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1 INTRODUCTION 

Storm Water Management Model (SWMM) software has been developed by the United 
States Environmental Protection Agency (US-EPA) and it is widely used worldwide for 
the design and analysis of sewer and drainage networks. SWMM resolves rainfall-runoff 
processes in urban catchments, flow transport within sewer pipe networks and other 
common drainage structures such as pumping stations or stormwater tanks. SWMM 
also includes a module for Low Impact Development (LID) modelling. In Europe, LID 
solutions are usually called Sustainable urban Drainage Systems (SuDS). SWMM is an 
open-source program and can be downloaded free of charge from the United States 
Environmental Protection Agency (US-EPA) website: <www.epa.gov/water-research 
/storm-water-management-model-swmm>. 

The main objective of this manual is to use SWMM model as a teaching tool to improve 
the learning of the hydrological processes developed in urban sewerage and drainage 
systems, and to introduce basic skills for their proper design. For this purpose, a series 
of modelling problems are proposed with an increasing complexity level. This manual 
covers first the design of simplified drainage networks. Wastewater dry weather flow is 
then incorporated into the study cases. Finally, the manual addresses the design of 
Combined Sewer Overflow (CSO) tanks. 

The proposed exercises are complemented with a technical visit to the Hydraulics 
Laboratory of the Center for Technological Innovation in Construction and Civil 
Engineering (CITEEC: www.citeec.es), which has an urban block physical model that 
includes a rainfall-simulator and a complete drainage network. The technical visit is 
carried out as part of the teaching activities of the subjects Hydraulic Works and 
Hydrology - of the Master's Degree in Civil Engineering - and Water Supply and Drainage 
Systems - of the International Master's Degree in Water Engineering -, which are taught 
at the University of A Coruna. This visit aims to facilitate the understanding of 
hydrological and hydraulic urban processes. The first problem proposed in this manual, 
which is usually solved after the visit, consists of the modelling of the laboratory 
infrastructure, thus improving the understanding of the processes that are modelled 
with SWMM. 

Throughout the text, SWMM model structure is progressively explained allowing 
students to solve the proposed problems. The aim of the manual is not to provide the 
theoretical basis of the process of designing sewerage networks, nor to provide a 
detailed description of all the program options. The text covers only the fundamentals 
to develop the proposed exercises. Therefore, the manual is intended as a complement 
to the theoretical bases given during the classes. 

A folder containing a SWMM template model is provided for each of the proposed 
exercises, including a conceptual scheme of the problem and the initial conditions in 
text format. In addition, the problem solved is also included, so that students can check 
the results or modify some options of the model and analyse its behaviour.

http://www.epa.gov/water-research/storm-water-management-model-swmm
http://www.epa.gov/water-research/storm-water-management-model-swmm
http://www.citeec.es/
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2 SWMM MODEL 

2.1 Introduction 

Storm Water Management Model (SWMM) software is a program developed by the US-
EPA for urban drainage and sewer systems modelling. SWMM allows the modelling of 
both hydraulics and pollution generated and mobilised in urban drainage systems, 
although its stronger capabilities lie in the modelling of the hydrological and hydraulic 
processes of the network. Pollution build-up and wash-off analysis processes are not so 
accurately modelled and pollution results show a large degree of uncertainty, so SWMM 
applications for these purposes are not so conventional. 

SWMM first version was developed in 1969 in the United States. Its popularisation 
began in the 80s with the development of version 4.4. SWMM version 4 worked in an 
MS-DOS environment in command line format. The program used input files for the 
different elements of the system and for describing rainfall. 

The current version of SWMM, 5.1.xxx, provides a graphical interface user (GUI) that 
allows users to introduce drainage area data, simulate the hydraulic behaviour of the 
network, estimate water quality, display all the results with a variety of graphics, and 
generate output files for further processing with other tools such as spreadsheets. In 
addition to the visualization of the results as hydrographs, system thematic maps and 
tables, the software has a very powerful statistical tool that allows, for example, the 
characterization of the pluviometric regime or the number of overflows or spills from a 
sewerage network. Furthermore, SWMM v. 5.1.xxx includes LID or SuDS techniques 
modelling. 

SWMM version 5.1.xxx is available in English. There is also a Spanish version of the 
program developed by the Department of Hydraulic Engineering and Environment of 
the Polytechnic University of Valencia (UPV). Nevertheless, it is not recommended to 
use the Spanish version because it has not been updated since 2010.  

The most common application of SWMM model is the design of sewage and drainage 
networks by means of the detailed simulation of a single rain event. Design rainfall is 
associated with a certain level of risk defined by their return period. The initial approach 
for designing the urban drainage system based fundamentally on flood criteria has been 
overcome in recent years. Nowadays, the design of any urban drainage system requires 
considering two aspects: flood and pollution control design. SWMM is also currently 
used to evaluate the overall performance of systems attending to the assessment of CSO 
environmental impact. To evaluate the impacts produced on water bodies during wet 
weather periods, historical rainfall records have to be used to reproduce the “average” 
behaviour of the system.  

The purpose of this manual is not to describe the theoretical framework for urban 
drainage design, since these are presented in the theoretical contents of both Master's 
Degree in Civil Engineering and Water Engineering UDC subjects. Furthermore, it can 
also be consulted in numerous manuals and technical regulations, such as the 
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Instructions for Hydraulic Works in Galicia, ITOHG (Augas de Galicia, 2010), which will 
be used as reference in some sections of this text. 

In short, using SWMM we will be able to carry out the following tasks: 

- To design the main components of a drainage system for flood control. 
- To design different retention or infiltration structures for flood control, 

hydrological control or pollution control. 
- To define strategies for the minimisation of combined sewer overflows (CSO), 

known as Desbordamientos de Sistemas Unitarios (DSU) in Spain. 
- To evaluate the impact of sewer infiltration in combined or separate drainage 

systems. 
- To design and evaluate the efficiency of runoff control measures, such as the 

application of SuDS techniques. 

When a bibliographic search of the SWMM model is carried out, numerous references, 
manuals, scientific works, courses and specialized forums on the application of SWMM 
can be found. Perhaps the best starting point is the US-EPA website, where the following 
information is available: 

1. The latest software version. 
2. Source codes and errors detected in the model. This section is useful if we are 

interested in developing some new software functionality. 
3. SWMM Manuals and Guides, consisting on: 
- User’s manual. Available through the program help. 
- Applications’ manual. This report has a series of applications with solved 

examples.  
- Reference Manuals (hydrological, hydraulic and water quality reference 

manuals) describing the algorithms used and how they have been 
implemented in SWMM. 

- A guide for the simulation of green infrastructure and the application of 
Geographic Information Systems with SWMM. 

4. Other documents. This section provides a link to a community of users who are 
developing improvements to the model in parallel with the official versions of 
the US-EPA. 

In the following section we provide a brief description of the conceptual model 
implemented in SWMM to define the sewer system. Then, we present a revision of the 
main elements of the model and we include a brief overview of SWMM calculation 
methods. These sections are focused on covering the teaching needs of the subjects 
taught at the Civil Engineering School of A Coruña, so some elements such as pollution 
modelling, infiltration or SuDS modelling are not considered in the text. 

2.2 Sewer network conceptual model in SWMM 

SWMM considers the drainage system as a set of interrelated elements called objects 
that are placed in a series of layers. The objects can be visual elements (representing a 
specific feature, such as a manhole) or non-visual elements (representing general 

https://www.epa.gov/water-research/storm-water-management-model-swmm
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properties of the whole system and not displayed in the study area map). Each layer 
represents a hydrological, hydraulic or pollution processes. The layer structure is 
accessible from the Project navigation panel of the SWMM interface (Figure 1).  

 

Figure 1. SWMM v5 layers and objects in the graphic user interface. 

