
Implementation in embedded
systems of state observers based

on multibody dynamics

Antonio J. Rodríguez

Advisors: Miguel Ángel Naya Villaverde
Roland Pastorino

Doctoral thesis

Programa Oficial de Doutoramento
en Enxeñaría Naval e Industrial

Ferrol, 2020

A mi abuelo Mariano, que sé que estaría orgulloso

Acknowledgements

Finishing a doctoral thesis is supposed to be a personal achievement. However, such
a work can only be accomplished thanks to the contribution of several people. It is a
pleasure to acknowledge them all their merits in this thesis.

First, I would like to mention my advisors, Miguel Ángel Naya and Roland
Pastorino, who have guided me through all this years, and from who I have learnt
most of the things that I know. I must also mention all my colleagues at the
Laboratorio de Ingeniería Mecánica of the University of A Coruña, since all of them
contribute to the incredible environment at work: Javier, Urbano, Daniel, Florian,
Fran González, Fran Mouzo, Alberto, Emilio, Lolo, Borja, Sarath, Mario, Álvaro,
Alex, Manu, David and Amelia. I would like to highlight the help provided by
Alberto and Fran Mouzo to solve most of the technical problems that I found. I
must give special thanks to Emilio, whose contribution to the results obtained in
this thesis was determinant. The help of Ángel Carro-Lagoa with the FPGA, from
the Department of Computer Engineering, is also greatly acknowledge.

Thanks also to the MBST team from Siemens Digital Industries Software in
Leuven, Belgium, for their support during my stays working with them, especially
to Bart Forrier. Also thanks to Professor Wim Desmet, from the KU Leuven, for
facilitate my first stay in Belgium. Thanks also to Carolina who, with Roland, made
my stays in Belgium more comfortable.

Although the technical support is important, life goes on outside the work. Despite
I am a bit reserved and I usually avoid talking of the work with my family and friends,
they have always supported me. I would like to thank my mother (María), my sister
(María), my godparents (Mariano and Madrona), my grand-mother (Marusia) and
my grand-aunt (Chita), always caring about me. And at last, but not less important,
thanks to Mariola, who is always beside me, encouraging me to discover new things
and making life funnier.

Agradecimientos

Se supone que terminar una tesis doctoral es un gran logro personal. Sin embargo,
algo así sólo se puede terminar con ayuda de mucha gente. Es un placer poder
reconocerles en esta sección su contribución a esta tesis.

En primer lugar, quisiera nombrar a mis directores de tesis, Miguel Ángel Naya y
Roland Pastorino, que me han guiado todos estos años y de quienes he aprendido
la mayoría de las cosas que sé. También debo mencionar a mis compañeros del
Laboratorio de Ingeniería Mecánica de la Universidade da Coruã, ya que ellos hacen
que el ambiente en el laboratorio sea increíble: Javier, Urbano, Daniel, Florian,
Fran González, Fran Mouzo, Alberto, Emilio, Lolo, Borja, Sarath, Mario, Álvaro,
Alex, Manu, David y Amelia. Me gustaría remarcar la ayuda que me han dado
Alberto y Fran Mouzo, a los que he recurrido con cualquier problema técnico que me
encontraba. También tengo mucho que agradecer a Emilio, cuya contribución para
obtener los resultados de esta tesis ha sido vital. La ayuda de Ángel Carro-Lagoa
con la FPGA también ha sido muy importante.

Gracias también al equipo MBST de Siemens Digital Industries Software en
Lovaina, Bélgica, por su apoyo durante mis estancias trabajando con ellos, especial-
mente a Bart Forrier, con quien más he colaborado. Gracias también al Profesor
Wim Desmet, de la KU Leuven, por facilitar mi primera estancia en Bélgica. Y
gracias a Carolina que, junto con Roland, hicieron mis estancias en Bélgica mucho
más agradables.

Pero aunque la ayuda en los temas técnicos es importante, la vida sigue al salir del
trabajo. Aunque evito y esquivo preguntas sobre los temas del trabajo con mi familia
y mis amigos, siempre me han apoyado y han mostrado interés en mi tesis. Gracias
a mi madre (María), mi hermana (María), mis padrinos (Mariano y Madrona), mi
abuela (Marusia) y mi tía abuela (Chita), que siempre se preocupan por mí. Y por
último, aunque no por ello menos importante, gracias a Mariola, que siempre está a
mi lado empujándome a descubrir cosas nuevas y haciendo más divertida mi vida.

Abstract

Simulation has become an important tool in the industry that minimizes either the
cost and time of new products development and testing. In the automotive industry,
the use of simulation is being extended to virtual sensing. Through an accurate
model of the vehicle combined with a state estimator, variables that are difficult or
costly to measure can be estimated.

The virtual sensing approach is limited by the low computational power of in-
vehicle hardware due to the strictest timing, reliability and safety requirements
imposed by automotive standards. With the new generation hardware, the computa-
tional power of embedded platforms has increased. They are based on heterogeneous
processors, where the main processor is combined with a co-processor, such as Field
Programmable Gate Arrays (FPGAs).

This thesis explores the implementation of a state estimator based on a multibody
model of a vehicle in new generation embedded hardware. Different implementation
strategies are tested in order to explore the advantages that an FPGA can provide.
A new state-parameter-input observer is developed, providing accurate estimations.
The proposed observer is combined with an efficient multibody model of a vehicle,
achieving real-time execution.

Resumen

La simulación se ha convertido en una importante herramienta para la industria que
permite minimizar tanto costes como tiempo de desarrollo y test de nuevos productos.
En automoción, el uso de la simulación se extiende al desarrollo de sensores virtuales.
Mediante un modelo preciso de un vehículo combinado con un observador de estados,
variables que son caras o imposibles de medir pueden ser estimadas.

La principal limitación para utilizar sensores virtuales en los vehículos es la
baja potencia computacional de los procesadores instalados a bordo, debido a los
estrictos requisitos impuestos por los standards de automoción. Con el hardware
de nueva generación, el poder de cálculo de las plataformas empotradas se ha
visto incrementado. Estos nuevos procesadores son del tipo heterogéneo, donde
el procesador principal se complementa con un co-procesador, como una Field
Programmable Gate Array (FPGA).

Esta tesis explora la implementación de un observador de estados basado en un
modelo multicuerpo de un vehículo en hardware empotrado de nueva generación. Se
han probado diferentes implementaciones para evaluar las ventajas de disponer de
una FPGA en el procesador. Se ha desarrollado un nuevo observador de estados,
parámetros y entradas que permite obtener estimaciones de gran precisión. Com-
binando dicho observador con un eficiente modelo multicuerpo de un vehículo, se
consigue rendimiento en tiempo real.

Resumo

A simulación estase a converter nunha importante ferramenta na industria que permite
minimizar custes e tempo tanto de desenvolvemento coma de test de novos productos.
En automoción, o uso da simulación esténdese á implementación de sensores virtuais.
Mediante un modelo preciso dun vehículo combinado cun observador de estados,
pódense estimar variables que son caras ou imposíbeis de medir.

A principal limitación para utilizar sensores virtuais nos vehículos é a baixa
potencia computacional dos procesadores instalados a bordo, debido aos estritos
requisitos impostos polos estándares de automoción. Co hardware de nova xeración,
o poder de cálculo das plataformas empotradas vese incrementado. Estos novos
procesadores son de tipo heteroxéneo, onde o procesador principal compleméntase
cun co-procesador, coma unha Field Programmable Gate Array (FPGA).

Esta tese explora a implementación dun observador de estados basado nun modelo
multicorpo dun vehículo en hardware empotrado de nova xeración. Diferentes
implementacións foron probadas para avaliar as vantaxes de dispoñer dunha FPGA
no procesador. Un novo observador de estados, parámetros e entradas deseñado
nesta tese permite obter estimacións de gran precisión. Combinando dito observador
cun eficiente modelo multicorpo dun vehículo, conséguese rendemento de tempo real.

Contents

List of Figures iii

List of Tables vii

Acronyms x

List of symbols xiii

1. Introduction 1
1.1. Motivation . 2
1.2. Objectives . 3
1.3. Thesis structure . 4

2. State of the art 5
2.1. State observers on automotive industry 5

2.1.1. State observers based on analytical models 6
2.1.2. State observers based on multibody models 9

2.2. On-board Implementation . 10
2.2.1. In-vehicle ECUs . 10

3. State observers based on Multibody Models 13
3.1. Kalman filter review . 13
3.2. Multibody modeling . 18

3.2.1. Coordinates and multibody formulation 18
3.2.2. MBScoder . 24

3.3. Error-State Extended Kalman Filter 26
3.3.1. Error-State EKF with force estimation 26

3.4. Measurement noise and covariance matrices of the process 30
3.4.1. Measurement noise . 30
3.4.2. Covariance matrix . 30

4. New Generation Embedded Hardware 31
4.1. Modern Hardware Analysis . 31

4.1.1. Heterogeneous processors for scientific computing 32
4.1.2. FPGAs considerations . 33

4.2. Hardware/Software Partitioning . 34
4.3. Hardware Implementations . 36

i

Contents

4.3.1. Function update_time_variant_var() 37
4.3.2. Function update_bodies_var() 41
4.3.3. Function solve_system() . 46

4.4. Summary . 48

5. Use Case: Automotive Application 49
5.1. Methodology . 49
5.2. Complete Vehicle Model . 51

5.2.1. Multibody Modeling . 51
5.2.2. Tire Model . 53
5.2.3. Sensor Models . 57
5.2.4. Results . 60

5.3. Simplified Vehicle Model . 67
5.3.1. Suspension system: macro-joint 68
5.3.2. Results . 69

5.4. FMI 2.0 Standard . 103
5.5. Summary . 103

6. Conclusions and Future Work 105
6.1. Conclusions . 105
6.2. Future Work . 107

Bibliography 109

Appendices 119

Appendix A. List of publications 121

Appendix B. Resumen extendido 123

ii

List of Figures

3.1. Example of open-chain and closed-chain mechanisms 19
3.2. Example of the opening-chain procedure for closed-loop mechanisms . 19
3.3. Generic mechanism which illustrates the set of coordinates that are

employed in the semi-recursive formulation 20
3.4. Example of the closure-loop conditions definition 23
3.5. Scheme of the errorEKF applied to MB simulations 27

4.1. Profiling summary of the state estimation based on MB models . . . 35
4.2. Illustrative example of loop unrolling and loop pipelining 37
4.3. Illustrative example of the dependencies between bodies for computing

the absolute motion of each joint and body when relative coordinates
are employed . 42

4.4. Illustrative example for computing the magnitudes associated to a
particular body when relative coordinates are employed 43

4.5. update_bodies_var() pipeline diagram 45

5.1. Picture of the modeled vehicle . 50
5.2. Scheme of the vehicle MB model . 51
5.3. Scheme of the suspension MB model 52
5.4. Scheme of the steering system MB model 52
5.5. Tire characteristic . 55
5.6. Mapping to the tires of the forces increment applied in the chassis by

the errorEKF. 56
5.7. Test maneuver for the state observer based on the complete vehicle

model . 61
5.8. Speed in the maneuver for testing the state observer based on the

complete vehicle model. 62
5.9. Acceleration in the maneuver for testing the state observer based on

the complete vehicle model. 62
5.10. Angular velocities in the maneuver for testing the state observer based

on the complete vehicle model. 62
5.11. Suspension deflections in the maneuver for testing the state observer

based on the complete vehicle model. 63
5.12. Wheel angles in the maneuver for testing the state observer based on

the complete vehicle model. 63
5.13. FL tire forces obtained during the maneuver for testing the state

observer based on the complete vehicle model 64

iii

List of Figures

5.14. FR tire forces obtained during the maneuver for testing the state
observer based on the complete vehicle model 64

5.15. RL tire forces obtained during the maneuver for testing the state
observer based on the complete vehicle model 65

5.16. RR tire forces obtained during the maneuver for testing the state
observer based on the complete vehicle model 65

5.17. Test maneuvers for the errorEKF combined with the simplified vehicle
model . 70

5.18. Speed in the maneuvers for testing the errorEKF combined with the
simplified vehicle model . 71

5.19. Accelerations in the maneuvers for testing the errorEKF combined
with the simplified vehicle model . 71

5.20. Angular velocities in the maneuvers for testing the errorEKF combined
with the simplified vehicle model . 72

5.21. Suspension deflections in the maneuvers for testing the errorEKF
combined with the simplified vehicle model 73

5.22. Wheel angles in the maneuvers for testing the errorEKF combined
with the simplified vehicle model . 74

5.23. FL tire forces obtained in Maneuver 1 for the errorEKF based on the
simplified vehicle model . 75

5.24. FR tire forces obtained in Maneuver 1 for the errorEKF based on the
simplified vehicle model . 75

5.25. RL tire forces obtained in Maneuver 1 for the errorEKF based on the
simplified vehicle model . 76

5.26. RR tire forces obtained in Maneuver 1 for the errorEKF based on the
simplified vehicle model . 76

5.27. FL tire forces obtained in Maneuver 2 for the errorEKF based on the
simplified vehicle model . 77

5.28. FR tire forces obtained in Maneuver 2 for the errorEKF based on the
simplified vehicle model . 77

5.29. RL tire forces obtained in Maneuver 2 for the errorEKF based on the
simplified vehicle model . 78

5.30. RR tire forces obtained in Maneuver 2 for the errorEKF based on the
simplified vehicle model . 78

5.31. SPI observer diagram . 81
5.32. Test maneuvers for the SPI observer combined with the simplified

vehicle model . 82
5.33. Speed in the maneuvers for testing the SPI observer combined with

the simplified vehicle model . 82
5.34. Accelerations in the maneuvers for testing the SPI observer combined

with the simplified vehicle model . 83
5.35. Angular velocities in the maneuvers for testing the SPI observer

combined with the simplified vehicle model 83
5.36. Suspension deflections in the maneuvers for testing the SPI observer

combined with the simplified vehicle model 84

iv

5.37. Wheel angles in the maneuvers for testing the SPI observer combined
with the simplified vehicle model . 85

5.38. FL tire forces obtained in Maneuver 1 for the SPI observer based on
the simplified vehicle model . 86

5.39. FR tire forces obtained in Maneuver 1 for the SPI observer based on
the simplified vehicle model . 87

5.40. RL tire forces obtained in Maneuver 1 for the SPI observer based on
the simplified vehicle model . 87

5.41. RR tire forces obtained in Maneuver 1 for the SPI observer based on
the simplified vehicle model . 88

5.42. FL tire forces obtained in Maneuver 2 for the SPI observer based on
the simplified vehicle model . 88

5.43. FR tire forces obtained in Maneuver 2 for the SPI observer based on
the simplified vehicle model . 89

5.44. RL tire forces obtained in Maneuver 2 for the SPI observer based on
the simplified vehicle model . 89

5.45. RR tire forces obtained in Maneuver 2 for the SPI observer based on
the simplified vehicle model . 90

5.46. Estimated mass of the chassis in the maneuvers for testing the SPI
observer combined with the simplified vehicle model 91

5.47. Estimated tire-road friction coefficient in the maneuvers for testing
the SPI observer combined with the simplified vehicle model 92

5.48. Additional test maneuver for the SPI observer combined with the
simplified vehicle model . 92

5.49. Speed in the Maneuver 3 for testing the SPI observer based on the
complete vehicle model. 93

5.50. Acceleration in the Maneuver 3 for testing the SPI observer based on
the complete vehicle model. 93

5.51. Angular velocities in the Maneuver 3 for testing the SPI observer
based on the complete vehicle model. 94

5.52. Suspension deflections in the Maneuver 3 for testing the SPI observer
based on the complete vehicle model. 94

5.53. Wheel angles in the Maneuver 3 for testing the SPI observer based
on the complete vehicle model. 95

5.54. FL tire forces obtained in Maneuver 3 for the SPI observer based on
the simplified vehicle model . 96

5.55. FR tire forces obtained in Maneuver 3 for the SPI observer based on
the simplified vehicle model . 96

5.56. RL tire forces obtained in Maneuver 3 for the SPI observer based on
the simplified vehicle model . 97

5.57. RR tire forces obtained in Maneuver 3 for the SPI observer based on
the simplified vehicle model . 97

5.58. Estimated parameters in the Maneuver 3 for testing the SPI observer
combined with the simplified vehicle model 98

5.59. Profiling summary of the state estimation based on the simplified MB
vehicle model . 99

v

List of Figures

5.60. Comparison of tire force estimation with different time steps 102

vi

List of Tables

4.1. Features of the Zynq-7000 XC7Z020 processor 33
4.2. Summary report of the FPGA implementation for computing the mass

matrices of each body without optimization 38
4.3. Summary report of the optimized FPGA implementation for comput-

ing the mass matrices of each body 39
4.4. Summary report of an alternative optimized FPGA implementation

for computing the mass matrices of each body 40
4.5. Summary report of the FPGA implementation for computing the mass

matrix of the system . 40
4.6. Summary report of the FPGA implementation for assembling the

mass matrix of the system . 41
4.7. Summary report of the FPGA implementation for updating the motion

of each body without optimization 44
4.8. Summary report of the FPGA implementation for updating the motion

of a suspension system without optimization 45
4.9. Summary report of the optimized FPGA implementation for updating

the motion of a suspension system . 46
4.10. Summary report of the FPGA implementation for the Gauss-Jordan

algorithm without optimization . 47
4.11. Summary report of the optimized FPGA implementation for the

Gauss-Jordan algorithm . 47
4.12. Summary report of an alternative optimized FPGA implementation

for the Gauss-Jordan algorithm . 48

5.1. RMSE in the maneuvers for testing the errorEKF combined with the
complete vehicle model . 66

5.2. Results of the FPGA implementations for the state observer based on
the complete vehicle model . 67

5.3. RMSE in the maneuvers for testing the errorEKF combined with the
simplified vehicle model . 79

5.4. RMSE in the maneuvers for testing the SPI observer combined with
the simplified vehicle model . 90

5.5. RMSE after stabilization in the maneuvers for testing the SPI observer
combined with the simplified vehicle model 91

5.6. RMSE in the Maneuver 3 for testing the SPI observer combined with
the simplified vehicle model . 98

vii

List of Tables

5.7. Summary report of the FPGA implementation for computing the
global mass matrix in the simplified vehicle model 100

5.8. Summary report of the FPGA implementation for the post-processing
operations in the simplified vehicle model 100

5.9. Summary report of the FPGA implementation of the GJ algorithm in
the simplified vehicle model . 100

5.10. Results of the FPGA implementations for the simplified vehicle model 101
5.11. Results of the FPGA implementations for the simplified vehicle model 102
5.12. RMSE in Maneuver 2 for testing the SPI observer combined with the

simplified vehicle model with different time steps 103

viii

Acronyms

ABS Antilock Brake System. 5, 6

ADAS Advanced Driver Assistance System. 2, 6, 11, 31, 32, 48, 124

ASIC Application-Specific Integrated Circuit. 32

BRAM Block Random Access Memory. 33

CEKF continuous extended Kalman filter. 9, 10, 14

DAE differential-algebraic equation. 9

DEKF discrete extended Kalman filter. 10, 14, 15, 28

DOF degree-of-freedom. 6–8, 18, 25–29, 42, 45, 51, 52, 68, 106

DSP Digital Signal Processor. 33, 39, 46

ECU Electronic Control Unit. 5, 6, 10–12, 31

EKF extended Kalman filter. 2, 3, 8, 9, 14, 16, 17, 26, 28, 80, 107, 130

errorEKF error-state extended Kalman filter. iii, iv, vii, 10, 17, 18, 26, 27, 35, 60,
61, 66, 68–81, 83, 90, 91, 99, 101–104, 106, 124, 128, 129

FF Flip-Flop. 33, 46

FL Front-left wheel. iii–v, 64, 75, 77, 86, 88, 96

FPGA Field Programmable Gate Array. vii, viii, 3, 11, 12, 32–41, 44–50, 66, 67,
100–102, 105–107, 121, 124–131

FR Front-right wheel. iv, v, 64, 75, 77, 87, 89, 96

GJ Gauss-Jordan. vii, viii, 46–48, 67, 100–102, 127, 128

GPP General Purpose Processor. 6, 36, 48

GPU Graphic Processing Unit. 11, 32, 48

HDL Hardware Description Language. 34

ix

Acronyms

HIL Hardware-in-the-loop. 1, 9, 123

HITL Human-in-the-loop. 1, 9, 123

LIM Laboratorio de Ingeniería Mecánica. 2, 124

LUT Look-Up Table. 32, 33, 39

MB multibody. iii, v, 1–5, 8–14, 16–18, 24–32, 34–36, 38, 40–42, 46, 48–52, 56, 57,
60, 61, 66–69, 80, 99–101, 104–107, 121

MCU Micro Computer Unit. 11

MPSoC Multiprocessor System on Chip. 32

PC personal computer. 2, 3, 6, 10, 24

RL Rear-left wheel. iv, v, 65, 76, 78, 87, 89, 97, 102

RMSE Root-mean-square error. vii, viii, 66, 79, 90, 91, 98, 102, 103

RR Rear-right wheel. iv, v, 65, 66, 76, 78, 79, 88, 90, 91, 97, 98, 102, 103

SPI state-parameter-input. iv, v, vii, viii, 3, 80–99, 101–104, 106, 121, 128, 129

SPKF sigma-point Kalman filter. 9, 16

SSUKF spherical simplex unscented Kalman filter. 9

UKF unscented Kalman filter. xii, 8–10, 16, 17, 80, 81, 101, 104, 106, 107, 128–130

VHDL Very High Speed Integrated Circuit Hardware Description Language. 34

x

List of symbols
The symbols used all along the document are defined here. The symbols employed

in small parts of the document are defined locally.

∆t Time step. 23, 24, 27, 30, 103

M̄ Mass matrix projected over the body coordinates. 22

Q̄ Vector of generalized forces projected over the body coordinates. 22

ΣP
c Covariance matrix of plan noise for continuous-time filters. 13–15

ΣP Covariance matrix of plan noise for discrete-time filters. 14, 15, 27, 30

ΣS Covariance matrix of sensor noise. 13–15, 17, 28

Σ Innovation covariance matrix. 15, 28

α Matrix of penalty coefficients. 21, 24

Φ̈ Second time derivative of the constraints vector. 24

z̈i Vector of independent accelerations. 26, 27, 29, 57–60

z̈ Vector of relative accelerations. 20–24, 28

Φ̇ Time derivative of the constraints vector. 24, 29

Ṙ First derivative of the tranformation matrix from relative to body coordinates.
21, 22

Ż First derivative with respect to time of body coordinates. 20–22

żd Vector of dependent velocities. 29

żi Vector of independent velocities. 26, 27, 29, 57–60

ˆ̈zd Estimated vector of dependent accelerations. 29

ˆ̈z Estimated vector of accelerations. 29

ˆ̇zd Estimated vector of dependent velocities. 29

xi

List of symbols

M̂ Mass matrix considering the estimated coordinates. 29

Q̂ Vector of generalized forces considering the estimated coordinates. 29, 56

ẑd Estimated vector of dependent coordinates. 28

0 Null matrix. 22–24, 27, 29, 57–60

C Damping matrix. 24, 27

F Transition matrix of a discrete linear system. 14, 15

G Input matrix. 15

H Measurement sensitivity matrix. 14–16

I Identity matrix. 16, 22, 27, 28, 57–60

K Stiffness matrix. 24, 27

M Mass matrix. 21, 22, 24, 27

P Covariance matrix of state estimation uncertainty. 14–17, 27, 28

Q Vector of generalized forces. 21, 22, 24, 29, 56

RΦ Projection matrix from dependent to independent relative coordinates. 27, 68

R Tranformation matrix from relative to body coordinates. 21, 22

χ Matrix containing the sigma-points of the unscented Kalman filter. 16, 17

hx Jacobian of measurement equation with respect to states. 28

h Measurement equation. 17, 28, 57–60

o Vector of observations. 14–17, 28

u Vector of inputs. 13–15

v Vector of measurement noise. 13–15

w Vector of process noise. 13–15

y Vector of outputs. 13–15

zd Vector of dependent coordinates. 29

zi Vector of independent coordinates. 26, 27, 57–60

K Kalman gain. 14–17, 28

O Matrix containing the observations of each sigma-point of the unscented Kalman
filter. 17

xii

List of symbols

ỹ Vector of innovation. 15, 16, 28

Φq Jacobian of the constraints vector with respect to the natural coordinates defining
the constraints of closed loops. 23

Φz Jacobian of the constraints vector with respect to the dependent coordinates. 23,
28, 29

Φz Jacobian of the constraints vector with respect to the relative coordinates. 21,
22, 24

Φ Vector of constraints. 21, 23, 24, 29

α Angular acceleration of a body. 58, 59, 69

λ Vector of Lagrange multipliers. 21, 24

ω Angular velocity of a body. 20, 22, 54, 55, 58, 59, 69

ṡ Vector which includes the translations of the body coordinates. 20

ż Vector of relative velocities. 20–24, 27, 28

ˆ̇x Estimation of the time derivative of the state. 14

ˆ̇zi Estimated vector of independent velocities. 29

ˆ̇z Estimated vector of velocities. 29

x̂ Estimation of the state. 14–17, 27, 28

ẑi Estimated vector of independent coordinates. 28

ẑ Estimated vector of coordinates. 28

Z Body coordinates. 20–22

fx Jacobian of transition function with respect to states. 27

hz Jacobian of measurement equation with respect to independent coordinates.
57–60

hz̈ Jacobian of measurement equation with respect to independent accelerations.
57–60

hż Jacobian of measurement equation with respect to independent velocities. 57–60

q Vector of natural coordinates defining the constraints of closed loops. 22, 23

x State. 13–15, 26

z Vector of relative coordinates. 21, 23, 24, 26, 28

xiii

Chapter 1

Introduction

Simulation techniques are widely use in industrial applications for studying the
different phenomena that affect a real system in a virtual environment. Simulation
solutions are used during the life-cycle of the product to predict its performance,
design a manufacturing process or to detect possible operational failures. Using a
simulation framework allows to perform several tests over a product without building
physical prototypes. Due to the advantage in terms of final product cost that it
implies, simulation techniques are widely use in several fields of the industry. One of
the most common techniques for simulating mechanisms and performing dynamics
analysis is the multibody (MB) simulation. The use of the MB approach is extended
in fields such as aerospace, machinery, robotics, biomechanics or automotive.

In the particular case of the automotive industry, MB dynamics have been of
interest for several purposes. Through MB dynamics, different vehicle configurations
can be accurately simulated in several maneuvers, identifying the optimal set of
parameters which results in a great comfort and handling. From the simulation
environment, a large amount of data can be extracted and analyzed. Also, if real-time
execution is achieved, the behavior of a physical subsystem (such an active suspension)
can be tested in a virtual integration context, which is known as Hardware-in-the-loop
(HIL) or Human-in-the-loop (HITL), if a human user is included. The response of
an element to different inputs from the vehicle can be tested and evaluated without
installing it on a prototype, reducing the costs, development times and risks.

In addition, for driving assistance, different controllers are being implemented in
commercial vehicles. These controllers need information on the states of the vehicle
in order to take the correct actions. Some data can be obtained from sensors installed
on the vehicle. However, there are measurements that are not possible to acquire
because the required sensor is expensive or it is not available.

State estimation constitutes an attractive alternative for increasing the available
measurements. A model of the vehicle, or part of it, is combined with an estimator
and a reduced set of sensors to ensure that the simulation matches with the reality.
The estimator uses the sensor measurements for correcting the possible drift of the
simulation with respect to the real situation. Hence, the information that can be
obtained from the simulation environment can be reliable. This approach is also
known as virtual sensors, since the information of the real states of the vehicle is
gathered from a virtual environment.

1

1. Introduction

For virtual sensing, accurate models are required as starting point, for what MB
models can be employed. However, MB models are costly from a computational point
of view and have been replaced by analytical models for virtual sensing applications.
Thus, implementing a state observer based on a MB model on real time and in the
hardware that is on-board of vehicles is challenging. The target hardware is known as
embedded hardware, and is quite less powerful than conventional personal computers
(PCs). Nevertheless, new generation embedded hardware offers an increment on
computational power. The automotive industry is starting to use this hardware to
satisfy the computational power demanded by new applications, such as Advanced
Driver Assistance Systems (ADASs), and the complexity of the control systems that
come with the electrification of vehicles.

This thesis explores the opportunity that this new generation hardware offers to
implement accurate virtual sensors based on MB models in automotive applications.
First, after reviewing the state of the art on state estimation, an efficient filter is
selected regarding its implementation and computational cost. Later, the design
of the MB-based state observer is addressed and its implementation in the target
hardware is studied, seeking for real-time execution. Finally, the solutions proposed
are tested, and the results in terms of estimations and efficiency are analyzed.

1.1 Motivation
From some years ago, the automotive industry has been focused on improving the

handling and safety of the vehicles. For that purpose, multiple control algorithms
have been developed and implemented on-board. Also, during the test campaigns a
lot of maneuvers are done in order to analyze the response of the vehicle. From the
sensor data obtained, the parameters of the vehicle can be later modified in order to
satisfy the handling and comfort requirements.

However, these applications are limited by the available sensor measurements.
Installing sensors on the vehicle has a direct impact on the final cost of the vehicle.
In addition, there are system variables that are difficult or costly to measure: no
existing sensor, inaccessible location or inaccurate direct measurements. Combining
a vehicle model with a reduced set of sensor data, additional measurements can
be obtained. Thus, some real sensor can be replaced by virtual sensors, reducing
the costs of the final vehicle while providing more information useful for control
strategies or vehicle dynamics analysis.

The Laboratorio de Ingeniería Mecánica (LIM) of the University of A Coruña
has specialized in real-time MB simulations, being vehicle dynamics one of its
main applications. With this background, the LIM started a research field on the
development of MB-based state observers. In [1], Cuadrado et al. applied an extended
Kalman filter (EKF) to simple mechanisms. Then, the EKF is combined with a MB
model of a vehicle [2]. Although the results were promising, the simulation was far
from real time even on a conventional PC, thus limiting the use of this approach in
the automotive industry.

Following the research made in the LIM, Pastorino completed his PhD. thesis [3],
in which more state observers from the family of Kalman filters were considered
based on the MB model of a vehicle prototype. Nevertheless, real-time performance

2

1.2 Objectives

was not achieved with none of the state observers evaluated.
After that, Sanjurjo started his PhD. thesis [4], where a new state observer based

on a EKF for MB models was proposed. In his work, the filter presented shows a
improvement in performance, in a way that the computational cost of the MB-based
state observer was reduced, achieving real time in a PC. Also, the results in terms of
estimation are consistent and reliable in the simulation environment.

To continue with the work made, this thesis deals with the implementation of a
MB-based state observer in real time on an automotive platform. Thus, accurate
virtual sensors could be implemented in automotive applications, such as vehicle
control or vehicle test campaigns.

1.2 Objectives
The main objective of this thesis is to implement in real time a MB-based state

observer on an automotive platform. For that purpose, the following partial objectives
are set:

• To study the suitability of Field Programmable Gate Arrays (FPGAs) for
accelerating MB simulations. FPGAs are hardware accelerators that are
available in new generation automotive hardware and can be useful for achieving
real-time performance. This thesis is focused on study how to take advantage
of them for efficient MB simulations.

• To develop an accurate and efficient MB model-based observer of a vehicle in
order to implement it in real time on automotive hardware, which has limited
computational capabilities.

• An efficient code for executing MB simulations on embedded hardware is
required. In [5], a library (MBScoder) for creating MB models for different
platforms and programming language is presented. This thesis will continue
the development of this library in order to add new functionalities useful for
this work, such as new MB coordinates and formulations.

• To provide a framework for state estimation based on MB dynamics that could
be easily implemented in real automotive systems.

Given the previous objectives, the main contributions of this work are outlined
as follows:

• Guidelines to accelerate MB simulations with Field Programmable Gate Arrays
(FPGAs) can be extracted from this thesis. The examples shown in this thesis
can be used for future applications of FPGAs in MB dynamics.

• A new observer based on a Dual Kalman filter has been developed. It is referred
during the text as state-parameter-input (SPI) observer. It shows improved
accuracy in the estimations with respect to previous MB-based observers.

• The MBScoder is improved with a new module for modeling in relative coordi-
nates based on a semi-recursive formulation.

3

1. Introduction

• The MB-based observer developed achieves real-time performance on auto-
motive hardware for in-vehicle applications. The entire framework has been
adapted to the FMI 2.0 Standard, allowing an easy implementation in real
systems.

1.3 Thesis structure
This thesis has been organized in 6 chapters:

Chapter 1 introduces the topic of this thesis and the motivation that gave
rise to this thesis. After that, the objectives and contributions of this thesis are
briefly described. Finally, the structure of the thesis is presented.

Chapter 2 makes a review on the state of the art of state estimation for
automotive applications and on the evolution of the embedded hardware commonly
installed in-vehicle, focusing on the new generation hardware.

Chapter 3 presents the filter chosen for the use-case of this thesis and the
MB formulation employed in order to achieve the maximum efficiency in terms of
computational cost.

Chapter 4 explains the hardware selected for implementing the MB-based
state observer and the different strategies followed to achieve an efficient solution.

Chapter 5 presents the vehicle modeled with the details of the MB model
developed. The simulations launched to test the behavior of the MB-based state
observer are explained. The results in terms of estimations and computational cost
are presented. The final implementation, based on a standardized interface is also
included.

Chapter 6 consists on the conclusions extracted from the work of this thesis.
The future lines of the research are drawn up.

4

https://fmi-standard.org/

Chapter 2

State of the art

This thesis deals with the implementation in real time of state observers based
on MB models on embedded hardware for automotive applications. The success of
achieving the objectives of this work relies on a proper selection of the hardware,
together with an efficient state observer implementation.

