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Abstract: Computing implied volatility from observed option prices is a frequent and challenging task
in finance, even more in the presence of dividends. In this work, we employ a data-driven machine
learning approach to determine the Black–Scholes implied volatility, including European-style and
American-style options. The inverse function of the pricing model is approximated by an artificial
neural network, which decouples the offline (training) and online (prediction) phases and eliminates
the need for an iterative process to solve a minimization problem. Meanwhile, two challenging issues
are tackled to improve accuracy and robustness, i.e., steep gradients of the volatility with respect to
the option price and irregular early-exercise domains for American options. It is shown that deep
neural networks can be used as an efficient numerical technique to compute implied volatility from
European/American options. An extended version of this work can be found in [1].
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1. Problem Formulation

The Black–Scholes model for pricing European options reads,
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− rVeu = 0, (1)

where r and q are the risk-less interest rate and continuous dividend yield, respectively.
For American options, the original Black–Scholes equation becomes a variational inequality,
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where the free boundary condition is Vam(S, t) ≥ H(K, St), and the terminal condition is Vam(S, T) =
H(K, ST). We can employ a numerical method, here the COS method [2], to solve the American pricing
model. In this work, we will focus on put options. The European/American Black–Scholes solution is
denoted by Veu/am = BSeu/am(σ, S0, K, τ, r, q, α).

Given an observed market option price Vmkt (European or American), the Black–Scholes implied
volatility σ∗ is defined by

BS(σ∗; S0, K, τ, r, q, α) = Vmkt. (3)
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There does not exist a closed-form expression of the inverse function for neither American-style or
European-style options. A popular way is to formulate the above problem into a minimization problem,

min
σ∗∈R+

BS(σ∗; S0, K, τ, r, q, α)−Vmkt (4)

There are several root-finding numerical algorithms to solve (4), for example, Newton–Raphson,

σ∗k+1 = σ∗k −
V(σ∗k )−Vmkt

BS′(σ∗k )
= σ∗k −

V(σ∗k )−Vmkt

Vega(σ∗k )
, k = 0, . . . . (5)

However, some issues are likely to arise when using derivative-based algorithms, see Figure 1.
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Figure 1. The Vega for American options: One tail is near zero, and the other tail is flat (zero value).

2. Methodology

In order to avoid an iterative algorithm, we provide a data-driven approach for directly
approximating the inverse function of (3) via neural networks. Mathematically, an artificial neural
network (ANN) can be represented as a composite function,

F(x|Θ) = f (L)(. . . f (2)( f (1)(x; θ1); θ2); . . . θL), (6)

where x stands for the input variables, Θ for the hidden parameters (i.e., weights and biases), L for the
number of hidden layers.

The implied volatility defined by Equation (3) can be written as an inverse function of the
pricing model,

σ∗ = BS−1(Vmkt; S, K, τ, r, q, α), (7)

where BS−1(·) denotes the inverse Black–Scholes function (European-style or American-style).
Please note that the definition domain of (7) is the continuation region Ωh for American-style options.
We use a deep neural network to approximate the inverse Black–Scholes function,

σ∗ = BS−1(Vmkt; S, K, τ, r, q, α) ≈ NN(Vmkt; S, K, τ, r, q, α). (8)

Thus we do not need any iterative algorithm to solve (3).

2.1. ANN for European Implied Volatility

The inverse Black–Scholes function probably gives rise to steep gradients of the volatility with
respect to the option price, especially for deep OTM/ITM options. It is known that the ANN has
difficulties accurately representing such gradients. Here we employ the gradient-squashing technique,
as in [3], to address this issue,

V̂P
eu = log

(
VP

eu(S, t)−max(Ke−rτ − Ste−qτ , 0)
)

. (9)
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2.2. ANN for American Implied Volatility

For training the ANN to compute implied volatility from American options, there are two steps,
due to the early-exercise feature. First, we need to compute again the gradient-squashed time value of
an American option,

V̂P
am = log

(
VP

am(St, t)−max(K− St, Ke−rτ − Ste−qτ , 0)
)

. (10)

Second, the effective definition domain Ωh of the inverse function (8) is numerically found based
on the generated samples.

3. Numerical Results

In addition to being robust, the neural network (IV-ANN) solver is much faster than an iterative
numerical solver to compute implied volatility from European/American options including dividends,
see Tables 1–4.

Table 1. Artificial neural network (ANN) hyper-parameters.

Parameters Values

Hidden layers 4

Neurons(each layer) 400
Activation ReLU

Initialization Glorot
Optimizer Adam
Batch size 1024

Table 2. Model parameter ranges.

Parameters Range

Inputs

Stock price (K/S0) [0.3, 1.8]
Time to maturity (τ) [0.08, 2.5]

Risk-free rate (r) [0.0, 0.25]
Dividend yield (q) [0.0, 0.25]

Scaled time value (V̂) -

Output Volatility (σ) (0.01, 1.05)

Table 3. Performance of IV-ANN.

Phase European Options American Options

MSE MAE MAPE R2 MSE MAE MAPE R2

Training 1.72 × 10−7 3.17 × 10−4 6.99 × 10−4 0.9999976 7.12 × 10−7 5.66 × 10−4 1.42 × 10−4 0.999990
Testing 1.94 × 10−7 3.35 × 10−4 7.39 × 10−4 0.9999972 1.93 × 10−6 6.52 × 10−4 2.35 × 10−3 0.999974

Table 4. Computational cost based on 20,000 option prices.

Method GPU (s) CPU (s) Robustness

Newton-Raphson 19.68 23.06 No
Brent 52.08 60.67 Yes

Bi-section 337.94 390.91 Yes

IV-ANN 0.20 1.90 Yes
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