The main layers of SWMM are the following: 

• In Climatology layer we define snowmelt-runoff transformation parameters (wind 
speed, snow melt, air temperature, etc.) and precipitation losses by 
evapotranspiration. In rainfall design procedures (anti-flood design), it is not 
necessary to define any parameters in this layer. However, when performing 
continuous simulations, it is convenient to introduce evaporation ratios (by defining 
a constant daily value or a monthly variation pattern). Evaporation process allows 
the impermeable surfaces drying after rainfall episodes, and thus the surface 
detraction loss is considered in the determination of the net rainfall.  
 

• Two fundamental elements will be introduced into the hydrology layer in any 
modelling of an urban drainage system: raingages and subcatchments.  
 
Raingages represent rainfall inputs into the model: the total rainfall. The net rainfall 
volume is the portion of the total rain volume that will be transformed into surface 
runoff in the subcatchments elements. SWMM defines the net rainfall as the total 
rainfall volume minus evaporation, surface detraction and infiltration. Surface 
detraction includes interception losses in vegetation and other surfaces such as 
building facades and surface storage in ground depressions (e.g., street puddles). 
Infiltration shall be considered only in permeable areas of catchments. The proper 
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definition of subcatchments is perhaps the most important aspect in a SWMM 
model, since it determines the shape of the hydrographs in wet-weather periods. 
 
More non-visual elements can be defined in the hydrology layer such as aquifers, 
snow packs, or unit hydrographs linked to sewer pipe infiltration-exfiltration, but 
these are not commonly used in most of the SWMM applications. Finally, some 
model parameters in LID controls tab shall be included in this layer if we define SuDS 
techniques in our model. 
 

• In hydraulics layer wastewater transport elements are introduced (channels, pipes, 
pumps and regulation elements) to derive flow discharges to drainage system 
outlets (e.g., rivers or WasteWater Treatment Plants WWTP) and, where 
appropriate, storage and treatment units (e.g., stormwater tanks). Flow discharges 
may have different sources like surface runoff, infiltrations from aquifers, dry 
weather flows or even user-defined input hydrographs for particular nodes (e.g. if 
the discharge flow from an upstream basin or the flow from a particular industry is 
known).  

Four different types of elements are included in this layer: nodes or punctual 
elements, links or linear elements, user-defined transects, and control rules. The 
most frequent elements in drainage system models are point and linear elements. 
The most common node elements are manholes (junctions), spills (outfalls) and 
storage units, which are used to model for instance, stormwater tanks. The linear 
elements can be pipes (conduits), pumps, and discharge and overflow structures, 
that are defined by using orifice, weir and outlet equations. In order to describe non-
standard cross-section shapes for a duct (pipe or channel), transects shall be used. 
Finally, control rules allow to introduce operational logic in system elements (e.g., a 
pump operates if a pre-defined water depth value is reached). Transects and controls 
are not described in this manual, but more information can be found in the SWMM 
User Manual (Rossman et al., 2015). 

• In quality layer, pollution surface build-up and wash-off processes parameters are 
introduced by using pollutants and land uses options. 

SWMM also includes another series of complementary layers in which a title and a short 
description of the simulation can be defined. These are described in the practical 
exercises. Other complementary elements usually needed in SWMM simulations are: 
curves or relationships between two variables such as rating curves (water depth vs area 
or volume); time series, used for example to define rainfall; time patterns and map 
labels.  

It’s important to note that not all the elements described above need to be included in 
all SWMM models. For example, if we want to model a separate foul network (without 
stormwater inputs), we have not to include any raingage in the model. 
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2.3 Main elements of the sewerage systems in SWMM 

SWMM 5 represents the elements of drainage systems and the developed hydrological-
hydraulic and pollution processes through objects. The program considers two types of 
objects: (i) visual and (ii) non-visual. Visual objects represent physical processes in the 
system (e.g., precipitation, runoff, or flow in pipes). Non-visual objects describe some 
additional elements or processes that are not in the work area. The following are the 
most common visual and non-visual objects used to solve the problems proposed in this 
manual. A more detailed description of these objects can be found in the SWMM User 
Manual (Rossman, 2015) or in the program's own online help. 

2.3.1 Visual objects 

Figure 2 shows a model of a conventional sewerage network containing its most 
common elements. The raingage and the subcatchments are the main objects used for 
the simulation of the rainfall-runoff transformation. Runoff transport through the 
drainage network is conducted by manholes (junction) and pipes (links). The diagram 
also shows a storage unit and two outfalls. At the outlet of the stormwater tank there 
are two control elements. One of them (outlet) regulates the flow discharge to the 
WWTP. The other element is a spillway (weir) from which CSO spills are released to 
aquatic bodies.  

Figure 2. Layout of the visual elements of a conventional sewerage system. 

Rainfall input data is defined in the raingages. Rainfall data can be defined by the user 
through a time series (e.g., design hyetograph) or from an external data file. To define 
design rainfall, ITOGH SAN 1/1- Calculation of flow discharges in sewage systems can be 
used (Augas de Galicia, 2010). For long-term precipitation series it is recommended to 
use an external file (see chapter 5).  

Subcatchments are hydrological elements of the urban surface whose geometry and 
drainage system features convey the runoff directly to the network. A typical 
subcatchment example is a street reach or a roof. Subcatchment discretization is maybe 
the most important procedure of SWMM modelling. The user is the responsible for 
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defining homogeneous hydrological areas (e.g., surface roughness or shape) and 
identifying their outlet. Outlets are typically system nodes, which represent the 
network’s manholes or street grates. 

Each subcatchment can be split into two different zones with different hydrological 
characteristics: the impermeable area and the permeable area. Surface runoff ground 
infiltration occurs in the permeable zones. Several infiltration models are defined in 
SWMM for these areas. From a practical point of view, the Horton equation is often 
used to evaluate infiltration in high impervious subcatchments (e.g., greater than 40%). 
In highly permeable areas, Curve Number method (SCS CN) must be used instead of 
Horton approach.  

Impermeable areas can be further divided into two sub-areas: one that includes a 
surface storage volume as an initial detraction (e.g., puddles) and another that does not. 
It is recommended to fix the percentage of the area without depression storage at a 
zero value. 

Finally, runoff from each subcatchment zone can be conducted to another area (e.g., 
runoff from a green area can be discharged to a road) or, more commonly, it can be 
connected directly to the outlet node. Details of how SWMM incorporates the modelling 
of the rainfall-runoff transformation can be found in software Hydrological Reference 
Manual (Rossman and Huber, 2016). 

The model shown in Figure 2 includes drainage network objects. There are several types 
of punctual or node type objects, being the most common junctions, outfalls and storage 
units. 

Junctions are intended to connect linear type elements (links). Frequently, junctions 
represent manholes, but they can also be used to model a gully pot or curbs links with 
the network. In order to define a node, we must introduce at least the height of the 
bottom and the area of the element. In some cases, we may want to lock manhole cover 
to avoid flooding. Special watertight cover can be modelled for these purposes defining 
a surcharge depth higher than node maximum depth (max depth). SWMM uses open 
channel flow equations if water depth is lower than pipe diameter, and switches to 
pressurized-flow equations when the water depth exceeds this threshold.  

Time series or time patterns (daily, weekly or monthly) can be introduced into junctions 
to define wastewater dry weather flows. Dry weather discharges must be determined 
for each node using the population density, surface area and wastewater provision. This 
procedure can be found at ITOGH SAN 1/1- Calculation of flow discharges in sewage 
systems (Augas de Galicia, 2010). 