In the following sections, an overview of the state observers commonly used in
the automotive industry is presented. Later, the evolution of the in-vehicle hardware
is commented, introducing the type of device that will be used during this thesis.

2.1 State observers on automotive industry
From several years ago, automotive industry has been implementing novel tech-

nologies on vehicles for improving the comfort and safety of the passengers [6]. For
this purpose, the efforts are focused on the development of driving aids. They have
been evolving from from the traditional Antilock Brake System (ABS) or electronic
stability program (ESP), to advanced systems, such as the lane keeping aid, or the
collision avoidance system.

All these driving aids require precise and timely information of the vehicle. While
current vehicles are equipped with many sensors, there are still some magnitudes
that cannot be measured directly due to technical or economical reasons. As an
alternative, the estimation of those magnitudes, also known as virtual sensing, is
proposed: models and a limited set of experimental data are fused to estimate system
variables that are difficult (inaccessible location, inaccurate direct measurements,
inexistent sensor) or costly to measure.

The virtual sensing approach can also be applied during the test campaigns of a
vehicle. Virtual sensing enriches the measurement data-set, thus providing better
insight into the system-under-test to engineers. Expensive sensors, such as the wheel
force sensors, can be replaced reducing the overall costs.

To install virtual sensors on an auto-mobile, a model of the vehicle combined with
a state observer has to be implemented on the vehicle computer units. In general,
these units, also known as Electronic Control Units (ECUs), are responsible of the
electronic control of different components of vehicles. An ECU processes inputs from
sensors and drives the corresponding actuator.

ECUs are a type of embedded systems. Embedded systems can be defined as

5

2. State of the art

a specialized computing system that is optimized to carry out a single dedicated
function. This pre-determined functionality contrasts with that of a General Purpose
Processor (GPP), such as those presented in a PC, where the processor will perform
a large number of very varied functions. Since an embedded system is application-
specific, it can be finely optimized to deliver the chosen characteristics of a given
application [7]. In embedded systems, the power consumption is critical and it has
become a major aspect that limits the performance of processors for embedded
applications [8]

ECUs were initially used for injection timing control of the engine, knock control,
idling speed control, transmission control, and so on. At the same time, electronic
control also spread quickly to functions such as the air conditioner, ABS and airbags
[9]. Currently, ECUs are also responsible of executing the control of the active
systems and also the ADASs, for what higher computational power is required. Due
to this, new hardware alternatives for ECUs are being explored.

2.1.1 State observers based on analytical models
For the virtual sensing approach, real-time performance is a mandatory pre-

requisite for synchronizing real and virtual environments [10]. Due to the restricted
computational power of the automotive hardware, simplified models were tradition-
ally used for representing the main dynamics that are involved on the particular
application. Thus, most of the research made in state estimation relies on analytical
models, due to their simplicity and low computational cost. Analytical models
usually neglect some dynamic effects, limiting the application of these approaches.
For instance, in [11], an analytical model which considers only the longitudinal and
vertical dynamics is used for controlling the brake distribution of a vehicle. The
lateral dynamics, roll and yaw motion and wheel rotation dynamics are neglected.
Therefore, the dynamics are not as precise as with a more complex model.

The interest of virtual sensors on the automotive industry is introduced by
Venhovens and Naab in [12]. They developed an adaptive cruise control, a lane
keeping support and they also estimated the yaw rate and tire slip angles. In these
examples, analytical and simplified models were used. For the adaptive cruise control,
two vehicles were modeled as two point masses, while for the other use cases, the car
was modeled as a planar two-degrees-of-freedom system.

The use of the two-degrees-of-freedom model in the literature is extended. It is
also known as bicycle model or one-track model. Its main functionality is to represent
the lateral vehicle dynamics for estimating the slip angles of the tire.

The bicycle model is employed in [13] for estimating the side-slip angles, and
comparing results between a linear and a non-linear observer. It is assumed that the
two side-slip angles of one axle are nearly the same.

In [14], the bicycle model is used to consider only the lateral movement and yaw
of the vehicle. A comparison of different estimation methods for the lateral dynamics
is made, assuming that the transversal tire forces are linear if the lateral acceleration
remains below 0.4 g.

In order to increase the accuracy and field of application of the bicycle model,
different degree-of-freedoms (DOFs) are added in order to include the most relevant

6

2.1 State observers on automotive industry

dynamics effects during the maneuvers of interest. Accordingly, in [15], the bicycle
model is formulated including one DOF related with the longitudinal dynamics.
Later, a Kalman filter is combined with the model for the on-line estimation of
vehicle handling dynamics. Using a model of low-order and time-invariant ensures
practical real time, retaining a useful level of accuracy.

The work presented in [16] shows the combination of a sliding mode observer [17]
with a reduced-order vehicle model. In this case, the vehicle is modeled looking for
a trade-off between accuracy and efficiency. Thus, five DOFs are considered in the
vehicle model including the longitudinal, lateral and yaw motion of the chassis and
the rotational motion of the two traction wheels. This approach assumes that the
roll and pitch motion are not relevant in the vehicle load transfers.

In [18], the study of tire force estimation is addressed with a four DOF vehicle
model. It only includes the longitudinal, lateral, roll and yaw motion, depreciating
the effects of the rest of DOFs on the dynamics.

Freeman et al. estimates in [19] the speed, yaw angle and cornering stiffness
through the combination of two different models and a Kalman filter. For the speed
and yaw angle estimation, the vehicle model involves four DOFs: longitudinal, lateral
and yaw motion and wheel rotations. For the cornering stiffness, a single track model
is designed. The estimated variables are later used in a controller for preventing
run-off-road situations.

In [20], a three DOF planar model is considered. Only longitudinal, lateral
and yaw motions are involved, assuming that the suspension behave as rigid and
neglecting its effects on vehicle dynamics. In order to achieve more accuracy, a
kinematic model is later included. Both models are combined with a Kalman filter
and the side-slip angle is estimated.

When modeling a vehicle, a large amount of parameters is involved. Most of
those parameters, such as the geometry of the suspension system, remain constant
during the life cycle of the vehicle. Meanwhile, the inertial properties of the vehicle,
such as the mass, can vary depending on the number of passengers or luggage [21]
and the tire-road coefficient can be affected by meteorological conditions or tire
wear. Both parameters play an important role on vehicle dynamics, affecting the
acceleration, braking, handling and comfort [22]. Combining state and parameter
estimation can improve the quality of the estimations. As an example, in [23], the
mass of the vehicle is estimated through a simple quarter-car linear model for each
suspension, trying to reduce the computational cost.

Some parameters can only be estimated under certain driving conditions. Maleej
et al. propose in [24] an event-based estimator for the mass and the road grade. It
is focused on longitudinal acceleration maneuvers and, therefore, the model only
includes the longitudinal dynamics. The estimation is only performed when the
vehicle is accelerating. If the vehicle is in cruise motion, deceleration or stop states,
the estimation is disabled.

In [22], a two DOF model is used in order to consider the lateral behavior of
the vehicle. It shows that updating the mass to the estimated value improves the
states estimation. Nevertheless, the quality of the mass estimation depends on the
maneuver. While on long straight line maneuvers the estimation is poor, during
turning maneuvers the estimator works with acceptable accuracy.

7

2. State of the art

It is also of interest the work presented in [25], where a full vehicle and tire
identification is presented. Based on an analytical full vehicle model, three filtering
methods are tested: EKF, unscented Kalman filter (UKF) and a particles filter.
While the particles filter is very slow to converge, the Kalman filters were found to
be effective. In automotive applications, where the model linearization is complex,
the UKF is best suited for parameter estimation.

Finally, the state and parameter estimation is combined in what is known as dual
Kalman filters. Wenzel et al. in [21], present a dual extended Kalman filter based
on a vehicle model with four DOFs, considering only the motion in the longitudinal
and lateral direction and the yaw and roll angles. Then, two Kalman filters are
employed in parallel for estimating the states and parameters of the vehicle. This
duality allows to reduce the uncertainty of the model, improving the performance of
the observer.

In a later work [26], Wenzel et al., the vehicle model is improved. It considers
the vehicle as one body with five degrees of freedom (longitudinal, lateral, roll, pitch
and yaw motion) and one degree of freedom for each wheel. Compared with a MB
model, the approach selected is more efficient.

In [27], a dual EKF for vehicle state and road friction coefficient estimation is
presented. It is combined with a three DOF vehicle model, including the essential
dynamic properties. Two EKFs operate in parallel, increasing the accuracy. This
work shows the importance of estimating the road coefficient.

Boada et al. present in [28] and [29] two dual filters for automotive applications
in order to estimate vehicle parameters and states. In [28], a vehicle roll model with
three DOFs (side-slip angle, yaw rate and roll angle) is presented. The estimation
process starts with the parameter estimation, to continue with the estimation and
correction of the states, ending with the parameter correction. The dual filter
proposed is later tested in a real vehicle, showing effectiveness and accuracy in the
estimations. It is also remarked that the results can improve with non-linear tire
models and suspension systems.

Later, in [29], Boada et al. present a dual Kalman filter for estimating road
irregularities and vehicle mass. In this work, a full vehicle model with seven DOFs
is employed, allowing either dynamic and static driving conditions. This increases
the amount of conditions where the mass can be properly estimated. Following the
same sequence of [28], the states and parameters are estimated and corrected. Final
experiments on a real vehicle shows a high accuracy in the estimations. However,
a controller should be designed in order to switch off the mass estimation at high
accelerations, where the algorithm does not work properly.

Most of the research made on vehicle state estimation is based on analytical
models considering the DOFs which have a notorious influence on the variables that
are estimated. The simplifications are made in order to minimize the computational
cost of the simulation. However, since some dynamic effects are neglected, the
application of these approaches is limited.

8

2.1 State observers on automotive industry

2.1.2 State observers based on multibody models
As an alternative to analytical models, MB models can represent with fidelity

the dynamic behavior of a vehicle in any situation. Thanks to the high level of
detail, using MB models enriches de measurement data-set: more information can
be extracted compared with analytical models.

A MB model can be defined as an assembly of two or more bodies imperfectly
joined together, having the possibility of relative movement between them [30]. In
order to describe a MB system, a set of parameters or coordinates must be selected for
defining unequivocally the position, velocity, and acceleration of the MB system [30].
Depending on the set of coordinates, MB formulations are developed in order to
derive the equations of motion, generally leading to a system of differential-algebraic
equations (DAEs). The efficiency of the MB solution for a particular application
depends on the coordinates and formulation selected. Thus, the modeling phase
should be carefully made.

In the automotive industry, MB simulation is widely used in the designing phase
of vehicles. Vehicle dynamics and durability analysis benefit from accurate MB
models. Advanced MB models are also required in HIL or HITL applications, which
are useful for testing and experimentally optimizing subsystem behavior in a virtual
system integration context, which may even include the human user.

The applications of MB dynamics can be also extended to state estimation.
However, the combination of MB models with a state observer is not trivial. While
the state observers are usually formulated for first order, unconstrained and linear
problems, the equations of a MB model are second order, usually constrained and
non linear [4].

The implementation of state observers based on MB models starts in [1]. This
firs approach implements a continuous extended Kalman filter (CEKF) applied to a
four-bar linkage with different MB formulations, achieving successful results. Later,
in [2], the previous work is applied to a MB model of a vehicle. Although the method
achieves good results in terms of estimation, it was far from real-time performance.

In [31], the research on the implementation of non-linear Kalman filters based on
MB models continues. The aim of this work is to compare different filters in terms
of accuracy and computational cost. The EKF in its continuous form and some
sigma-point Kalman filters (SPKFs) (UKF, spherical simplex unscented Kalman
filter (SSUKF)) are implemented. It shows that the SPKFs offer more accuracy and
are simpler to implement, while the computational cost is higher.

In most estimation problems, it is assumed that the inputs of the system are
known. This is not true in the case of vehicle applications. In [32], the unknown
inputs are taken into account in a MB-based Kalman filter. For considering the
real-time problem, the methodology proposed uses reduced MB models. In this work,
it is concluded that there are convergence issues if there are no position sensors as a
GPS on the chassis.

In [33], it is presented a nonlinear state observer based on kinematic models.
Using kinematic models, the input forces are no needed. This leads to a considerable
reduction of the model uncertainties. For estimating forces, in [34], the kinematic
filter is used combined with a force observer, splitting the estimation phase in two
steps.

9

2. State of the art

Regarding the computational cost of state estimation based on MB models, the
work of Sanjurjo et al. should be remarked. In [35], two new state observers based
on MB models are presented: the error-state extended Kalman filter (errorEKF) and
the projectionEKF, a method where a projection technique is employed to satisfy
the constraints of the MB model. Both filters are evaluated in terms of accuracy
and efficiency. Based on a planar mechanism, the tests performed showed that the
errorEKF presents high accuracy while keeping low computational cost. This work
continues in [36], where the errorEKF is compared more in detail against conventional
filters such as the CEKF, discrete extended Kalman filter (DEKF) and UKF.

Later, In [4], the errorEKF is applied on a MB model of the vehicle presented
in [37]. In this work, real-time performance on a PC is achieved with promising
results. However, the computational power of a PC is higher than the power of the
embedded hardware usually employed for in-vehicle applications.

The work on the errorEKF continues in [38], where the filter presented in [36] is
extended with force estimation. As in [36], the test are based on a planar mechanism.
The sensors included measure positions, velocities and accelerations. Different sets
of sensors and sampling frequencies are evaluated. The results show that the new
version of the errorEKF outperforms in terms of accuracy the previous version.
Furthermore, it allows to estimate the input forces. Although the computational
time increases, it is still faster than other filters of similar accuracy as the UKF.

The force estimation is also addressed in [39]. A flexible MB model of a suspension
is used combined with strain gauges in the knuckle. From the reaction forces estimated
in the knuckle, the tire forces are derived. However, the computational cost of flexible
MB models is an obstacle for real-time applications on embedded hardware. The
linearization of the system is proposed in order to increase the efficiency of the
simulation.

With respect to parameter estimation based on MB models, it is briefly addressed
in [40] through an acceleration maneuver. Although the mass is accurately estimated,
the solution is far from achieving real-time performance.

2.2 On-board Implementation
The state observers presented in the previous section are developed in order to

provide virtual sensor information on-board a vehicle. The hardware that is available
on commercial vehicles usually has low computational power. Therefore, most of
the approaches presented are based on simple vehicle models, in a trade-off between
accuracy and efficiency. However, computation capabilities of embedded processors
have been growing exponentially due to the sustained innovation in processors
technology.

2.2.1 In-vehicle ECUs
Electronic systems have been present in vehicles for a while, improving the

behavior of mechanical components. In the early days of automotive electronics,
each new function was implemented as an stand-alone ECU [6]. Therefore, modern
vehicles have a large number of ECUs for performing a large amount of functions. In

10

2.2 On-board Implementation

top-of-the-range vehicles, the number of ECUs is close to 100, due to the introduction
of new applications such as ADAS or active safety functions. Furthermore, the
incoming electric vehicle requires much more advanced computation to manage the
automotive systems, including the electrical powertrain [41].

Current ECUs are a type of embedded hardware that is composed of a Micro
Computer Unit (MCU) along with sensors, actuators and other chips and components
that are used to build the hardware [42]. The MCUs are the most importan part. They
are designed to comply with the strictest timing, reliability and safety requirements
imposed by automotive standards [43]. However, MCUs have low clock speeds and
platforms based on these devices cannot satisfy the high performance requirements
of the newest automotive functionalities.

In order to meet the high computational performance and low-power requirements,
new generation ECUs are based on advanced multi-core architecture. Having more
than one core in the system allows developing parallel processing on chips, reducing
the computational cost of an application [44].

In a multiprocessor platform, however, there is not an ideal core for all the
possible applications. Normally, in conventional processors, this issue is solved by
designing a general purpose architecture. However, few applications actually need
all those resources. Therefore, such an architecture is highly over-provisioned for any
single application [45], leading to a higher power consumption.

Homogeneous designs assembly multiple cores of the same architecture and,
in order to cover a high range of applications, the over-provisioned problem of
conventional processors is repeated [45]. Conversely, heterogeneous processors can
map each application to the best suited core to meet its performance demands.

In general, heterogeneous processors complement a main core with different type
of secondary processors or co-processors. The main purpose of the co-processor is to
supplement the functionality of the primary processor, and it is optimized for a single
specific task. By offloading computations from the main processor to one or more
co-processing units, the overall system performance can be accelerated [7]. Thus,
having heterogeneous processor cores provides potentially greater power savings
without dramatic losses in performance [46]. Due to the potential reduced energy
consumption offered by heterogeneous multi-core platforms, their usage is appealing
for hard real-time systems in embedded applications [8].

In the automotive industry, it is common to find heterogeneous processors where
the main processor is combined with Graphic Processing Units (GPUs) or Field
Programmable Gate Arrays (FPGAs). Their are mainly employed in computer vision
applications for ADAS, as presented in [43,47–49].

This new trend gives an opportunity for simulating complex models, as MB, on
automotive embedded hardware in real time. Virtual sensing applications could be
based on detailed models, instead of reduced sized models, while still maintaining
real-time performance.

The use of GPUs in MB dynamics has been addressed in [50–53]. The size of the
problems were adequate to exploit the advantages of GPUs. However, the problem
addressed in this thesis has a reduced size and it does not map with the field of
application of GPUs.

11

2. State of the art

With respect to FPGAs, there is no previous research on how to use them
for accelerating MB simulations. Since the list of processors including FPGAs is
increasing, it is important to learn how to take advantage of them. Thus, the work of
this thesis will be based on heterogeneous processors with an FPGA as co-processor.

To summarize, the automotive industry is demanding more computational power
on their embedded platforms. With the introduction of heterogeneous processors, the
capabilities of automotive hardware is increased. Due to the reduced computational
power of traditional ECUs, virtual sensing approaches were mainly based on analytical
models. With the new generation embedded hardware, state observers based on MB
models could be implemented in real time. This approach would increase the virtual
measurements and their quality.

12

Chapter 3

State observers based on
Multibody Models

This chapter focuses on the explanation of the Kalman filter that is employed in
this thesis and the MB formulation that is implemented.

First, a brief overview on the existent Kalman filters is performed, selecting the
best filter for the application addressed in this thesis. Later, the MB coordinates and
formulation employed is discussed. Finally, the integration of the MB formulation in
the Kalman filter is addressed.

3.1 Kalman filter review
In Chapter 2, several state observers developed for automotive applications were

presented. In most of the works reviewed, Kalman filtering was the option selected
for estimating variables of the vehicle. However, there are also alternatives to the
Kalman filter, as the particles filter or the sliding mode observer.

The particles filter is suitable for systems that are highly non-linear (as the
case of MB models). However, it leads to a huge computational cost [54]. As ex-
plained in Chapter 2, the computational power of embedded platforms in automotive
applications is restricted. Thus, particles filters are discarded.

The sliding mode observer [17] is an estimator characterized by its robustness
against parameter variations. It is adequate to be implemented with systems of
low order [55], where the model is simplified. As stated in Chapter 2, using simple
models limits the application of the filter to specific maneuvers.

Kalman filters perform the estimations through the propagation of the mean
and covariance of the desired variables through the time [54]. This propagation is
conditioned on the available sensor measurements. It was developed initially for
linear systems where the state variables are independent. To derive the equations, a
generic linear model is defined,

x = f(x,u,w, t) (3.1)
y = h(x,v, t) (3.2)
w ∼ N(0,ΣP

c) (3.3)
v ∼ N(0,ΣS) (3.4)

13

3. State observers based on Multibody Models

where x is the state vector, u are the inputs to the model, y is the vector containing
the outputs of the model, w is the process noise with covariance ΣP

c , v is the noise
from the measurements with covariance ΣS, f(·) is the system equation and h(·) the
equation for obtaining the measurements predicted by the model.

In order to obtain the estimation of the states through the time, the next
differential equation is employed,

ˆ̇x = Fx̂(t) +K(t) [o(t)− ô(t)] (3.5)

where F is the transition matrix representing the evolution of the model, K is the
Kalman gain matrix which resembles to a weighting matrix for the measurements, o
and ô are the real and predicted measurements respectively.

The expressions for the Kalman gain and the predicted measurements are,

ô(t) = Hx̂(t) (3.6)
K(t) = P(t)H(t)>(t)ΣS−1(t) (3.7)

where H represents the evolution of the measurements with the time, and P is the
covariance matrix of the state estimation uncertainty, obtained as,

P(t) = F(t)P(t)F(t)> + ΣP (t) (3.8)

As the Kalman filter is developed for linear systems with independent variables,
its application to MB models is not trivial. MB models are usually non-linear and
defined with dependent variables, as explained in Section 3.2. However, there are
variations of the Kalman filter designed for non-linear systems. Each version presents
different features regarding accuracy, efficiency and implementation.

One of the most popular is the extended Kalman filter (EKF), where the non-
linearities are solved by using a Jacobian matrix to propagate the mean and the
covariance of the state vector [54]. Despite of its compatibility with non-linear
systems, there are additional issues when combining the EKF with a MB model.
First, the EKF expects first-order systems, while the equations of motion of a MB
model are second order. This issue is overcome by including in the state vector the
positions and velocities of the MB model, at the cost of duplicating the problem
size. Second, the EKF applies to independent states, whereas most MB formulations
are set in dependent coordinates related by constraint equations. Thus, tailored
MB formulations must be developed in order to solve the dynamic equations in an
equivalent set of independent coordinates [2]. Several Kalman filters are based on
the EKF due to its efficiency and accuracy.

The continuous extended Kalman filter (CEKF) is formulated in a continuous-
time form. With respect to the MB equations, this option seems appropriate, as
they are also expressed in the form of continuous-time differential equations [35]. As
a counterpart, simulations are normally performed in discrete time steps. Therefore,
the equations of the CEKF must be modified.

The discrete extended Kalman filter (DEKF) is a version of the CEKF that
operates in discrete time steps. This situation is often encountered in practice,
since the dynamics of the systems are usually solved in discrete time steps, and the
measurements from the sensors are also discrete in time.

14

3.1 Kalman filter review

In the DEKF, the estimation is divided in two stages: the prediction and the
correction. During the prediction phase, the value of the state vector is estimated by
solving the dynamics of the model. In this step, the measurements of the sensors,
ok, are not taken into account. The estimated state vector before the measurements
are considered is referred as the a priori estimate, denoted by x̂−k . Later, when the
measurements at time step k are available, the correction stage is performed and the
a posteriori estimation, x̂+

k , is obtained. Of course, x̂+
k is expected to be a better

estimate than x̂−k , since there is more information of the system to compute x̂+
k [54].

In the DEKF, the system model for a time step k is a non-linear system represented
as [54],

xk = fk−1(xk−1,uk−1,wk−1) (3.9)
yk = hk(xk,vk) (3.10)
wk ∼ N(0,ΣP

c k) (3.11)
vk ∼ N(0,ΣS

k) (3.12)

which are similar to Equations 3.1-3.4, but defined for discrete time steps, and with
non-linearities presented in the state equations, f(·), and measurement equations,
h(·). The equations for propagating the mean and the covariance through the states
are,

P−k = Fk−1P+
k−1F>k−1 + ΣP (3.13)

x̂−k = Fx̂+
k−1 + Guk−1 (3.14)

where F results from the linearization of the model equations (equivalent to the
Jacobian matrix), and G is the input matrix, representing the evolution of the system
with the inputs, u.

From this equations, the a priori estimate, x̂−k , is obtained and the correction
stage can be executed. First, the mismatch ỹk (innovation) between the sensor
measurements and the model estimations is calculated,

ỹk = ok −Hx̂−k (3.15)

where o (observation) represent the sensors measurements and Hx̂−k are the estimated
measurements from the model according to the predicted states. For non-linear
systems, the sensitivity matrix of the measurements, H, is derived from the partial
derivative of hk(xk,vk) with respect to the state evaluated on x̂−k . It relates the
variation of the measurements with the state.

Later, for calculating the a posteriori values of the state vector, the expression
for the Kalman gain, K, is derived,

Σk = HP−k H> + ΣS
k (3.16)

Kk = P−k H>Σ−1
k (3.17)

where Σk is the innovation covariance matrix which represents the uncertainty in the
system state projected through H plus the covariance matrix of the noise originated
in the sensor itself, ΣS [4].

15

3. State observers based on Multibody Models

Finally, the estimation of the state, x̂, and the covariance matrix of the estimation
error, P, are,

x̂+
k = x̂−k +Kkỹk (3.18)

P+
k = (I−KkH)P−k (3.19)

Although the EKF is widely applied for non-linear systems, it can be difficult to
tune. Furthermore, it often provides unreliable estimates if the non-linearities are
severe, due to the implicit simplifications of the linearization process [54]. As an
alternative, there is another approach for non-linear applications: the sigma-point
Kalman filters (SPKFs). In this kind of filters, a set of deterministically chosen
weighted sample points, also know as sigma-points, is propagated through the non-
linear system functions [31]. One popular version of the SPKFs is the unscented
Kalman filter (UKF), which can provide significant improvement in accuracy over
the EKF [54].

The first step in the UKF is to calculate the set of sigma-points, which are a
total of nsp = 2L+ 1, being L the dimension of the state vector. The sigma-points
are obtained following Equation 3.20.

χk(i) =

x̂k i = 0
x̂k + γ(

√
Pk)i i = 1, ..., L

x̂k − γ(
√

Pk)i i = L+ 1, ..., 2L
(3.20)

where χk(i) is the i − th sigma-point, γ =
√
L+ λ, λ = α2(L + κ), α and κ are

user-defined tuning parameters,
√
· is the matrix square-root using lower triangular

Cholesky decomposition and (·)i represents the i− th column [31].
The a priori state estimations and the covariance matrix for a time step k can be

derived from the weighted mean and covariances of the sigma-points, as is expressed
in Equations 3.21 and 3.22.

x̂−k =
nsp−1∑
i=0

wm
i χ
−
k (i) (3.21)

P−k =
nsp−1∑
i=0

wc
i(χ−k (i)− x̂−k)(χ−k (i)− x̂−k)> (3.22)

being wm
0 = λ/(L+ λ) and wc

0 = wm
0 + (1− α2 + β), wc

i = wm
i = 1/[2(L+ λ)] for

i = 1, ..., nsp − 1 and β a scaling factor used to control the weighting of the zeroth
sigma-point.

For obtaining the Kalman gain in order to estimate the a posteriori state vector,
the sigma-points are propagated executing as many MB simulations as sigma-points
for the time step k. The observations (i.e simulated sensor measurements) of each
simulation are weighted and added as stated in Equation 3.23 to obtain the Kalman
gain.

Kk = Pxkok
P−1

okok
(3.23)

16

3.1 Kalman filter review

Pxkok
=

nsp−1∑
i=0

wc
i(χ−k (i)− x̂−k)(O−k (i)− ô−k)> (3.24)

Pokok
=

nsp−1∑
i=0

wc
i(O−k (i)− ô−k)(O−k (i)− ô−k)> + ΣS

k (3.25)

where O−k (i) are the observations of the i − th sigma-point, given through the
measurement model matrix, hk, and ô−k are the predicted observations obtained by
the weighted means of the sigma-points measurements, as presented in Equations
3.26 and 3.27 [31].

O−k (i) = hk(χ−k (i)) (3.26)

ô−k =
nsp−1∑
i=0

wc
iO−k (i) (3.27)

After obtaining the Kalman gain, it is possible to calculate through Equations
3.28 and 3.29, the a posteriori value of the covariance matrix and the state vector
for the time step k.

x̂+
k = x̂−k +Kk(ok − ô−k) (3.28)

P+
k = P−k −KkPokok

K>k (3.29)

It must be remarked that the MB equations are solved for each sigma-point without
being modified, simplifying the implementation of the filter. The counterpart, as
commented in Chapter 2, is the additional computational cost derived from the
evaluation of the MB system for each sigma-point [31]. Thus, the use of the UKF in
real-time applications on embedded hardware is not recommended if the size of the
state vector is high.

In [36], an error-state Kalman filter (also known as indirect Kalman filter) is
presented. This filter, called errorEKF, performs the estimations based on the
errors in the state variables, understanding by errors the difference between real and
calculated values. This filter combines the advantages of the EKF and UKF: the
MB model can be considered as an independent system similarly to the UKF, while
keeping the efficiency of the EKF.

The performance of the errorEKF is tested by Sanjurjo et al. in [36]. Based on a
four-bar and a five-bar linkage mechanism, traditional Kalman filters are compared
with the errorEKF. Interesting conclusions can be extracted from the results. It shows
that the efficiency of the filters is related with the MB formulation and integrator.
In the UKF simulation, shifting the integrator from the trapezoidal rule to a forward
Euler duplicates the performance. However, the accuracy of the estimations decreases.
In terms of computational cost, the errorEKF is the most efficient approach [36].

To conclude, the errorEKF is more efficient than conventional Kalman filters.
It also can be implemented with any MB system without additional development
cost. Thus, in this work, this filter is selected for in-vehicle estimation based on MB
models. The integration of the errorEKF and MB equations is explained in detail in
Section 3.3.

17

3. State observers based on Multibody Models

3.2 Multibody modeling
As explained in 3.1, the most efficient filters require to develop a tailored MB

formulation. This can result in a tedious process and the resulting combination can
penalize the computational cost. On the other hand, classical filters where the MB
model can be treated as a black box have a low efficiency. However, the errorEKF
allows to combine the Kalman filter with any MB formulation in an efficient form.
This means that the selection of the formulation can be addressed regarding only its
efficiency.

3.2.1 Coordinates and multibody formulation
In order to face the real-time challenges, the MB community has been made

a huge work on developing efficient formulations for the dynamics of MB systems.
In order to perform an efficient calculation, different factors should be considered:
modeling, coordinates selection, formulation of the equations of motion, numerical
integration, and implementation [30,56].

The first dilemma when selecting the coordinates for modeling a system is the
problem of either adopting independent coordinates, whose number coincides with
the number of DOFs and is thereby minimal (reducing the computational cost),
or adopting an expanded system of dependent coordinates. Most of the methods
are formulated for dependent coordinates, which can describe the system much
more easily than independent coordinates. However, as they are not independent,
they must be related with constraint equations [30]. Depending on the selected set
of dependent coordinates, there are different procedures for defining each body of
the system and its corresponding constraint equations. The coordinates should be
selected regarding the topology of the mechanism to be modeled. A proper coordinate
selection reduces the complexity, leading to simpler constraint equations, and higher
performance. In order to address the problem of the coordinates selection, the
methods developed can be grouped into two big families: global and topological [57].

Global methods are based on coordinates that define the system in an absolute
form. These methods offer a systematic calculation independently from the mech-
anism topology. Hence, global methods are simple and easy to implement. As a
counterpart, they are not very efficient due to the high number of variables and
constraints equations that must be imposed [57]. A typical set of coordinates used
in global methods are the natural coordinates, presented in [30].

Topological methods make use of relative coordinates, defining each body with
respect to the previous one in the kinematic chain and leading to a system with
a minimum number of dependent coordinates [30]. This type of model definition
invites to produce algorithms in which the kinematic as well as the dynamic terms
are calculated by means of efficient recursive procedures [57]. Nevertheless, these
kind of formulations are complex to implement, because the absolute position of an
element depends on the position of the previous elements in the kinematic chain.
Furthermore, they lead to equations of motion with matrices that, although small,
are expensive to evaluate. They also require a post-processing work to determine
the absolute motion of each point and element [30].

18

3.2 Multibody modeling

(a) (b)

Figure 3.1: Example of open-chain mechanism (3.1a) and closed-chain mecha-
nism (3.1b).

If the system to be modeled has a topology of an open-chain mechanism (Figure
3.1a), the relative coordinates will be independent and hence, the topological method
will lead to a system with a minimum number of variables. However, when closed
branches (or loops) are presented (Figure 3.1b), the coordinates are dependent and
thus, constraint equations must be defined [30].

In order to generate the constraint equations, the closed loops should be opened at
some point of the chain, resulting in an open-chain system. The constraint equations
ensure that the equivalent open-chain mechanism behaves as the original.

As an example, in Figure 3.2, a double-wishbone suspension is presented. From
Figure 3.2a, it can be seen that there are two closed loops: one is formed by the
spring (B4-B5) and the low-control arm (B1); the other is formed by the knuckle
(B3) and the low and upper control arms (B1-B2). In order to open the loop, the
suspension model is cut by two joints (Figure 3.2b): the spherical joint J4, and the
revolute joint J7. In this case, the constraint equations are based on the kinematic
relations associated to the joint. Thus, the set of constraint equations depends on
the selected joints. It is recommended to select the joints which lead to simpler
constraint equations [58]. In the example of Figure 3.2, the constraints will impose
that the position of the spherical and revolute joint, added to the direction of the
rotation axis of the revolute joint, must match from both sides of the equivalent
open-chain mechanism.

J2

J1

J3

J5

J6

B1

B2

B3

B4

B5

J4J7

(a)

J2

J1

J3

J5

J6

B1

B2

B3

B4

B5

(b)

Figure 3.2: Illustrative example of the opening-chain procedure. A closed-loop
mechanism (3.2a) is opened by two joints resulting in an open-chain mechanism
(3.2b).

19

3. State observers based on Multibody Models

In [56–58], a topological method is presented and compared against a global
method based on natural coordinates. The results presented show that the topological
method offers high performance when large models are used, due to the reduction
in the number of modeling coordinates. In small systems, like a suspension model,
there is no advantage in using the semi-recursive formulation. When applied to a
full vehicle model, the method in relative coordinates is 10 times faster than the
absolute.

