the goals in the path towards G7 become con-
textually accessible with a much higher activation value
(derived from the task drive) than that of the novelty
goal. The situation is like the one at the beginning of
the experiment and the robot returns to its normal mode
of operation.

What is important here is that when G3 was achieved
using the ‘ask nicely’ policy, G8 became accessible.
This means thatG3 is, in that context, a sub-goal forG8,
and thus, it must be included in the drive-goal graph.
This is shown in Fig. 8, where a new goal/sub-goal
relationship is indicated by a dashed blue line. Now,
when the situation described at the beginning of this
stage arises again, there will be an accessible goal (G3)
related to the task drive with a relevant activation level.

5. Conclusions

The problem of creating robots for lifelong open-
ended operation has seldom been addressed from a de-
sign point of view. That is, from the perspective of be-
ing able to design how the robot should go about learn-
ing and behaving in the different – a priori unknown
– domains it will face throughout its lifetime, so that
these behaviors serve the purposes of the designer.

In this paper, we have proposed an approach to
achieve this goal based on a specific understanding and
formalization of motivation in robotics. The formal-

370 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

ization involves two types of designer defined robot
needs together with their associated designer defined
drive functions: cognitive needs and operational needs.
A methodology to design the need-drive system, as well
as an operational mechanism that allows for the selec-
tion of previously learnt goals and skills, were proposed
and tested on an experiment over a real robot. The de-
sign methodology is based on the balancing of the drive
functions of a combination of operational needs with
once interesting and temporarily interesting cognitive
needs. The operational mechanism involves a drive-
goal tree that is constructed as the robot interacts with
different domains and that permits selecting goals as a
function of drive activation and context.

The experiments that were carried out have shown
that, through an appropriate selection of operational
needs-drives, the purpose of the robot can be clearly
designed in. In addition, by crafting adequate cognitive
needs-drives, the designer can make the robot success-
fully explore new domains, learning their operation and
efficiently finding goals and learning skills to exploit
them so that its operational needs are satisfied, that is,
to achieve its purpose. In fact, we have also shown how
temporarily interesting cognitive drives can allow for
learning skills that may not be related to immediate
operational drive satisfaction, but that may be used as
steppingstones to fulfill operational needs later on. Fi-
nally, the results confirm that by manipulating the rela-
tive levels associated to the different operational drives
through the scaling of their drive functions, different
purposes can be instilled on the robot very easily.

One of the main insights with regards to the design of
the motivational system is that cognitive needs-drives
are defined in state space that is internal to the robot
and thus, independent of any domain the robot may
encounter. This opens the possibility of the designer
being able to design-in efficient strategies (policies,
utility models, etc.) associated to fulfilling cognitive
needs. This was, in fact, shown in the experiments,
where novelty and effectance cognitive needs-drives
were designed in together with their associated utility
models and search strategies. This allowed for a much
more efficient and controlled operation of the system.

With respect to future work, we are currently design-
ing a simple strategy for the autonomous regulation of
multiple drives in order to optimize long-term opera-
tion. In addition, it would be interesting to work on the
extension of the proposal to the case in which some
(operational) drives are continuous in their satisfaction
levels, as the combination of drives with continuous
and discrete satisfaction levels is a much more realistic
scenario.

Acknowledgments

This work was partially funded by the EU’s H2020
research programme (grant No 640891 DREAM),
Ministerio de Ciencia, Innovación y Universidades of
Spain/FEDER (grant RTI2018-101114-B-I00), Xunta
de Galicia and FEDER (grant ED431C 2017/12), and by
the Spanish Ministry of Education, Culture and Sports
through the FPU grant of Alejandro Romero.

References

[1] Chen X, Zhao B, Wang Y, Xu S, Gao X. Control of a 7-DOF
Robotic Arm System with an SSVEP-Based BCI. Int J Neural
Syst. 2018; 28(8): 1850018.

[2] Wang X, Zhang G, Neri F, Zhao J, Gheorghe M, Ipate F, et
al. Design and implementation of membrane controllers for
trajectory tracking of nonholonomic wheeled mobile robots.
Integr Comput Aided Eng. 2016; 23: 15-30.