Storage units are nodes representing network features with storage capacity. These can 
be used to model from small storage systems, such as network chambers, to large CSO 
stormwater tanks. The volume of storage units is defined by means of a tabular 
relationship of water depth vs surface area, called storage curve. In SWMM a storage 
rating analytical curve can be also used, although storage curves are recommended to 
avoid errors when introducing the tank geometry. 
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The outfall elements represent in SWMM the terminal nodes of the network, such as 
sewer spills. Only one link element, such as a pipe, can be connected to an outfall. In the 
outfalls, the invert level and the model boundary conditions must be defined. Critical 
depth, normal depth, a fixed water depth, a tidal table or a time series can be used for 
the latest purpose, with critical depth condition being the most frequent when no 
backwater effects are expected.  

Regarding link type elements, conduits are used to represent surface pipes or channels 
as curbs. It is convenient, but not necessary, to define the conduits from the upstream 
node to the downstream node.  

Conduits are defined by their length, the ID of their initial and final nodes, their cross-
section shape, and a series of coefficients to evaluate headlosses. Conduit slope is 
established in SWMM using inlet and outlet depths. Drop shaft manholes or fall 
manholes can be defined by indicating inlet and/or outlet offset values, which 
represents the shift between manhole bottom and pipe height (see Figure 3). 

 
Figure 3. Conduit representation in SWMM. 

Regarding the cross-section of the conduits, a predefined catalogue of 21-shape is 
available in SWMM. By default, circular is the most frequent pipe shape, characterized 
by their inner diameter (max depth). To include several parallel identical pipes, the 
barrel option of shape tab can be used. 

SWMM allows to introduce major (continuous) and minor (punctual) headlosses. 
Continuous friction pressure losses are calculated using the Darcy-Weisbach equation 
by entering pipe Manning roughness coefficient. Minor headlosses at conduit inlets and 
outlets are defined in the pipe properties tab. Manhole headlosess depend on many 
factors such as the invert shape, drops and manholes bends. In SWMM, minor headloss 
coefficients are constant values. Headloss coefficients of 1 and 0.5 are recommended 
for the pipe inlet and outlet, respectively. These values are on the safety side in most 
simulation scenarios and assume pressure losses due to sudden contraction and 
expansion of the streamlines, respectively. 

Three different transport flow simulation models are included in SWMM: uniform flow, 
kinematic wave and dynamic wave. Dynamic wave option must be selected. This 
approach solves the complete Saint-Vennant open channel equations. For pressurized 
flows, the Priessman slot approximation or a specific formulation developed for the 



An introduction to sewer network design using SWMM 

 9 

EXTRAN module of SWMM version 4 is used. These aspects are described in detail in the 
Hydraulic Reference Manual (Rossman, 2017). 

Pumps are link elements that allow raising water from lower to higher areas with an 
adverse hydraulic gradient. Pumps are defined by a pump curve. A pump curve describes 
the relation between a pump's flow rate and the conditions at its inlet and outlet nodes. 
Different types of pump curves are supported including pump characteristic curve 
(pump flow-rate vs head), or relationships between pump flow-rate and stored volume 
or the available height at the initial node of the pump. The on/off status of pumps can 
be controlled dynamically by specifying startup and shutoff water depths at the inlet 
node or through user-defined control rules.  

The flow regulation in node-type elements such as load chambers or tanks can be 
modelled in SWMM with flow regulator link elements. There are three types of 
regulation elements, which are described in more detail in the Hydraulic Reference 
Manual (Rossman, 2017) and in the program help option: 

• Orifices or throttling pipes are drainage elements located in outlet or diversion 
structures within drainage systems, which are typically openings in the wall of a 
storage facility or a control gate. Hydraulically, these can function as a free flow 
pipe or like a submerged orifice. Orifices are defined by the height of their axis, 
the area and the discharge coefficient. Control rules can be also used to modify 
their area, allowing to simulate automatic control gates. 
 

• Spillways (weirs) are overflow structures located, for example, at CSO spill of a 
storm tank. There are 5 types of SWMM spillways: transverse, side, V-shaped, 
trapezoidal and road-type. From a practical point of view, a simple spillway 
without baffles or screens for floating elements or gross solids control in a 
stormwater tank should be modelled as transverse type spillway with a discharge 
coefficient similar to sharp-crested weirs. Without considering any corrections 
for flow submergence, weir discharge coefficient can be set as 1.7. In order to 
fully define a spillway, crest height, width and the maximum height of the 
spillway opening are necessary. When a spillway is surcharged, SWMM modifies 
the spillway equation to orifice equation automatically to compute flow through 
it. 
 

• Outlet type elements are flow control devices typically used to control outflows 
from storage units. They are used to model special head-discharges relationships 
that cannot be characterized by pumps, orifices, or weirs. Outlets are defined 
using a head-discharge type curve. Typical examples of this type of flow 
regulators are vortex regulators or complex spillways with rash-tracks or screens. 
These structures have their head-discharge curve which must be provided by the 
manufacturer. 

Finally, a special type of visual object are the text labels that can be optionally added in 
the SWMM area map. They are called map labels and are used to identify singular 
elements or regions of the map.  
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2.3.2 Non-visual objects 

Non-visual objects are a series of SWMM properties allowing to parameterize global 
processes model. The most frequent non-visual objects are: the climatology object, used 
to define evaporation; the transects object, which allows the definition of irregular cross 
sections or cross sections shapes not included in pre-defined SWMM catalogue; or the 
control rules, which consist of rules governing the logical operation of flow regulators or 
pumps during the course of a simulation. Appendix C.3 of the User Manual (Rossman, 
2015) describes in detail the format that these rules must have. 

Other non-visual objects used in most simulations are curves. These objects define 
relationships between two variables in a tabular form. There are six types of curves, 
although the most common are the following: 

• Storage curve, which describes how a storage unit is filled by a surface area vs 
water depth relationship. 

• Pump curve, which relates the flow pump-rate with water head and volume 
according to the type of pump used in the simulation. 

• Rating curve, which describes head-discharges relationships in outlets. 

Finally, time series allow to introduce a data series to be introduced or imported in the 
model, for example, rainfall records or flow rates. Conversely, time patterns elements 
allow introducing the hourly, daily or seasonal patterns of dry weather time discharges 
into manholes. 
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3 PERFORMING THE SWMM MODEL OF THE SCIENTIFIC 
PLATFORM OF URBAN HYDROLOGY TESTS FACILITY 

3.1 Description of the Scientific Platform for Urban Hydrology Tests facility 

The first example in this manual consists of simulating the drainage system of the 
Scientific Platform for Urban Hydrology Tests facility (PCEHU) located in the CITEEC 
Hydraulics Lab. This physical model consists of a street crossing in an urban area on 
which three different rainfall intensities can be generated (30 mm/h, 50 mm/h and 80 
mm/h). Runoff generated on roofs, sidewalks and roads is conducted into a drainage 
network located at the bottom of the model. Figure 4 shows a series of photographs of 
the platform, while Figure 5 shows a plan layout of the road surface, which indicates the 
slopes of the streets and the distribution of the manholes and pipes. 

Figure 4. PCEHU main general view (above) and physical model surface and drainage system (below). 
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Figure 5. Plan layout of PCEHU surface. 

3.2 Problem statement 

To develop the SWMM model of the PCEHU, we will need information on the surface 
catchment, discretize it into different subcatchments and the data related with the 
properties of the different nodes (manholes, gully pots, regulation control devices, etc.). 
In addition to the subcatchment and the network topology, it is necessary to include in 
the model the design rainfall and dry weather flow data.  

3.2.1 Subcatchment definition 

In the physical model we have 4 gully pots that drain surface runoff from the street 
surface to drainage network manholes. In order to determine each subcatchment 
boundaries, we have to consider street surface slopes (2% transversal and 1% 
longitudinal). In addition, there are four gutters that collect the rain intercepted by the 
roofs and incorporate it into different manholes. The conceptual model of the network, 
shown in Figure 6, has a total of 9 sub-basins: 5 street-type and 4 roof-type. 