Accordingly to the previous explanation, the formulation presented in [56–58] is
selected for the work of this thesis. In addition, the method is highly robust, which is
important for ensure the convergence of the simulation after applying the corrections
of the observer.

3.2.1.1 Semi-Recursive Formulation

The topological method employed in this thesis is known as semi-recursive. The
set of relative coordinates used for modeling the mechanism are complemented with
the so-called body coordinates, presented in Equation 3.30.

Z =
[

ṡ
ω

]
(3.30)

where ṡ is the velocity of the point of the body which is coincident with the fixed
frame origin in a particular time step, thus representing the translations of the body,
and ω is the angular velocity of the body, which represents the rotations of the body.

Z3

Z1

Z4
Z6

Z5
Z2

z1

z2

z4

z6

z5

z3

Figure 3.3: Generic mechanism which illustrates the set of coordinates that are
employed in the semi-recursive formulation. The capital Z represent the body
coordinates, while the lower case letter z is referred to the relative coordinates.

Applying the kinematic relations of two neighbor bodies, denoted by i-1 and i, a
general expression for obtaining the value of each body coordinate and its derivative
in a recursive form can be derived,

Zi = Zi−1 + biżi (3.31)

Żi = Żi−1 + biz̈i + di (3.32)

20

3.2 Multibody modeling

where the form of the terms bi and di depends on the type of joint that connects the
bodies i-1 and i. In [58], expressions of bi and di are presented for different type of
joints.

The dynamic equations which describe the motion of the mechanism are expressed
initially in relative coordinates. In this method, the equations are stated according
to the index-3 augmented Lagrangian formulation [59] in the form,

Mz̈ + Φz
tαΦ + Φz

tλ∗ = Q (3.33)

where z are the relative coordinates, M is the mass matrix of the mechanism expressed
in terms of the relative coordinates, Φ is the constraint vector due to the closure
conditions of the loops, Φz is the Jacobian matrix of the constraints, α is the penalty
factor, Q is the vector of applied and velocity-dependent forces, and λ∗ is the vector
of Lagrange multipliers obtained from the following iteration process [57],

λ∗i+1 = λ∗i +αΦi+1, i = 0, 1, 2... (3.34)

However, if the relative coordinates, z, are used, the calculation of the dynamic
terms presented in Equation 3.33 is complex. Here is where the body coordinates
(Equation 3.30) become relevant, since they lead to simpler expressions for obtaining
the dynamic terms, as shown in [56–58]. To introduce these terms in the dynamic
equations, relative and body coordinates can be related in such a way that,

Z = Rż (3.35)

Ż = Rz̈ + Ṙż (3.36)

being R a matrix which depends on the topology of the mechanism and on the bi
terms from Equation 3.35, and Ṙż a vector obtained from the di terms of Equation
3.32. For the example of Figure 3.3, both matrices present the following form [56],

R =

b1 0 0 0 0 0
b1 b2 0 0 0 0
b1 b2 b3 0 0 0
b1 0 0 b4 0 0
b1 0 0 b4 b5 0
b1 0 0 b4 0 b6

(3.37)

Ṙż =

d1
d1 + d2

d1 + d2 + d3
d1 + d4

d1 + d4 + d5
d1 + d4 + d6

(3.38)

From the structure of the matrices, it can be seen that each element of the
mechanism is only influenced by its previous bodies on the kinematic chain, as
expected.

21

3. State observers based on Multibody Models

The expressions in body coordinates for the the mass matrix and the generalized
forces of each body are,

M̄i =
[
mI −mg̃
mg̃ J−mg̃g̃

]
(3.39)

Q̄i =
[

f − ω × (ωmg)
n− ω × Jω + g× (f − ω × (ω ×mg))

]
(3.40)

where m is the body mass, g̃ is the dual anti-symmetric matrix of the global position
of the mass center of the body (g), J is the inertia tensor of the body, f and n are
the external forces and torques applied to the body respectively.

From the expressions presented in Equations 3.39 and 3.40, the dynamic matrices
for the whole mechanism in body coordinates can be assembled. The mass term, M̄,
is a diagonal matrix whose elements are the sub-matrices M̄i. The vector of forces,
Q̄, contains each individual term Q̄i.

In order to obtain the equivalent dynamic matrices in relative coordinates for
their use in Equation 3.33, the equation of motion in body coordinates is obtained.
From the virtual power principle,

Z∗T (M̄Ż− Q̄) = 0 (3.41)

being Z∗T the virtual velocities on the body coordinates.
Substituting now the result of Equations 3.31 and 3.32 in Equation 3.41 yields,

ż∗T
{
R>M̄Rz̈−R>(Q̄− M̄Ṙż)

}
= 0 (3.42)

or, in a more compact form,

ż∗T {Mz̈−Q} = 0 (3.43)

Comparing Equations 3.33 and 3.43, the mass matrix and force vector in relative
coordinates can be obtained as follows,

M = R>M̄R (3.44)

Q = R>(Q̄− M̄Ṙż) (3.45)

Due to the form of the matrix R, the mass matrix and force vector of the system
are suitable to be assembled in a recursive form, as presented in [56], leading to an
increment of computational efficiency.

So far, the calculation of the M and Q terms of Equation 3.33 has been addressed.
The remaining term of Equation 3.33 is the Jacobian matrix of the constraints
Φz. Defining the closure condition of the mechanism in relative coordinates is not
trivial [58]. Instead, in the semi-recursive formulation proposed, natural coordinates,
q, are used to impose the closure conditions of the loops at the cut-points [57].

The example presented in Figure 3.2 is used hereafter to show the procedure for
the constraint definition. The cut-joint of this example is spherical. The closure

22

3.2 Multibody modeling

Figure 3.4: Paths for defining the closure-loop conditions in the spherical joint
of the double-wishbone suspension example from Figure 3.2.

condition must impose that the position of the joint calculated following the path A
and path B is the same. The constraint equations in natural coordinates are,

Φ = rA − rB = 0 (3.46)

where rA and rB are the position vectors of the spherical joint calculated following
the path A and path B respectively. In Equation 3.46, there are a total of three
equations, one per each coordinate of the three-dimensional space.

In order to obtain Φz, the derivatives of the constraint equations should be
calculated with respect to the relative coordinates. Thus, as presented in [58],

Φz = Φqqz (3.47)

being Φq the derivatives of the constraint equations with respect to q, which can
be easily obtained following the procedure presented in [30], and qz the derivatives
of the natural coordinates with respect to z, which can be calculated by means of
kinematic relations, leading to simple analytic expressions [58].

At this point, all the terms appearing in Equation 3.33 are known and the
integration of the dynamic equations can be made. For this purpose, the implicit
single-step trapezoidal rule has been adopted. The corresponding difference equations
in velocities and accelerations are,

żn+1 = 2
∆tzn+1 + ż∗n ; ż∗n = −

(2
∆tzn + żn

)
(3.48)

z̈n+1 = 4
∆t2 zn+1 + z̈∗n ; z̈∗n = −

(4
∆t2 zn + 4

∆t żn + z̈
)

(3.49)

If Equations 3.48 and 3.49 are introduced in the dynamic equation of motion,
the resulting system can be expressed as,

f(zn+1) = 0 (3.50)

where zn+1 are the positions at the next time step, which are the unknowns.
Since Equation 3.50 is a non-linear system of algebraic equations, the Newton-

Raphson iteration can be used to find a solution. Thus,

∂f (z)
∂z

∣∣∣∣∣
z=zn+1,i

(zn+1,i+1 − zn+1,i) = −f (zn+1,i) (3.51)

23

3. State observers based on Multibody Models

where the residual vector is

f (z) = ∆t2
4
(
Mz̈ + Φz

>αΦ + Φz
>λ∗ −Q

)
(3.52)

and the approximated tangent matrix is:

∂f (z)
∂z

'M + ∆t
2 C + ∆t2

4
(
Φz
>αΦz + K

)
(3.53)

being C and K the damping and stiffness matrices, respectively, whose full expressions
can be found in [58].

After converging to a solution, the positions zn+1 satisfy the equation of motion
and the constraint equations are fulfilled, as an inherit consequence of the formulation
employed. However, there is not guarantee on satisfying the constraints equations at
velocity (Φ̇ = 0) and acceleration level (Φ̈ = 0), since they were not imposed. To
overcome this problem, the velocities and accelerations are projected,

∂f (z)
∂z

ż =
[
M + ∆t

2 C + ∆t2
4 K

]
˜̇z− ∆t2

4 Φz
>αΦt (3.54)

∂f (z)
∂z

z̈ =
[
M + ∆t

2 C + ∆t2
4 K

]
˜̈z− ∆t2

4 Φz
>α

(
Φ̇zż + Φ̇t

)
(3.55)

where ˜̇z and ˜̈z are the velocities and accelerations obtained from the integration
process, i.e non compliant with the constraints equations.

With the formulation presented, the dynamics of a MB system can be solved with
a high level of efficiency. This is the feature that makes this option more suitable
for developing the MB vehicle model that will be combined with a state observer on
automotive platforms, where the main limitation is the low computational power
available.

3.2.2 MBScoder
In order to program and develop a MB model of a vehicle or part of it, as a

suspension system, different software techniques are available. Most of them are
oriented to a simulation environment based on PC, where the memory and capacity
of the hardware is not a limitation. However, when programming for target platforms
as embedded hardware, an efficient code must be implemented.

As Pastorino et al. presented in [5], one of the first decision is the programming
language for writing the code. Although interpreted languages as Matlab or Python
reduce the development time, they have low computational efficiency. Instead,
compiled languages as Fortran, C or C++, are more suitable for real-time MB
simulations on embedded hardware due to their high efficiency, although programming
in these languages is more time consuming.

To overcome this situation, commercial programs as Matlab or Python offer
the option of translating code from their own interpreted language to a compiled
language. However, this process leads in general to a generic code which is difficult
to read by the developer, limiting the modifications that can be made in order to
increase the efficiency of the generated code.

24

3.2 Multibody modeling

In order to reduce the development time of new MB models in a compiled language,
automatic programming is proposed in [5]. Automatic programming, increases the
level of abstraction for the developer without compromising code efficiency, since
only the minimal source code is written.

In this context, the MBScoder has been developed from the work of Pastorino et
al. in [5]. The MBScoder is a software tool for the simulation of the kinematics and
dynamics of multibody systems, which is Free Software (licensed under LGPLv3). The
MBScoder is intended to be used in Python, where the simplicity of the interpreted
language for code prototyping can be exploited. From the Python interface, MB
source code can be generated in any programming language implemented. It also
offers multiple options for defining the MB model. Initially, it only included natural
coordinates [30]. During this thesis, the relative coordinates based on the semi-
recursive formulation [56–58] explained in Section 3.2.1.1 were included.

The steps to prepare a file for generating the source code for the simulation of a
certain MB model in Python are:

1. Definition of the relevant points of the model. If natural coordinates are
selected, the type of point (fixed or mobile) and its coordinates should be
specified. If relative coordinates are chosen, the type of joint and its position
is required. Also the variables representing the DOFs should be indicated.

2. Definition of the constraint equations. For natural coordinates, different
options are available regarding the type of constraint: constant distance,
perpendicular vectors, alignment, etc. In the case of defining the model in
relative coordinates, constraint equations are required for opening the loops
in closed-chain mechanism: it should be specified the joint where the closure
condition should be imposed and the kinematic chain of the bodies connected
by the joint.

3. Definition of the bodies of the system, including the joints presented in the
body and the mass properties. In relative coordinates, it is also required a
reference to the previous body of the chain in order to program the recursive
procedure exposed in Section 3.2.1.1.

4. Definition of additional elements as springs or dampers, including the points of
application of the external forces associated to these elements.

5. Definition of the integrator and the MB formulation that will be programmed.
There are several options implemented: a model can be easily tested with
different integrators and formulations.

6. Definition of the programming language for the source code generation. Three
options are available: Python, Matlab or C++. For the C++ option, two math-
ematics libraries are available in order to allow efficient algebra operations:
C++-Armadillo and C++-Eigen.

The MBScoder has been developed in such a way that the generated source code
is always minimal, clean and commented. The MBScoder also offers the possibility of

25

http://www.gnu.org/licenses/lgpl.html

3. State observers based on Multibody Models

generating a simple graphic output based on OpenGL. It also includes simple working
examples as a reference for new models development.

To conclude, the MBScoder is the tool employed during this thesis for creating the
source code required for the MB simulations, which should be combined later with
the code of the state observer. The MB model is described in Python and the code
for the simulation is generated in C++-Eigen. The Eigen library [60] is based on
header files. Hence, only the necessary files should be included in the code, reducing
the complexity of the implementation.

3.3 Error-State Extended Kalman Filter
The errorEKF uses the approach of the indirect filtering, which is commonly used

in multisensor integration for navigation [61, 62]. In this kind of filters, the variables
of interest are not directly estimated. Instead, the dynamic model is run without
modifications and the filter estimates the drift comparing the simulated data with
the measured data. Once that the drift or error is estimated, it is applied to the
model in order to correct it [38].

3.3.1 Error-State EKF with force estimation
The errorEKF has been first presented in [35] by Sanjurjo et al., and it has been

improved in [4,36,38]. This filter is derived from the EKF and, therefore, most of
the equations are similar. The main difference between the errorEKF and the EKF
consists in the variables that form the state vector (Equation 3.56). While the state
vector in the EKF contains the positions and velocities of the MB model, the state
vector in the errorEKF includes the differences between real and simulated positions
and velocities. Thus,

x> =
[
∆zi>,∆żi>

]
(3.56)

where zi are the independent variables, coincident with the DOFs, from the set of
relative coordinates, z, used to define the MB model (Section 3.2.1).

In [38], the errorEKF with force estimation is presented. In this version, the
state vector is increased with the errors in accelerations. The results of this filter
applied to planar mechanism are promising: the states and input forces are estimated
with accuracy. Following the approach presented in [38], the errorEKF with force
estimation is applied to a MB vehicle model in this thesis. Hence, the new state
vector is,

x> =
[
∆zi>,∆żi>,∆z̈i>

]
(3.57)

The errorEKF is described in a schematic form in Figure 3.5. The prediction
phase starts with the execution of one step of the MB simulation. The estimated
errors are later obtained comparing the sensor measurements with the simulated
data.

26

3.3 Error-State Extended Kalman Filter

MBS
H

+ EKF

+MBS input MBS output

- MBS errors
Sensors +

Estimation

Figure 3.5: Scheme of the errorEKF applied to MB simulations [38].

The propagation phase is performed following Equations 3.58 and 3.59. Note
that, since the errorEKF operates in the transformed state space of errors, its a
priori estimate is always null. In other words, the filter initially assumes that the
MB model tracks perfectly the real system.

x̂−k = 0 (3.58)
P−k = fxk−1P+

k−1fx>k−1 + ΣP (3.59)

where k is the time step and fx is the transition matrix, expressed in Equation 3.60.

fx =

I + 1

2
∂∆z̈i

∂zi ∆t2 I∆t+ 1
2
∂∆z̈i

∂żi ∆t2 1
2I∆t2

∂∆z̈i

∂zi ∆t I + ∂∆z̈i

∂żi ∆t I∆t

0 0 I

 (3.60)

Since the evolution of the acceleration error is unknown, its terms have been set
to 0. The terms ∂∆z̈i

∂zi and ∂∆z̈i

∂żi are included to account for the acceleration error
through the force models of the MB system. The full expressions can be found in [38].
In this work, these terms have been simplified in order to reduce the computational
cost, yielding,

∂∆z̈i

∂zi
= −(RΦ>MRΦ)−1K (3.61)

∂∆z̈i

∂żi
= −(RΦ>MRΦ)−1C (3.62)

where the term RΦ is employed to transform the mass matrix of the whole system
into the equivalent mass matrix for the set of independent coordinates. Following [58],
each column j of RΦ represents the velocities ż for an unitary value of the degree-
of-freedom żij and null velocity for the rest of DOFs. This is analogous to solve a
velocity problem for each DOF.

RΦ
j = ż|żi

j=1,żi
k
=0;k 6=j (3.63)

27

3. State observers based on Multibody Models

In order to propagate the corrections, the equations applied are similar to the
equations defined in the DEKF in Section 3.1. Thus,

ỹk = ok − h(zk, żk, z̈k) (3.64)
Σk = hxkP−k hx

>
k + ΣS

k (3.65)
Kk = P−k hx

>
k Σ−1

k (3.66)
x̂+
k = x̂−k +Kkỹk (3.67)

P+
k = (I−Kkhxk)P−k (3.68)

where ỹk is the error or mismatch (often called innovation) between the expected
sensor readings, ok, and their actual values, h(zk, żk, z̈k). The innovation covariance
matrix, Σk, represents the uncertainty in the system state. It is projected via the
sensor function, hxkP−k hx

>
k , plus an additional Gaussian noise originated at the

sensor itself ,ΣS
k. Small values of Σk mean that the observation introduces useful

information for the estimation of the states. By evaluating the Kalman gain ,Kk,
the estimation of the mean and covariance are updated in Equations 3.67 and 3.68
respectively [4].

It should be remarked that the virtual measurements, h(zk, żk, z̈k), from Equation
3.64 are built by using the coordinates of the MB model instead of the states, as in
the EKF. In addition, the Jacobian of the measurements model, hxk, has the same
expression as in an equivalent conventional Kalman filter. The partial derivatives
with respect to the errors in the states have the same value than the partial derivatives
with respect to the states.

After the propagation stage, the estimations of the errors in position, velocity
and acceleration of the independent coordinates, x̂+

k , are obtained. In a last step,
the corrections should be propagated through the dependent MB variables. This
is done by projecting the errors in the independent coordinates over the constraint
equations.

At position level, the position problem should be solved. It is a non-linear problem,
which is typically solved with an iterative method. Since it is computationally
expensive, in [36] the position problem is linearized assuming that the corrections in
positions are expected to be small. Hence,

Φz∆ẑ = 0 (3.69)

If the Jacobian of the constraints, Φz, and the vector of the estimated positions
errors, ∆ẑ, are split in their independent and dependent parts, Equation 3.69 can be
written as,

∆ẑ =
[

∆ẑi ∆ẑd
]>

(3.70)

Φz
d∆ẑd = −Φz

i∆ẑi (3.71)
where ∆ẑi is the term of the state vector, x̂+, referred to the positions of the DOFs.

Solving the linear system of Equation 3.71, the estimated dependent errors, ∆ẑd,
are obtained. Then, the resulting vector of estimated position errors, ∆ẑ, is fed back
to the MB simulation to obtain the position estimation, z, as follows,

ẑ = z + ∆ẑ (3.72)

28

3.3 Error-State Extended Kalman Filter

It must be noted that this method is an approximation. Therefore, a perfect
fulfillment of the constraints at position level is not expected. However, since the
corrections are performed every time step, the errors are usually acceptable for
most applications. If the sensors employed have a low update rate, the position
errors may become too big to employ this approximation, and hence the non-linear
position problem should be solved instead [4]. In the particular case of this thesis, the
computational efficiency is a critical factor. Thus, the linearization of the position
problem is accepted as the most suitable approach.

Regarding the correction of the velocity estimation, it is performed after correcting
the positions. Splitting the MB variables into their independent and dependent
terms, the system for solving the velocity problem is,

Φz
dˆ̇zd = −Φt −Φz

i
[

żi + ∆ˆ̇zi
]

(3.73)

Therefore, the vector of estimated velocities for the MB model yields,

ˆ̇z =
[

(żi + ∆ˆ̇zi) ˆ̇zd
]>

(3.74)

The corrections in accelerations of the dependent coordinates are obtained by
solving the acceleration problem as presented in [30],

Φzˆ̈zd = −Φ̇t − Φ̇i
zd żd −Φz

i
[

z̈i + ∆ˆ̈z
]

(3.75)

The final estimated acceleration vector results as follows,

ˆ̈z =
[

(z̈i + ∆z̈i) ˆ̈zd
]>

(3.76)

Once that the accelerations have been corrected, the forces ∆Q̂ which would have
been applied to the mechanism in order to correct the acceleration error must be
calculated. However, there are infinite possibilities to calculate a vector ∆Q̂ which
produces the desired effect. The first assumption made is that all the unknown forces
are applied to the independent variables, which correspond to the DOFs,

∆Q̂d = 0 (3.77)

∆Q̂i = M̂iz̈i − Q̂i (3.78)

∆Q̂ =
[

∆Q̂i ∆Q̂d
]

(3.79)

Applying ∆Q̂ to the generalized forces of the MB model, Q, the error in acceler-
ation is corrected and its expected value for the next time step is null. Since the
constraints in position and velocity were also imposed, the a priori state vector for
the next time step is null, in coherence with the Equation 3.58.

However, depending on the mechanism, applying the force corrections over the
DOFs can lead to inaccurate results. Such is the case of study in this work, since the
forces acting on a vehicle are highly related to the tires and not to the independent
variables. This issue is discussed in Section 5.2.2.4.

29

3. State observers based on Multibody Models

3.4 Measurement noise and covariance matrices
of the process

When working with Kalman filters, there are several uncertainties that must be
considered. For instance, the sensors employed are not perfect, which leads to noisy
measurements. In addition, the errors on the MB model with respect to the real
system cannot be identified as most of them are unknown.

The measurement noise and the covariance matrices of the process are the
parameters where all the uncertainties explained above are included. The importance
of the covariance matrices is such that if they are not properly set, the filter can
become unstable [38].

3.4.1 Measurement noise
The noise of the sensors is perfectly determined in the simulation environment.

A common procedure, followed at this work, consists on generate it from a MB
model which acts as the real system. Later, white Gaussian noise is generated and
added to the sensors signal, accomplishing the assumptions of Kalman filtering [54].
In real sensors, although they are not perfect, the noise is usually provided by the
manufacturer and can be considered as white Gaussian noise.

3.4.2 Covariance matrix
The covariance matrix includes the uncertainties of the MB model. This matrix

must be tuned in order to reach a robust solution which converges to accurate solutions
independently of the model errors. In addition, as reflected in [63], if fictitious process
noise is added, the filter will place more emphasis on the measurements, which will
improve the filter performance. As a counterpart, in case the system model is correct,
this will reduce the accuracy.

The structure of the covariance matrix is as proposed in [64]. It can be obtained
from the transition matrix given by Equation 3.60 yielding,

ΣP = σ2

∆t5
20

∆t4
8

∆t3
6

∆t4
8

∆t3
6

∆t2
2

∆t3
6

∆t2
2 ∆t

 (3.80)

where σ2 is a diagonal matrix which contains the noises associated to the MB
variables presented in the state vector. It must be noted that only the constant
elements of the transition matrix were considered. Thus, the covariance matrix
is constant during the simulation and it can be evaluated before the simulation
starts [38], reducing the computational cost of the filtering.

30

Chapter 4

New Generation Embedded
Hardware

Since the 1970s, there has been an exponential increase in the number of electronics
systems in vehicles. Electronic systems have gradually replaced those that are purely
mechanical or hydraulic [6]. These advances were possible due to the evolution of
in-vehicle hardware capabilities.

Nowadays, the implementation of more complex ADAS strategies is pushing the
development of more powerful on-board hardware to achieve real-time performance
[65,66]. In addition, embedded systems will go beyond the engine and energy control
on electric vehicles [41].

As explained in Chapter 2 and Chapter 3, one of the main limitations for
implementing state observers based on MB models is the computational power of
conventional ECUs. Since new generation hardware is starting to be available in-
vehicle, a detailed study on this devices should be performed. This new trend can
give an opportunity for executing real-time MB-based state observers for in-vehicle
applications.

This chapter starts with a brief overview of the new generation hardware available,
selecting the platform that is used during this thesis. Afterwards, the strategies for
implementing MB-based state observers on the hardware selected are explained.

4.1 Modern Hardware Analysis
Computation capabilities of conventional processors have been growing exponen-

tially due to sustained innovation in processors technology [67]. The increment of
performance is related to a higher number of computing elements per microprocessors,
at the expense of reducing the power efficiency [45]. However, power consumption is
critical in embedded systems and it has become the limiting factor for increasing the
performance of embedded processors [8].

As stated in Section 2.2.1, in order to provide high computational performance
while keeping a low-power consumption, advanced multi-core architecture have been
developed. Having more than one core in the system allows developing parallel
processing on chips, reducing the computational cost of an application [44]. From
the multiprocessor platforms available, heterogeneous processors can map each

31

4. New Generation Embedded Hardware

application to the best suited core to meet its performance demands. This leads
in general to a lower energy consumption without reducing the computational
power. Hence, heterogeneous processors are being used for hard real-time systems in
embedded applications [8].

4.1.1 Heterogeneous processors for scientific computing
In the field of heterogeneous computing, the main core is based on traditional

processors. However, the co-processing units are usually based on unconventional
cores such as Application-Specific Integrated Circuits (ASICs), Field Programmable
Gate Arrays (FPGAs) or GPUs [67–69].

ASIC devices are expensive and their development cycle is long. Meanwhile, GPUs
and FPGAs are cheaper and programmable: they can be used in any application
without redesigning the hardware. Although an ASIC device is tailored for a
particular application providing the highest performance, FPGAs and GPUs are
gaining in popularity in heterogeneous computing due to their flexibility and reduced
price.

Graphic Processing Units (GPUs) were developed for parallel manipulation of
tasks related to computer graphics [70]. However, their usage has been extended
to increasing the efficiency of intensive computations. In a GPU, a large number
of programmable cores are used to parallelize the execution of a program. In MB
dynamics, they have been using in [50–53] for accelerating the simulation of large
MB systems.

Field Programmable Gate Arrays (FPGAs) are programmable hardware devices
that offer the high performance of custom hardware, with some of the flexibility of
software. FPGAs are built from programmable logic elements which can be combined
to exactly build the hardware required for a specific application. This results in orders
of magnitude speed-up over conventional processors for computationally-intensive
tasks [41]. The presence of FPGAs in embedded applications has been growing in last
years. FPGAs are used for controlling industrial processes and motors, in machine
vision to inspect manufacturing lines or in industrial networking [71, 72]. Their
flexibility is one of their major advantages: it can be reprogrammed to accomplish
changing requirements without high costs [72].

In automotive applications, Multiprocessor System on Chip (MPSoC) solutions
embedding an FPGA or GPU are starting to be used due to the high computational
cost of ADAS [73]. In contrast to GPUs, there is no research on how to exploit
FPGA for accelerating a MB simulation. Due to the increasing presence of FPGAs
is in automotive applications, they can be used to reduce the computational cost of
MB simulations.

At this point, it is worth detailing certain characteristics of the FPGA elements.
In general, an FPGA is made of wires connecting logic gates and registers [74].
The logic gates perform simple boolean logic on inputs. Combining different gates,
complex operations can be performed. The registers are designed to store data that
needs to be accessed quickly. The elements of an FPGA, can be classified in [7]:

1. Look-Up Table (LUT): It is a flexible resource capable of implementing a logic
function, small memory elements or registers.

32

4.1 Modern Hardware Analysis

2. Flip-Flop (FF): It is a sequential circuit element implementing a 1-bit register,
whose purpose is to synchronize logic and save logical states during clock cycles.

3. Block Random Access Memory (BRAM): It is a memory block with the special
purpose of satisfy dense memory requirements.

4. Digital Signal Processor (DSP): It is a sub-unit dedicated for high-speed DSP
arithmetic supporting operations such as multiply-add, multiply-accumulate
(MACC), three-input add, etc.

From the available heterogeneous processors with FPGAs, the Xilinx R© Zynq-7000
XC7Z020 is widely used in automotive applications [71]. It is a low-end embedded
platform based on an ARM Cortex-A9 combined with an Artix-7 FPGA as co-
processor. It is used in computer vision applications or control purposes and machine
learning [47,48,70,75–79].

The properties of the Zynq-7000 XC7Z020 are presented in Table 4.1. There are
more powerful devices on the market. However, their cost are also higher and this
could reduce their applications, since this cost will be reflected in the market price of
the product (a vehicle in this case). Furthermore, the automotive grade Zynq-7000
devices offered by Xilinx R© are based on the same processor [80]. Due to the broadly
use of the Zynq-7000 XC7Z020 device and in order to provide results applicable to
real use-cases, it is selected in this work.

Table 4.1: Features of the Zynq-7000 XC7Z020 processor [81].

Zynq-7000 (Device Code: XC7Z020-CLG484-1)

M
ai
n
pr
oc
es
so
r Processor Core Dual ARM Cortex-A9

Processor Extensions NEON & Single\Double Precision Floating Point
Max. Frequency 667 MHz

L1 Cache 32KB Instruction, 32KB Data per processor
L2 Cache 512KB

On-Chip Memory 256KB
External Memory DDR3, DDR3L, DDR2, LPDDR2

C
o-
pr
oc
es
so
r FPGA Artix-7

Logic Cells 85K
LUT 53,200
FF 106,400

BRAM 140 (4.9Mb)
DSP 220

4.1.2 FPGAs considerations
Different features must be considered when programming FPGAs: programming

language, numerical data types, area or resource cost (understanding it as the
amount of hardware required to obtain the desired functionality) and speed or
throughput (defined as the rate at which the circuit can process data). Although for

33

4. New Generation Embedded Hardware

the application of this thesis a maximum throughput is desired in order to increase
the speed-up of the simulation, a trade-off between area and throughput should be
achieved, especially in cases where the hardware resources of the FPGA are not
sufficient.

With respect to the programming language, FPGAs are programmed in Hardware
Description Languages (HDLs), such as Verilog or VHDL, which is quite different
from the software programming languages. HDL programming limits the use of
FPGAs to developers with a strong knowledge in hardware designs. In order to
increase their popularity, manufacturers have been releasing translation tools which
allows to program FPGAs in C-like languages or Open CL. Nevertheless, hardware
design knowledge is still required in order to guide these automatic-translation tools
into the desired implementation.

Regarding the numerical data types, although FPGAs can support floating-point
calculations, they are oriented for fixed-point operations. The use of floating-point
data involves more resources. Thus, depending on the application, this could be an
issue. For MB dynamics, it is desired to work with floating-point data, since more
precision and range of numbers is available. The evolution of FPGAs is resulting into
devices with more resources, reducing the footprint required for the implementation
of floating-point calculations [7]. Hence, high-precision calculations are becoming
more common in FPGA computing.

Nevertheless, the main disadvantage of FPGAs is their limited hardware resources.
If there are not enough resources for programming an algorithm, it should be
partitioned or under-optimized, resulting in a less efficient implementation. As
explained before, this issue is being mitigated due to the continuous FPGA technology
evolution. There is a huge range of FPGAs with enough capabilities for implementing
different designs.

4.2 Hardware/Software Partitioning
Hardware/Software partitioning is an important stage in the design of embedded

systems and, if well executed, can result in a significant improvement in system
performance [7]. In heterogeneous processors, the code should be partitioned in order
to share the computational load between the main processor and the co-processor.
If an FPGA is available, it can be used to accelerate the most computationally
intensive tasks of a program due to their parallel processing nature. Meanwhile, the
less intensive processes can be implemented in the main processor.

FPGAs are good targets for the implementation of problems which can be
efficiently divided into parallel task. Due to the inherent parallel execution of the
FPGAs, multiple operations can be processed simultaneously to calculate the final
result in a shorter time [7]. In the case of study, the source code of the state
observer plus the code of the MB system is large and involves a high number of
computationally expensive matrix operations.

In order to accelerate a particular task on the FPGA, the code should be
analyzed in order to offload the most demanding tasks into the FPGA. The cost and
performance of the whole system depends on a proper code partitioning [82].

34

4.2 Hardware/Software Partitioning

Traditionally, the process of partitioning a program was carried out manually by
the system designer. In base to experience, the most demanding functions of the
applications and the most suited to be implemented on hardware were offloaded to
the co-processor. More recently, a number of algorithms and techniques have been
developed enabling the partitioning process to be more automatic. Through code
profiling, the most time consuming operations can be identified.

Profiling is a form of program analysis that is used to aid the optimization of a
software application. It is used to measure multiple properties of an application code,
which can later be used to identify the bottlenecks of the system [7]. Once identified,
the bottlenecks can be optimized by rewriting the original software function in order
to program it on an FPGA. In this work, a profiling analysis is executed for the
code of the errorEKF based on a MB vehicle model. In Figure 4.1, the most relevant
results of the profiler are shown.

solve_system

update_time_variant_var

update_bodies_var

time_step 0.27

8.35

33.35

12.44
12.89

34.15

11.06

98.48

Time consumed (%)

Exclusive Samples
Inclusive Samples

Figure 4.1: Profiling summary of a simulation of a full-vehicle MB model
combined with the errorEKF. Only the most time consuming operations are
included.

The main function in order to compute a time step is called time_step(). Its
principal task is to call sequentially each of the child function required to compute a
time step. This is reflected in Figure 4.1, where the percentage of exclusive samples
is quite reduced. Inclusive samples are referred to the overall time spent on the
function, including the time consumed by the child functions. The exclusive samples
are useful to measure the time consumed by the function itself.

The main tasks executed in one time step are the integration of the MB model,
the evaluation of the filter equations and the propagation of the estimations through
the whole set of coordinates (Section 3.3). Three tasks stand out among the rest
in terms of time consuming: update_bodies_var(), update_time_variant_var()
and solve_system(). The other percentage of time_step() is dispersed in several
functions, such as the calculation of the constraint equations and the bi and di terms
among others.