[3] Paredis CJJ, Benjamin Brown H, Khosla PK. A rapidly de-
ployable manipulator system. Rob Auton Syst. 1997; 21(3):
289-304.

[4] Almagro-Cadiz M, Fresno V, De la Paz Lopez F. Speech
gestural interpretation by applying word representations in
robotics. Integr Comput Aided Eng. 2019; 26(1): 97-109.

[5] Pellegrinelli S, Pedrocchi N. Estimation of robot execution
time for close proximity human-robot collaboration. Integr
Comput Aided Eng. 2018; 25: 81-96.

[6] Caruana R, Niculescu-Mizil A. An empirical comparison of
supervised learning algorithms. In: Proceedings of the 23rd
international conference on Machine learning. 2006, pp. 161-8.

[7] Sutton RS, Barto AG. Introduction to Reinforcement Learn-
ing. Learning [Internet]. 1998; 4(1996): 1-5. Available from:
lhttp//dl.acm.org/citation.cfm?id=551283.

[8] Florea AG, Buiu C. A distributed approach to the control of
multi-robot systems using XP colonies. Integr Comput Aided
Eng. 2018; 25(1): 15-29.

[9] Ramos F, Vázquez AS, Fernández R, Olivares A. Ontology
Based Design, Control and Programming of Modular Robots.
Integr Comput Aided Eng. 2018; 25(2): 173-92.

[10] Doncieux S, Filliat D, Diaz-Rodriguez N, Hospedales T, Duro
R, Coninx A, et al. Open-ended learning: A conceptual frame-
work based on representational redescription. Front Neuro-
robot. 2018; 12.

[11] Thrun S, Mitchell TM. Lifelong robot learning. Rob Auton
Syst. 1995; 15(1-2): 25-46.

[12] Weng J, McClelland J, Pentland A, Sporns O, Stockman I,
Sur M, et al. Autonomous mental development in robots and
animals. Science (80-). 2001; 291: 599-600.

[13] Asada M, Hosoda K, Kuniyoshi Y, Ishiguro H, Inui T,
Yoshikawa Y, et al. Cognitive Developmental Robotics: A
Survey. IEEE Trans Auton Ment Dev [Internet]. 2009; 1(1):
12-34. Available from: http//ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4895715.

[14] Asada M, MacDorman K, Ishiguro H. Cognitive develop-
mental robotics as a new paradigm for the design of hu-
manoid robots. Robot [Internet]. 2001 [cited 2012 Feb 3]; 37:
185-93. Available from: http//www.sciencedirect.com/science/
article/pii/S0921889001001579.

A. Romero et al. / Motivation as a tool for designing lifelong learning robots 371

[15] Piaget J, Cook M. The origins of intelligence in children. New
York: New York: International Universities Press, 1952.

[16] Thelen E, Fisher DM. The organization of spontaneous leg
movements in newborn infants. J Mot Behav. 1983; 15(4):
353-72.

[17] Hull CL. Principles of Behavior. New York: Appleton-Century-
Crofts, 1943.

[18] Maslow AH. A theory of human motivation. Psychol Rev.
1943; 50(13): 370-96.

[19] Locke EA, Latham GP. Goal setting theory. Motiv Theory
Res. 1994; 13-29.

[20] White RW. Motivation reconsidered: the concept of compe-
tence. Psychol Rev. 1959; 66(5): 297.

[21] Baldassarre G, Mirolli M. Intrinsically motivated learning in
natural and artificial systems. In: Intrinsically Motivated Learn-
ing Systems: an Overview [Internet]. Springer Berlin Heidel-
berg; 2013, pp. 1-14. Available from: http//www.scopus.com
/inward/record.url?eid=2-s2.0-84929047179&partnerID=40
&md5=66fe11c06619bf5271e6e a3c05e5a2fa.

[22] Oudeyer P, Baranes A, Kaplan F. Intrinsically Motivated
Learning of Real-World Sensorimotor Skills with Devel-
opmental Constraints. Intrinsically Motiv Learn Nat Artif
Syst [Internet]. 2013; 303-365. Available from: http//link.
springer.com/chapter/10.1007/978-3-642-32375-1_13.