The geometric properties of the different subcatchments and their connectivity with the 
nodes of the model are shown in Table 1. Complementary data for the definition of the 
subcatchments are the surface roughness, which will be fixed with a Manning coefficient 
n = 0.016, and the surface depression storage volume, established at 1 mm for all the 
impermeable surfaces. As the facility is completely impervious, nor non-permeable 
areas neither infiltration parameters have to be defined.  
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Figure 6. PCEHU facility subcatchment model layout (above) and node definition (below). 

Table 1.  PCEHU facility drainage model subcatchment properties. 

Subcatchment Outlet node Area (ha) Width (m) Slope (%) Imperm. (%) 

S.1 N.2 0.00050 1.5 2.24 100 
S.2 N.3 0.00113 2.5 2.24 100 
S.3 N.5 0.00129 2.4 2.24 100 
S.4 N.6 0.00145 2.2 2.24 100 
S.5 N.6 0.00063 2.6 2.24 100 
S.6 N.6 0.00078 4.8 0.01 100 
S.7 N.2 0.00117 7.2 0.01 100 
S.8 N.5 0.00122 7.5 0.01 100 
S.9 N.3 0.00122 7.5 0.01 100 

 

3.2.2 Nodes and conduits 

The model includes 6 nodes or manholes, 4 of them connected to model subcatchments, 
and an outfall downstream, which we will consider to be a free discharge at critical 
depth (see Figure 6). 
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The drainage network consists of 250 mm diameter polycarbonate pipes with a Manning 
coefficient n = 0.009. The slope of all pipes is 0.5 %. This slope is defined from the invert 
depth of the manholes of the main drainage axis (nodes O.1 to N.1). The P.4 pipe, 
perpendicular to the main axis, is connected to the P.5 fall manhole at a height of 30 cm 
measured above the manhole invert. 

In the model, pressure losses at the entrance and exit of each of the manholes will also 
be considered. Headlosses will be defined at the entrance and exit of each of the pipes 
as 0.2 and 0.5 respectively.  

Table 2 and Table 3 show the data needed to define model's manholes and pipes. 

Table 2. Manhole definition for the PCEHU drainage model.  

Manhole Bottom elevation 
(m) Max. depth (m) 

N.1 1.081 1.256 
N.2 1.069 1.244 
N.3 1.050 1.225 
N.4 1.351 0.926 
N.5 1.031 1.206 
N.6 1.013 1.188 
O.1 1.000 - 

 

Table 3. Conduits definition for the PCEHU drainage model. 

Conduit Inlet Node Outlet Node Length (m) D (m) 

P.1 N.1 N.2 2.50 0.25 
P.2 N.2 N.3 3.75 0.25 
P.3 N.3 N.5 3.75 0.25 
P.4 N.4 N.5 3.90 0.25 
P.5 N.5 N.6 3.75 0.25 
P.6 N.6 O.1 2.50 0.25 

 

3.2.3 Rainfall 

In this example, a 30-minute hyetograph consisting of 6 precipitation blocks with the 
intensities that can be generated in the physical model will be considered. The 
hyetograph is presented in Figure 7. 
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Figure 7. Design hyetograph for the PCHEU drainage model.  

 

3.2.4 Dry weather wastewater flows 

Constant dry weather flow rates of 1 and 2 L/s will be entered in manholes N.1 and N.4, 
respectively. 

3.2.5 Results 

Once the drainage system is modelled with SWMM, the following results should be 
obtained: 

– Longitudinal profile between nodes N.1 and O.1. 
– Flow hydrograph for all the pipes included in the model. 
– Pipe velocity map at the worst time of the P.6 pipe (e.g. the simulation time 

step with higher flow velocity or depth) 
– Outfall O.1 rating curve (e.g. flow discharge vs depth relationship). 

3.3 Procedure to solve the problem 

The steps to follow to develop the drainage model with SWMM will be the following: 

– To set up the default properties of the simulation. 
– To sketch up the drainage network and the study area. 
– To edit the properties of the different model elements. 
– To set up simulation options. 
– To show the results. 

3.3.1 Setting model by-default properties 

The first step is to specify the default values of the different element ID and common 
properties of the visual objects in Project >> Defaults.  
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Figure 8 shows the default options to be included in the model. In the "ID Labels" tab, 
we will enter the prefixes that we want to use for the numbering of the different 
elements of the network (for example P. for pipes).  

 

Figure 8. By default simulation options for the PCHEU drainage model. 

In the second tab "Subcatchments", the default options for the different subcatchments 
can be fixed. Some options such as subcatchment area do not make much sense, since 
each subcatchment will have a different area. Other options such as slope, percentage 
of imperviousness, depression storage or Manning's coefficient will save time when 
entering the model data. 

The last tab "Nodes/Links" contains manhole and conduits data. Element-specific 
parameters such as dimensions or lengths will not be very useful, but others such as 
diameter or Manning's coefficient will allow significant time savings. In addition to the 
element-specific parameters, this tab contains the Flow units, the Link offsets, the 
Routing method, and the Force main equation. 

Regarding the Flow units, in this example we will use LPS (L/s), as it is more convenient as 
it is a very small catchment. In real-world applications we will work usually in CMS (m3/s). 
Once the flow units are fixed, the remain model units are defined. Thus, if we choose 
the International Measurement System (SI), the rest of the objects in the model will be 
defined in SI (for example, the dimensions in m).  
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The Link Offsets option allows to the user to define the elevations reference system used 
in SWMM in the node-type elements. We can use measurements relative to the bottom 
or invert of each element -using the option Depth- or absolute elevations units referred 
to a general Datum -using the option Elevation-. For example, if a manhole bottom is 
placed at +10.0 m and the manhole cover is at +12.5 m, to define the manhole 
coordinate we must indicate it as Node Maximum Depth 2.5 in relative coordinates 
(Link Offsets >> Depth) or 12.5 in absolute coordinates (Link Offsets >> Elevation). 

Routing Method and Force Main Equation options of the "Nodes/Links" has to be set 
always with the Dynamic Wave and Darcy-Weisbach options respectively. 

Finally, if we want to fix these default options for future model, we must check the Save 
as default for all new projects option.  

3.3.2 Drainage network and study are sketch up 

The network will be schematized from the images (.jpg) provided in this example (see 
Chapter 6). The Auto-Length option in the lower toolbar will be activated first. This tool 
allows to the objects, subcatchments and pipes drawn in the study area, to acquire the 
areas and lengths directly from the sketch we load in the study area. If Auto-Length 
option is switched-off, the sketch will be merely indicative and all the areas and 
distances of the model will have to be entered by hand.  

Once the Auto-Length option is activated, the street layout file corresponding to the 
image Block_network.jpg will be loaded from View >> Backdrop >> Load (Image File) 
menu. 

Then, we have to define the dimensions of the backdrop in order to use it as a drawing 
template and set the drainage systems areas and lengths automatically. We need to 
introduce the lower left and upper right coordinates of backdrop using the menu 
View >> Backdrop >> Resize (Figure 9). The corner coordinates of the example image are 
(0.0) and (19.10). By selecting Scale Map to Backdrop Image, the dimensions in the study 
area are adjusted to the backdrop image dimensions.  

Before starting to sketch up the drainage system it is strongly recommended to check 
again if Auto-Length is enabled. 
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Figure 9. Backdrop dimensions setup for the PCHEU drainage model. 

Now, we can define the drainage system model using the backdrop as a template, 
starting from the nodes, outfalls and pipes. Each type of object is selected in the Objects 
toolbar, which is the toolbar placed at the top of the study area, and then is drawn in the 
study area. It is recommended to follow the order of the objects indicated in Figure 10. 
Then, we can introduce model pipes, which should be drawn from the upstream node 
to the downstream node to avoid confusion when entering the model data. 