From the function selected, update_bodies_var() is the most time consuming
and, if it is efficiently optimized, it will lead to the highest acceleration. This

35

4. New Generation Embedded Hardware

function is assigned to update the motion of the bodies and joints each time the MB
coordinates are modified. The function update_time_variant_var() computes the
mass matrix and vector of generalized forces of the MB model (Equations 3.44 and
3.45). It is executed each iteration of the MB integrator and for applying the filter
corrections in the forces. The last function considered is solve_system(). It is used
for solving the system of Equation 3.50 in order to get the value of the coordinates
for the next time step. As is shown in Figure 4.1, these functions are self-dependent
and they can be entirely programmed on the FPGA.

There are some differences within functions that should be remarked. In
update_time_variant_var() and update_bodies_var(), the operations performed
are simple and small matrix additions and multiplications. The main cause of the
time consumed by both functions relies on the amount of operations and not on
their complexity. Meanwhile, solve_system() involves a complex mathematical
algorithm for solving system of equations. Thus, the parallelization strategy followed
for each function should be different.

4.3 Hardware Implementations
For implementing a particular operation on the FPGA, the algorithm should be

modified in order to optimize its execution. There cannot be gain in performance by
just switching from a GPP based implementation to an FPGA based implementation
of a given program [83]. As explained in previous Sections, the main advantage of
an FPGA is the high level of code parallelization that can be reached. Due to the
flexibility of FPGAs, almost any algorithm can be optimized with respect to its GPP
implementation. Normally, the most time-consuming tasks in a particular application
are related to the iterative execution of certain operations inside loops. Depending
on the data dependency within loops iterations, two main techniques can be used
to exploit the parallelism: loop unrolling and loop pipelining. The loop unrolling
consists on create multiple copies of the loop body so that each loop can be executed
in parallel. The loop pipelining allows operations in a loop to be implemented in a
concurrent manner, so that the next iteration of the loop can start before the last
operation in the current loop iteration is complete.

In Figure 4.2, a generic loop is taken as example. In Figure 4.2a, the sequential
process of the loop is presented: the iteration i+ i starts right after the iteration i has
finished. If the loop is unrolled (Figure 4.2b) and there is no data dependency, both
iterations can be executed in parallel and all the loop will be computed at the same
time. However, if there is data dependency within iterations, the unroll strategy
cannot be applied, since iteration i+1 should wait for the data computed in iteration
i. This would result in a sequential execution. Meanwhile, the loop pipelining allows
to execute the iteration i+ i as soon as the data required is available, while iteration
i is still computing. As can be seen in Figure 4.2c, this also implies a reduction of
the latency of the loop execution.

36

4.3 Hardware Implementations

CLK

ITER RD CMP WR RD CMP WR

(a) Sequential execution of
two iterations of a generic
loop.

CLK

ITER i RD CMP WR

ITER i+ 1 RD CMP WR

(b) Unroll technique applied
on a generic loop.

CLK

ITER i RD CMP WR

ITER i+ 1 RD CMP WR

(c) Pipeline technique applied
on a generic loop.

Figure 4.2: Illustrative example of unrolling and pipelining a loop, which
operations are read the input data (RD), perform the computations (CMP) and
write the output data (WR).

From the previous example, it can be concluded that the parallelism within
loop iterations is limited by the data dependencies between iterations. In addition,
the number of available hardware resources is also a huge limitation. The unroll
strategy creates several copies of a loop iteration in order to execute them in parallel,
consuming a huge amount of hardware resources. The pipeline technique allows to
use the same chip footprint for different set of data. Therefore, in cases where the
available resources are limiting the implementation, the pipeline technique is the
best alternative for optimizing the loop execution.

From the profiling results, three functions stand among others as the suitable
candidates to be implemented on the FPGA. As each function performs different
task, the strategy followed to obtain an efficient implementation will differ from one
to another. It must be noted that, due to the restrictions of the FPGA programming,
the C++-Eigen library is not valid to be used on the FPGA. Thus, the operations
performed by C++-Eigen in the code that is offloaded to the FPGA must be replaced
manually. The software employed to program each function in the FPGA is provided
by Xilinx R©, the so-called Vivado HLS.

4.3.1 Function update_time_variant_var()

As explained in Section 4.2, this function updates the mass matrix of the system.
The process is divided in two steps: the calculation of the body mass matrices,
following Equation 3.39, and the assembly of each body mass matrix on the global
matrix in a recursive form as indicated in Section 3.2.1.1. This second stage also
involves the terms bi and di from Equations 3.31 and 3.32, which are required for
assembling the mass matrix and the vector of forces as presented in Equations 3.37
and 3.38. Two possible options to implement this function can be derived: the
calculation of the body mass matrices, the assembly of the global mass matrix or
the hole update_time_variant_var() function.

Regarding to the calculation of the body mass matrices, the independence between
them allows to fully parallelize the process. The operations involved are simple,

37

4. New Generation Embedded Hardware

and the code for the evaluation of the mass matrix of a body i is presented in the
algorithm 1.

Algorithm 1: Function to compute the individual mass matrix of the bodies
which compose the MB model.
Input: Mass, position of the center of gravity and inertia tensor with respect

to the center of gravity of each body.
Output: Individual mass matrix of each body.

1 for i = 1 to N do // Being N the number of bodies
2 mass_mati(0...3, 0...3) = massi · I3×3;
3 mass_mati(0...3, 3...6) = (−massi) · r̃gi; // Being r̃g the

equivalent antisymmetric matrix of the vector related to
the position of the center of gravity

4 mass_mati(3...6, 0...3) = massi · r̃gi;
5 mass_mati(3...6, 3...6) = Jgi − (massi · r̃gi · r̃gi);
6 end

Each mass matrix involves four products of a scalar (the mass of the body) and a
square matrix of three rows and three columns, one matrix product, and one matrix
subtraction. In order to compute the mass matrix of a body, the data that needs
to be sent to the FPGA is composed of the mass, center of gravity and the tensor
of inertia with respect to the center of gravity of each body. The output data is
the individual mass matrix of each body, which is a square matrix of six rows and
columns.

For evaluating the implementation of this function, a MB model of a vehicle
which involves 29 bodies, presented in Section 5.2, has been considered. The first
implementation is the code without any modification or directive of parallelization.
This will be useful for comparing the following approaches and evaluate the achieved
performance. The results of this implementation are shown in Table 4.2.

Table 4.2: Summary report of the FPGA implementation for computing the
mass matrices of each body without any optimization.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 4585 2 7 1 6
Read Input data 754 0 0 ≈0 ≈0
Individual Mass Matrices 696 0 7 1 6
Write Output data 3132 0 0 ≈0 ≈0

From the results in Table 4.2, it can be seen that most of the clock cycles of the
implementation are consumed during the reading of the input data and during the
writing of all the mass matrices. Both operations are substantially more costly than

38

4.3 Hardware Implementations

the evaluation of the mass matrices themselves. Due to the lack of optimization, the
amount of consumed resources is almost residual.

In order to optimize the process, different actions can be applied. By default,
the input and output arrays where the data is stored are defined with a single
port memory resource, which limits the read and write ports of the array. If the
evaluation of the mass matrices is performed in parallel, the number of read and
write operations will increase, and the limited number of read and write ports of the
arrays will lead to an inefficient implementation. As a solution to this problem, the
arrays can be partitioned into smaller arrays (implemented as multiple memories)
increasing the number of load and store ports. As a counterpart, the more the arrays
are partitioned, the more resources are needed. Although a full partitioned array can
eliminate the limitations of read and write operations, it could exceed the number of
available resources.

In this particular case, the input and output data have the same size for each
mass matrix calculation. Therefore, the arrays can be partitioned in a factor equal to
the number of bodies. As a consequence, each mass matrix calculation will dispose
of all the data required with independence of the rest of the bodies.

After partitioning the input and output arrays, the parallelization of the code
can be addressed. In a first approach, the parallelization of all the mass matrices
calculations is implemented. For this purpose, a loop unrolling is performed: the
code for the mass matrix calculation of each body is copied a number of times equal
to the number of bodies. The results of this implementations are presented in Table
4.3.

Table 4.3: Summary report of the FPGA implementation for computing the
mass matrices of each body with a full parallelization of the mass matrices
calculation.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 1453 13 197 38 163
Read Input data 377 0 0 ≈0 1
Individual Mass Matrices 24 0 197 38 161
Write Output data 1045 0 0 ≈0 1

With this implementation, the clock cycles required to obtain all the mass matrices
is minimum and equal to the latency of calculating only one mass matrix, since
all are computed in parallel. However, the required DSPs and LUTs exceed the
available since the implementation involves more percentage of both resources than
the 100% and, thus, this option cannot be implemented on the FPGA. To overcome
the resource limitation, the parallelization should be reduced. This can be done
either reducing the number of mass matrices that can be calculated at the same clock
cycle, or pipelining the calculations. Using the loop pipelining, the same section
of hardware can be employed for calculating several mass matrices in a concurrent
manner: before the calculation of one mass matrix is finished, the calculations

39

4. New Generation Embedded Hardware

for other body can start. With this approach, the latency of the mass matrices
calculation can be reduced without an excessive resource demand, although the
parallelization level will not be as optimum as when unrolling the loops. In Table
4.4, the summary of the pipelined implementation is presented.

Table 4.4: Summary report of the FPGA implementation for computing the
mass matrices of each body with a pipeline of the mass matrices calculation.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 1478 20 45 38 74
Read Input data 377 0 0 ≈0 1
Individual Mass Matrices 52 0 45 36 72
Write Output data 1045 0 0 ≈0 1

The loop pipelining has lead to an implementation almost similar in terms of
latency to the full loop unrolling implementation, with a less demand of hardware
resources. Since the latency is almost minimum and the amount of resources required
does not exceed the resources available, this is the implementation selected for
optimizing the function update_time_variant_var() during a simulation of a MB-
based state observer. It can be executed on the FPGA at a frequency of 125
MHz.

However, as introduced above, the function update_time_variant_var() in-
volves more calculations in order to assembly the complete mass matrix of the MB
system. As presented in Table 4.4, there are resources which are not employed.
Furthermore, the pipelining level can be reduced in case of more area is required.
Thus, more operations can be programmed on hardware and the efficiency of the
simulation could be higher. As a counterpart, more data is required and the latency
of the communication will increase, which can result into a reduction of the perfor-
mance. The results for the implementation of the global mass matrix calculation are
presented in Table 4.5, without considering any parallelization.

Table 4.5: Summary report of the FPGA implementation for computing the
mass matrix of the system without any optimization.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 23310 4 291 61 225
Read Input data 630 0 0 ≈0 1
Global Mass Matrix 21993 3 291 61 224
Write Output data 679 0 0 ≈0 ≈0

40

4.3 Hardware Implementations

For implementing the global mass matrix calculation, the input data has been
increased with the terms bi and di from Equations 3.31 and 3.32, since they are
required to assembly the mass matrix of the system. The output data of the
implementation are the non-zero elements of the global mass matrix. The report
from Table 4.5 indicates that the resources required for computing the global mass
matrix of the MB model presented in Section 5.2 are not enough.

As a last alternative, only the assembly of the mass matrix is explored. This task
is more time consuming than the evaluation of the individual mass matrices. Thus,
the benefits of its acceleration are higher. However, this part of the mass matrix
calculation involves more operations and there could be not enough resources on the
FPGA. The assembly of the mass matrix is a recursive procedure, as explained in
Section 3.2, and there are dependencies within bodies. Thus, the pipeline approach
is the best suited to optimize this tasks. For this implementation, the individual
mass matrices are computed in the main processor and they are sent to the FPGA
for their assembly into the global mass matrix. The summary of the implementation
without any optimization is presented in Table 4.6.

Table 4.6: Summary report of the FPGA implementation for assembling the
mass matrix of the system without any optimization.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 25398 8 283 59 218
Read Input data 1297 0 0 ≈0 1
Mass Matrix assembly 23414 8 283 59 218
Write Output data 679 0 0 ≈0 ≈0

From the results of Table 4.6, it can be concluded that there are not enough
resources in the selected FPGA for implementing the assembly of the mass matrix
on it. Therefore, only the evaluation of the individual mass matrices of the bodies of
the model can be implemented on the FPGA.

4.3.2 Function update_bodies_var()

Due to the nature of topological methods for MB modelling, after each integration
of the MB equations, a post-processing step should be made in order to obtain the
variables related to the absolute motion of each joint and body coherently with the
new values of the coordinates. This process is recursive, since the position of a body
depends directly on the position of its previous body on the kinematic chain. As
opposite to the individual mass matrices calculation, there is a data dependency
between iterations. As explained in the beginning of Section 4.3, this means that
the unroll strategy of the function update_time_variant_var() is not adequate for
this particular case, since it would end up in a sequential execution of the function.
Thus, a pipeline strategy seems to be the suitable option for optimizing the function
update_bodies_var().

41

4. New Generation Embedded Hardware

Figure 4.3: Sequence followed in order to calculate the absolute motion of each
joint and body. The process starts in the chassis (root) and is made recursively
through the consecutive joints and bodies (leafs). Each colour represents the
calculations that can be performed in parallel: the last joints and bodies (yellow
path) only can be obtained after solving the previous ones (green and blue).

In Figure 4.3, the recursive procedure is atated following the case of the MB
simulation of a vehicle. In this example, the chassis is the root of the system, as
it is the first body of the chain. Thus, once the motion of the chassis is derived,
the motion of the suspension systems can be started to be calculated (green paths
of Figure 4.3). As the suspensions are independent, they can be solved in parallel.
However, inside each suspension the process is sequential. Therefore, for calculating
the motion of the wheel, which is the last body of the chain, the rest of the bodies
must be calculated. As in the case of the chassis, some bodies can be calculated
in parallel (blue paths of Figure 4.3) and, later, the last bodies and joints can be
obtained (yellow paths of Figure 4.3).

The function update_bodies_var() is based on kinematic relations between
bodies and joints. The variables of each body that must be computed are the
position and velocity of its center of gravity, its angular velocity and its tensor of
inertia with respect to the center of gravity. Regarding the joints, their position must
be calculated and, depending on the type of joint, different variables for representing
the direction of the DOF allowed by the joint should be obtained:

• Revolute joint: a vector representing the direction of the axis of revolution.

• Prismatic joint: a vector in the translational direction of the joint.

• Spherical joint: three vectors defining the rotations made around the joint.

• Floating joint: this joint is employed for defining the chassis, since it represents
the kinematic of free solids and should allow six DOFs. It can be seen as a
combination of an spherical joint which allows the three rotations in the space,
and three prismatic joints, one per each translational DOF. Thus, the direction
of the three vectors for the rotations added to the three translational vectors
should be computed.

42

4.3 Hardware Implementations

The procedure for obtaining these values is explained below, following the example
of a piece of a kinematic chain from a steering system represented in Figure 4.4.

Figure 4.4: Kinematic chain of a steering system in order to illustrate the
calculation of the magnitudes associated to a body and the variables required
to define a joint.

It is assumed that all the magnitudes related to the body i are know, as the
variables defining the joint m. In order to obtain define the motion of the body j
and to determine the position and rotation of the joint n, the position of the joint m
is considered as the origin of the local system of coordinates of the body j. Hence,

rg = rjointm + Aj r̄g (4.1)
Aj = AiAij (4.2)

ωj = ωi + Aj
[
αm βm γm

]
(4.3)

ṙg = ṙjointm + ωj × (rg − rjointm) (4.4)
rjointn = rjointm + Aj r̄jointn (4.5)

ṙjointn = ṙjointm + ωj × (rjointn − rjointm) (4.6)
ujointn = Ajūjointn (4.7)
vjointn = Aj v̄jointn (4.8)
wjointn = Ajw̄jointn (4.9)
u̇jointn = ωj × ujointn (4.10)
v̇jointn = ωj × vjointn (4.11)
ẇjointn = ωj × wjointn (4.12)

where rg and ṙg are the position and velocity of the center of gravity respectively, r̄g
is the position of the center of gravity in the local coordinate system of the body
i, ω is the angular velocity of the body, αn, βn and γn are the relative coordinates
associated to the joint n, ujointn , vjointn , wjointn , ūjointn , v̄jointn and w̄jointn are the
vectors representing the direction of the rotation axis of joint n in global and local
system of coordinates respectively, u̇jointn , v̇jointn and ẇjointn are the first derivatives
with respect to the time of the vectors attached to the joint m, and Aji is the rotation
matrix of the body i with respect to the body j, which expression for a body with a
spherical joint as origin of its local frame corresponds to the rotation matrix derived
from the relation of the Euler angles.

It must be remarked that the procedure for other type of joints is similar, although
terms as the rotation matrix of the body are different. In addition, the amount of
data to be calculated is not the same for all bodies as it depends on the amount of
joints that are related to a certain body.

43

4. New Generation Embedded Hardware

As can be extracted from the equations presented, all the variables related to the
body j must be known prior to compute the variables of the body i. In addition,
the values of the relative coordinates involved in the joint n must be computed
previously, allowing to determine the relative movement of the body i with respect
to the body j. As in the previous implementation, the resources and latencies for
the function without optimizations for the model of Section 5.2 with 29 bodies and
39 joints is presented in Table 4.7. The data streamed to the FPGA is only the full
set of coordinates at position and velocity level, since they are required to start the
calculations. The local values of joints and bodies are fixed parameters in the code
which is programmed on the FPGA.

Table 4.7: Summary report of the FPGA implementation for updating the
motion of each body without any optimization.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 6674 66 1170 259 1215
Read Input data 1229 0 0 ≈0 ≈0
Variables Update 5388 65 1170 259 1214
Write Output data 49 0 0 ≈0 ≈0

The results presented in Table 4.7 show that the calculations for the updating
the motion of all the bodies of a vehicle model is not viable to be implemented on an
FPGA, since the required resources exceed the available considerably. Thus, barely
the calculations referred to a part of the vehicle can be offloaded to the FPGA. At
this point, is interesting to implement a mechanism that is repeated in the model,
in order to use the implementation programmed on the FPGA more than once and
accelerate even more the simulation. Hence, the suspension system is a suitable
candidate, since the topology of the mechanism is almost identical for the four
suspensions in the modeled vehicle. In other vehicles, the suspension system is at
least the same on both sides of the front and rear suspension. Thus, each mechanism
is repeated at least twice and implementing them on the FPGA is still a convenient
approach. The summary for the implementation of a suspension system is shown in
Table 4.8. In this case, not only the values of the relative coordinates are needed
to start the calculations. Since the function is designed to be employed with each
suspension, the input data to the FPGA includes the local values of the joints and
bodies. In addition, the variables reflecting the motion of the chassis are required,
since it is the previous body in the chain.

Without any kind of optimization, the resources required for computing the bodies
of one suspension are close to the maximum resources available. As a consequence,
the possible actions to parallelize the code are limited, as they will increase the
demand of resources. Regarding to the implementation, the first step could be to
partition the arrays where the input and output data is read and written, following
the explanations of the previous implementations. Each body will require a different
amount of input data due to the nature of its base joint, as it has associated one

44

4.3 Hardware Implementations

Table 4.8: Summary report of the FPGA implementation for updating the
motion of a suspension system without any optimization.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 3576 6 86 22 95
Read Input data 88 0 0 ≈0 ≈0
Suspension Variables Update 3194 4 86 21 94
Write Output data 288 0 0 ≈0 ≈0

coordinate per DOF allowed and, therefore, there is not an ideal size for partitioning
the input. The same situation is repeated with the output, as each body can
have different number and types of joints attached, hence the number of variables
computed will not match between bodies. Thus, a full partition of the input and
output data is tested.

Moreover, the data dependencies of the implementation of this function arise if
Equations 4.1-4.12 are analyzed. First, the rotation matrix of the body i must be
computed, requiring Aj to be known. Later, rg, ωi, rjointn and the director vectors
of the joint m can be computed in parallel. In a final step, the terms related to the
velocities can be obtained. Hence, there is a minimum of three sequential steps that
must be followed (Figure 4.5).

CLK

rgi

Ai

ωi

ṙgi

rjointm

ṙjointm

axisjointm

˙axisjointm

rgj

Aj

ωj

ṙgj

rjointn

ṙjointn

axisjointn

˙axisjointn

Figure 4.5: Diagram representing the pipelining process followed for updating
the motion variables of two consecutive bodies, i and j, with their respective
joints, m and n.

45

4. New Generation Embedded Hardware

There is also a data dependency between different bodies, as can be concluded
from the from Equations 4.1-4.12. The use of the unrolling strategy is therefore non
convenient, since the amount of operations that can be executed at the same instant
is reduced. Furthermore, the resources that can be disposed to further parallelization
are scarce. On the other hand, pipelining the code could allow to reduce the clock
cycles required for start the calculations of each body. For example, as soon as the
rotation matrix Aj is computed, the rotation matrix Ai can be calculated and rg,
rjointn , ujointn , vjointn and wjointn can be obtained. The resultant implementation
applying a pipelining to the calculations performed is shown in Table 4.9.

Table 4.9: Summary report of the FPGA implementation for updating the
motion of a suspension system with a full array partitioning of the input and
output arrays and a pipeline of the calculations.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 733 2 66 55 95
Read Input data 176 0 0 ≈0 5
Suspension Variables Update 407 2 66 52 90
Write Output data 144 0 0 3 ≈0

When pipelining the design, the latency of the function is reduced. Furthermore,
the amount of DSP are considerably reduced, while the number of employed FF
increases, considering that now the input and output arrays are partitioned completely.
With the pipelining and partitioning directives, the software is able to reorganize the
code implemented and achieve a better solution in terms of resources and latency.
The achieved FPGA frequency for this implementation is of 125 MHz. This approach
is tested in Section 5.2, where the performance of the implementation is measured
during a simulation.

4.3.3 Function solve_system()

In order to solve the system of equations presented at Equation 3.50, a mathe-
matical algorithm for solving a system of equations from the type Ax = b must be
implemented, where A corresponds to the term derived in Equation 3.53, b is the
residual presented in Equation 3.52 and x are the increments on the MB positions
of the relative coordinates. Solving this kind of systems is a common problem in
more fields than MB simulations and, therefore, there are available on the literature
several studies on which method is more efficient to be implemented on an FPGA.

The most common methods employed are the LU factorization, QR factorization,
Cholesky factorization and Gauss-Jordan (GJ) elimination among others [84]. Algo-
rithms based on decomposition methods such as LU, QR and Cholesky, present a high
complexity for their hardware implementation [85]. Meanwhile, the Gauss-Jordan
elimination is the most parallel approach. Although in software solutions it involves
more arithmetic operations, it is more efficient on parallel processing hardware. The

46

4.3 Hardware Implementations

elimination operations can be performed in parallel without increasing the processing
time [84]. In Table 4.10, the details of the GJ FPGA implementation without any
optimization are presented.

Table 4.10: Summary report of the FPGA implementation for the Gauss-
Jordan algorithm employed during the integration of the equations of motion
without any optimization.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 930247 5 4 2 7
Read Input data 1892 0 0 ≈0 ≈0
Gauss-Jordan 928270 3 4 2 7
Write Output data 85 0 0 ≈0 ≈0

To optimize the design of the Gauss-Jordan algorithm on FPGAs, the implemen-
tation proposed by J.P. David in [86] is selected. In the GJ algorithm, it is required
to perform several divisions. This kind of operations are costly in FPGAs. The
approach proposed in [86] reduces the number of divisions performed. In addition,
the division is replaced by an approximation based on floating-point arithmetic.
Following the details presented in [86], the implementation presented in Table 4.11
is achieved. However, the resources required are higher than the resources available
on the FPGA of the Zynq-7000.

Table 4.11: Summary report of the FPGA implementation for the Gauss-
Jordan algorithm employed during the integration of the equations of motion
following the approach presented in [86].

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 12515 47 156 32 150
Read Input data 1806 0 0 1 2
Gauss-Jordan 10667 32 156 30 147
Write Output data 42 0 0 1 1

In order to obtain a efficient implementation which fits on the FPGA employed
in this thesis, the optimization of the algorithm should be reduced. This approach is
presented in Table 4.12. Although the optimization of this solution is limited by the
resources of the FPGA, it is still much more efficient than the initial implementation
presented in Table 4.10. The solver of equations can be executed at a frequency of
100 MHz in the FPGA of this work.

47

4. New Generation Embedded Hardware

Table 4.12: Summary report of the FPGA implementation for the Gauss-Jordan
algorithm employed during the integration of the equations of motion following
the approach presented in [86] with a partial partitioning of the input/output
arrays.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 18276 31 54 18 95
Read Input data 1806 0 0 1 2
Gauss-Jordan 16428 21 54 16 92
Write Output data 42 0 0 1 1

4.4 Summary
In-vehicle hardware has been evolving in the last years in order to increment the

computational power on-board, satisfying the demand of ADAS and other technolo-
gies. New generation devices are mainly based on heterogeneous processors where
a GPP is combined with a GPU or an FPGA as co-processors. The main purpose
of the co-processors is to optimize the most demanding tasks of the application,
reducing the overall time consumed. This can be achieved thanks to the nature of
the GPUs and FPGAs, where a high level of acceleration can be achieved through
different techniques. This new processors can provide enough computational power
in-vehicle for implementing virtual sensors based on MB models in real time.

In Section 4.1, an overview of the main trends in modern hardware was performed.
From the options available, an heterogeneous processor with an FPGA was selected
for the work of this thesis. As reviewed, the presence of FPGAs in industrial
applications is increasing due to their low energy consumption. Thus, it is of interest
to study the benefits that FPGAs can offer for accelerating MB simulations.

In order to optimally use the FPGA, the code of the state observer based on
a MB vehicle model was profiled. The analysis shows that three functions stand
out as the most time consuming tasks: updating the mass matrices of the model,
updating the variables which represent the motion of the vehicle and solving the
system of equations for determining the increment of the model coordinates each
time step. During Section 4.3, multiple FPGA implementations are studied. From
the examples shown, some guidelines for accelerating MB simulations with FPGAs
were presented. In order to exploit the potential of FPGAs as hardware accelerator,
the data dependencies and parallel opportunities of each tasks should be analyzed.
Later, the final solution should be adapted to the resources available on the FPGA.
As it was shown, a parallel approach offers a significant reduction of computational
load of each function in terms of clock cycles.

In Chapter 5, the implementations proposed in this chapter are tested when
applied to the simulation of MB-based state observers. The benefits of each imple-
mentation in terms of acceleration are also evaluated.

48

Chapter 5

Use Case: Automotive Application

As stated in previous chapters, the goal of this thesis is to provide virtual sensors
based on MB models for in-vehicle applications. The main requisite for such purpose
is to be able to execute the MB model of the vehicle combined with a state estimator
in real time on automotive platforms, which are based on embedded hardware. The
estimations must also reach a high level of accuracy.

During this work, a suitable formulation for efficient MB simulations has been
selected, together with a state estimator which offers accuracy in the estimations
without penalizing excessively the simulation time. Also, a new embedded processor
based on heterogeneous platforms has been selected. This device, from the Zynq-7000
series of Xilinx R©, has an ARM-based main processor combined with an FPGA as
co-processor. It offers an increment in computational capabilities with respect to
classical embedded processors. The techniques and implementations for exploiting
the benefits of FPGAs have also been discussed in Chapter 4.

In this chapter, the results of the MB-based state estimator are presented based
on a MB model of a real vehicle. The sensors included in the simulation are similar
to the ones installed in real vehicles. The virtual measurements obtained during a
simulated maneuver, together with the achieved simulation times are discussed.

5.1 Methodology
The implementations presented in this thesis are evaluated when applied to the

MB model of the vehicle presented in Figure 5.1. It is a rear-wheel drive electric
vehicle with four independent suspension systems, based on a double-wishbone
topology. It is instrumented with multiple sensors, such as a GPS, accelerometers,
gyroscopes, suspension displacement sensors, and wheel angle sensors. Furthermore,
the steering wheel angle and engine torque are also measured.

The observer is designed in a simulation environment in order to perform as
many maneuvers as needed, avoiding the long development time and costs that are
associated with tests in the real world. In this virtual framework, three MB models
are employed.

The first model replaces the physical prototype of the vehicle. It is referred as
real vehicle and it is used as the ground truth. The sensors included in the model are
the same as the sensors installed in the physical prototype. The sensor models are

49

5. Use Case: Automotive Application

Figure 5.1: Picture of the vehicle selected for this work, the SimRod [87].

built from the kinematics of this model. White noise is added to represent the noise
properties of real sensors.

The second model represents the model of the real vehicle. In a real situation,
there would be modeling errors. When building a MB model, usually the geometry
can be accurately determined, but the force models have much more uncertainty.
Since this work is developed in a simulation environment, errors in the force models
of the model must be introduced. From the modeling parameters, the mass and
friction coefficient are parameters prone to vary within maneuvers in real situations.
Thus, the modeling errors are introduced in both parameters. This creates a drift
between the real vehicle and its model similar to the existent in a real application.

The third model is the one that will be executed in combination with the estimator.
It will be named observer. The MB model used for the observer is the same as
the model. The state estimator is supposed to correct the modeling errors with the
information provided by the sensors installed on the real vehicle.

In order to asses the performance of the proposed algorithm, different maneuvers
over a flat ground are tested. The steering angle and engine torque signals are shared
between the real vehicle, the model and the observer. The sensor measurements
gathered from the real vehicle are fed to the observer in order to perform the
required corrections. The results of each simulation, in terms of tire forces and
sensor measurements, are compared. To validate the performance of the observer, the
estimated magnitudes must be similar to their respective values in the real vehicle.
The results of the model are used to show the drift that would have been in the
results if any correction were applied.

As stated in Chapter 4, the target platform employed in this thesis embeds an
ARM processor with an FPGA as co-processor. In order to evaluate the computational
cost of implementing the observer on this platform, simulations with each of the
implementations presented during Section 4.3 are executed. Different time steps are
tested in order to determine the lower time step that can be selected while keeping
real-time execution.

50

5.2 Complete Vehicle Model

5.2 Complete Vehicle Model
The modeling of the vehicle has been accomplished using the MBScoder, presented

in Section 3.2.2. The geometry of the suspension system and steering system were
obtained from a virtual 3D model of the vehicle. In order to represent the vehicle
dynamics with accuracy, not only the MB model of the vehicle is important. Vehicle
dynamics are also highly influenced by the interaction tire-road [88] and, thus, an
accurate tire model should be employed.

5.2.1 Multibody Modeling
Following the approach presented in Section 3.2.1, the MB model of the vehicle

(Figure 5.2) is designed using relative coordinates. Thus, each body is defined with
respect its previous body in a tree-like chain.

The initial body of the chain is the chassis frame, considered as a unique rigid
body. It involves six DOFs: three translations, represented by three Cartesian
coordinates of a point in the front part of the car (x, y, z) and three rotations,
expressed as three Euler angles for the inertial frame of reference (α, β, γ). This
DOFs are grouped into a special type of joint defined as floating joint [58].

Figure 5.2: MB model of the vehicle, showing the floating joint which represents
the DOFs of the chassis frame.

The MB model of the suspension system is presented in Figure 5.3a. Each
suspension has three bodies attached to the chassis by three revolute joints (J1,J2,J5),
involving three angles representing the relative rotation of each suspension’s body
with respect to the chassis. Depending on whether the suspension is steerable or not,
the joints connecting the knuckle to the control arms differ. For the front suspension
system, the joints are spherical (J3,J4), allowing the rotation around the steering axis.
The knuckle (B3) of the rear suspension is connected by revolute joints. This adds a
total of eight angles (three per each spherical joint and one per each revolute joint)
to the set of variables of the MB model. The set spring-damper is represented by a
prismatic joint (J6), which adds one translational DOF. The wheel is represented by
a revolute joint (J8) attached to the knuckle.

51

5. Use Case: Automotive Application

J2

J1

J3

J5

J6

B1

B2

B3

B4

B5

J4J7

J8

(a)

J2

J1

J3

J5

J6

B1

B2

B3

B4

B5

J8

(b)

Figure 5.3: MB model of the front suspension system. The arrows represent the
DOFs allowed by each joint. In 5.3a, the initial MB model is presented. Figure
5.3b shows the resulting MB model for the suspension system after opening the
closed-loops following the approach of the formulation selected in Section 3.2.

As explained in Section 3.2, the closed-loops of the MB model should be opened.
In this case, the spherical joint J4 and the revolute joint J7 are selected (Figure 5.3b).
It should be noted that for opening loops, it is interesting to remove first spherical
joints, since they add only three constraint equations (equal position from both sides
of the chain). Revolute and prismatic joints add five constraint equations (equal
position and director vector of the joint) [58].

The steering system is kinematically guided by the steering input. The steering
wheel angle is converted to a rack displacement, which is represented by a prismatic
joint. The rack displacement is converted into a rotation of the knuckle through
two spherical joints, as can be seen in Figure 5.4a. As in the suspension model, the
steering system forms a closed-loop with the suspension system. The spherical joint
connecting the knuckle with the steering system is removed in order to obtain an
open chain, following the formulation selected in Section 3.2.

(a) (b)

Figure 5.4: MB model of the left side of the steering system. The arrows
represent the DOFs allowed by each joint. In 5.4a, the initial MB model is
presented. Figure 5.4b shows the resulting MB model for the steering system
after opening the closed-loops following the approach of the formulation selected
in Section 3.2.

To summarize, the MB model of the vehicle selected involves a total of 42 variables
representing the motion between 29 bodies. Due to the loops opened in the system,
42 constraint equations (based on closure-loop conditions) are imposed to ensure
that the open-chain model behaves as the real system. Two additional constrain
equations are applied for the kinematic guidance of the steering system.

52

5.2 Complete Vehicle Model

5.2.2 Tire Model
Different types of mathematical tire models have been developed during the last

years, each type for a specific applications depending on complexity and the required
accuracy. As presented in [88], tire models can be classified in,

1. Simple tire models: The vertical behavior consists of a spring-damper model.
The horizontal tire forces are calculated by means of linearization between slip
and resulting forces. These tire models are used for static and quasi-static
vehicle dynamics analysis and in the design of vehicle control systems.