[23] Singh SP, Lewis RL, Barto AG, Sorg J. Intrinsically Motivated
Reinforcement Learning: An Evolutionary Perspective. IEEE
Trans Auton Ment Dev [Internet]. 2010; 2(2): 70-82. Available
from: 10.1109/TAMD.2010.2051031.

[24] Oudeyer P, Hafner VV, Whyte A. The Playground Experiment:
Task-Independent Development of a Curious Robot. In: Proc
AAAI Spring Symposium on Developmental Robotics. 2005,
pp. 42-7.

[25] Mirolli M, Santucci VG, Baldassarre G. Phasic dopamine as
a prediction error of intrinsic and extrinsic reinforcements
driving both action acquisition and reward maximization: A
simulated robotic study. Neural Networks. 2013; 39(March
2016): 40-51.

[26] Wigfield A, Eccles JS. Expectancy-value theory of achivement
motivation. Contemp Educ Psychol [Internet]. 2000; 25(1):
68-81. Available from: http//www.ncbi.nlm.nih.gov/pubmed
/10620382%5Cnhttp://www.sciencedirect.com/science/article
/pii/S0361476X99910159.

[27] Prieto A, Romero A, Bellas F, Salgado R, Duro RJ. Introduc-
ing Separable Utility Regions in a Motivational Engine for
Cognitive Developmental Robotics. Integr Comput Aided Eng.
2019; 26(1): 3-20.

[28] Romero A, Bellas F, Becerra JA, Duro RJ. Bootstrapping Au-
tonomous Skill Learning in the MDB Cognitive Architecture.
In: Ferrandez Vicente JM, Alvarez Sanchez JR, De la Paz
Lopez F, Toledo Moreo J, Adeli H, editors. Ferrandez Vicente
JM, Alvarez-Sanchez JR, de la Paz Lopez F, Toledo Moreo J,
Adeli H, Eds, Understanding the Brain Function and Emotions,
Proceedings of the 8th International Work-Conference on the
Interplay Between Natural and Artificial. Springer, 2019, pp.
120-9.

[29] Barto AG. Intrinsic motivation and reinforcement learning.
In: Intrinsically Motivated Learning in Natural and Artificial
Systems, Springer Berlin Heidelberg, 2013, pp. 17-47.

[30] Huang X, Weng J. Value system development for a robot. IEEE
Int Conf Neural Networks – Conf Proc. 2004; 4: 2883-8.

[31] Merrick KE. A comparative study of value systems for self-
motivated exploration and learning by robots. IEEE Trans
Auton Ment Dev. 2010; 2(2): 1-15.

[32] Starzyk JA. Motivated Learning for Computational Intelli-
gence. In: Computational Modeling and Simulation of In-
tellect: Current State and Future Perspectives [Internet]. IGI
Global; 2011, pp. 265-92. Available from: http//www.ohio.edu/
people/starzykj/network/research/Papers/Motivated Learning
for Computational Intelligence.pdf.

[33] Hawes N. A survey of motivation frameworks for intelligent
systems. Artif Intell. 2011; 175(5-6): 1020-36.

[34] Rolf M, Asada M. “What are goals? And if so, how many”,
In: Proc Joint IEEE International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob). 2015,
pp. 332-9.

[35] Duro RJ, Becerra JA, Monroy J, Bellas F. Perceptual general-
ization and context in a network memory inspired long term
memory for artificial cognition. Int J Neural Syst. 2019; 29(6):
1850053.

[36] Taylor ME, Stone P. Transfer learning for reinforcement learn-
ing domains: A Survey. J Mach Learn Res [Internet]. 2009;
10: 1633-85. Available from: http//portal.acm.org/citation.
cfm?id=1755839.

[37] Ryan RMR, Deci EL. Intrinsic and extrinsic motivations:
Classic definitions and new directions. Contemp Educ
Psychol [Internet]. 2000; 25(1): 54-67. Available from:
http//www.ncbi.nlm.nih.gov/pubmed/10620381:

[38] Nocera D Di, Finzi A, Rossi S, Staffa M. The role of intrinsic
motivations in attention allocation and shifting. Front Psychol.
2014; 5: 273.