 

Figure 10. Distribution of nodes and manholes in the PCHEU drainage model. 

To display the labels (ID) of the nodes, pipes and other visual elements of the study area, 
we have to indicate the elements to be displayed using the Annotation option in 
Tools >> Map Display Options menu. In Map Display Options window, other display 
options can also be adjusted, such as the borders and shading of the subcatchments, 
line thickness, the size of the nodes, font size of the annotations, or even indicate with 
an arrow conduit flow direction. 
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Once drainage system topology is entered in the study area, the subcatchments shape 
will we introduced in the model. First, we will change the backdrop using 
Block_subctachment.jpg file. First, the previous image must be unloaded using View >> 
Backdrop >> Unload menu. Then, we load the new image with the option View >> 
Backdrop >> Load (Image File). The model subcatchments will be drawn based on the 
new backdrop (Figure 11). Once all the subcatchments have been entered, backdrop 
image can be unloaded. Finally, a raingage is placed at any point of the study area. 

To prepare backdrop images for modelling, it is recommended to use some CAD or SIG 
tool that allows us to activate and deactivate the layers with the information of our 
drainage system. For example, a satellite or a street map can be used for the backdrop. 
To this backdrop image it will be possible to incorporate the layout of the 
subcatchments, pipes and manholes. The backdrop images can even include some text 
data to help identify the drainage elements or define them (for example, the material 
and diameter of the pipes, or the manhole depth). It is important that all images have 
exactly the same dimensions, allowing to be exchanged, as in this example. 

 

 

Figure 11. Distribution of subcatchments in the PCHEU drainage model. 

3.3.3 Editing object properties 

Once all the elements of the model have been introduced in the study area, the next 
step is to assign the properties of each object. The properties window is opened by 
double-clicking on each object or by selecting the object in the navigation panel on the 
left of the SWMM interface. As an example, Figure 12 shows the properties of a sub-
basin (S.1), a manhole (N.2) and a pipe (P.3).  
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Figure 12. Edition of the properties of the objects of the PCEHU drainage model. 

In pipe P.4, it is necessary to define, in addition to its main characteristics, an Outlet 
Offset of 0.3 m, since the pipe is connected to a fall manhole. In the remaining pipes of 
the model, the Outlet Offset is set to zero since they are connected to the invert 
manhole. 

In nodes N.1 and N.4, the dry weather flow must be incorporated in the Inflows option, 
with a value of 1 and 2 L/s respectively (see Figure 13). 

 

Figure 13. Edition of the dry weather flow options of the PCEHU drainage model. 

Finally, the precipitation record must be defined in the raingage. Rainfall data can be 
imported using an external text file or using a Time Series defined in the navigation panel 
(Figure 14). The first method is highly recommended for long data series (Chapter 5). In 
this example the second method will be used, defining a time series that is then assigned 
to the raingauge indicating precipitation format (in this case intensity in mm/h), the time 
interval (5 minutes) and the origin of the data, which is a Time Series. 
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Figure 14. Rainfall data input into the PCEHU drainage model. 

3.3.4 Analysis and simulation options 

Before running the simulation, some analysis options must be specified. To do so, the 
option Options >> General option in the side navigation panel must be selected. For this 
example, the options shown in Figure 15 will be used. 

The options on the General tab allows to indicate the model processes to be simulated 
and the calculation methods. None of the options on this tab need to be changed, as 
they have been previously defined in the default options.  

In the Dates tab, the Start analysis date of the simulation, the date from which the 
results should be displayed and the date of the end of the simulation are indicated. As 
rainfall data series does not have any defined date in MM/DD/YY format, only the start 
and end time of the simulation is relevant. 

The Time Steps tab shows the time interval between results (5 minutes is a common 
value) and the time step intervals for dry and wet weather calculus. The Routing option 
defines the time step to perform pipe flow discharge modelling. Finally, in the Dynamic 
Wave tab, the options for the flow simulation in dynamic wave are indicated. In this tab, 
the options indicated in Figure 15 must be chosen for this problem. 
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Figure 15. Simulation options in the PCEHU drainage model. 

Once all the options have been entered, all that remains is to carry out the simulation. 
To do so, select Project >> Run Simulation from the main menu, or click on the icon with 
a lightning bolt . A window will then appear informing that the models has been 
successfully ran and showing model continuity errors, which are typical of the numerical 
methodology on which SWMM is based. If any of the continuity errors is greater than 
5%, this usually indicates that the model is being flooded. This can be corrected by 
modifying the geometry of the network. 

Sometimes, a problem may arise in the simulation due to an inappropriate definition of 
the drainage system. This occurs for example if an object has not been defined correctly, 
if there are errors in the model discretization or if there are errors reading input files. In 
this case, the program would show a message indicating the type of problem. We can 
look for the error code in the program's help or even in a web browser to solve it. 
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3.4 Model results 

In order to analyse model results, the first option included in SWMM is the Status 
Report, which provides a practical summary of the main results of the simulation. The 
Status report is available at the main menu Report >> Status. This report allows searching 
for the nodes or conduits that present more numerical errors for their later resolution. 

In addition to the Status Report, in the report menu the Status Summary can be 
consulted in Report >> Status Summary. This report includes detailed information of the 
different elements of the model. For example, it is possible to look for surcharged or 
flooded nodes, the time in which the highest velocity is recorded in each pipe to check 
if it is admissible, or to quantify the overflow volume to the aquatic media in outfall 
nodes. 

Another way of visualizing results is through graphics. SWMM allows to plot three 
different types of graphs in the menu Report >> Graph. These plots can also be created 
with toolbar icons.  

The Profile Plot option or icon  allows to plot longitudinal profiles of the water 
elevation in the drainage network. To visualize pipe water filling and emptying, the 
animation toolbar found in the View/Map option of the navigation panel can be used. 

To represent the network profile between the O.1 discharge point and the N.1 node, 
select the Profile Plot option, then introduce the start node and the end node of the 
profile and select the Find Path option. This allows SWMM to add the pipes to the profile 
plot. Figure 16 shows the profile plot obtained. 

 

Figure 16. Profile plot between nodes N.1 and O.1 of the PCEHU drainage model. 

To represent time series as hydrographs, we must use the Time Series Plot option or the 
icon . In the Time Series Plot Selection window, add the variables and elements that 
you want to represent using the Add option and, once the selection is finished, press 
OK. Figure 17 shows the variable selection windows and the figure obtained with the 
hydrographs of all the pipes of the PCEHU model. 
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Figure 17. Time series plot window option to display the hydrographs of all pipes in the PCEHU drainage model. 

The third SWMM plot option allows to represent scatter plots of two variables by means 
of the Scatter Plots option or the icon . The example in Figure 18 shows the window 
for choosing the variables for the scatter plot and the discharge curve at the discharge 
point O.1.  

 

Figure 18. Scatter plot window options to create a flow head-discharge curve in the outfall node of the PCEHU 
drainage model.  
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Some SWMM graphics options allow to modify the basic plots shown before, such as 
adding a figure legend, including secondary axes or defining the names of the variables. 
However, it is convenient to use some external software such as a spreadsheet to obtain 
improved graphics. The results can be exported in table format, using the menu option 
Report >> Table. SWMM produces two types of tables: By object and By variable. In a By 
object table, several properties of one selected object are displayed, such as velocities 
and flows of a pipe. A By variable table allows to show the properties or records of one 
variable in several elements. This option is useful, for example, to display the flow rate 
of several pipes in the network. 