2. Empirical models: The behavior of the tire is based on non-linear mathematical
approximations of tire forces or interpolation of test data. These models are
very accurate and can be used for non-linear vehicle dynamics. However, they
require a huge amount of parameters related with the tire.

3. Physical models: Through physical and geometric parameters easy to obtain,
these models describes the kinematics and dynamics of the tire in detail. Their
application is unlimited, although they can be very complex and, often, they
are tailored for a specific area of application.

4. Finite-element tire models: The tire is modeled by a detailed finite-element
mesh for the complete tire structure including the compressed air. Almost
any physical phenomenon can be taken into account. As a counterpart, the
computational cost is too high for conventional vehicle dynamics analysis,
especially if real-time performance is desired.

In this thesis, the vehicle dynamics are intended to be used together with a
state observer in real-time on a vehicle. A compromise between simplicity and
accuracy should be achieved in order to represent all the dynamic phenomena
without sacrificing real-time performance. Simple tire models do not offer the
accuracy required in this work, since non-linear handling cannot be represented.
Finite-element tire models entail a huge increment of computational cost, which
is already limited by the hardware employed for in-vehicle applications. Both tire
models are therefore discarded.

As an alternative, tire models based on empirical data combined with equations
representing the physical behavior of the tire are used. The Magic Formula, developed
by Pacejka [89–92], is one of the most famous tire model. However, it is based on a
huge amount of parameters, which are difficult and costly to obtain. While the tire
normal behavior can be assumed as a spring-damper system, the horizontal dynamics
are more complex. In [93], the TMeasy is presented as an empirical-physical tire
model for low frequency applications in vehicle dynamics. The number of required
parameters is reduced according to the limited availability and accuracy of the basic
experimental data [93].

5.2.2.1 Normal Tire Forces

The behavior in the normal direction of the tire can be approximated with a
system of the type spring-damper [94]. Hence, it is proportional to the normal tire

53

5. Use Case: Automotive Application

deflection, ξz, and normal velocity of the contact point from the tire, ξ̇z. In Equation
5.1, the expression for obtaining the force is presented.

Fz = kzξz + cz ξ̇z (5.1)

where k and c are the stiffness and damping coefficients of the tire on the normal
direction.

The normal deflection can be obtained through the difference between the un-
loaded wheel radius (including the tire) and the real distance from the wheel centre
to the ground. Its velocity can also be derived from the normal velocity of the contact
point belonging to the wheel. The force obtained is later limited in such a way that
it can only produce compression forces over the road.

5.2.2.2 TMeasy: Generalized Tire Forces

Unlike the normal forces, the tangential tire forces require from more detailed
calculations. In general driving situations, the tire suffers deflections due to the
relative motion between the road and the tire itself, which is known as slip. Hence,
the longitudinal and lateral forces are dependent on their respective slips (Equations
5.2 and 5.3).

sx = −(vx − rDω)
rD|ω|ŝx + vn

(5.2)

sy = −vy
rD|ω|ŝy + vn

(5.3)

where sx and sy are the longitudinal and lateral slips respectively, vx and vy the
longitudinal and lateral contact point velocities, rD the dynamic radius of the wheel,
ω its angular velocity, ŝx and ŝy are two weight coefficients used when both effects,
longitudinal and lateral, are combined. In this work, both weight coefficients are set
to the unit, giving the same relevance to longitudinal and lateral effects. If the wheel
is not rotating, ω = 0 and, therefore, a singularity appears on the slip equations. To
avoid this singularity, vn is added as a small fictitious velocity (≈ 10−15). Both slips
can be combined into the so-called general slip, sg, as in Equation 5.4.

sg =
√
s2
x + s2

y (5.4)

Once the general slip is known, the total tangential tire force, F , can be obtained
through the tire characteristic, which relates the tire forces with the slips. Since the
exact tire characteristic of the tire employed in this work is not available, a linear
approximation was used from typical values presented in the literature [95]. The tire
characteristic is show in Figure 5.5, where µ is the road-tire friction coefficient, Fn is
the normal force to the road, and sg,c is the critical slip.

Hence, from the tire characteristic, the longitudinal and lateral tire forces, Fx
and Fy respectively, can be calculated as,

Fx = F
sx
sg

(5.5)

Fy = F
sy
sg

(5.6)

54

5.2 Complete Vehicle Model

sg,c

µF

sg

F

Figure 5.5: Linearised tire characteristic employed in this thesis.

5.2.2.3 TMeasy: Non-linear First Order Tire Dynamics

The tire forces derived from Equation 5.5 are referred to the steady-state forces.
When the forces vary, the deflection of the tire must be considered. Otherwise,
the slips introduced can lead to unrealistic tire forces, especially when the slips are
high [4]. Determining the tire deflection is the problem addressed by tire models,
such as the TMeasy.

Hirschberg et al. propose in [93] the non-linear first order tire dynamics approxi-
mation presented in Equations 5.7 and 5.8.

Fx(vx + ξ̇x)︸ ︷︷ ︸
FD

x

≈ Fx(vx)︸ ︷︷ ︸
FS

x

+∂Fx
∂vx

ξ̇x (5.7)

Fy(vy + ξ̇y)︸ ︷︷ ︸
FD

y

≈ Fy(vy)︸ ︷︷ ︸
FS

y

+∂Fy
∂vy

ξ̇y (5.8)

where vx and vy are the longitudinal and lateral velocities of the contact point, FD
x

and FD
y are the dynamic tire forces and F S

x and F S
y are the steady-state tire forces.

In order to derive the expressions for the tire deflections, the Equations 5.7 and
5.8 are compared with their respective equations assuming that the tire can be
considered as a spring-damper element, shown in Equations 5.9 and 5.10.

FD
x = kxξx + cxξ̇x (5.9)
FD
y = kyξy + cy ξ̇y (5.10)

where k and c are the stiffness and damping coefficients of the tire on each direction
respectively, F are the tire forces and ξ is the tire deflection, which should be
determined. Hence, comparing the non-linear first order approximation with the
spring-damper force expression yields to the differential Equations 5.11 and 5.12,
which solution are the longitudinal and lateral deflections.(

v∗xdx + ∂F S
x

∂sx

)
ξ̇x = −F

sg
(vx − rDω)− v∗xcxξx (5.11)(

v∗ydy +
∂F S

y

∂sy

)
ξ̇y = −F

sg
vy − v∗ycyξy (5.12)

where v∗x = rD|ω|ŝx + vn, v∗y = rD|ω|ŝy + vn. The longitudinal and lateral deflections
are obtained through the integration of the differential Equations 5.11 and 5.12 each
time step. The solution to both differential equations are can be found in [4].

55

5. Use Case: Automotive Application

5.2.2.4 State observer: Tire Forces Distribution

The state observer presented in Section 3.3 assumes that the required corrections
in forces, ∆Q̂, should be applied on the degrees of freedom of the MB model. In
some mechanisms, this assumption can bring to an accurate solution. In the case of
vehicle dynamics, use-case of study in this thesis, the main forces acting over the
longitudinal and lateral vehicle behavior come from the tires. Applying the force
increments, ∆Q̂, over the chassis could result into undesired tire reactions, which
could lead to inaccurate tire forces estimations. To overcome this issue, it is proposed
to transform the elements of ∆Q̂ related to the chassis into tire forces increments, as
illustrated in Figure 5.6.

∆Qx

∆Qy

∆Qz

∆FRL
∆FFR

∆FFL

∆FRR

∆Qα∆Qβ

∆Qγ

(a)

ξx
ξy

(b)

Figure 5.6: Mapping to the tires of the forces increment applied in the chassis
by the errorEKF.

However, there are multiple tire forces combinations which can produce the
desired effects on the chassis. In this thesis, the selected criteria is to minimize the
tire forces increments. This leads to a least square problem such as,

∆FFL + ∆FFR + ∆FRL + ∆FRR = ∆Q̂xyz (5.13)
rFL ×∆FFL + rFR ×∆FFR + rRL ×∆FRL + rRR ×∆FRR = ∆Q̂αβγ (5.14)

Since the tire forces are related with the tire deformation (Equations 5.9, 5.10,
5.1), it is required to transform tire forces increments obtained into tire deformations.
Projecting each ∆F over the tire axis (Figure 5.6b) results in the required increments
on longitudinal and lateral tire forces for correcting the longitudinal and lateral
dynamic states of the vehicle. Considering that the tire deformation, ξ, is linear,

ξ̂x = ξx + ∆Fx
kx

(5.15)

ξ̂y = ξy + ∆Fy
ky

(5.16)

where ξ is the estimated tire deflection.
As a last step, the force models of the vehicle are updated with the estimated

tire states. Since some terms of ∆Q̂ have been derived into tire forces, the final
correction in forces is obtained after subtracting the resulting tire forces. The terms
related with the longitudinal and lateral displacements, as well as the yaw, are almost
null since they have been distributed to the tires deformation.

56

5.2 Complete Vehicle Model

5.2.3 Sensor Models
The sensors employed in this work were already introduced in Section 5.1. Some

of the measurements, such as the steering wheel angle and engine torque, are inputs
to the MB model. The rest of the sensors, however, are the observations employed
by the filter for deriving the corrections, following Equations 3.64-3.68. Therefore,
they must be modeled in order to obtain the respective measurements from the
relative coordinates employed in the MB modeling. The sensor models are presented
hereafter, together with their Jacobian with respect to zi,żi and z̈i, which are the
variables forming the state vector (Equation 3.57). The Jacobian of each sensor is
required for the filter corrections, as shown in Equation 3.65 and 3.66. The noise of
each sensor is included in the measurement noise matrix of the filer (Section 3.4).

5.2.3.1 GPS Positions

The chassis of the vehicle, as explained in Section 5.2.1, is modeled by using its
Cartesian coordinates and three Euler angles. Since the GPS can be placed in any
part of the chassis frame, a general expression for the measurements is presented in
Equation 5.17.

h(zi, żi, z̈i) = rgps = rch + Achr̄gps (5.17)

where rgps and r̄gps are the absolute and local (with respect to the chassis) position
of the GPS respectively, rch are the Cartesian coordinates of the origin of the chassis,
and Ach is the rotation matrix of the chassis, related with the Euler angles, given by
Equation 5.18.

Ach = AZchA
Y
chA

X
ch

=

 cosγ −sinγ 0
sinγ cosγ 0

0 0 1

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 1 0 0

0 cosα −sinα
0 sinα cosα

 (5.18)

where α, β and γ are the Euler angles around the X, Y and Z axis of the absolute
system frame respectively.

Then, the Jacobian is derived through the partial derivatives of Equation 5.17
with respect to zi,żi and z̈i, as presented in the next Equations.

hz = ∂rgps
∂zi

=
[

0 ... I3
∂(Achr̄gps)

∂α
∂(Achr̄gps)

∂β
∂(Achr̄gps)

∂γ
... 0

]
(5.19)

hż = ∂rgps
∂żi

=
[

0 ... 0 0 0 0 ... 0
]

(5.20)

hz̈ = ∂rgps
∂z̈i

=
[

0 ... 0 0 0 0 ... 0
]

(5.21)

However, since the desired effect of the GPS is to correct only the positions, the
terms of Equation 5.19 related with the Euler angles can be neglected, avoiding also
undesired effects due to additional orientation corrections.

57

5. Use Case: Automotive Application

5.2.3.2 GPS Velocities

In addition to the positions, the GPS provides also accurate information of the
vehicle speed. Velocity measurements are obtained by measuring the frequency of
the signals received from the satellites. These frequencies vary when the relative
velocities between the receiver and the satellites change due to the Doppler effect.
Velocity measurements are usually more accurate than position measurements in
single antenna GPSs.

From the GPS, only the speed measurement in the plane is obtained, together
with the angle of the trajectory with respect to the north. This measurements
can be easily converted to Cartesian coordinates, providing x and y components of
the velocity. In Equation 5.22, the expression for relating the velocity of the GPS
position the velocity of the origin of the chassis, which are part of the state vector,
is presented.

h(zi, żi, z̈i) = ṙgps =
[
ẋch
ẏch

]
+ (ωch × r̄gps)xy (5.22)

being ωch the angular speed of the chassis, expressed in Equation 5.23 for the
sequence of Euler angles selected in Equation 5.18, and (ωch× r̄gps)xy the components
of the velocity of the point due to the angular velocity of the chassis in the XY plane.

ωch =

 α̇cosβcosγ − β̇sinγ
α̇cosβsinγ + β̇cosγ

γ̇ − α̇sinβ

 (5.23)

Deriving Equation 5.22 with respect to zi,żi and z̈i, the Jacobian of the GPS
velocities measurements is obtained.

hz = ∂ṙgps
∂zi

=
[

0 ... 02×3
∂ṙgps

∂α
∂ṙgps

∂β
∂ṙgps

∂γ
... 0

]
(5.24)

hż = ∂ṙgps
∂żi

=
[

0 ... I2 02×1
∂ṙgps

∂α̇
∂ṙgps

∂β̇

∂ṙgps

∂γ̇
... 0

]
(5.25)

hz̈ = ∂ṙgps
∂z̈i

=
[

0 ... 02×3 02×3 02×3 02×3 ... 0
]

(5.26)

5.2.3.3 Accelerometer

The observer considered in this thesis includes accelerations as part of its states.
The acceleration measurements of the chassis are, therefore, important for the
correction of the states. It should be noted that the accelerometers cannot measure
gravity acceleration [96] and its effects are included in every measurement. As the
magnitude and orientation of the gravity are known, some orientation information
can be extracted from the acceleration measurements. This is useful to stabilize the
magnitudes related to the roll and pitch motions [4].

The accelerometer measurements of an arbitrary point of the chassis in where
the accelerometer can be placed are given by Equation 5.27. Note that the gravity
vector, g, is added in order to represent in the sensor model the real behavior of an
accelerometer.

aglobalacc = ach +αch × (racc − rch) + ωch × [ωch × (racc − rch)]− g (5.27)

58

5.2 Complete Vehicle Model

being aacc the acceleration of the point where the accelerometer is placed, ach is
the acceleration of the origin of the chassis (coincident with the respective variables
in the state vector), αch is the angular acceleration of the chassis, and racc is the
position in absolute coordinates of the accelerometer. However, the acceleration
given by the accelerometer is expressed in its local axis. The final expression for the
acceleration measurements is given, therefore, in Equation 5.28.

h(zi, żi, z̈i) = aacc = Achaglobalacc (5.28)

If the axis of the accelerometer are not aligned with axis of the local reference
system of the chassis, an additional multiplication should be made by the rotation
matrix between the accelerometer and the chassis.

The Jacobian terms of the accelerometer with respect to the states are obtained
by partial derivation of Equation 5.28, yielding,

hz = ∂aacc
∂zi

=
[

0 ... 0 ∂aacc

∂α
∂aacc

∂β
∂aacc

∂γ
... 0

]
(5.29)

hż = ∂aacc
∂żi

=
[

0 ... 0 ∂aacc

∂α̇
∂aacc

∂β̇
∂aacc

∂γ̇
... 0

]
(5.30)

hz̈ = ∂aacc
∂z̈i

=
[

0 ... I3
∂aacc

∂α̈
∂aacc

∂β̈
∂aacc

∂γ̈
... 0

]
(5.31)

5.2.3.4 Gyroscope

The gyroscope is a sensor which provides information of the angular rates of
the body where it is installed, which in this case corresponds to the chassis. The
measurements of the gyroscope are equivalent to the angular velocity of the chassis,
presented in Equation 5.23. Therefore,

h(zi, żi, z̈i) = ωgyro = ωch (5.32)

As for the accelerometer, if the axis of the local system frame of the gyroscope are
not aligned with axis of the chassis, a transformation should be applied. The angular
velocity of the chassis should be multiplied by the rotation matrix representing the
orientation of the gyroscope in the chassis. The Jacobian terms for the observations,

hz = ∂ωgyro
∂zi

=
[

0 ... ∂ωgyro

∂α
∂ωgyro

∂β
∂ωgyro

∂γ
... 0

]
(5.33)

hż = ∂ωgyro
∂żi

=
[

0 ... ∂ωgyro

∂α̇
∂ωgyro

∂β̇

∂ωgyro

∂γ̇
... 0

]
(5.34)

hz̈ = ∂ωgyro
∂z̈i

=
[

0 ... 0 0 0 ... 0
]

(5.35)

5.2.3.5 Suspension Displacement

The displacement of each suspension system is measured with wire sensors. These
sensors measure linear movement and displacement through a flexible steel cable.
The cable is rolled inside a drum, where a sensor (such as an encoder) provides a

59

5. Use Case: Automotive Application

proportional output signal. The distance measured by the wire sensor corresponds
with the spring compression, which is also a variable of the MB model.

h(zi, żi, z̈i) =
[
z̄FL z̄FR z̄RL z̄RR

]
(5.36)

where z̄ is the coordinate associated to the suspension deflection.
The Jacobian of the suspension measurements are straightforward to obtain,

hz =
[

0 ... I4 ... 0
]

(5.37)

hż =
[

0 ... 0 ... 0
]

(5.38)

hz̈ =
[

0 ... 0 ... 0
]

(5.39)

5.2.3.6 Wheel Angles

For testing purposes, the studied vehicle is instrumented with wheel-force trans-
ducers which also measures the rotation angle of the wheel. However, they can be
replaced by Hall-effect sensors, for example, which are indeed less expensive. As for
the suspension measurements, the magnitudes gathered by these sensors correspond
directly with the variables employed in the vehicle modeling.

h(zi, żi, z̈i) =
[
ϕFL ϕFR ϕRL ϕRR

]
(5.40)

where ϕ is the coordinate associated to the wheel angle.
The expressions for the Jacobian are trivial to obtain,

hz =
[

0 ... I4 ... 0
]

(5.41)

hż =
[

0 ... 0 ... 0
]

(5.42)

hz̈ =
[

0 ... 0 ... 0
]

(5.43)

5.2.4 Results
The vehicle model presented is combined with the errorEKF introduced in Section

3.3. Prior to implement the observer in the embedded hardware, the stability and
accuracy of the filter should be tested.

The tuning of the covariance matrix of the filer is performed according to Section
3.4. Since it is an iterative process, the terms of the covariance matrix of the
process are derived through multiple simulations in the PC environment, following a
trial-error procedure. The noise of the sensors is determined based on real sensor
characteristics.

The maneuver tested consists on a turn with a constant value of steering wheel
angle and a constant throttle position. The errors introduced in the model in order
to create a drift with respect to the simulation of the real vehicle are in the mass
and tire-road friction coefficient. As discussed in Section 5.1, both parameters are
prone to change on each driving situation. For this test, the mass of the model is set
to 700 kg and the tire-road friction coefficient to 1. The real vehicle has a mass of
600 kg and a tire-road friction coefficient of 0.8.

60

5.2 Complete Vehicle Model

It is also important to select a proper time step for the integration of the MB
simulation, together with a sufficient tolerance. With respect to the time step, lower
values allow to represent with more accuracy all the phenomena that can occur during
a maneuver. In addition, low time steps are equivalent to a higher frequency of virtual
sensor measurements, which is desired in control applications. However, reducing
the time step increases the computational load of the simulation and, thus, real-time
performance can be compromised. Regarding the tolerance of the simulation, since
the MB model is combined with a state estimator, it is less stringent than when the
objective is to accurately forward simulate the vehicle dynamics.

5.2.4.1 Estimation Results

The results of the estimation are presented in this section. First, in order to
illustrate the errors caused by the drift existent between the real vehicle and the
model, the paths followed by each model are presented in Figure 5.7. The position
measurements derived from the GPS model are also included. It can be seen that
the observer tracks the path of the real vehicle, even with the low accuracy of the
GPS measurements.

-5 0 5 10 15 20 25 30 35

X position (m)

-20

-15

-10

-5

0

5

Y
 p

o
s
it
io

n
 (

m
)

Manoeuvre

DT

GPS

RV

OBS

Figure 5.7: Test maneuver performed to test the state observer based on the
complete vehicle model. The paths followed by each model and the GPS sensor
data are represented.

Regarding the states, the measurements obtained from the observer are overlapped
with the sensor data gathered from the real vehicle for correcting the drift. In
addition, the noise of the estimated measurements is reduced with respect to the real
measurements. In Figures 5.8-5.12, the estimated speed, accelerations and angular
rates of the chassis, plus the suspension deflections and wheel angles are compared
with their respective measurements in the real vehicle.

Although the measurements provided by the observer are similar to the real
sensor data, there are some differences. Regarding the lateral acceleration (Figure
5.9), an offset can be appreciated when the vehicle is turning. The observer has
more lateral acceleration than the real vehicle. This is caused by the error in mass:
since the model has 100 kg more than the real vehicle, its accelerations will be higher.
The errorEKF is not able to fully correct the drift derived from the error in mass.

61

5. Use Case: Automotive Application

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

S
p
e
e
d
 (

m
/s

)

GPS speed observation

X
rv

Y
rv

X
obs

Y
obs

Figure 5.8: Comparison of the speeds measured in the maneuver performed to
test the state observer based on the complete vehicle model.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-10

-5

0

5

10

15

20

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Acceleration observation

X
rv

Y
rv

Z
rv

X
obs

Y
obs

Z
obs

Figure 5.9: Comparison of the acceleration measured in the maneuver performed
to test the state observer based on the complete vehicle model.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Gyroscope observation

Roll
rv

Pitch
rv

Yaw
rv

Roll
obs

Pitch
obs

Yaw
obs

Figure 5.10: Comparison of the angular velocities measured in the maneuver
performed to test the state observer based on the complete vehicle model.

62

5.2 Complete Vehicle Model

0 5 10

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FL susp. disp. observation

FL
rv

FL
obs

0 5 10

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FR susp. disp. observation

FR
rv

FR
obs

0 5 10

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

RL susp. disp. observation

RL
rv

RL
obs

0 5 10

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

RR susp. disp. observation

RR
rv

RR
obs

Figure 5.11: Comparison of the suspension deflections measured in the maneu-
ver performed to test the state observer based on the complete vehicle model.
The zero suspension deflection corresponds to a full compression state.

0 5 10

Time (s)

0

50

100

150

200

W
h

e
e

l
a

n
g

le
 (

ra
d

)

FL wheel angle observation

FL
rv

FL
obs

0 5 10

Time (s)

0

50

100

150

200

W
h

e
e

l
a

n
g

le
 (

ra
d

)

FR wheel angle observation

FR
rv

FR
obs

0 5 10

Time (s)

-100

0

100

200

300

W
h

e
e

l
a

n
g

le
 (

ra
d

)

RL wheel angle observation

RL
rv

RL
obs

0 5 10

Time (s)

0

50

100

150

200

W
h

e
e

l
a

n
g

le
 (

ra
d

)

RR wheel angle observation

RR
rv

RR
obs

Figure 5.12: Comparison of the wheel angles measured in the maneuver per-
formed to test the state observer based on the complete vehicle model.

The suspension deflections and wheel angle estimations are presented in Figures
5.11 and 5.12 respectively. In both cases, the observer tracks the measurements from
the real vehicle and, in the case of the suspension deflections, reduces substantially
the noise of the measurements. The effects of the mass error can also be appreciated
in Figures 5.11, where the estimated suspension deflections show that the spring
compression is higher in the observer .

63

5. Use Case: Automotive Application

The results presented with respect to the measurements are promising and show
an accurate correction of the drift presented in the model. However, the interest of
this approach relies on variables that can not be measured through real sensors, such
as the tire forces. From Figure 5.13 to Figure 5.16, the tire forces of each wheel are
presented.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1000

-500

0

500

F
o
rc

e
 (

N
)

FL longitudinal tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1500

-1000

-500

0

500

F
o
rc

e
 (

N
)

FL lateral tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

1000

1500

2000

2500

3000

3500

4000

F
o
rc

e
 (

N
)

FL vertical tire force

DT

OBS

RV

Figure 5.13: Tire forces of the Front-left wheel (FL) wheel estimated by the
state observer based on the complete vehicle model in the tested maneuver.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1000

-500

0

500

F
o
rc

e
 (

N
)

FR longitudinal tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-1500

-1000

-500

0

500

1000

F
o
rc

e
 (

N
)

FR lateral tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

500

1000

1500

2000

2500

3000

F
o
rc

e
 (

N
)

FR vertical tire force

DT

OBS

RV

Figure 5.14: Tire forces of the Front-right wheel (FR) wheel estimated by the
state observer based on the complete vehicle model in the tested maneuver.

64

5.2 Complete Vehicle Model

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-100

0

100

200

300

400

500

600

F
o
rc

e
 (

N
)

RL longitudinal tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-600

-500

-400

-300

-200

-100

0

100

F
o
rc

e
 (

N
)

RL lateral tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

500

1000

1500

2000

2500

3000

F
o
rc

e
 (

N
)

RL vertical tire force

DT

OBS

RV

Figure 5.15: Tire forces of the Rear-left wheel (RL) wheel estimated by the
state observer based on the complete vehicle model in the tested maneuver.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-100

0

100

200

300

400

500

600

F
o
rc

e
 (

N
)

RR longitudinal tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-800

-600

-400

-200

0

200

F
o
rc

e
 (

N
)

RR lateral tire force

DT

OBS

RV

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

500

1000

1500

2000

2500

3000

F
o
rc

e
 (

N
)

RR vertical tire force

DT

OBS

RV

Figure 5.16: Tire forces of the Rear-right wheel (RR) wheel estimated by the
state observer based on the complete vehicle model in the tested maneuver.

65

5. Use Case: Automotive Application

The results in terms of force estimation are even worse in the observer than in
the model. The errorEKF is not capable to correct the errors derived from a different
mass and tire-road friction coefficient. Although the filter should be improved, the
implementation of the state observer based on the modeled vehicle is first addressed.
If real-time execution is not guaranteed with this approach, alternative solutions
should be explored.

The errors in the estimations are also presented from a quantitative point of view
in Table 5.1. Through the Root-mean-square error (RMSE), the predicted values can
be compared with its real value, giving a better insight on the estimations accuracy.
The measurements selected are the position, acceleration and the tire forces in the
RR wheel.

Table 5.1: RMSE measured in the maneuvers for testing the errorEKF combined
with the complete vehicle model.

Root-mean-square error
Magnitude errorEKF Sensor
Position (m) 0.0046 1.8954
X accel. (m/s2) 0.1353 0.4372
Y accel. (m/s2) 0.3625 0.4361
Z accel. (m/s2) 0.2665 0.4496
RR long. tire force (N) 26.12 -
RR lat. tire force (N) 103.01 -
RR vert. tire force (N) 223.95 -

Although the estimations in position and accelerations are more accurate than
the sensor data, the predicted tire forces present a high deviation from their real
value, as concluded from Figure 5.16.

5.2.4.2 Implementation Results

The performance of the presented state observer in terms of computational
efficiency should be tested. If real-time execution is not guaranteed, the application
of the presented approach in real use-cases is not viable.

First, the execution of the state estimator combined with the MB model of the
vehicle is launched in the ARM processor of the Zynq 7000 device. For all the
simulations, the ARM processor runs at its maximum frequency (667 MHz) and in a
bare-metal system, the Xilinx Stand-alone (bare-metal) Environment. Hence, there
are no any other processes running at the same time. Only one core is used and the
code is compiled under an optimization level 2, meaning that the compiler performs
nearly all supported optimizations. The time measurements of this first simulation
is considered as a reference value. Later, each of the hardware implementations
developed in Section 4.3 is programmed on the FPGA. During each simulation, the
ARM is executing all the operations required by the state observer and the MB
model, except from the tasks that are implemented on the FPGA. The results in
terms of time consumed are compared with the reference simulation in order to
evaluate the benefits of each approach.

66

5.3 Simplified Vehicle Model

For this first execution, the initial time step selected is of 4 milliseconds, which
corresponds with virtual sensors with a frequency of 250 Hz. If the simulation
achieves real-time performance with a wide margin, the time step can be reduced.
The results are shown in Table 5.2.

Table 5.2: Summary report of the comparison within the ARM execution of the
vehicle MB model and each of the FPGA implementation proposed in Section
4.3.

Summary Report

Version
Simulation
Time (s)

Time
Step (s)

Elapsed
Time (s)

Average of
Iterations Tolerance

Reference 10 0.004 81.870 9.083 1 · 10−5

Reference 10 0.004 38.284 1.419 1 · 10−3

GJ FPGA 10 0.004 64.957 8.652 1 · 10−5

GJ FPGA 10 0.004 33.459 1.388 1 · 10−3

Partial Mass Matrix FPGA 10 0.004 83.622 9.153 1 · 10−5

Partial Post-Process FPGA 10 0.004 128.009 16.792 1 · 10−5

In all cases, the elapsed time during each simulation is higher than the simulated
time. None of the FPGA implementations tested offers enough acceleration to
achieve real time. The results show that only the Gauss-Jordan implementation
offers a relevant improvement with respect to the simulation on the ARM processor.
The evaluation of the individual mass matrices of the bodies does not lead to any
acceleration, and the final time is slower than the reference. The worst result is
obtained when the post-processing task of each suspension is offloaded to the FPGA.
The problem of the numerical precision of FPGAs, commented in Section 4.1, has a
strong impact when updating the motion of each suspension system on the FPGA.
The simulation requires a higher number of iterations in order to converge each time
step, leading to an increase of the computation time.

Although the FPGA implementation of the Gauss-Jordan algorithm allows to
reduce the computational time of the simulation, it is not enough for achieving
real-time execution. As an alternative, higher time steps can be tested. However, as
presented in Table 5.2, the solution is quite far from real time. The time step should
be highly increased, but at 8 milliseconds the simulation presents convergence issues.
If the tolerance is reduced, the elapsed time is also highly reduced. However, the
simulation is still more than three times slower than real time, and the tolerance is
already high. Hence, additional options for reducing the computational cost of the
simulation should be explored.

5.3 Simplified Vehicle Model
In order to increase the efficiency of the simulation, the vehicle MB model

presented in Section 5.2 is simplified following the approach proposed in [97]. In the
work presented by Cuadrado et al., the vehicle is modeled with one coordinate for

67

5. Use Case: Automotive Application

each DOF, and thus independent coordinates, avoiding the definition of constraint
equations and reducing the computational cost of the simulation. This section
introduces the new MB model developed. With respect to the tire model, the
TMeasy referred in Section 5.2.2 is used and the same equations have been employed.
The sensor models are also the same as the models developed for the previous vehicle
model, presented during Section 5.2.3.

The chassis is modeled with three Cartesian Coordinates (x y z), representing
the translation of the solid, and three Euler angles to describe the orientation of the
chassis frame (α β γ).

Each suspension system is modeled with one coordinate associated to the vertical
suspension deflection, z̄i. As explained in Section 3.2.1, since the modeling of the
suspension system involves closed-loops, the motion of the suspension cannot be
represented by its independent coordinate. To overcome this issue, in [97], the
suspension system is replaced by kinematic tables, where the position, velocity and
acceleration of the knuckle are derived as a function of z̄i. In the case of the front
suspension system, the steering angle is also included as an input in the kinematic
tables.

Finally, the position of each wheel with respect to the knuckle is defined by an
angle around the wheel axis, (ϕFL ϕFR ϕRL ϕRR).

This makes a total of fourteen independent coordinates, which are grouped into
vector z. It must me noted that the steering is not included, since it is an input to
the model and not a coordinate itself.

z =
{
x y z α β γ z̄FL z̄FR z̄RL z̄RR ϕFL ϕFR ϕRL ϕRR

}
(5.44)

With respect to the implementation with the errorEKF, the variables of the state
vector are now the same as the variables which define the MB model. Therefore, the
terms of the transition matrix presented in Equation 3.60 are simpler to obtain: the
matrix RΦ is replaced by the identity matrix.

5.3.1 Suspension system: macro-joint
To obtain the kinematic tables which represent the motion of the whole suspension

system, an off-line kinematic analysis based on the MB model of the suspension is
launched. The values of spring deflection (and steering angle for the front suspension)
vary along the suspension movement range. For each value, the position of the
center of the knuckle is derived. The velocities and accelerations are obtained later
through numerical differentiation of the positions. Terms due to the variation in
time of the steering input have been neglected in the calculation of the velocities
and accelerations of the front knuckles [97].

Due to the particularities of the macro-joints substituting the suspension links,
special calculations should be performed to obtain the positions, velocities and
accelerations of the knuckle [97].

The coordinates of the origin of the knuckle (for knuckle i, with suspension
coordinate z̄FL), rk, are obtained as,

rk = rch + Achr̄k (5.45)

68

5.3 Simplified Vehicle Model

where rch is the vector of coordinates of the origin of the chassis local reference frame,
(x, y, z), Ach is the chassis rotation matrix (Equation 5.18), function of (α, β, γ),
and r̄k is the local position (with respect to the chassis reference frame) of the origin
of the knuckle. This value is obtained from the kinematic table for a value of z̄FL
and a certain steering angle.

At velocity level, the expressions for the velocity of the origin of the knuckle, vk,

vk = vch + ωch × (rk − rch) + Ach
dr̄k
dz̄FL

˙̄zFL (5.46)

where vch is the velocity of the chassis frame and ωch is the chassis angular velocity.
The three components of the derivative of r̄k with respect to z̄FL are tabulated as
function of z̄FL and the steering angle. The knuckle angular velocity, ωk, is,

ωk = ωch + Achω̄k/c (5.47)

being ω̄k/c the angular velocity of the knuckle with respect to the chassis,

ω̄k/c =

 1 0 sinβ̄

0 cosᾱ −sinᾱcosβ̄
0 sinᾱ cosᾱcosβ̄

 dθ̄k
dz̄FL

˙̄zFL (5.48)

where θ̄k are the orientation angles of the knuckle, whose value is also included in
the kinematic tables as a function of z̄FL and the steering angle.