[39] Ryan R, Deci E. Intrinsic and Extrinsic Motivations:
Classic Definitions and New Directions. Contemp Educ
Psychol [Internet]. 2000; 25(1): 54-67. Available from:
http//www.ncbi.nlm.nih.gov/pubmed/10620381.

[40] Harlow HF. Learning and satiation of response in intrinsically
motivated complex puzzle performance by monkeys. J Comp
Physiol Psychol. 1950; 43(4): 289.

[41] Baldassarre G, Stafford T, Mirolli M, Redgrave P, Ryan R,
Barto A. Intrinsic motivations and open-ended development
in animals, humans, and robots: An overview. Front Psychol.
2014; 5(AUG): 985.

[42] Oudeyer PY, Kaplan F. What is intrinsic motivation? A typol-
ogy of computational approaches. Front Neurorobot. 2009; 1:
6.

[43] Huang X, Weng J. Novelty and Reinforcement Learning in the
Value System of Developmental Robots. In: Proceedings Sec-
ond International Workshop on Epigenetic Robotics [Internet].
2002, pp. 47-55. Available from: http//cogprints.org/2511/.

[44] Burda Y, Edwards H, Pathak D, Storkey A, Darrel T, Efros A.
Large-scale study of curiosity-driven learning. ArXiv Prepr.
2018; 1808.04355.

[45] Forestier S, Mollard Y, Oudeyer P. Intrinsically motivated
goal exploration processes with automatic curriculum learning.
ArXiv Prepr. 2017; 1708.02190.

[46] Barto A, Mirolli M, Baldassarre G, Nathan F. Novelty or Sur-
prise? Front Psychol. 2013; 4(December): 907.

[47] Schembri M, Mirolli M, Baldassarre G. Evolving internal re-
inforcers for an intrinsically motivated reinforcement-learning
robot. In: 2007 IEEE 6th International Conference on Devel-
opment and Learning. IEEE; 2007, pp. 282-7.

[48] Gatsoulis Y, McGinnity TM. Intrinsically motivated learning
systems based on biologically-inspired novelty detection. Rob
Auton Syst. 2015; 68: 12-20.

[49] Berseth G, Geng D, Devin C, Finn C, Jayaraman D, Levine
S. SMiRL: Surprise Minimizing RL inDynamic Environment.
ArXiv: 191205510v1, 2019.

372 A. Romero et al. / Motivation as a tool for designing lifelong learning robots

[50] Menache I, Mannor S, Shimkin N. Q-Cut – Dynamic Discov-
ery of Sub-Goals in Reinforcement Learning. In: Proceedings
of the 13th European Conference on Machine Learning, 2002,
pp. 295-306.

[51] Redmon J, Farhadi A. YOLOv3: An Incremental Improvement
[Internet]. Pre-trained model available: https://pjreddie.com/
darknet/yolo. 2018; Available from: https//pjreddie.com/
media/files/papers/YOLOv3.pdf.

[52] Schroff F, Kalenichenko D, Philbin J. FaceNet: A uni-
fied embedding for face recognition and clustering. In:
2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Pre-trained model available at: https//
github.com/davidsandberg/facenet: Boston, MA; 2015, pp.
815-23.

[53] Borba F. Tutorial: Using Deep Learning and CNNs to make
a Hand Gesture recognition model [Internet]. Towards data
Science. 2019, Available from: https://towardsdatascience.
com/tutorial-using-deep-learning-and-cnns-to-make-a-hand-
gesture-recognition-model-371770b63a51. Pre-trained model
available: https//github.com/filipefborba/HandRecognition.

[54] Salgado R, Prieto A, Bellas F, Calvo-Varela L, Duro RJ. Mo-
tivational engine with autonomous sub-goal identification for
the Multilevel Darwinist Brain. Biol Inspired Cogn Archit.
2016; 17: 1-11.

[55] Kingma D, Ba J. ADAM: A method for stochastic optimiza-
tion. ArXiv14126980; – Code available https//keras.io/ opti-
mizers/. 2014.

[56] Price A, Balakirsky S, Christensen H. Robust grasp preimages
under unknown mass and friction distributions. Integr Comput
Aided Eng. 2018; 25(2): 111-35.