SWMM version 5 also incorporates a new way of visualizing the results on the Study 
area map, which consists of showing the different ranges of values that a certain 
variable reaches at a fixed reporting time-step of the simulation using a colour code. 
Using the Map tab of the Navigation panel, we can select the variable to be displayed 
for each type of model object. Then, we can select the reporting time-step by moving 
the cursor under the Time bar. As an example, Figure 19 shows the runoff in each 
subcatchment, the water depth in the manholes of the model and the pipe flow velocity. 
It is possible to display also physical parameters of the model elements, such as the 
subcatchment area or pipes diameters, or model variables, such as elevations or flow-
discharges. The colour-map scales can be modified in the study area map by right-
clicking on the legend of each variable. 

 

 

Figure 19. Example of the map display with the variables subcatchment runoff, node water depth and pipe flow 
velocity. 

Finally, SWMM allows to create a powerful statistical report of the model results using 
the icon . This report is especially useful for long-term simulations, such as months or 
years. More details will be provided at Chapter 5.  
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4 SIMPLIFIED COMBINED SEWER NETWORK MODELLING 

4.1 Problem statement 

In this section, a simplified combined sewer network will be modelled. An urban 
catchment has been discretized using 6 subcatchments connected to the manholes of a 
drainage system. Figure 20 shows the catchment layout. Subcatchments, manholes and 
pipe model properties are presented in Table 4, Table 5, and Table 6. 

 

 
Figure 20. Combined sewer network model layout. 

Table 4. Combined sewer network model subcatchment properties. 

Subcatchment Outlet node Area (ha) Width (m) Slope (%) Imperm. (%) 
S.1 N.1 10 500 2 60 
S.2 N.2 8 900 6 75 
S.3 N.3 9 225 4 80 
S.4 N.3 12 240 5 20 
S.5 N.4 6 200 1 75 
S.6 N.4 5 200 3 80 

 

Table 5. Manhole definition for the combined sewer network model. 

Manhole 
Bottom 

elevation (m) 
Max. depth 

(m) 
N.1 14.5 2.5 
N.2 13.9 2.5 
N.3 6.9 2.5 
N.4 0.15 2.5 
N.5 7.9 2.5 
O.1 0 2.5 
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Table 6. Conduits definition for the combined sewer network model. 

Conduit Inlet Node Inlet Node Length D (m) 
P.1 N.1 N.2 500 0.8 
P.2 N.2 N.3 900 0.8 
P.3 N.3 N.4 225 1.5 
P.4 N.4 0.1 240 1.5 
P.5 N.5 N.3 200 1 

 

In addition to Table 4 data, the Manning roughness coefficients are needed to define 
the subcatchments. For impermeable and permeable areas n = 0.025 and n = 0.15 will 
be adopted, respectively. The value of the initial depression storage has been estimated 
at 1 mm and 2 mm for impermeable and permeable areas respectively. The Horton 
equation will be used to model the infiltration with the following parameters: maximum 
infiltration capacity of 75 mm/h, minimum infiltration capacity of 25 mm/h, and decay 
and infiltration coefficients of 0.001. The influence of the infiltration parameters on the 
simulation will be reduced since the catchment is eminently impermeable. 

An important set of parameters governing the hydrological response of the 
subcatchments are their width and slope. Thus, the greater the slope and width, the 
higher the runoff peak. Conversely, subcatchments with a lower slope and smaller width 
will cause lower peak discharges and more time to peak flow. Runoff volumes will be 
defined by the impervious area of the drainage area and their depression storage 
volume. To adequately represent the hydrological behaviour of urban drainage systems, 
we have to set carefully these governing model parameters. In this sense, it is 
recommended to define homogeneous subcatchments with homogeneous widths and 
slopes. For example, subcatchments can be defined as street reaches and roofs of each 
urban block. 

Urban catchments can also be discretized by using semi-distributed subcatchments such 
as those presented in this example. In order to carry out this network conceptualization 
work, it is recommended follow the procedures defined in the SWMM Hydraulic 
Reference Manual (Rossman and Huber, 2016) or in the Monographic Book on 
stormwater management published by several members of the Water and 
Environmental Engineering Group (GEAMA; Puertas et al., 2005). 

In the urban drainage system defined in this example, the shape and geometry of the 
elements of the model are already pre-established and it is not necessary to define the 
conceptual model of the network. We have just to introduce the elements already 
defined in SWMM software. 

Regarding the definition of the manholes, data presented in Table 5 is needed. In 
addition, in manhole N.5 a constant flow rate of 200 L/s must be entered. The discharge 
point O.1 represents the connection of the catchment to a big sewer truck. Critical depth 
boundary conditions will be considered. 

The drainage network consists of circular concrete pipes with a Manning coefficient n = 0.015. 
In this section, no head-losses will be considered in the manholes. Head-losses will be 

http://www.geama.org/
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added in the following example, where an CSO tank will also defined downstream of the 
catchment (Chapter 5). 

The rainfall profile used in this example corresponds to the Example 7 of ITOHG SAN 1-1 
(Aguas de Galicia, 2010). The design rainfall has been calculated using the Intensity-
Duration-Frequency curves (IDF) from the Spanish road regulations IC 5.2 and with the 
daily precipitation volumes recorded at AEMET's A Coruña weather station. The 1-hour 
design hyetograph has been defined using the alternating block method for a 10-year 
return period and by averaging the two maximum rainfall blocks. The obtained 
hyetograph is shown in Figure 21. Considering this return period, the network design is 
being carried out to limit the pipe filling ratio to a maximum depth-diameter of y/D = 0.75.  

 

Figure 21. Design histogram for T=10 years and 1 hour duration used in the combined sewer network model. 

Once the network has been simulated using the previous design rainfall, the following 
tasks will be carried out:  

– To check the hydraulic behaviour of the drainage network: flooding analysis and 
compliance with the maximum filling-ratio (y/D ˂ 0.75). 

– To adjust the network to avoid flooding issues. 
– To perform a hydrograph plot of P1 to P5 pipes. 

 
4.2 Procedure to solve the problem 

The steps to develop the drainage model with SWMM will be the following: 

– To determine the default properties of the visual objects.  
– Outline the network and the study area: plotting subcatchments, nodes and pipes. 
– To edit the properties of the different model elements. 
– To set up simulation options and run the model. 
– To show the results. 



An introduction to sewer network design using SWMM 

 29 

4.2.1 Model by default properties 

The by default properties of the elements and subcatchments are defined in the ID 
Labels tab of the Project >> Defaults menu option. The prefixes of the visual objects are 
set as shown in Figure 22. The default properties of the subcatchments, nodes and pipes 
are then set in Subcatchments and Nodes/Links tabs. In this case, cubic meters per 
second (CMS) are used as the default units.  

 

Figure 22. Edition of the default properties of the objects of the combined sewer network model. 

In order to provide an adequate numerical precision of the CMS, the numerical accuracy 
properties should be reviewed. On the Numerical Precision tab of the Tools >> Programs 
Preferences menu, three decimal places must be set for the flow data as shown in Figure 23. 

 

Figure 23. Edition of the Numerical Accuracy of Objects in the model. 
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4.2.2 Drainage network and study area sketch up 

The next step is to plot the layout of the model with its subcatchments, nodes and pipes 
in the Study area map.  

Before starting to plot the elements of the model, the image of the study area and the 
network will be uploaded as backdrop. The backdrop image corresponds to the file 
Combined_sewer.jpg. To load it, use the option View >> Backdrop >> Load (Image File) 
menu. In this example, the backdrop image is provided without any scale and thus will 
only be used to facilitate the network outline processes. The option Auto-Length on the 
lower toolbar must not be activated and the elements will be plotted in an approximate 
way, since the area and length properties will be entered numerically.  

The icons on the Objects Toolbar are used to plot the network elements. First, the 
subcatchments are drawn by clicking on the icon . The elements will be introduced 
following the order defined in Figure 20. Then, manholes can be plotted using the icon , 
and the outfall using the icon . Finally, the pipes are drawn using the icon , always 
following the direction from the upstream node to the downstream node. The last 
element to be included in the network drainage model is a the raingage, which is inserted 
with the icon . 