The acceleration of the origin of the knuckle, ak,

ak = ach +αch × (rk − rch) + ωch × [ωch × (rk − rch)]+

2ωch ×Ach
dr̄k
dz̄FL

˙̄zFL + Ach

(
dr̄k
dz̄FL

¨̄zFL + d2r̄k
dz̄2

FL

˙̄z2
FL

) (5.49)

where ach is the acceleration of the chassis frame and αch is the chassis angular
acceleration. The three components of the second derivative of r̄k with respect to
z̄FL are tabulated as function of z̄FL and the steering angle. The knuckle angular
acceleration, αk, is,

αk = αch + Achᾱk/ch + ωch ×Achω̄k/ch (5.50)

being ᾱk/ch the angular acceleration of the knuckle with respect to the chassis,
obtained as the time derivative of ω̄k/ch.

5.3.2 Results
As in Section 5.2.4, the simplified vehicle model presented is combined with

the errorEKF introduced in Section 3.3. Prior to implement the observer in the
embedded hardware, the covariance matrix of the filter is tuned to guarantee the
stability and accuracy of the filter. The noise of the sensors is determined based on
real sensor characteristics. All the MB models of the simulation framework have
been updated to the simplified model. Thus, the modeling errors are still in the

69

5. Use Case: Automotive Application

mass and in the tire-road friction coefficient. This gives a better insight of the filter
performance.

The tested maneuver consists of a turn with a constant value of steering wheel
angle and a constant throttle position, as for the state observer based on the complete
vehicle model. In these tests, the simulated time is increased with respect to Section
5.2.4.1 in order to properly evaluate the filter behavior. The errors introduced in the
model in order to create a drift with respect to the simulation of the real vehicle are
applied in the mass and tire-road friction coefficient. First, the real vehicle has a
mass of 600 kg and a friction coefficient of 0.8, while the model has a mass of 700 kg
and a friction coefficient of 1. This maneuver is referred in the text as Maneuver 1 .
Next, in order to test a more aggressive maneuver, the friction coefficient of the real
vehicle is reduced to 0.6, causing the vehicle to skid while turning. Since it is the
second maneuver, it is referred as Maneuver 2 .

5.3.2.1 Estimation Results

The path followed by each model is presented in Figure 5.17. In Maneuver 1 ,
presented in Figure 5.17a, the trajectory of the real vehicle is similar to the one
described by the model, in spite of the modeling errors. Meanwhile, Maneuver 2 ,
in Figure 5.17b, the trajectory presents noticeable differences. While the model
performs concentric circles, the real vehicle is not able to keep turning due to its
lower tire-road friction coefficient. In every turn, the tire-road friction coefficient
is too low to counteract the tangential forces required by the tire. This causes the
vehicle to skid in a turn of 180◦, with the corresponding loss of velocity.

-15 -10 -5 0 5 10 15 20 25 30 35

X position (m)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Y
 p

o
s
it
io

n
 (

m
)

Manoeuvre 1

DT

GPS

RV

OBS

(a) µ = 0.8

-50 -40 -30 -20 -10 0 10 20 30 40

X position (m)

-50

-40

-30

-20

-10

0

10

20

30

Y
 p

o
s
it
io

n
 (

m
)

Manoeuvre 2

DT

GPS

RV

OBS

(b) µ = 0.6

Figure 5.17: Maneuvers performed to test the errorEKF based on the simplified
vehicle model. The paths followed by each model and the GPS sensor data are
represented.

The measurements from the GPS that are fed to the observer for the corrections
are also represented in Figure 5.17. In both cases, in spite of the dispersion of
the positions measured by the GPS, the errorEKF is able to apply the required
corrections so that the observer tracks the path followed by the real vehicle.

70

5.3 Simplified Vehicle Model

0 10 20 30 40 50 60

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

S
p
e
e
d
 (

m
/s

)

GPS speed observation

X
rv

Y
rv

X
obs

Y
obs

(a) µ = 0.8

0 10 20 30 40 50 60

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

S
p
e
e
d
 (

m
/s

)

GPS speed observation

X
rv

Y
rv

X
obs

Y
obs

(b) µ = 0.6

Figure 5.18: Comparison of the speeds measured in the maneuvers performed
to test the errorEKF based on the simplified vehicle model.

0 10 20 30 40 50 60

Time (s)

-10

-5

0

5

10

15

20

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Acceleration observation

X
rv

Y
rv

Z
rv

X
obs

Y
obs

Z
obs

(a) µ = 0.8

0 10 20 30 40 50 60

Time (s)

-10

-5

0

5

10

15

20

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Acceleration observation

X
rv

Y
rv

Z
rv

X
obs

Y
obs

Z
obs

(b) µ = 0.6

Figure 5.19: Comparison of the accelerations measured in the maneuvers
performed to test the errorEKF based on the simplified vehicle model.

71

5. Use Case: Automotive Application

0 10 20 30 40 50 60

Time (s)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Gyroscope observation

Roll
rv

Pitch
rv

Yaw
rv

Roll
obs

Pitch
obs

Yaw
obs

(a) µ = 0.8

0 10 20 30 40 50 60

Time (s)

-2

-1.5

-1

-0.5

0

0.5

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Gyroscope observation

Roll
rv

Pitch
rv

Yaw
rv

Roll
obs

Pitch
obs

Yaw
obs

(b) µ = 0.6

Figure 5.20: Comparison of the angular velocities of the chassis measured in
the maneuvers performed to test the errorEKF based on the simplified vehicle
model.

The sensor data gathered from the observer present the same trend that the
sensor measurements provided by the real vehicle for the corrections. In addition,
as a result of the errorEKF, the estimated measurements are less noisy than the
measurements in the real vehicle. In Figures 5.18, 5.19, 5.20, 5.21 and 5.22, the
estimated speed, accelerations and angular rates of the chassis, plus the suspension
deflections and wheel angles are compared with their respective measurements in the
real vehicle. It is also interesting to compare the measurements of both maneuvers
in order to notice the effects of the different tire-road friction coefficient.

From the speed estimations, it can be seen how in the Maneuver 2 , there is more
drift between the estimated and the real speed measurements, especially when the
vehicle is about to skid. The same behavior can be observed in the accelerations
and angular rates of the chassis. While the estimations for Maneuver 1 are similar
to the measurements in the real vehicle, in Maneuver 2 there is an important drift
when the vehicle skids. Furthermore, regarding the lateral accelerations in both
maneuvers, the estimated values are higher than the mean value of the measured
accelerations. This shows that the errors in mass and tire-road friction coefficient
are not fully corrected.

Regarding for the suspension deflections and wheel angle estimations, the observer
tracks the measurements from the real vehicle and, in the case of the suspension
deflections, reduces substantially the noise of the measurements. The effects of the
mass error can also be appreciated in Figures 5.21a and 5.21b, where the estimated
suspension deflections show that the spring compression is higher in the observer .

72

5.3 Simplified Vehicle Model

(a) µ = 0.8

(b) µ = 0.6

Figure 5.21: Comparison of the suspension deflections measured in the maneu-
vers performed to test the errorEKF based on the simplified vehicle model.

73

5. Use Case: Automotive Application

(a) µ = 0.8

(b) µ = 0.6

Figure 5.22: Comparison of the wheel angles measured in the maneuvers
performed to test the errorEKF based on the simplified vehicle model.

74

5.3 Simplified Vehicle Model

Similarly to the estimated measurements, the tire forces derived from the observer
present the same shape than the tire forces of the real vehicle. However, the drift due
to the mass and tire-road friction coefficient is not fully corrected. The tire forces of
each wheel for both maneuvers are presented from Figure 5.23 to Figure 5.30.

Figure 5.23: Tire forces of the FL wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.8

Figure 5.24: Tire forces of the FR wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.8

75

5. Use Case: Automotive Application

Figure 5.25: Tire forces of the RL wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.8

Figure 5.26: Tire forces of the RR wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.8

76

5.3 Simplified Vehicle Model

Regarding the Maneuver 1 , the tire forces of the observer are similar to the tire
forces of the model. The drift in tire forces derived from the errors in the mass of
the chassis and the tire-road friction coefficient is not corrected by the errorEKF.

Figure 5.27: Tire forces of the FL wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.6

Figure 5.28: Tire forces of the FR wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.6

77

5. Use Case: Automotive Application

Figure 5.29: Tire forces of the RL wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.6

Figure 5.30: Tire forces of the RR wheel estimated by the errorEKF based on
the simplified vehicle model for the maneuver with µ = 0.6

78

5.3 Simplified Vehicle Model

In Maneuver 2 , the model does not skid due to its higher tire-road friction
coefficient. The drift in the tire forces between the real vehicle and the model is
clearly shown in Figures 5.27-5.30. The observer is able to track the real vehicle
during the skid and, therefore, the shape of the estimated tire forces is similar to
the tire forces of the real vehicle. However, as commented earlier, there is an offset
in the magnitude of the forces derived from the drift in mass and the tire-road
friction coefficient, which affects to the vertical load of the vehicle and the lateral
accelerations. The errorEKF is also not able to fully correct the drift between the
real vehicle and its model in terms of tire forces in this maneuver.

In order to quantify the error obtained, the RMSE for the position, accelerations
and tire forces is presented in Table 5.3. The estimations in positions and accelerations
are compared against the error associated to the accuracy of the sensors employed
for the corrections.

Table 5.3: RMSE measured in the maneuvers for testing the errorEKF combined
with the simplified vehicle model.

Root-mean-square error

Magnitude
Maneuver 1
errorEKF

Maneuver 2
errorEKF Sensor

Position (m) 0.1988 0.4023 1.9075
X accel. (m/s2) 0.1319 0.3018 0.4492
Y accel. (m/s2) 0.7923 1.5429 0.447
Z accel. (m/s2) 0.3496 0.3662 0.4485
RR long. tire force (N) 76.09 165.32 -
RR lat. tire force (N) 237.69 265.58 -
RR vert. tire force (N) 144.25 180.09 -

Comparing the RMSE between maneuvers, it can be seen as the estimations in
Maneuver 1 are more accurate than in Maneuver 2 . Regarding the positions, it
can be seen how the state estimator reduces the error in the GPS measurements
in one order of magnitude, resulting in a more accurate positioning. With respect
to the accelerations, the error in the estimated values is lower than the error in
the measurements except for the lateral acceleration. As seen in Figure 5.19a and
Figure 5.19b, there is an offset in the lateral acceleration due to the modeling errors
introduced which leads to a higher RMSE error. The last value analyzed in terms
of RMSE are the tire forces of the RR wheel. The worst result is obtained for the
lateral tire forces, where the error made in the estimations is close to 30%.

5.3.2.2 Estimation Results: Alternative Observer

Although the errorEKF is capable to reduce the drift between the real vehicle and
its model, the accuracy achieved is not enough in variables such as the tire forces. As
stated in Chapter 2, there is a huge interest on knowing the tire forces on a vehicle.
Since the sensors available for direct measure the forces are expensive, the work of
this thesis is intended to provide accurate tire force estimations, following previous

79

5. Use Case: Automotive Application

works mentioned during Section 2.1. Thus, the design of a new observer is addressed
in this Section.

From what has been presented in Section 5.3.2.1, there is still a drift between the
observer and the real vehicle after applying the corrections of the filter. Regarding to
the tire forces, the response of the observer seems similar to the behavior of the real
vehicle with an offset in the magnitude due to the errors in the mass and tire-road
friction coefficient. This issue can be solved if the uncertainties on both parameters
are reduced. For that purpose, the errorEKF, which is a state and input observer
(Section 3.3) is combined with a parameter estimator.

State-Parameter-Input Observer

The state-parameter-input (SPI) observer designed in this section is based on
a combination of two different Kalman filters: error-state extended Kalman filter
(errorEKF) and the unscented Kalman filter (UKF). While the errorEKF is employed
to estimate the states and inputs of the MB model, the UKF is in charge of parameter
estimation. Even though the EKF has been also employed for parameter estimation,
as commented in Section 2.1, it requires to determine the Jacobian relating the
parameters (such as the mass or tire-road friction coefficient) with the variables
of the MB model. In most models, this Jacobian is complex to determine. Using
the UKF, the Jacobian is not needed and, thus, it reduces the complexity of the
implementation [36] while leading to similar results [25].

As stated in Section 3.1, the UKF increases the computational cost of the
simulation. Therefore, only a reduced set of parameters should be estimated. Most
of the modeling parameters, such as the geometry of the suspension system, remain
constant during the life cycle of the vehicle. Meanwhile, the inertial properties of
the vehicle, such as the mass, can vary depending on the number of passengers or
luggage [21], and the tire-road coefficient can be affected by meteorological conditions
or tire wear. Both parameters play an important role on vehicle dynamics, affecting
the acceleration, braking, handling and comfort [22]. In addition, the errorEKF gives
a poor performance when the errors are in the mass and tire-road friction coefficient.
Hence, the mass and the tire-road friction coefficient are estimated. The observer is
described in the diagram of Figure 5.31.

In a first step, the parameter estimation is addressed through the UKF approach
based on the MB model of the vehicle, whose equations can be found in Section 3.1.
Later the errorEKF executes the state and input estimation based on the MB model
whose parameters have been updated with the estimations of the UKF.

80

5.3 Simplified Vehicle Model

MBS SP

H

+ UKF

MBS
H

+ EKF

+

UKF

errorEKF

MBS inp

-
Sensors +

Parameters
MBS inp MBS output

- MBS errors
Sensors +

Estimation

Figure 5.31: Flow diagram of a time step of the SPI observer presented,
combining the errorEKF with a parameter estimator based on the UKF.

To evaluate the estimations of this new observer, the same maneuvers employed
in Section 5.3.2.1 are simulated. The tests performed are focused on the simplified
vehicle model, since the full vehicle model is quite far from real time.

Results

Following the scheme of Section 5.3.2.1, the path followed by each model is first
presented (Figure 5.32). In both cases, the behavior of the observer is such that it
tracks the trajectory of the real vehicle, in spite of the existing difference between
the real vehicle and its model and the low GPS accuracy.

With respect to the other sensor measurements, after a initial phase of stabiliza-
tion, the observer removes the offset observed in previous results due to the errors in
the parameters. Furthermore, the estimated measurements are again less noisy than
the measurements in the real vehicle. In Figures 5.33, 5.34, 5.35, 5.36 and 5.37, the
estimated speed, accelerations and angular rates of the chassis, plus the suspension
deflections and wheel angles are compared with their respective measurements in the
real vehicle.

81

5. Use Case: Automotive Application

-15 -10 -5 0 5 10 15 20 25 30 35

X position (m)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Y
 p

o
s
it
io

n
 (

m
)

Manoeuvre 1

DT

GPS

RV

OBS

(a) µ = 0.8

-50 -40 -30 -20 -10 0 10 20 30 40

X position (m)

-50

-40

-30

-20

-10

0

10

20

30

Y
 p

o
s
it
io

n
 (

m
)

Manoeuvre 2

DT

GPS

RV

OBS

(b) µ = 0.6

Figure 5.32: Maneuvers performed to test the SPI observer based on the
simplified vehicle model. The paths followed by each model and the GPS sensor
data are represented.

0 20 40 60 80 100 120

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

S
p
e
e
d
 (

m
/s

)

GPS speed observation

X
rv

Y
rv

X
obs

Y
obs

(a) µ = 0.8

0 20 40 60 80 100 120

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

S
p
e
e
d
 (

m
/s

)

GPS speed observation

X
rv

Y
rv

X
obs

Y
obs

(b) µ = 0.6

Figure 5.33: Comparison of the speeds measured in the maneuvers performed
to test the SPI observer based on the simplified vehicle model.

82

5.3 Simplified Vehicle Model

0 20 40 60 80 100 120

Time (s)

-10

-5

0

5

10

15

20

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Acceleration observation

X
rv

Y
rv

Z
rv

X
obs

Y
obs

Z
obs

(a) µ = 0.8

0 20 40 60 80 100 120

Time (s)

-10

-5

0

5

10

15

20

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Acceleration observation

X
rv

Y
rv

Z
rv

X
obs

Y
obs

Z
obs

(b) µ = 0.6

Figure 5.34: Comparison of the accelerations measured in the maneuvers
performed to test the SPI observer based on the simplified vehicle model.

0 20 40 60 80 100 120

Time (s)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Gyroscope observation

Roll
rv

Pitch
rv

Yaw
rv

Roll
obs

Pitch
obs

Yaw
obs

(a) µ = 0.8

0 20 40 60 80 100 120

Time (s)

-2

-1.5

-1

-0.5

0

0.5

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Gyroscope observation

Roll
rv

Pitch
rv

Yaw
rv

Roll
obs

Pitch
obs

Yaw
obs

(b) µ = 0.6

Figure 5.35: Comparison of the angular velocities of the chassis measured
in the maneuvers performed to test the SPI observer based on the simplified
vehicle model.

The speed estimations are as accurate as for the errorEKF. Is in the accelerometer
and gyroscope measurements where the advantages of the parameter estimation are
seen. In both maneuvers, the accelerations measured are around the mean value of
the noisy sensor data from the real vehicle, removing the offset that was present in
the previous results. In the angular rates, the peak value of the yaw rate is now at
the same value in the observer and real vehicle measurements.

With respect to the suspension deflections and wheel angle estimations, the
benefits of the parameter estimation are also shown. The observer tracks the
measurements from the real vehicle and reduces the noise of the signals.

83

5. Use Case: Automotive Application

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FL susp. disp. observation

FL
rv

FL
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FR susp. disp. observation

FR
rv

FR
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

RL susp. disp. observation

RL
rv

RL
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15
D

is
p

la
c
e

m
e

n
t

(m
)

RR susp. disp. observation

RR
rv

RR
obs

(a) µ = 0.8

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FL susp. disp. observation

FL
rv

FL
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FR susp. disp. observation

FR
rv

FR
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

RL susp. disp. observation

RL
rv

RL
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

RR susp. disp. observation

RR
rv

RR
obs

(b) µ = 0.6

Figure 5.36: Comparison of the suspension deflections measured in the maneu-
vers performed to test the SPI observer based on the simplified vehicle model.
The zero suspension deflection corresponds to a full compression state.

84

5.3 Simplified Vehicle Model

0 50 100

Time (s)

-2000

0

2000

4000

6000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

FL wheel angle observation

FL
rv

FL
obs

0 50 100

Time (s)

-6000

-4000

-2000

0

2000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

FR wheel angle observation

FR
rv

FR
obs

0 50 100

Time (s)

-2000

0

2000

4000

6000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

RL wheel angle observation

RL
rv

RL
obs

0 50 100

Time (s)

-6000

-4000

-2000

0

2000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

RR wheel angle observation

RR
rv

RR
obs

(a) µ = 0.8

0 50 100

Time (s)

-1000

0

1000

2000

3000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

FL wheel angle observation

FL
rv

FL
obs

0 50 100

Time (s)

-3000

-2000

-1000

0

1000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

FR wheel angle observation

FR
rv

FR
obs

0 50 100

Time (s)

-1000

0

1000

2000

3000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

RL wheel angle observation

RL
rv

RL
obs

0 50 100

Time (s)

-3000

-2000

-1000

0

1000

W
h
e
e
l
a
n
g
le

 (
ra

d
)

RR wheel angle observation

RR
rv

RR
obs

(b) µ = 0.6

Figure 5.37: Comparison of the wheel angles measured in the maneuvers
performed to test the SPI observer based on the simplified vehicle model.

85

5. Use Case: Automotive Application

The observed improvements when comparing the estimated with the real sensor
measurements are also propagated to the tire forces. With the parameter estimation,
the vertical load of the vehicle is corrected and, thus, the magnitude of the vertical
tire forces is corrected. In addition, the correction of the tire-road friction coefficient
yields into an accurate value of lateral tire forces. The tire forces of each wheel for
both maneuvers are presented from Figure 5.38 to Figure 5.45.

Figure 5.38: Tire forces of the FL wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.8

86

5.3 Simplified Vehicle Model

Figure 5.39: Tire forces of the FR wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.8

Figure 5.40: Tire forces of the RL wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.8

87

5. Use Case: Automotive Application

Figure 5.41: Tire forces of the RR wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.8

Figure 5.42: Tire forces of the FL wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.6

88

5.3 Simplified Vehicle Model

Figure 5.43: Tire forces of the FR wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.6

Figure 5.44: Tire forces of the RL wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.6

89

5. Use Case: Automotive Application

Figure 5.45: Tire forces of the RR wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver with µ = 0.6

Through the RMSE, the estimations of the SPI observer can be compared with
the results obtained through the errorEKF. As in Table 5.3, the RMSE in position,
accelerations and tire forces of the RR wheel are presented in Table 5.4. For the
clarity of the reader, the RMSE in the errorEKF are also included.

Table 5.4: RMSE measured in the maneuvers for testing the SPI observer
combined with the simplified vehicle model.

Root-mean-square error

Magnitude Maneuver 1 Maneuver 2
SPI errorEKF SPI errorEKF

Position (m) 0.2288 0.1988 0.8143 0.4023
X accel. (m/s2) 0.0845 0.1319 0.1197 0.3018
Y accel. (m/s2) 0.4785 0.7923 0.5132 1.5429
Z accel. (m/s2) 0.2678 0.3496 0.2704 0.3662
RR long. tire force (N) 47.81 76.09 49.87 165.32
RR lat. tire force (N) 99.68 237.69 74.46 265.58
RR vert. tire force (N) 127.42 144.25 111.42 180.09

Except from the position, the SPI observer improves the accuracy of the errorEKF.
With respect to the tire forces, the error is highly reduced. However, the SPI observer
requires of more time to achieve a stable state. If the RMSE is calculated from a
time where the filter is stabilized, the errors are reduced, as presented in Table 5.5.

90

5.3 Simplified Vehicle Model

Table 5.5: RMSE measured after stabilization in the maneuvers for testing the
SPI observer combined with the simplified vehicle model.

Root-mean-square error

Magnitude Maneuver 1 Maneuver 2
SPI errorEKF SPI errorEKF

Position (m) 0.2196 0.1988 0.4793 0.4023
X accel. (m/s2) 0.0343 0.1319 0.0634 0.3018
Y accel. (m/s2) 0.1551 0.7923 0.2750 1.5429
Z accel. (m/s2) 0.1022 0.3496 0.1121 0.3662
RR long. tire force (N) 28.27 76.09 28.41 165.32
RR lat. tire force (N) 57.77 237.69 41.27 265.58
RR vert. tire force (N) 79.48 144.25 75.30 180.09

Once that the observer is stabilized, the drift between the model and the real
vehicle is fully corrected. The errors in the acceleration estimation are lower than
the measurements from the accelerometer. Comparing the RMSE between both
observers, it can be seen that the major improvement is on the tire forces estimation.
The error in the estimated tire forces is less than 8% with the SPI observer.

The improvements presented in the estimations are related with the parameter
estimation. The estimated mass and tire-road friction coefficient are shown in Figures
5.46 and 5.47 respectively. In Maneuver 1 , the parameter estimation is smoother
than in Maneuver 2 , since the maneuver is less aggressive.

0 20 40 60 80 100 120

Time (s)

400

450

500

550

600

650

700

750

800

850

900

M
a
s
s
 (

k
g
)

Mass of the chassis frame

Mass
rv

Mass
obs

(a) µ = 0.8

0 20 40 60 80 100 120

Time (s)

400

450

500

550

600

650

700

750

800

850

900

M
a
s
s
 (

k
g
)

Mass of the chassis frame

Mass
rv

Mass
obs

(b) µ = 0.6

Figure 5.46: Estimated mass of the chassis in the maneuvers performed to test
the SPI observer based on the simplified vehicle model.

91

5. Use Case: Automotive Application

0 20 40 60 80 100 120

Time (s)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

µ
 (

-)

Friction coefficient (µ)

µ
rv

µ
obs

(a) µ = 0.8

0 20 40 60 80 100 120

Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ
 (

-)

Friction coefficient (µ)

µ
rv

µ
obs

(b) µ = 0.6

Figure 5.47: Estimated tire-road friction coefficient in the maneuvers performed
to test the SPI observer based on the simplified vehicle model.

Additional maneuver

In order to test the new filter in terms of stability, an additional maneuver,
referred as Maneuver 3 , is presented. While the mass of the chassis usually remains
constant during a maneuver (the number of passengers or luggage does not change
until the vehicle stops), the tire-road friction coefficient is susceptible to change due
to climatological conditions or changes in the pavement. Thus, the turning maneuver
of the previous sections is modified in such a way that the tire-road friction coefficient
is modified during the maneuver. Initially, it is set at 0.8. After 60 seconds, it is
reduced to 0.6. As a reminder, the tire-road friction coefficient of the model is 1, and
its mass is 100 kg higher than in the real vehicle.

In order to represent the performed maneuver, the trajectories of each model are
shown in Figure 5.48. As in the previous maneuvers, the observer corrects the drift
in the model and tracks the path followed by the real vehicle.

-60 -50 -40 -30 -20 -10 0 10 20 30 40

X position (m)

-50

-40

-30

-20

-10

0

10

20

30

Y
 p

o
s
it
io

n
 (

m
)

Manoeuvre 3

DT

GPS

RV

OBS

Figure 5.48: Additional maneuver performed to test the SPI observer based on
the simplified vehicle model. The paths followed by each model and the GPS
sensor data are represented.

92

5.3 Simplified Vehicle Model

With respect to the sensor measurements, the behavior is similar to the previous
maneuvers. The observer tracks with accuracy and low sensor noise the sensor data
obtained from the real vehicle.

0 20 40 60 80 100 120

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

S
p
e
e
d
 (

m
/s

)

GPS speed observation

X
rv

Y
rv

X
obs

Y
obs

Figure 5.49: Comparison of the speeds measured in the maneuver performed
to test the SPI observer based on the complete vehicle model under changes in
the friction coefficient.

0 20 40 60 80 100 120

Time (s)

-10

-5

0

5

10

15

20

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Acceleration observation

X
rv

Y
rv

Z
rv

X
obs

Y
obs

Z
obs

Figure 5.50: Comparison of the acceleration measured in the maneuver per-
formed to test the SPI observer based on the complete vehicle model under
changes in the friction coefficient.

93

5. Use Case: Automotive Application

0 20 40 60 80 100 120

Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Gyroscope observation

Roll
rv

Pitch
rv

Yaw
rv

Roll
obs

Pitch
obs

Yaw
obs

Figure 5.51: Comparison of the angular velocities measured in the maneuver
performed to test the SPI observer based on the complete vehicle model under
changes in the friction coefficient.

As opposite from the previous maneuvers, during the first 40 seconds of the
simulation, there are high oscillations in the measurements from the observer ,
specially in the lateral acceleration. This oscillations are later reduced when the
tire-road friction coefficient changes, resulting in better accuracy. This behavior
is due to the tuning of the covariance matrix. Each maneuver has its optimal
configuration for the covariance matrix. Maneuver 3 can be seen as a combination
of the Maneuver 1 and Maneuver 2 and, therefore, a trade-off was achieved for the
noises of the covariance matrix. The tuning was also performed looking for a quick
reaction to changes in the tire-road friction coefficient. It should be noted that the
tuning of the covariance matrix is now based on a trial-error procedure. In order to
increase the robustness of the estimator, alternative methods should be considered.

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FL susp. disp. observation

FL
rv

FL
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

FR susp. disp. observation

FR
rv

FR
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

RL susp. disp. observation

RL
rv

RL
obs

0 50 100

Time (s)

-0.35

-0.3

-0.25

-0.2

-0.15

D
is

p
la

c
e

m
e

n
t

(m
)

RR susp. disp. observation

RR
rv

RR
obs

Figure 5.52: Comparison of the suspension deflections measured in the maneu-
ver performed to test the SPI observer based on the complete vehicle model
under changes in the friction coefficient.

94

5.3 Simplified Vehicle Model

The aforementioned oscillations can also be appreciated in the suspension deflec-
tions, shown in Figure 5.52. The rest of the simulation, the estimated deflections show
less noise than the data measured in the real vehicle. The wheel angles estimations
(Figure 5.53) are equal to the real vehicle measurements.

0 50 100

Time (s)

0

1000

2000

3000

4000

W
h

e
e

l
a

n
g

le
 (

ra
d

)

FL wheel angle observation

FL
rv

FL
obs

0 50 100

Time (s)

-3000

-2000

-1000

0

1000

W
h

e
e

l
a

n
g

le
 (

ra
d

)

FR wheel angle observation

FR
rv

FR
obs

0 50 100

Time (s)

0

1000

2000

3000

4000

W
h

e
e

l
a

n
g

le
 (

ra
d

)

RL wheel angle observation

RL
rv

RL
obs

0 50 100

Time (s)

-4000

-2000

0

2000

W
h

e
e

l
a

n
g

le
 (

ra
d

)

RR wheel angle observation

RR
rv

RR
obs

Figure 5.53: Comparison of the wheel angles measured in the maneuver per-
formed to test the SPI observer based on the complete vehicle model under
changes in the friction coefficient.

In Figures 5.54-5.57, the tire forces are presented. As for the acceleration
measurements, an undesirable oscillation is observed in the first seconds of the
maneuver. At the expenses of these oscillations, the estimation of the forces is quite
fast when the tire-road friction coefficient changes. This quick response is useful
specially for control purposes, so the proper actions can be executed in order to avoid
the vehicle to skid and guarantee the safety of the passengers.

95

5. Use Case: Automotive Application

Figure 5.54: Tire forces of the FL wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver under changes in the tire-road
friction coefficient.

Figure 5.55: Tire forces of the FR wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver under changes in the tire-road
friction coefficient.

96

5.3 Simplified Vehicle Model

Figure 5.56: Tire forces of the RL wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver under changes in the tire-road
friction coefficient.

Figure 5.57: Tire forces of the RR wheel estimated by the SPI observer based
on the simplified vehicle model for the maneuver under changes in the tire-road
friction coefficient.

97

5. Use Case: Automotive Application

The effect of the covariance noises is also observed on the parameter estimation.
The tire-road friction coefficient is tuned in such a way that the filter can increase or
reduce its value faster than in the previous maneuvers. As a counterpart, the noise
of the coefficient is increased. The mass and tire-road friction coefficient estimation
are shown in Figures 5.58a and 5.58b respectively.

0 20 40 60 80 100 120

Time (s)

400

450

500

550

600

650

700

750

800

850

900

M
a
s
s
 (

k
g
)

Mass of the chassis frame

Mass
rv

Mass
obs

(a) Mass of the chassis.

0 20 40 60 80 100 120

Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

µ
 (

-)

Friction coefficient (µ)

µ
rv

µ
obs

(b) Tire-road friction coefficient.

Figure 5.58: Estimated parameters in the maneuver under changes in the
tire-road friction coefficient.

As in previous maneuvers, the RMSE is calculated for the position, acceleration
and tire forces of the RR wheel. The errors are presented in Table 5.6.

Table 5.6: RMSE measured in the maneuver under changes in the tire-road
friction coefficient for testing the SPI observer combined with the simplified
vehicle model.

Root-mean-square error
Magnitude SPI SPI (µ = 0.8) SPI (µ = 0.6) Sensor
Position (m) 0.7614 0.5565 0.9218 2.0812
X accel. (m/s2) 0.1382 0.1456 0.1304 0.4492
Y accel. (m/s2) 0.6062 0.6279 0.5837 0.4470
Z accel. (m/s2) 0.2677 0.3535 0.1354 0.4485
RR long. tire force (N) 51.39 55.63 46.77 -
RR lat. tire force (N) 87.51 108.75 59.07 -
RR vert. tire force (N) 104.59 117.78 89.48 -

In Maneuver 3 , the RMSE is higher than in Maneuver 1 and Maneuver 2 . As
explained above, the tuning of the covariance matrix for Maneuver 3 was made
in order to achieve a trade off between Maneuver 1 and Maneuver 2 . Hence, the
achieved results cannot offer the same level of accuracy. However, regarding the tire
forces, the errors are around 15% in the lateral force, while in the longitudinal and
vertical forces is about 10%. If the RMSE is calculated before and after the change
in the tire-road friction coefficient, it can be seen that the errors with a tire-road

98

5.3 Simplified Vehicle Model

friction coefficient of 0.8 are higher than when the tire-road friction coefficient is
reduced. When the tire-road friction coefficient is of 0.6, the errors in the estimated
tire forces are less than 10%.

5.3.2.3 Implementation Results

Following the tests performed in Section 5.2.4.2, the implementation of the
observer proposed based on the simplified vehicle model is addressed. Since the
model has change, the procedure presented in Section 4.3 is followed in order to
accelerate the simulation when the simplified vehicle model is used.

The first step is to profile the code in order to detect the bottlenecks of the
simulation. The most time consuming functions are presented in Figure 5.59. The
profiling has been made for the two observers implemented in this work.

solve_system

update_time_variant_var

update_bodies_var

time_step 0.12

21.36

12.03

16.91
17.31

14.89

24.21

94.22

Time consumed (%)

Exclusive Samples
Inclusive Samples

(a) errorEKF

solve_system

update_time_variant_var

update_bodies_var

time_step 8 · 10−2

24.78

15.35

15.87
16.22

16.39

27.63

91.39

Time consumed (%)

Exclusive Samples
Inclusive Samples

(b) SPI observer.

Figure 5.59: Profiling summary of a simulation of the simplified vehicle MB
model combined with the errorEKF and the SPI observer. Only the most time
consuming operations are included.

As for the full vehicle model, the most time consuming tasks are the func-
tions update_bodies_var(), update_time_variant_var() and solve_system().
In this case, due to change of the model size, the percentages are different. The
function update_time_variant_var() is the most time consuming and it could lead
to the highest acceleration.