Once the elements of the combined drainage model have been plotted, the backdrop 
image can be unloaded using the menu View >> Backdrop >> Unload. 

4.2.3 Editing object properties 

The properties of the elements in the model must be changed in the properties window 
of each object, either by double-clicking with the left mouse button or by selecting the 
object in the navigation panel. Figure 24 shows, as an example, the properties of 
subcatchment S.1 and node N.5. In node N.5, a dry weather flow rate of 200 L/s must 
be introduced using the Inflows pop-up window. 
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Figure 24. Editing object properties in the combined sewer network model. An example of the properties set for 
subcatchment S.1 and node N.5. is shown. 

Lastly, the rainfall record in the raingage is defined. For the resolution of this example, 
the file rain_T10.dat is provided with the design hyetograph. Rainfall must be entered 
using a user-defined Time Series. A new Time Series is created in the Project panel using 
the "+" button. The option Use external data file named below is checked and then 
rain_T10.dat file is imported as shown in Figure 25.  

In the Times series windows there is also an option to copy and paste the rainfall record 
from a text file or a spreadsheet. The option Enter time series data in the table below 
should be selected and by positioning the mouse on the first Time (H:M) cell, paste the 
values by right clicking. This option is more convenient since with the View button in the 
Time series window it is possible to check if SWMM recognizes the time series.  
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The last step is to edit the PL1 raingage option by defining the source and characteristics 
of the rain data, as shown in Figure 25. 

 

Figure 25. Definition of the rainfall data in the combined sewer network model. 

4.2.4 Analysis and simulation options 

The analysis options must be defined before running the model. To do this, select 
Options in the Project side navigation panel. On the General tab no changes are 
necessary if the default options have been entered correctly in section 4.2.1. In the 
Dates tab, a 4 hours simulation length must be defined. As we have not defined the date 
(in MM/DD/YY format) in the precipitation time series, we do not need to change these 
parameters. In the Time Steps tab the time interval for results reporting must be 
established, typically in the range from 1 to 5 minutes (Figure 26). Next, the time step 
intervals for dry weather flow, wet weather flow and flow routing must be set. Typical 
values are 15-30 minutes for dry weather, 1-5 minutes for wet weather, and 5-30 
seconds for pipe flow routing. The values in the Dynamic Wave tab will be set as shown 
in Figure 26. 
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Figure 26.  Simulation options in the combined sewer network model. 

The simulation is then performed by clicking on the icon  or by selecting Project >> 
Run Simulation from the main menu. Immediately after the simulation, a window will 
inform us that the model has run without any setback and that the continuity errors are 
small. If something is going wrong in the simulation, the model and the error codes 
shown in the Status report must be checked to fix the model. 

4.3 Model results 

Once the simulation is performed, we can review the Status Report (Report >> Status 
menu) and the Summary Report (Report >> Summary menu). The Status Report would 
not report any problems since there are no significant continuity errors. The Summary 
Report allows to analyse the general hydraulic performance of the drainage system by 
displaying different summaries of all the elements of the model grouped by its type.  

Figure 27 shows the Summary Report outputs for pipes (links) and manholes (nodes) with 
flooding. The report provides information on the recorded worst-case values and the 
exact time of occurrence. This is very important because it allows the detection of 
problems not shown in the results. As an example, the instant of maximum flow in the P.4 
pipeline occurs at the 43rd minute of simulation and would not be shown in the general 
results as these are shown in 5-minute intervals (as indicated in the simulation options). 

In Figure 27 it can also be seen that the P.1 pipe has a maximum ratio y/D=1, which 
means that the pipe is surcharged and potentially, a flood event could be recorded. To 
check if flooding occurs, the list of items in the Summary Report is called Node Flooding. 
If this item appears in the list, then flooding occurs.  

In nodes N.1 and N.2, floods of 0.08 hours (5 minutes) and 0.03 (2 minutes) are recorded, 
respectively (Figure 27). Figure 28 shows the longitudinal profile (Graph >> Profile Plot) 
between nodes N.1 and O.1 at reporting time 00:45. The plot displays how the water 
surface reaches the urban ground in node N.1.  
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Figure 27. Link Flow tab and Node Flooding tab in the Summary Report of the combined sewer network model. 

 

Figure 28. Longitudinal profile between nodes N.1 and O.1 of the combined sewer network model at 00:45. 

The network should increase its drainage capacity to solve flooding problems. In most 
cases, this can be achieved with one of the following strategies: (i) increasing the wetted 
area of the pipe, (ii) increasing the slope, (iii) using materials with a lower roughness 
coefficient, or (iv) reducing minor (punctual) head-losses.  

In the proposed example, P.1 and P.2 pipe diameters will be increased. Such changes 
should always be performed from downstream to upstream, because in some cases an 
upstream surcharged pipe could be fixed just by changing the drainage capacity of one 
or more downstream pipes. 
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The properties of the P.1 and P.2 pipes are edited and their diameter changed from 800 
mm to 1000 mm. Running the model again and reviewing the Summary Report or the 
network longitudinal profile (Graph >> Profile Plot) shown in Figure 29, it is verified that 
surface flooding no longer occurs.  

Figure 29. Longitudinal profile between nodes N.1 and O.1 of the combined sewer network model after increasing 
P.1 and P.2 pipe diameter to 1000 mm. 

In addition to ensuring that there is no flooding, it should be checked that the filling ratio 
of the pipes, y/D, is less than 0.75. This condition is linked to the design return period, 
as established by the UNE-EN-752 drainage standard and reported in the ITOHG SAN 
1/0. Sewage Systems (Aguas de Galicia, 2010). The Summary Report shows that the 
maximum ratio is only slightly exceeded in P.4 pipe, reaching a value of 0.79 (Figure 30). 
Given the didactic nature of the example, this value is considered acceptable and no 
further changes are performed to the drainage network. The Summary Report also 
shows that the maximum flow velocity does not exceed 3 m/s, which is the reference 
value for concrete pipes.  

Figure 30. Link flow summary report tab in the combined sewer network model once the diameter of P.1 and P.2 
pipes has been increased. 

Figure 31 shows the flow hydrograph for all the pipes of the drainage network, after 
increasing pipes P.1 and P.2 diameter. It can be observed that in pipe P.5 the flow is 
constant and equal to 0.2 m3/s, which corresponds to the dry weather flow rate 
introduced in node N.5. The maximum flow rate is about 2.9 m3/s. 
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Figure 31. Flow hydrograph in all the pipes of the combined sewer network model, once the diameter of P.1 and P.2 
pipes has been increased. 
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5 CSO STORMWATER TANK DESIGN 

5.1 Problem statement 

This chapter starts from the combined sewer network modelled in Chapter 4 and 
introduces the preliminary sizing of a CSO stormwater tank at the drainage network 
outlet. To do this, the simplified method proposed in the ITOHG (Aguas de Galicia, 2010) 
for an urban area spilling the CSO to a non-sensitive area. Initially, the stormwater tank 
is sized using the T=10 years return period design rainfall. The adequate behaviour of 
the drainage network and CSO tank spillways is checked against flooding using this 
rainfall pattern.  

Based on the model described in Chapter 4, the following changes have to be made: 

- To define head-losses at pipe inlet and outlets, using minor loss coefficient values
of 0.2 and 0.5 respectively. 

- To change the dry weather flow rate introduced in node N.4 (200 L/s) to the
design wastewater flow for combined sewer systems according to the 
recommendations for Galicia region (Augas de Galicia, 2010). This flow rate 
corresponds to the total peak hourly flow rate, QHp,total, which is estimated from 
a wastewater allocation of 1.5 L/s/ha. 