99

5. Use Case: Automotive Application

The implementation of each function is addressed following the guidelines pre-
sented in 4.3. It should be remarked that, although the MB model size has been
reduced, the functions update_bodies_var() and update_time_variant_var()
could not be fully implemented in the FPGA. From the results of Table 5.2, it
was concluded that the partial implementation of both functions did not offer any
acceleration. Thus, only the GJ implementation will be used for accelerating the
observer based on the simplified MB model. The summary of each implementation
is presented in Tables 5.7, 5.8 and 5.9. The GJ algorithm can be executed in the
FPGA at a frequency of 120 MHz.

Table 5.7: Summary report of the FPGA implementation for computing the
global mass matrix in the simplified vehicle model.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 3145 2 92 46 119
Read Input data 98 0 0 ≈0 ≈0
Global Mass Matrix 2585 1 92 45 118
Write Output data 455 0 0 ≈0 ≈0

Table 5.8: Summary report of the FPGA implementation for the post-processing
operations in the simplified vehicle model.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 4442 10 79 20 125
Read Input data 95 0 0 ≈0 3
Variables Update 3907 9 79 19 109
Write Output data 432 0 0 ≈0 13

Table 5.9: Summary report of the FPGA implementation of the GJ algorithm
in the simplified vehicle model.

Summary Report

Function Latency
(clock cycles)

Resources (%)
BRAM DSP FF LUT

Total function 1704 ≈0 54 17 56
Read Input data 210 0 0 ≈0 ≈0
Gauss-Jordan 1458 ≈0 54 16 55
Write Output data 14 0 0 ≈0 ≈0

100

5.3 Simplified Vehicle Model

As stated during Section 5.3.2.2, the SPI estimator offers a higher level of accuracy
than the errorEKF. However, it implies a higher computational costs due to the UKF
employed for the parameter estimation. Therefore, both approaches are implemented
on the Zynq-7000 in order to compare their performance. The methodology for
evaluating the observers is similar as the one followed in Section 5.2.4.2.

A simulation of the same maneuver under each observer is launched on the
ARM processor. After that, the simulations where the system of Equation 3.33
is solved through the Gauss-Jordan FPGA implementation are executed. Since
three maneuvers have been presented in this Section, Maneuver 2 is selected for the
implementation tests, as it demands more iterations to converge. In a first test, the
time step proposed is 4 milliseconds. The results are shown in Table 5.10.

Table 5.10: Summary report of the comparison within the ARM execution of
both observers based on the simplified vehicle model and the Gauss-Jordan
FPGA implementation proposed in Section 4.3. The simulation is executed
with a time step of 4 millisecond and with a tolerance for the integration of
1 · 10−5

Summary Report

Version
Simulation
Time (s)

Time
Step (s)

Elapsed
Time (s)

Average of
Iterations Tolerance

Reference (errorEKF) 10 0.004 7.673 1.554 1 · 10−5

Reference (SPI-observer) 10 0.004 21.114 1.512 1 · 10−5

GJ FPGA (errorEKF) 10 0.004 7.465 1.511 1 · 10−5

GJ FPGA (SPI-observer) 10 0.004 20.158 1.544 1 · 10−5

From the results presented in Table 5.10, it can be concluded that the errorEKF
combined with the simplified MB model runs in real time even without the FPGA for
a time step of 4 milliseconds. Meanwhile, the SPI observer requires more than double
the time for computing the simulation. With respect to the FPGA implementation,
the acceleration achieved in both cases is less than 5%, which is a low factor compared
to the acceleration appreciated with the full vehicle model. As explained in Section
4.3, this behavior is as expected, since the potential of the FPGA is higher when the
system involves more variables.

With the approach presented, the errorEKF provides virtual sensor measure-
ments at 250 Hz. However, it is interesting for automotive applications to provide
estimations at a higher frequency, such as 1000 Hz, which corresponds with an
integration time step of 1 milliseconds. The margin from real-time execution for the
simulation with a time step of 4 milliseconds is low and, thus, it is not expected to
achieve real-time execution with a time step of 1 millisecond. However, in order to
measure the increment on computational cost related with the time step reduction,
simulations with a time step of 1 milliseconds are launched. Furthermore, the SPI
observer is also simulated with a time step of 8 milliseconds in order to evaluate its
performance. The results are shown in Table 5.11.

101

5. Use Case: Automotive Application

Table 5.11: Summary report of the comparison within the ARM execution of
both observers based on the simplified vehicle model and the Gauss-Jordan
FPGA implementation proposed in Section 4.3 with additional time steps.

Summary Report

Version
Simulation
Time (s)

Time
Step (s)

Elapsed
Time (s)

Average of
Iterations Tolerance

Reference (errorEKF) 10 0.001 30.054 1.318 1 · 10−5

Reference (SPI-observer) 10 0.008 13.456 3.055 1 · 10−5

Reference (SPI-observer) 10 0.008 9.381 1.046 2 · 10−4

GJ FPGA (errorEKF) 10 0.001 29.330 1.299 1 · 10−5

GJ FPGA (SPI-observer) 10 0.008 12.843 3.134 1 · 10−5

GJ FPGA (SPI-observer) 10 0.008 8.957 1.047 2 · 10−4

As presented in Table 5.11, it can be noticed that the errorEKF is far from
reaching real-time execution if the simulation is executed with a time step of 1
millisecond, neither with the FPGA implementation of the Gauss-Jordan algorithm.
With respect to the SPI observer, increasing the time step to 8 milliseconds reduced
the computational cost of the simulation. However, the simulation was still not
reaching real-time execution. In this case, if the tolerance of the integration is
reduced one order of magnitude, the SPI observer can run in real time. The effects
of reducing the tolerance can be seen in Figure 5.60. Although the mean value of
the tire forces can be approximated to the target value, the noise of the estimations
is incremented.

Figure 5.60: Comparison of the tire forces estimated through the SPI observer
with different time steps. The results represent the tire forces of the RL wheel
during a cycle of the maneuver (from skid to skid).

Through the RMSE calculation, the error derived from increasing the time step
can be quantified. In Table 5.12, the error in the tire forces of the RR wheel are
presented for the SPI observer executed with a time step 4 milliseconds and 8
milliseconds, together with the estimations of the errorEKF. The RMSE is calculated
once that the SPI observer is stabilized.

102

5.4 FMI 2.0 Standard

Table 5.12: RMSE measured in Maneuver 2 for testing the SPI observer
combined with the simplified vehicle model with different time steps.

Root-mean-square error

Magnitude
SPI

(∆t = 4ms)
SPI

(∆t = 8ms)
errorEKF
(∆t = 4ms)

RR long. tire force (N) 28.41 57.12 165.32
RR lat. tire force (N) 41.27 63.06 265.58
RR vert. tire force (N) 75.30 135.73 180.09

The RMSE shows that, although the errors increase with respect to the SPI
observations at a time step of 4 milliseconds, the estimated tire forces are still more
accurate than the estimations obtained with the errorEKF.

5.4 FMI 2.0 Standard
In order to reduce the complexity of the in-vehicle implementation of the presented

observer, the framework has been adapted to the FMI 2.0 Standard. The standard
defines an interface to exchange models and it is supported by several commercial
tools.

With the actual framework, the module of the observer can be seen as a black-box
for future users. In the standard, a model is referred as Functional Mock-up Unit
(FMU). Through a configuration file, also defined by the standard, the features and
options of the observer are described, as the inputs and outputs of the model. In this
approach, the required inputs are the sensor measurements, i.e GPS position and
speed, accelerometer and gyroscope data, suspension displacement measurements,
wheel angle data and the driver actions (steering, throttle and brake signals). The
outputs can be configured depending on the user preferences.

The standard considers two use-cases for the FMU: model exchange and co-
simulation. The main difference is that in model exchange, the integration process is
performed outside the FMU. In the observer, the integration is already included in
the FMU. The framework build by the user has to control the simulation time and
sensor interface, and call the FMU each time step.

The FMI 2.0 Standard is widely used in the industry. Adapting the presented
observer to the standard reduces the work required for the introduction of the
approach in a real virtual sensing framework.

5.5 Summary
Virtual sensors increase the information available for a system, offering better

insight of its behavior. In automotive applications, variables such as tire forces are
of high interest. However, the sensor available in the market for measuring them is
costly and, therefore, is only employed on particular tests during the design phase.

103

https://fmi-standard.org/

5. Use Case: Automotive Application

With the objective of providing accurate virtual sensors to the automotive industry,
in this chapter a MB model of a real vehicle is developed using an efficient MB
formulation. Combining this model with a state observer, the tire forces, together
with more variables are estimated. However, the estimation of the tire forces is
not satisfactory. Furthermore, the proposed approach is far from reaching real-time
execution when the simulation is launched on new automotive hardware.

As an alternative, the suspension system of the vehicle modeled is simplified:
their kinematics are simulated off-line and introduced into the model through look-up
tables, as proposed in [97]. Although the combination of this new MB model with
the errorEKF increases the efficiency of the simulation enough to achieve real time,
the accuracy of the estimated magnitudes could be improved.

Based on the errorEKF, a new filter is developed and presented including param-
eter estimation. Through a UKF, parameters such as the mass of the chassis and
the tire-road friction coefficient are estimated. With this new approach, the errors
appearing in the results of the previous state observer are removed. The new filter,
thus, provides accurate tire force estimation even on aggressive maneuvers. However,
the parameter estimation has associated an increment of computational cost. Hence,
real-time performance is only achieved with a large time step and a low tolerance of
the simulation, which reduces the accuracy of the estimations.

It should be remarked that the platform employed in this work, the Zynq-7000
ZC702, has the basic heterogeneous processor from Xilinx R©. There are on the market
more powerful devices that offer a higher performance. Testing the presented observer
in other devices could result in a better performance.

To summarize, two of the presented approaches achieved real-time execution:
errorEKF based on the simplified vehicle model with a time step of 4 milliseconds,
and the SPI observer based on the simplified vehicle model with a time step of 8
milliseconds. From both solutions, although the errorEKF provides estimations at
250 Hz, its estimated tire forces are quite less accurate than with the SPI observer.
Hence, although the frequency of the virtual sensor is of 125 Hz, the tire forces can
be estimated in-vehicle with a approximate 10% of error.

104

Chapter 6

Conclusions and Future Work

This chapter summarizes the work developed during this thesis and presents the
conclusions. In addition, the future work is also discussed.

6.1 Conclusions
The use of MB simulation techniques in state estimation can contribute to improve

the quality of the estimations. Through the MB approach, a system can be modeled
with a high level of detail. This means that, in the case of automotive applications
for example, estimations in many different type of maneuvers can be accurately
performed. In most cases, analytical approaches have limitations when applied in
maneuvers with high non-linearities. Through a MB approach, this issue can be
overcome. In addition, more information can be made available when using MB
models.

The main disadvantage of using MB models for state estimation in automotive
applications is related to their high computational cost. The estimations, or virtual
sensor measurements, must also be performed in real time on embedded hardware,
where the computational power is limited. In-vehicle hardware must deal with com-
plex requisites, such as power consumption, reducing its computational capabilities.
Hence, state observers based on analytical models were commonly used.

As the technology evolves, new generation devices are being developed. Thanks
to heterogeneous processors, the computational power of embedded platforms is
increasing, while keeping low energy consumption. In this new trend, ARM processors
combined with an FPGA as co-processor are an interesting option: the FPGA allows
achieving high level of code acceleration with flexibility and low demand of energy.
This new devices give an opportunity for implementing virtual sensors based on MB
dynamics on automotive hardware.

For that purpose, the use of FPGAs for accelerating MB simulations was studied
in this thesis. From the presented results, it can be concluded that FPGAs can
accelerate MB simulations. During this work, multiple conclusions were extracted.
First, due to the limited resources of an FPGA, only the most time consuming tasks
of the simulation should be offloaded to it. Since FPGAs are hardware devices,
the algorithm should be modified in order to exploit the advantages of FPGAs in
terms of parallelization, for what a basic knowledge in hardware design is required.

105

6. Conclusions and Future Work

Through this thesis, guidelines for a proper use of FPGAs were presented. The
developed designs can be taken as reference for future implementations. Finally, it
should be noted that the FPGA should be selected regarding the size of the MB
model. Otherwise, the lack of resources would result in a poor acceleration. It was
seen that the size of the model is also relevant. Models with a high size or repeated
subsystems can lead to higher accelerations.

Regarding the virtual sensors, a new Dual Kalman filter for state, parameter and
input estimation based on MB models was developed. It offers accurate estimations
and it can be executed in real time on automotive hardware. Several conclusions
can be derived. First, the cost of simulating a complete MB vehicle model demands
much more computational capabilities than available on the target hardware of this
thesis. Thus, it is suggested to model the vehicle in independent coordinates, as
proposed in [97], replacing the suspension system for kinematic tables. This approach
reduces significantly the computational cost while keeping all the advantages of MB
dynamics.

For generating the code of the MB model, the MBScoder was employed. It is an
automatic source-code generation tool. It allows to automatically create the required
code for simulating MB model, reducing the programming time. This thesis has
contributed to the development of the MBScoder with a module for using relative
coordinates based on a semi-recursive formulation.

Initially, the errorEKF with force estimations was selected for the virtual sensing
approach. This filter performs corrections in position, velocities and accelerations,
allowing to estimate forces. It was previously tested in planar mechanisms showing
accurate results. In this work, its application on a vehicle is addressed, showing that
some modifications should be made. The original version assumes that the correction
in forces is applied over the DOFs. However, the errors at the input forces must be
added to the vehicle through the tires and not directly on the DOFs. Since there
are four wheels, a successful procedure to achieve it is mapping the forces by means
of a least squares projection. This addition must be respectful with the tire model
dynamics: tire deflections must be updated correspondingly.

Although the filter should correct the drift between the model and the reference,
it was seen that the errorEKF was not able to correct the errors in the mass and/or
tire-road friction coefficient. Thus, a UKF-based parameter estimator was added to
the errorEKF, resulting in a new Dual Kalman filter for state, parameter and input
estimation. Due to the high computational cost of the UKF, only a reduced set of
parameters should be estimated. In this case, vehicle mass and tire-road friction
coefficient were estimated because it has been determined that they play a more
sensitive role on vehicle dynamics than other dynamic parameters (inertial properties,
geometrical dimensions, suspension characteristics, etc).

The estimations derived from the developed state-parameter-input observer are
reasonably accurate when compared to the ground truth. Regarding the tire force
estimations, which are of high interest, the error was under the 8%. With respect
to the computational cost, due to the UKF, real-time performance is only achieved
with a time step of 8 milliseconds. Meanwhile, the errorEKF can be executed at
4 milliseconds. However, comparing the accuracy of the estimations, the SPI at 8
milliseconds is able to provide better estimations. The tire forces can be estimated

106

6.2 Future Work

on automotive hardware with approximately a 10% of error in real time, with a
sampling frequency of 125 Hz.

The developed observer has also been adapted to the FMI 2.0 Standard. The
standard defines an interface to exchange models, and it is supported by several
tools. Hence, the MB-model state observer presented can be integrated into multiple
systems without additional complexity.

6.2 Future Work
To further extend the research done in this thesis and install virtual sensors in

real automotive applications, the following research lines can be explored. The first
one is related to the validation of the state observer. Now that real-time execution
is achieved, it should be tested on-board a vehicle with real sensor data in real
maneuvers.

The presented observer can also be improved in some aspects. On the one
hand, the tuning of the covariance matrix is a difficult process full of uncertainties.
Furthermore, the covariance matrix should be modified if the maneuver changes
significantly. Due to the strong influence of this covariance matrix in the estimations,
its tuning process should be explored. Also, the on-line tuning of the covariance
matrix during a maneuver can be explored. On the other hand, the efficiency of
the parameter estimator can be improved if the UKF is replaced by an EKF. The
main limitation is the Jacobian matrix of the parameters with respect to the MB
variables. There are different techniques for obtaining a numerical approximation
of the Jacobian that can be explored. It should also be considered to derive the
analytical expressions for the Jacobian.

With respect to the hardware implementations, FPGAs offer the possibility of
accelerating MB simulations. However, in this thesis the potential of the solutions
was limited by the reduced size of the FPGA available. Tests with higher-capacity
FPGAs can be performed in order to explore the real potential of these devices. It is
also of interest to develop a procedure for optimally select the best candidates of a
MB simulation to be accelerated on FPGAs.

107

Bibliography

[1] Javier Cuadrado, Daniel Dopico, Antonio Barreiro, and Emma Delgado. Real-
time state observers based on multibody models and the extended Kalman filter.
J Mech Sci Technol, 23(4):894–900, April 2009.

[2] Javier Cuadrado, Daniel Dopico, Jose A. Perez, and Roland Pastorino. Auto-
motive observers based on multibody models and the extended Kalman filter.
Multibody Syst Dyn, 27(1):3–19, April 2011.

[3] Roland Pastorino. Experimental Validation of a Multibody Model for a Vehicle
Prototype and its Application to Automotive State Observers. PhD thesis,
Universidade da Coruña, 2012.

[4] Emilio Sanjurjo. State observers based on detailed multibody models applied to
an automobile. PhD thesis, Universidade da Coruña, 2016.

[5] Roland Pastorino, Francesco Cosco, Frank Naets, Wim Desmet, and Javier
Cuadrado. Hard real-time multibody simulations using ARM-based embedded
systems. Multibody Syst Dyn, 37(1):127–143, May 2016.

[6] Nicolas Navet and Françoise Simonot-Lion, editors. Automotive embedded
systems handbook. Industrial information technology series. CRC Press, Boca
Raton, 2009. OCLC: ocn231680179.

[7] Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz, and Robert W. Stewart.
The Zynq Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx
Zynq-7000 All Programmable SoC. Strathclyde Academic Media, first edition,
2014.

[8] Eduardo Valentin, Rosiane de Freitas, and Raimundo Barreto. Towards op-
timal solutions for the low power hard real-time task allocation on multiple
heterogeneous processors. Sci. Comput. Program., 165:38–53, November 2018.

[9] David Crolla. Encyclopedia of Automotive Engineering. John Wiley & Sons,
March 2015. Google-Books-ID: ANfdCgAAQBAJ.

[10] Kay-Uwe Henning and Oliver Sawodny. Vehicle dynamics modelling and valida-
tion for online applications and controller synthesis. Mechatronics, 39:113–126,
November 2016.

109

Bibliography

[11] Davide Tavernini, Efstathios Velenis, and Stefano Longo. Feedback brake
distribution control for minimum pitch. Vehicle System Dynamics, 55(6):902–
923, June 2017.

[12] Paul J. TH Venhovens and Karl Naab. Vehicle Dynamics Estimation Using
Kalman Filters. Vehicle System Dynamics, 32(2-3):171–184, August 1999.

[13] U. Kiencke and A. Daiß. Observation of lateral vehicle dynamics. Control
Engineering Practice, 5(8):1145–1150, August 1997.

[14] J. Stephant, A. Charara, and D. Meizel. Virtual sensor: application to vehicle
sideslip angle and transversal forces. IEEE Transactions on Industrial Electronics,
51(2):278–289, April 2004.

[15] M. C. Best, T. J. Gordon, and P. J. Dixon. An Extended Adaptive Kalman
Filter for Real-time State Estimation of Vehicle Handling Dynamics. Vehicle
System Dynamics, 34(1):57–75, July 2000.

[16] Yuhang Chen, Yunfeng Ji, and Konghui Guo. A reduced-order nonlinear sliding
mode observer for vehicle slip angle and tyre forces. Vehicle System Dynamics,
52(12):1716–1728, December 2014.

[17] S. Drakunov and V. Utkin. Sliding mode observers. Tutorial. In Proceedings of
1995 34th IEEE Conference on Decision and Control, volume 4, pages 3376–3378
vol.4, December 1995.

[18] Iraj Davoodabadi, Ali Asghar Ramezani, Mehdi Mahmoodi-k, and Pouyan
Ahmadizadeh. Identification of tire forces using Dual Unscented Kalman Filter
algorithm. Nonlinear Dynamics, 78(3):1907–1919, November 2014.

[19] P. Freeman, J. Wagner, and K. Alexander. Run-off-road and recovery – state
estimation and vehicle control strategies. Vehicle System Dynamics, 54(9):1317–
1343, September 2016.

[20] Zhenpo Wang, Jianyang Wu, Lei Zhang, and Yachao Wang. Vehicle sideslip
angle estimation for a four-wheel-independent-drive electric vehicle based on a
hybrid estimator and a moving polynomial Kalman smoother. Proceedings of
the IMechE, page 1464419318770923, April 2018.

[21] T. A. Wenzel, K. J. Burnham, M. V. Blundell, and R. A. Williams. Dual
extended Kalman filter for vehicle state and parameter estimation. Vehicle
System Dynamics, 44(2):153–171, February 2006.

[22] Giulio Reina, Matilde Paiano, and Jose-Luis Blanco-Claraco. Vehicle parameter
estimation using a model-based estimator. Mechanical Systems and Signal
Processing, 87:227–241, March 2017.

[23] Justus Jordan, Nils Hirsenkorn, Felix Klanner, and Martin Kleinsteuber. Vehicle
mass estimation based on vehicle vertical dynamics using a multi-model filter.
In 17th International IEEE Conference on Intelligent Transportation Systems
(ITSC), pages 2041–2046, October 2014. ISSN: 2153-0017.

110

[24] Khalil Maleej, Sousso Kelouwani, Yves Dube, and Kodjo Agbossou. Event-Based
Electric Vehicle Mass and Grade Estimation. In 2014 IEEE Vehicle Power and
Propulsion Conference (VPPC), pages 1–6, October 2014. ISSN: 1938-8756.

[25] Karol Bogdanski and Matthew C. Best. Kalman and particle filtering methods
for full vehicle and tyre identification. Vehicle System Dynamics, 56(5):769–790,
May 2018.

[26] T.A. Wenzel, K.J. Burnham, M.V. Blundell, and R.A. Williams. Kalman filter
as a virtual sensor: applied to automotive stability systems. Transactions of the
Institute of Measurement and Control, 29(2):95–115, June 2007.

[27] Changfu Zong, Dan Hu, and Hongyu Zheng. Dual extended Kalman filter for
combined estimation of vehicle state and road friction. Chin. J. Mech. Eng.,
26(2):313–324, March 2013.

[28] Beatriz L. Boada, Daniel Garcia-Pozuelo, Maria Jesus L. Boada, and Vicente
Diaz. A Constrained Dual Kalman Filter Based on pdf Truncation for Estimation
of Vehicle Parameters and Road Bank Angle: Analysis and Experimental
Validation. IEEE Transactions on Intelligent Transportation Systems, 18(4):1006–
1016, April 2017.

[29] Beatriz L. Boada, Maria Jesus L. Boada, and Hui Zhang. Sensor Fusion Based
on a Dual Kalman Filter for Estimation of Road Irregularities and Vehicle
Mass Under Static and Dynamic Conditions. IEEE/ASME Trans. Mechatron.,
24(3):1075–1086, June 2019.

[30] Javier Garcia de Jalon and Eduardo Bayo. Kinematic and Dynamic Simulation
of Multibody Systems: The Real-Time Challenge. Springer-Verlag, December
1994. Google-Books-ID: ye_SBwAAQBAJ.

[31] Roland Pastorino, Dario Richiedei, Javier Cuadrado, and Alberto Trevisani.
State estimation using multibody models and non-linear Kalman filters. Inter-
national Journal of Non-Linear Mechanics, 53:83–90, July 2013.

[32] Frank Naets, Roland Pastorino, Javier Cuadrado, and Wim Desmet. Online
state and input force estimation for multibody models employing extended
Kalman filtering. Multibody System Dynamics, 32(3):317–336, October 2014.

[33] Ilaria Palomba, Dario Richiedei, and Alberto Trevisani. Kinematic state estima-
tion for rigid-link multibody systems by means of nonlinear constraint equations.
Multibody Syst Dyn, 40(1):1–22, May 2017.

[34] Ilaria Palomba, Dario Richiedei, and Alberto Trevisani. Simultaneous estimation
of kinematic state and unknown input forces in rigid-link multibody systems.
In 2015 ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona,
Spain, 2015.

[35] Emilio Sanjurjo, José L Blanco, José L Torres, and Miguel A Naya. Testing the
efficiency and accuracy of multibody-based state observers. In 2015 ECCOMAS

111

Bibliography

Thematic Conference on Multibody Dynamics, page 13, Barcelona, Spain, June
2015.

[36] Emilio Sanjurjo, Miguel Ángel Naya, José Luis Blanco-Claraco, José Luis Torres-
Moreno, and Antonio Giménez-Fernández. Accuracy and efficiency comparison
of various nonlinear Kalman filters applied to multibody models. Nonlinear
Dyn, 88(3):1935–1951, May 2017.

[37] Roland Pastorino, Emilio Sanjurjo, Alberto Luaces, Miguel A. Naya, Wim
Desmet, and Javier Cuadrado. Validation of a Real-Time Multibody Model for
an X-by-Wire Vehicle Prototype Through Field Testing. J. Comput. Nonlinear
Dynam, 10(3):031006–031006–11, May 2015.

[38] Emilio Sanjurjo, Daniel Dopico, Alberto Luaces, and Miguel Ángel Naya. State
and force observers based on multibody models and the indirect Kalman filter.
Mechanical Systems and Signal Processing, 106:210–228, June 2018.

[39] Enrico Risaliti, Tommaso Tamarozzi, Martijn Vermaut, Bram Cornelis, and
Wim Desmet. Multibody model based estimation of multiple loads and strain
field on a vehicle suspension system. Mechanical Systems and Signal Processing,
123:1 – 25, 2019.

[40] Jesús Vidal Gil. Un método general, sencillo y eficiente, para la definición y
simulación numérica de sistemas multicuerpo. PhD thesis, Industriales, 2006.

[41] S. Chakraborty, M. Lukasiewycz, C. Buckl, S. Fahmy, Naehyuck Chang, Sangy-
oung Park, Younghyun Kim, P. Leteinturier, and H. Adlkofer. Embedded
systems and software challenges in electric vehicles. In 2012 Design, Automation
& Test in Europe Conference & Exhibition (2012), pages 424–429, Dresden,
Germany, March 2012. IEEE.

[42] Egil Juliussen, Richard Robinson, and Institute for Prospective Technological
Studies. Is Europe in the driver’s seat?: the competitiveness of the european
automotive embedded systems industry. Publications Office, Luxembourg, 2010.
OCLC: 870616326.

[43] M. M. Trompouki, L. Kosmidis, and N. Navarro. An open benchmark im-
plementation for multi-CPU multi-GPU pedestrian detection in automotive
systems. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 305–312, November 2017.

[44] A. S. Radhamani. Performance Analysis of Homogeneous and Heterogeneous
Multicore Processor Using Static and Dynamic Schedulers. Asian J. Inf. Technol.,
15:533–541, 2016.

[45] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan. Heterogeneous
chip multiprocessors. Computer, 38(11):32–38, November 2005.

[46] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen. Single-
ISA heterogeneous multi-core architectures: the potential for processor power

112

reduction. In 22nd Digital Avionics Systems Conference. Proceedings (Cat.
No.03CH37449), pages 81–92, San Diego, CA, USA, 2003. IEEE Comput. Soc.

[47] F. Brenot, P. Fillatreau, and J. Piat. FPGA based accelerator for visual
features detection. In 2015 IEEE International Workshop of Electronics, Control,
Measurement, Signals and their Application to Mechatronics (ECMSM), pages
1–6, June 2015.

[48] Y. Zhou, Z. Chen, and X. Huang. A system-on-chip FPGA design for real-time
traffic signal recognition system. In 2016 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1778–1781, May 2016.

[49] Jiaojiao Li, Jiaji Wu, Yang You, and Gwanggil Jeon. Parallel binocular stereo-
vision-based GPU accelerated pedestrian detection and distance computation.
Journal of Real-Time Image Processing, May 2018.

[50] Hammad Mazhar, Toby Heyn, and Dan Negrut. A scalable parallel method for
large collision detection problems. Multibody Syst Dyn, 26(1):37–55, June 2011.

[51] Dan Negrut, Alessandro Tasora, Hammad Mazhar, Toby Heyn, and Philipp
Hahn. Leveraging parallel computing in multibody dynamics. Multibody Syst
Dyn, 27(1):95–117, January 2012.

[52] Radu Serban, Daniel Melanz, Ang Li, Ilinca Stanciulescu, Paramsothy Jayaku-
mar, and Dan Negrut. A GPU-based preconditioned Newton-Krylov solver for
flexible multibody dynamics. International Journal for Numerical Methods in
Engineering, 102(9):1585–1604, 2015.

[53] José-Carlos Cano, Javier Cuenca, Domingo Giménez, Mariano Saura-Sánchez,
and Pablo Segado-Cabezos. A parallel simulator for multibody systems based
on group equations. J Supercomput, 75(3):1368–1381, March 2019.

[54] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. Wiley, Hoboken, 2006.

[55] Christopher Edwards, Sarah K. Spurgeon, Chee P. Tan, and Nitin Patel. Sliding-
Mode Observers, pages 221–242. Springer London, London, 2007.

[56] Javier Cuadrado, Daniel Dopico, Miguel A. Naya, and M. Gonzalez. Real-
Time Multibody Dynamics and Applications. In Giulio Maier, Jean Salençon,
Wilhelm Schneider, Bernhard Schrefler, Paolo Serafini, Martin Arnold, and
Werner Schiehlen, editors, Simulation Techniques for Applied Dynamics, volume
507, pages 247–311. Springer Vienna, Vienna, 2008.

[57] J. Cuadrado, D. Dopico, M. Gonzalez, and M. A. Naya. A Combined Penalty
and Recursive Real-Time Formulation for Multibody Dynamics. Journal of
Mechanical Design, 126(4):602, 2004.

[58] Daniel Dopico. Formulaciones semi-recursivas y de penalización para la dinámica
en tiempo real de sistemas multicuerpo. PhD thesis, Universidade da Coruña,
2004.

113

Bibliography

[59] J. Cuadrado, R. Gutiérrez, M. A. Naya, and P. Morer. A comparison in terms of
accuracy and efficiency between a MBS dynamic formulation with stress analysis
and a non-linear FEA code. International Journal for Numerical Methods in
Engineering, 51(9):1033–1052, 2001.

[60] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[61] Paul D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated
Navigation Systems, Second Edition. Artech House, April 2013. Google-Books-
ID: t94fAgAAQBAJ.

[62] S.I. Roumeliotis, G.S. Sukhatme, and G.A. Bekey. Circumventing dynamic
modeling: evaluation of the error-state Kalman filter applied to mobile robot
localization. In Proceedings 1999 IEEE International Conference on Robotics
and Automation (Cat. No.99CH36288C), volume 2, pages 1656–1663, Detroit,
MI, USA, 1999. IEEE.

[63] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. Wiley, Hoboken, 2006.

[64] Mohinder Grewal and Angus Andrews. Kalman filtering: theory and practice
using MATLAB R©. Wiley, New Jersey, 2008.

[65] Johannes Hiltscher, Phanindra Akula, Robin Streiter, and Gerd Wanielik. A
flexible automotive systems architecture for next generation ADAS. In Proceed-
ings of 7th Transport Research Arena TRA, page 10, Vienna, Austria, April
2018.

[66] Gorka Velez, Ainhoa Cortés, Marcos Nieto, Igone Vélez, and Oihana Otaegui.
A reconfigurable embedded vision system for advanced driver assistance. J
Real-Time Image Proc, 10(4):725–739, December 2015.

[67] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic, FPGAs,
and GPGPUs? In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 225–236, Atlanta, GA, USA, December 2010. IEEE.

[68] Young-Kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and
Peng Wei. In-Depth Analysis on Microarchitectures of Modern Heterogeneous
CPU-FPGA Platforms. ACM Trans. Reconfigurable Technol. Syst., 12(1):1–20,
February 2019.

[69] Jose Nunez-Yanez, Sam Amiri, Mohammad Hosseinabady, Andrés Rodríguez,
Rafael Asenjo, Angeles Navarro, Dario Suarez, and Ruben Gran. Simultaneous
multiprocessing in a software-defined heterogeneous FPGA. J. Supercomput.,
April 2018.

114

[70] Martin Dendaluce Jahnke, Francesco Cosco, Rihards Novickis, Joshué
Pérez Rastelli, and Vicente Gomez-Garay. Efficient Neural Network Implementa-
tions on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring
Optimization Using Predictions for Multi-Motor Electric Vehicles. Electronics,
8(2):250, February 2019.

[71] Yvonne Lin. Using FPGAs to Solve Challenges in Industrial Applications.
Technical report, Xilinx, November 2011.

[72] Jason Chiang and Stefano Zammattio. Five Ways to Build Flexibility into
Industrial Applications with FPGAs. Technical report, Intel.

[73] Óscar Mata-Carballeira, Jon Gutiérrez-Zaballa, Inés del Campo, and Victo-
ria Martínez. An FPGA-Based Neuro-Fuzzy Sensor for Personalized Driving
Assistance. Sensors, 19(18):4011, September 2019.

[74] Andrew Moore. FPGAs For Dummies R©, 2nd Intel R© Special Edition. John
Wiley & Sons, Inc., 2017.

[75] Y. Han and E. Oruklu. Real-time traffic sign recognition based on Zynq FPGA
and ARM SoCs. In IEEE International Conference on Electro/Information
Technology, pages 373–376, June 2014.

[76] Henning Sahlbach, Daniel Thiele, and Rolf Ernst. A system-level FPGA de-
sign methodology for video applications with weakly-programmable hardware
components. J Real-Time Image Proc, 13(2):291–309, June 2017.

[77] Sergio Saponara. Hardware accelerator IP cores for real time Radar and camera-
based ADAS. J Real-Time Image Proc, 16(5):1493–1510, October 2019.

[78] Abdelhamid Helali, Haythem Ameur, J. M. Górriz, J. Ramírez, and Hassen
Maaref. Hardware implementation of real-time pedestrian detection system.
Neural Comput & Applic, January 2020.

[79] Inés del Campo, Victoria Martínez, Javier Echanobe, Estibalitz Asua, Raúl
Finker, and Koldo Basterretxea. A versatile hardware/software platform for per-
sonalized driver assistance based on online sequential extreme learning machines.
Neural Comput & Applic, 31(12):8871–8886, December 2019.

[80] XA Zynq-7000 SoC Data Sheet: Overview. DS188 (v1.3.2).
https://www.xilinx.com/support/documentation/data_sheets/
ds188-XA-Zynq-7000-Overview.pdf, 2018. Accessed: 2020-02-21.

[81] Zynq-7000 SoC Data Sheet: Overview. DS190 (v1.11.1). https://www.xilinx.
com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.
pdf, 2018. Accessed: 2020-02-21.

[82] P. Arato, S. Juhasz, Z. A. Mann, A. Orban, and D. Papp. Hardware-software
partitioning in embedded system design. In IEEE International Symposium on
Intelligent Signal Processing, 2003, pages 197–202, September 2003.

115

https://www.xilinx.com/support/documentation/data_sheets/ds188-XA-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds188-XA-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

Bibliography

[83] A. Jantsch, P. Ellervee, J. Oberg, and A. Hemani. A case study on hardware/-
software partitioning. In Proceedings of IEEE Workshop on FPGA’s for Custom
Computing Machines, pages 111–118, April 1994.

[84] Z. Jiang and S. A. Raziei. An efficient FPGA-based direct linear solver. In
2017 IEEE National Aerospace and Electronics Conference (NAECON), pages
159–166, June 2017.

[85] J. Arias-García, R. Pezzuol Jacobi, C. H. Llanos, and M. Ayala-Rincón. A
suitable FPGA implementation of floating-point matrix inversion based on
Gauss-Jordan elimination. In 2011 VII Southern Conference on Programmable
Logic (SPL), pages 263–268, April 2011.

[86] Jean Pierre David. Low latency and division free Gauss–Jordan solver in floating
point arithmetic. Journal of Parallel and Distributed Computing, 106:185–193,
August 2017.

[87] Picture of the modelled vehicle (SimRod). https://autotechreview.com/
siemens-automotive-engineering-simulation-and-automation-test-center/
atr-blog/good-digital-twins-don-t-lie. Accessed: 2019-11-14.

[88] E. Kuiper and J. J. M. Van Oosten. The PAC2002 advanced handling tire
model. Vehicle System Dynamics, 45(sup1):153–167, January 2007.

[89] Egbert Bakker, Lars Nyborg, and Hans B. Pacejka. Tyre modelling for use in
vehicle dynamics studies. In SAE International Congress and Exposition. SAE
International, feb 1987.

[90] Egbert Bakker, Hans B. Pacejka, and Lars Lidner. A new tire model with an
application in vehicle dynamics studies. In Autotechnologies Conference and
Exposition. SAE International, apr 1989.

[91] H. B. Pacejka and I. J. M. Besselink. Magic Formula Tyre Model with Transient
Properties. Vehicle System Dynamics, 27(sup001):234–249, January 1997.

[92] Hans B. Pacejka, Hans B. Pacejka, and Hans B Pacejka. Preface. In Tire and
Vehicle Dynamics, pages xiii–xvi. Elsevier, 2012.

[93] W. Hirschberg, G. Rill, and H. Weinfurter. Tire model TMeasy. Vehicle System
Dynamics, 45(sup1):101–119, January 2007.

[94] Daniel Dopico, Alberto Luaces, Manuel Gonzalez, and Javier Cuadrado. Dealing
with multiple contacts in a human-in-the-loop application. Multibody Syst Dyn,
25(2):167–183, February 2011.

[95] Thomas D. Gillespie. Fundamentals of vehicle dynamics. Society of Automotive
Engineers, 1992.

[96] Agus Budiyono. Principles of GNSS, Inertial, and Multi-sensor Integrated
Navigation Systems. Industrial Robot, 39(3):ir.2012.04939caa.011, April 2012.

116

https://autotechreview.com/siemens-automotive-engineering-simulation-and-automation-test-center/atr-blog/good-digital-twins-don-t-lie
https://autotechreview.com/siemens-automotive-engineering-simulation-and-automation-test-center/atr-blog/good-digital-twins-don-t-lie
https://autotechreview.com/siemens-automotive-engineering-simulation-and-automation-test-center/atr-blog/good-digital-twins-don-t-lie

[97] Javier Cuadrado, David Vilela, Iñaki Iglesias, Adrián Martín, and Alberto
Peña. A Multibody Model to Assess the Effect of Automotive Motor In-wheel
Configuration on Vehicle Stability and Comfort. In 2013 ECCOMAS Thematic
Conference on Multibody Dynamics, page 10, 2013.

117

Appendices

119

Appendix A

List of publications

This thesis has been financed by the Spanish Ministry of Economy and Competi-
tiveness (MINECO) through the BES-2015-071372 fellowship. Several conference
papers have been presented as a result of the work made in this thesis. Moreover,
one journal paper related with the execution of MB models on FPGAs has been
submitted and it is under the revision process as of the time of writing. In addition,
another journal paper is being written presenting the results of the developed SPI
observer. The list of publications is exposed hereafter.

Submitted Journal papers

A.J. Rodriguez, R. Pastorino, A. Carro-Lagoa, K. Janssens and M.A. Naya. Hard-
ware Acceleration of Multibody Simulations for Real-Time Embedded Applica-
tions. Multibody System Dynamics (under review).

Conference communications

A.J. Rodriguez, R. Pastorino, M.A. Naya, E. Sanjurjo and W. Desmet. Real-time
Estimation based on Multibody Dynamics for Automotive Embedded Hetero-
geneous Computing. In 8th ECCOMAS Thematic Conference on Multibody
Dynamics, Prague, Czech Republic, June 2017.

E. Sanjurjo, D. Dopico, M.A. Naya and A.J. Rodriguez. Indirect State and Force Es-
timator Based on Multibody Models. In 8th ECCOMAS Thematic Conference
on Multibody Dynamics, Prague, Czech Republic, June 2017.

A.J. Rodriguez, R. Pastorino, M.A. Naya and E. Sanjurjo. Virtual Sensing on
Automotive Embedded Heterogeneous Platforms. In 15th European Automotive
Congress (EAEC 2017), Madrid, Spain, October 2017.

A.J. Rodriguez, R. Pastorino, A. Luaces, E. Sanjurjo and M.A. Naya. Imple-
mentation of State Observers based on Multibody Dynamics on Automotive
Platforms in Real-Time. In 5th Joint Int. Conference on Multibody System
Dynamics (IMSD 2018), Lisbon, Portugal, June 2018.

121

A. List of publications

E. Sanjurjo, A.J. Rodriguez, D. Dopico, A. Luaces and M.A. Naya. State and input
observer for the multibody model of a car. In 5th Joint Int. Conference on
Multibody System Dynamics (IMSD 2018), Lisbon, Portugal June, 2018.

A.J. Rodriguez, R. Pastorino, E. Sanjurjo, A. Luaces and M.A. Naya. Imple-
mentación de Observador de Estados basado en Modelos Multicuerpo en
Tiempo Real en Plataformas Embebidas. In XXII Congreso Nacional de
Ingeniería Mecánica, Madrid, Spain, September 2018.

122

Appendix B

Resumen extendido

Introducción
La simulación es una herramienta que permite estudiar en un entorno virtual los

diferentes fenómenos que afectan a un sistema real. Los usos de la simulación van
desde predecir el rendimiento de un producto durante su ciclo de vida, hasta diseñar un
proceso de fabricación o detectar posibles fallos de operación. Utilizando un entorno
de simulación, un producto se puede someter a múltiples pruebas sin necesidad de
construir un prototipo físico. Debido a la reducción del coste final de producto que
conlleva, la simulación es ampliamente utilizada en diferentes ámbitos industriales.
Una de las principales técnicas para simular mecanismos y analizar su dinámica
es la simulación multicuerpo. El uso de la simulación multicuerpo se extiende a
aplicaciones aeroespaciales, maquinaria, robótica, biomecánica o automoción.

En el caso de automoción, la dinámica multicuerpo se ha aplicado normalmente
durante la fase de diseño. Diferentes parámetros del vehículo se prueban en múltiples
maniobras con el fin de encontrar una configuración óptima, buscando mejorar
el comportamiento del vehículo y el confort. Además, si la simulación se ejecuta
en tiempo real, el comportamiento de un subsistema real (como una suspensión
activa) puede integrarse en un sistema virtual para realizar experimentos, en lo que
se conoce como Hardware-in-the-loop (HIL) o Human-in-the-loop (HITL), si un
humano interviene en la simulación. La respuesta del subsistema ante diferentes
situaciones y sus efectos en el vehículo se pueden analizar sin necesidad de instalarlo
en un prototipo, reduciendo los costes, tiempos de desarrollo y riesgos.

Por otro lado, para asistir a los conductores en la carretera, se implementan
diferentes tipos de controladores. Estos controladores necesitan información del
estado del vehículo en cada instante con el fin de actuar correctamente sobre el
vehículo. Algunos datos se obtienen de sensores instalados en el vehículo, pero hay
muchas variables que no se pueden medir porque el sensor es muy caro o no está
presente. Un problema similar se da en los tests de vehículos que se realizan en
circuitos. Durante el test, se necesita instrumentar el vehículo con múltiples sensores
para recoger datos suficientes para analizar la dinámica del vehículo.

La estimación de estados supone una opción bastante atractiva en ambos casos.
En un entorno de simulación, la cantidad de datos disponible es ilimitada. Un modelo
de un vehículo podría ir simulándose a bordo del vehículo replicando la maniobra

123

B. Resumen extendido

real. Si el modelo fuera perfecto, el modelo haría exactamente lo mismo que el
vehículo real y se podría medir cualquier variable en el entorno de simulación. Esta
solución se conoce también como sensores virtuales, ya que es equivalente a instalar
múltiples sensores en un entorno virtual. Sin embargo, en situaciones reales siempre
hay errores en el modelo que provocan que la maniobra simulada no sea idéntica a la
real. Para corregir estos errores, se combina el modelo con un estimador de estados.
Mediante la información de un conjunto de sensores instalados en el vehículo real,
es posible corregir el modelo para asegurar que la simulación se corresponda con
la realidad, aumentando la calidad de la información que se puede extraer de la
simulación.

Para disponer de sensores virtuales de calidad, es importante reducir los errores
asociados al modelo inicial. Así, los modelos multicuerpo son una gran opción
ya que permiten simular con precisión los diferentes fenómenos que suceden en la
realidad. Sin embargo, los modelos multicuerpo son costosos computacionalmente y,
tradicionalmente, se han reemplazado por modelos analíticos para aplicaciones de
sensores virtuales. Implementar un estimador u observador de estados basado en un
modelo multicuerpo de un vehículo en tiempo real y en el hardware del que disponen
los vehículos presenta un gran desafío. Las plataformas que llevan los vehículos se
conocen como sistemas empotrados, y tienen menor capacidad de cálculo que los
ordenadores convencionales. Esto se debe a que deben cumplir los estrictos requisitos
impuestos por los estándares de la automoción en cuanto a frecuencia, fiabilidad
y seguridad, además de un bajo consumo energético. Sin embargo, los sistemas
empotrados de nueva generación han visto incrementada su potencia de cálculo. La
industria de la automoción está incorporando estas nuevas plataformas para satisfacer
la demanda de potencia de cálculo de nuevas aplicaciones, tales como los Sistemas
Avanzados de Asistencia al Conductor (ADAS) o los complejos controladores que
vienen asociados a la electrificación de los vehículos.

El hardware de nueva generación se basa en procesadores heterogéneos, que
combinan el procesador principal con un co-procesador para acelerar las tareas más
costosas, reduciendo la carga del procesador principal. Entre los co-procesadores
más utilizados, resulta especialmente interesante el uso de Field Programmable Gate
Array (FPGA). Las FPGAs son conocidas por ser hardware programable, ya que
se puede crear un procesador dedicado para una aplicación concreta a través de su
programación. El hecho de ser un procesador diseñado específicamente para una
aplicación concreta permite paralelizar de múltiples formas un algoritmo en concreto,
dando lugar a un gran rendimiento. Además, al ser programable, el proceso de
desarrollo es mucho más rápido y flexible que si se construyese físicamente el mismo
procesador.

En esta tesis se explora la oportunidad brindada por el hardware de nueva
generación para instalar en un vehículo sensores virtuales basados en modelos
multicuerpo. El Laboratorio de Ingeniería Mecánica (LIM) de la Universidade da
Coruña consta de una gran experiencia en el desarrollo de sistemas multicuerpo, y
una línea de investigación en el desarrollo de observadores de estado. Del trabajo
previo llevado a cabo en el LIM, se ha obtenido un observador eficiente y de fácil
implementación con sistemas multicuerpo, llamado error-state extended Kalman
filter (errorEKF) que estima estados y fuerzas [36,38]. Este observador se combina en

124

esta tesis con un modelo multicuerpo de vehículo basado en una eficiente formulación
desarrollada por investigadores del grupo, presentada en [56]. La solución adoptada
se analiza para detectar las tareas más costosas computacionalmente y diseñar
su implementación en una FPGA, con el fin de incrementar el rendimiento de la
simulación y alcanzar tiempo real. Finalmente, los resultados en términos de precisión
de las estimaciones y coste computacional son evaluados.

Objetivos
El principal objetivo de esta tesis es implementar un observador de estados basado

en modelos multicuerpo en un procesador típicamente empleado en automoción,
alcanzando ejecución en tiempo real. Para tal propósito, los siguientes objetivos
parciales se han establecido:

• Estudiar la idoneidad de las Field Programmable Gate Arrays (FPGAs) para
acelerar simulaciones multicuerpo. Las FPGAs están presentes en los proce-
sadores de nueva generación que se utilizan en la industria de la automoción.
Esta tesis se centra en estudiar cómo utilizarlas para realizar simulaciones
multicuerpo de forma eficiente.

• Desarrollar un observador eficiente y preciso basado en un modelo multicuerpo
de un vehículo. La solución alcanzada deberá ser implementada en tiempo real
en hardware de automoción, con bajo poder computacional.

• Es necesario disponer de un código eficiente para ejecutar simulaciones multic-
uerpo en sistemas empotrados. En [5], se presentó una librería (MBScoder) para
crear modelos multicuerpo para diferentes plataformas y lenguajes de progra-
mación. Esta tesis continúa con el desarrollo de esta librería para añadir nuevas
funcionalidades de utilidad en este trabajo, tales como nuevas coordenadas y
formulaciones multicuerpo.

• Proporcionar un entorno para la estimación de estados basado en modelos
multicuerpo que se pueda implementar con facilidad en sistemas reales de
automoción.

A partir de los objetivos presentados, del trabajo realizado en esta tesis se han
derivado las siguientes contribuciones:

• Se han presentado unas pautas para acelerar simulaciones multicuerpo con la
ayuda de Field Programmable Gate Arrays (FPGAs). Los ejemplos mostrados
durante la tesis pueden utilizarse para futuras aplicaciones de FPGAs en
simulaciones multicuerpo.

• Se ha desarrollado un nuevo observador basado en un filtro dual de Kalman.
Es un observador de estados, parámetros y entradas que permite obtener
estimaciones con mejor precisión que otros observadores basados en modelos
multicuerpo.

125

B. Resumen extendido

• Se ha mejorado la librería MBScoder con un nuevo módulo para desarrollar
modelos multicuerpo en coordenadas relativas y una formulación semi-recursiva.

• El observador presentado puede ejecutarse en tiempo real en los procesadores
que se instalan a bordo de los vehículos. La solución se ha adaptado al estándar
FMI 2.0, simplificando su implementación en sistemas reales.

Estructura de la tesis
El cuerpo principal de esta tesis está organizado en los siguientes capítulos:

El Capítulo 1 constituye la introducción de esta tesis y sirve para situar el
trabajo realizado.

El Capítulo 2 consiste en una revisión del estado del arte en cuanto a
estimación de estados en la industria de automoción y en la evolución de los sistemas
empotrados comúnmente utilizados en aplicaciones de automoción, centrándose en el
hardware de nueva generación.

En el Capítulo 3 se presenta el observador seleccionado para esta tesis y
la formulación multicuerpo utilizada en la modelación del vehículo para alcanzar la
máxima eficiencia posible.

En el Capítulo 4 se analiza el procesador seleccionado para implementar el
observador de estados basado en modelos multicuerpo y las diferentes estrategias
empleadas para alcanzar una solución eficiente.

En el Capítulo 5 se presenta el vehículo modelado y los detalles del modelo
multicuerpo desarrollado. Así mismo, se explican las simulaciones realizadas para
evaluar el comportamiento del observador de estados. Se presentan los resultados en
cuanto a precisión de las estimaciones y coste computacional.

En el Capítulo 6 se tratan las conclusiones extraídas del trabajo realizado.
Por último, se trazan las líneas futuras de investigación para continuar con el trabajo
realizado.

Metodología
Esta tesis se puede dividir en dos grandes bloques: estudio de la implementación de

modelos multicuerpo en procesadores heterogéneos con FPGAs como co-procesadores;
y aplicación de un observador de estados basado en un modelo multicuerpo de un
vehículo en procesadores como los que se emplean en automoción. En el primer
bloque, el código desarrollado para generar el modelo multicuerpo del vehículo y el
observador de estados es analizado buscando los cuellos de botella de la simulación.
Una vez identificados, se estudia cómo programar la FPGA para reducir el tiempo
empleado para esas tareas. En el segundo bloque, el observador de estados se prueba
en términos de precisión de las estimaciones y su rendimiento, para lo cual las
implementaciones desarrolladas en el primer bloque serán empleadas.

Antes de comenzar con el primer bloque, el modelo multicuerpo del vehículo se ha
desarrollado utilizando la librería MBScoder. Como se ha comentado anteriormente,
se ha empleado la formulación multicuerpo presentada en [56]. Dicha formulación se

126

basa en coordenadas relativas, que no estaban consideradas en la librería MBScoder.
Es por esto que ha tenido que desarrollarse un módulo específico para el modelado
en coordenadas relativas de acuerdo con la formulación semi-recursiva presentada
en [56].

Una vez creado el modelo multicuerpo del vehículo, se combina con el algoritmo
del observador de estados y se analiza el código resultante. En este trabajo, se
ha seleccionado la Zynq-7000 ZC702 de Xilinx R© como plataforma para ejecutar la
solución propuesta. Este dispositivo incluye un procesador heterogéneo compuesto
por un ARM A-9 y una FPGA Artix-7 como co-procesador. Dado que las FPGAs
tienen una capacidad limitada, han de seleccionarse tareas específicas en lugar de
partes generales de código. Por ejemplo, si se intenta implementar todo el código
generado por la MBScoder en la FPGA, resultará imposible dada la gran cantidad
de operaciones que se involucran. Por tanto, del análisis del código se extraen tres
operaciones cuya ejecución resulta más costosa que las demás: el cálculo de la matriz
de masas del vehículo, el post-procesado que se efectúa para obtener los resultados
de interés y la resolución del sistema de ecuaciones que se debe realizar para integrar
un paso de tiempo. Tras probar diferentes implementaciones, se ha comprobado
que tanto el cómputo de la matriz de masas como el post-procesado involucran
demasiadas operaciones como para programarse completamente en la FPGA. Por
tanto, se reduce la cantidad de código programado en la FPGA para ambas tareas,
llegando a una solución menos optimizada. Para resolver el sistema de ecuaciones
comentado, se ha seleccionado el algoritmo de Gauss-Jordan en base a los estudios
presentes en la literatura, logrando una implementación eficiente.

El rendimiento del observador se ha evaluado en un entorno de simulación. El
vehículo base es el Kyburz eRod, un vehículo deportivo eléctrico con tracción trasera.
Se han empleado dos modelos del vehículo: uno modelado con los datos reales y otro
al que se le han introducido errores de modelado. Los errores se han introducido
en la masa del chasis y en el coeficiente de rozamiento con la carretera, los cuales
siempre presentan una gran incertidumbre. Ambos parámetros son susceptibles de
cambiar entre maniobras: la masa varía con el número de pasajeros o equipaje y el
coeficiente de rozamiento es dependiente de las condiciones climatológicas, desgaste
de los neumáticos o el firme de la carretera. Una vez se combine el modelo con
el observador, las variables estimadas por el observador deberían coincidir con las
del modelo real. Las diferencias ocasionadas por el error en la masa y coeficiente
de rozamiento se solventarían. Para ello, el observador necesita información de
sensores instalados en el modelo del vehículo real. Los sensores simulados son los
mismos que están instalados en el Kyburz eRod en el que se basa el trabajo de esta
tesis: GPS (posición y velocidad), acelerómetro y giróscopo en el chasis, sensor de
desplazamiento longitudinal para la suspensión, y un sensor para medir el ángulo de
las ruedas. Adicionalmente, se disponen de medidas del ángulo de volante y par de
aceleración que son empleadas como entradas del modelo para replicar la maniobra
del vehículo real. Utilizando estos sensores en el entorno de simulación, se facilita la
posterior integración del observador en el vehículo real.

Por otro lado, se evaluará el coste computacional del observador en la plataforma
Zynq-7000, ejecutándose diferentes simulaciones. Como referencia, se lanzará una
simulación de una maniobra genérica íntegramente en el procesador ARM. A contin-

127

B. Resumen extendido

uación, la misma maniobra se simulará utilizando cada una de las implementaciones
en la FPGA que se han desarrollado: en el procesador ARM se ejecutará todo el
código del observador a excepción de las tareas programadas en la FPGA. De esta
forma, se podrán evaluar los beneficios derivados de cada implementación.

Resultados
Con el fin de analizar las estimaciones proporcionadas por el observador, se han

ejecutado varias maniobras genéricas. Tras una primera simulación, comparando
las mediciones de los sensores en el observador con las simuladas en el modelo real,
se aprecia una mejora en cuanto a precisión y reducción de ruido. Sin embargo, el
mayor interés de los sensores virtuales se encuentra en poder estimar variables cuyos
sensores son caros o no existen. Analizando las fuerzas en los neumáticos, que son de
gran interés, se ha visto que los errores de modelado no se corrigen y que la calidad
de las estimaciones es baja.

En cuanto al coste computacional, el objetivo es conseguir una ejecución en
tiempo real con un paso de tiempo de integración razonable, siendo el ideal un paso
de tiempo de 1 milisegundo. Un paso de tiempo menor implica un mayor coste
computacional, pero da lugar a una mayor precisión de la simulación y a una mayor
frecuencia de muestreo para los sensores virtuales. En este contexto, se ha probado
inicialmente una simulación de 10 segundos de duración con un paso de tiempo de 4
milisegundos. La ejecución de referencia, en el procesador ARM, tuvo una duración 8
veces por encima de tiempo real. Con el uso de la FPGA, solamente se ha conseguido
reducir el tiempo total con la implementación del algoritmo de Gauss-Jordan. A
pesar de aumentar la eficiencia en un 20%, el coste computacional es tal que es
imposible garantizar tiempo real.

Ante estos resultados, se propone simplificar el modelo multicuerpo del vehículo
siguiendo la propuesta presentada en [97]. El sistema de la suspensión se reem-
plaza por unas tablas que recogen la cinemática de la suspensión en función de
su desplazamiento vertical. En el caso del sistema de suspensión delantero, las
tablas también dependen del ángulo de la dirección. Con esta solución, la eficiencia
de la simulación se incrementa notablemente. El observador basado en el modelo
multicuerpo simplificado alcanza tiempo real en el procesador ARM con un paso de
tiempo de 4 milisegundos, siendo un 30% más rápido que tiempo real. Sin embargo,
debido a que el modelo ha reducido su tamaño, los beneficios de la FPGA se reducen
y solamente mejora un 3% a la ejecución íntegra en el procesador ARM.

Sin embargo, a pesar de conseguir rendimiento de tiempo real, el efecto de
los errores derivados de la masa y del coeficiente de rozamiento no se corrige ade-
cuadamente. Como alternativa, se ha diseñado un nuevo observador incluyendo la
estimación de parámetros combinando el errorEKF con un filtro unscented Kalman
filter (UKF). Este observador, llamado state-parameter-input (SPI) observer mejora
la calidad de las estimaciones gracias a la estimación de la masa y el coeficiente de
rozamiento entre los neumáticos y la carretera. El error en la estimación de fuerzas
se reduce notablemente, siendo el error menor del 8%.

Como contrapartida, el hecho de incluír el UKF para la estimación de parámetros
conlleva un incremento del coste computacional, y no es posible ejecutar el nuevo

128

observador en tiempo real con un paso de 4 milisegundos en la Zynq-7000. Incre-
mentando el paso de tiempo hasta los 8 milisegundos, se consigue alcanzar tiempo
real a costa de un incremento del error en las estimaciones, que sube hasta un 10%.
No obstante, esta solución sigue siendo más precisa que el observador basado en el
errorEKF.

Conclusiones y trabajo futuro
En esta tesis se ha presentado un nuevo observador basado en modelos multicuerpo

que permite estimar variables como las fuerzas en los neumáticos con errores inferiores
al 10%. Además, se alcanza tiempo real en plataformas empotradas como las
empleadas a bordo de los vehículos en la industria de la automoción.

Durante el desarrollo de esta tesis, se han evaluado las ventajas que aportan las
FPGAs para optimizar simulaciones multicuerpo. Se ha presentado una estrategia
a seguir para seleccionar adecuadamente las operaciones que pueden acelerarse
en una FPGA. Además, se han explicado diferentes enfoques para optimizar las
implementaciones en FPGAs. La metodología presentada puede ser seguida para
optimizar cualquier operación que se desee en una simulación multicuerpo. En
los resultados presentados, se ha llegado a obtener una mejora de un 20% con las
implementaciones presentadas. No obstante, dado que la FPGA disponible en esta
tesis es de un nivel básico, este rendimiento puede verse incrementado en caso de
disponer de una FPGA de mejores características.

En esta tesis se ha presentado también un nuevo observador que combina la
estimación de estados y entradas con la estimación de parámetros. Aunque el
observador elegido inicialmente, el errorEKF, presentaba un buen rendimiento desde
un punto de vista computacional y estimaba correctamente los estados, la estimación
de variables como la fuerza de los neumáticos no era todo lo precisa que se esperaba.
De los resultados obtenidos, se pudo observar que los errores presentes en el modelo
(masa del chasis y coeficiente de fricción) no se estaban corrigiendo adecuadamente.
Combinando el errorEKF con un estimador de parámetros basado en un UKF, se
mejora notablemente la calidad de las estimaciones. Sin embargo, dado al incremento
de coste computacional derivado del UKF, solamente se puede garantizar tiempo
real si la simulación se realiza con un paso de tiempo de 8 milisegundos, mientras
que con el errorEKF se alcanzaba tiempo real con un paso de 4 milisegundos. No
obstante, la precisión de las estimaciones con el nuevo observador SPI mejora a las
del errorEKF a pesar de la diferencia de paso de tiempo. La única desventaja, por
tanto, radica en la baja frecuencia del sensor virtual, que se reduce de los 250 Hz a
los 125 Hz.

Para concluir, del trabajo de esta tesis ha resultado un observador preciso basado
en modelos multicuerpo para automoción que alcanza tiempo real en las plataformas
empleadas en automoción. Dicho observador se ha adaptado al estandar FMI
2.0, permitiendo su fácil integración con múltiples herramientas empleadas en la
industria y, por tanto, su implementación final a bordo de un vehículo. Como
consecuencia de buscar aumentar la eficiencia de la simulación, se han obtenido
resultados prometedores del uso de FPGAs para acelerar simulaciones multicuerpo.
Dado que la mayoría de FPGAs disponibles en el mercado superan las características

129

B. Resumen extendido

de la empleada en este trabajo, se espera que los resultados mejoren y que el uso de
estos dispositivos sea de mayor utilidad en futuras aplicaciones.

No obstante, el trabajo realizado en esta tesis deja sin cubrir algunos aspectos
que pueden constituir futuras líneas de investigación. Por un lado, sería de interés
evaluar las implementaciones propuestas en una FPGA con mayor capacidad que la
empleada en este trabajo, permitiendo así evaluar el verdadero potencial de estos
dispositivos. También sería de interés desarrollar una metodología que permita
identificar de forma óptima y automática las partes de código más adecuadas para
ser implementadas en una FPGA.

En cuanto al observador, puede mejorarse en varios aspectos. Por un lado, el
proceso de ajuste de ciertos parámetros del observador está lleno de incertidumbres.
Si la maniobra estudiada cambia notablemente, es necesario reajustar los parámetros,
lo cual resulta en un tedioso proceso. Dada la influencia de este ajuste sobre la
precisión de las estimaciones, es de gran interés estudiar el proceso de ajuste y definir
una metodología eficiente. Además, hay ciertos estudios de autoajuste del observador
durante la maniobra, lo cual supondría un incremento de la robustez del observador.
En cuanto a la eficiencia del observador, ésta puede mejorar reemplazando el UKF por
un extended Kalman filter (EKF) para estimar los parámetros. El principal problema
es determinar analíticamente la relación entre los parámetros y las variables del
modelo multicuerpo. Existen diferentes técnicas para aproximar dicha relación que
deben ser exploradas para reducir el coste computacional del observador, permitiendo
reducir el paso de tiempo e incrementar la precisión de los sensores virtuales.

130

Trabajos derivados de la realización de esta tesis
Esta tesis ha sido financiada por el Ministerio de Economía y Competitividad

(MINECO) del Gobierno de España mediante la beca BES-2015-071372. Como
resultado del trabajo realizado en esta tesis, se han realizado varias comunicaciones
en congresos nacionales e internacionales. Además, un artículo de revista sobre la eje-
cución de modelos multicuerpo en FPGAs ha sido enviado y se encuentra en revisión.
Por otro lado, se está en proceso de escritura de un artículo de revista presentando
los resultados del observador de estados, parámetros y entradas desarrollado en esta
tesis. La lista de los trabajos derivados de esta tesis se expone a continuación.

Artículos de revista enviados

A.J. Rodriguez, R. Pastorino, A. Carro-Lagoa, K. Janssens and M.A. Naya. Hard-
ware Acceleration of Multibody Simulations for Real-Time Embedded Applica-
tions. Multibody System Dynamics (under review).

Comunicaciones en congresos

A.J. Rodriguez, R. Pastorino, M.A. Naya, E. Sanjurjo and W. Desmet. Real-time
Estimation based on Multibody Dynamics for Automotive Embedded Hetero-
geneous Computing. In 8th ECCOMAS Thematic Conference on Multibody
Dynamics, Prague, Czech Republic, June 2017.

E. Sanjurjo, D. Dopico, M.A. Naya and A.J. Rodriguez. Indirect State and Force Es-
timator Based on Multibody Models. In 8th ECCOMAS Thematic Conference
on Multibody Dynamics, Prague, Czech Republic, June 2017.

A.J. Rodriguez, R. Pastorino, M.A. Naya and E. Sanjurjo. Virtual Sensing on
Automotive Embedded Heterogeneous Platforms. In 15th European Automotive
Congress (EAEC 2017), Madrid, Spain, October 2017.

A.J. Rodriguez, R. Pastorino, A. Luaces, E. Sanjurjo and M.A. Naya. Imple-
mentation of State Observers based on Multibody Dynamics on Automotive
Platforms in Real-Time. In 5th Joint Int. Conference on Multibody System
Dynamics (IMSD 2018), Lisbon, Portugal, June 2018.

E. Sanjurjo, A.J. Rodriguez, D. Dopico, A. Luaces and M.A. Naya. State and input
observer for the multibody model of a car. In 5th Joint Int. Conference on
Multibody System Dynamics (IMSD 2018), Lisbon, Portugal June, 2018.

A.J. Rodriguez, R. Pastorino, E. Sanjurjo, A. Luaces and M.A. Naya. Imple-
mentación de Observador de Estados basado en Modelos Multicuerpo en
Tiempo Real en Plataformas Embebidas. In XXII Congreso Nacional de
Ingeniería Mecánica, Madrid, Spain, September 2018.

131

	List of Figures
	List of Tables
	Acronyms
	List of symbols
	Introduction
	Motivation
	Objectives
	Thesis structure

	State of the art
	State observers on automotive industry
	State observers based on analytical models
	State observers based on multibody models

	On-board Implementation
	In-vehicle ECUs

	State observers based on Multibody Models
	Kalman filter review
	Multibody modeling
	Coordinates and multibody formulation
	MBScoder

	Error-State Extended Kalman Filter
	Error-State EKF with force estimation

	Measurement noise and covariance matrices of the process
	Measurement noise
	Covariance matrix

	New Generation Embedded Hardware
	Modern Hardware Analysis
	Heterogeneous processors for scientific computing
	FPGAs considerations

	Hardware/Software Partitioning
	Hardware Implementations
	Function update_time_variant_var()
	Function update_bodies_var()
	Function solve_system()

	Summary

	Use Case: Automotive Application
	Methodology
	Complete Vehicle Model
	Multibody Modeling
	Tire Model
	Sensor Models
	Results

	Simplified Vehicle Model
	Suspension system: macro-joint
	Results

	FMI 2.0 Standard
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	Appendix List of publications
	Appendix Resumen extendido