- To limit the throttle discharge to the WWTP by using an ideal flow regulator that
allows a maximum flow of three times the total daily peak flow, 3·QDp,total. This 
flow rate is calculated using wastewater allocation of 0.6 L/s/ha. 

- To introduce an overfall sharp-crested spillway at a 2 m height and a discharge
coefficient (CD=1.7) appropriate for T=10 years design rainfall. The maximum 
height of the tank is set at 3 m. 

- To introduce two outfalls in the tank, representing the throttle flow conducted
to the WWTP and the CSO overflow conducted to aquatic media. Both outfalls 
will be modelled using critical depth boundary conditions. 

Once the design rainfall criterion has been checked, the operation of the tank is analysed 
in terms of CSO flow control following the methodology proposed at ITOHG SAN 1/5 
(Aguas de Galicia, 2010). For this purpose, the annual rainfall time-series corresponding 
to the yearly “average” rainfall profile is used. 

5.2 CSO stormwater tank sizing using the design rainfall 

To set the head-losses at the inlet and outlet of the pipes, loss coefficients 0.2 and 0.5 
must be entered, respectively. These values can be modified one by one in all the pipes 
of the model, or by using the Select Region  tool to change all the objects 
simultaneously. The whole catchment will be selected with the Select Region tool and 
the Group Editor option in the View menu is used to change all the head-losses at the 
inlet and outlet of the conduits as shown in Figure 32. 
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Figure 32. Edition of the model object properties using the Group Editor option. 

The dry weather design flow rate is considered to be equal to the total hourly peak flow 
rate, QHp,total. The QHp,total allocation is estimated at 1.5 L/s/ha. The catchment area can 
be calculated from the data included in the .inp input file, which can be read with a text 
editor, or from the Project >> Details menu. In the [SUBCATHMENTS] tab, the total area 
of each subcatchment and the imperviousness coefficient are shown (Figure 33). The 
total area of the model is 50 ha and the impervious area, calculated from the product of 
the area of each subcatchment and its imperviousness percentage, is 30.1 ha. The 
QHp,total, estimated as the product of the total surface and 1.5 L/s/ha, is equal to 75 L/s. 
This flow rate is introduced as dry weather wastewater flow in node N.4. 

 

Figure 33. Subcatchment properties in the CSO stormwater model. 

The stormwater tank is calculated using Table 1 of the simplified method of the ITOHG 
SAN 1/5 (Augas de Galicia), which proposes a specific storage volume of 80 m3/ha net 
or impermeable. Therefore, the total volume of the tank up to the spillway height will 
be 2408 m3. If the height of the spillway is set at 2 m, the total surface of the tank will 
be 1204 m2.  

The maximum throttle flow rate to the WWTP is equal to 3·QDp,total. The total daily peak 
flow, estimated using a 0.6 L/s/ha allocation, is equal to QDp,total=30 L/s. Thus, the 
maximum throttle flow rate is set at 90 L/s. 
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The overflow spill CSO discharge depends on the tank geometry (due to the storage flow 
attenuation) and the length of the spillway. To size the length of the spillway, the 
maximum flow rate determined with the model is used. The model of the drainage 
network has to be run after changing the dry weather flow rate and adjusting the minor 
head-losses (without tank). The maximum flow rate in the outlet pipe is 2.8 m3/s, which 
is considered as the spillway design flow discharge. The length of the overfall is 
calculated using the discharge equation for transverse spillways: 

𝑄𝑄 = 𝐶𝐶𝐷𝐷 · 𝐿𝐿 · 𝐻𝐻1.5 

where CD is the discharge coefficient equals to CD=1.7, H is the water elevation above 
the spillway fixed at 0.20 m, y Q is the spillway flow discharge equals to 2.8 m3/s. The 
spillway length can be estimated thus as L = 20 m. 

The next step is to define the CSO tank and the outfall nodes in the drainage network 
model. By right-clicking in the outfall O.1, we can convert this node into a Storage unit that 
represent the CSO tank. Then, we proceed to rename this element as TANK in the object 
properties. Two new outfall points are added using Outfall  type elements to define the 
WWTP throttle flow regulator and the CSO spill. These nodes will be renamed as WWTP 
and CSO. Finally, we connect the TANK node with the CSO outfall using a Weir  type 
element, that we will rename as Spillway, and with the WWTP outfall using an Outlet . 
The outlet link will act as the throttle flow regulator. Figure 34 shows the final arrangement 
of the elements in the model. 

 

Figure 34. Layout of the CSO tank connections with the CSO spill point and the WWTP throttle flow regulator. 

CSO tank properties must be edited. The tank will be located at +0 m elevation, which 
will be entered in the Invert El property. The total height of the tank must exceed the 
level of the spillway crest to avoid numerical instability problems. In this example, the 
total height of the tank has been defined as 3 m. This value is entered in the property 
Max. Depth.  

To define the geometry of the tank, a new Curve >> Storage Curves in the navigation 
panel will be introduced. The storage curve is defined using a water depth vs tank 
surface relationship. A prismatic tank with a constant area of 1204 m2 is considered. Two 
points are sufficient to define the rating curve: (0,1204) and (3,1204). The abscissa 
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corresponds to the minimum and maximum tank elevation and the ordinate 
corresponds with tank surface. The input data to define the rating curve and SWMM 
curve plots are shown in Figure 35. Once the rating curve is defined, it must be assigned 
to the stormwater tank in the Storage Curve option of the TANK element properties by 
selecting the Tabular type (see Figure 36).  

 

Figure 35. Definition of tank rating curve CSO stormwater tank model. 

 

Figure 36. Storage unit properties. 

To define the tank throttle flow to WTTP, an ideal flow regulator with a maximum flow 
discharge of 90 L/s is used. A flow curve is defined with the option Curve >> Rating Curve 
on the navigation panel. The flow regulator curve will consist of 3 pairs of points as 
shown in Figure 37. The first point is (0, 0) meaning that, if the tank is empty, the output 
flow is zero. The second point (0.3, 0.090) serves as a transition zone between zero flow 
and maximum flow. In this way, we avoid sudden emptying of the tank that would 
generate numerical instabilities and continuity errors. Finally, point (3, 0.090) is set for 
ensuring that the maximum flow rate is equal to 3-QDp,total for the remaining tank water 
depths. The rating curve must be assigned to the Flow regulator outlet by editing its 
properties: defining Rating Curve equal to Tabular/Depth and selecting the curve name 
in Tabular Curve, as shown in Figure 38. 
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Figure 37. Stormwater tank rating curve. 

 

Figure 38. Flow regulator properties 

The properties of the Spillway element are also edited: the length of the crest (Length), 
the opening (Height) and the crest height (Weir Offset). The length of the spillway is 20 
m, its height is 1 m (this is the distance between the crest ant the tank top) and the 
height of the spillway crest is 2 m. Tranverse is set as spillway Type with a discharge 
coefficient (Discharge Coeff) equal to 1.7. The properties of the spillway are shown in 
Figure 39. 
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Figure 39. Spillway properties 

After modifying the network model, the simulation is executed by clicking on the icon 
or by selecting Project >> Run Simulation from the main menu. Immediately after the 

simulation, a window will appear indicating to the user that model has run correctly and 
that the continuity errors are reduced. If any error occurs in the simulation, the error 
codes indicated in the Status Report must be checked to solve them. 

Then, we can follow the procedure of the previous problems to check simulation results. 
The Status report (Report >> Status) is checked for error messages or continuity 
problems and the Summary report (Report >> Summary) for surface flooding. No issues 
should appear; if they do, the model definition should be reviewed. 

Network and tank operation are checked in the Summary Report on the Link Flow tab, 
which will show maximum flows, maximum velocities and pipe filling rates. Flow 
velocities are adequate in all pipes. The P.4 pipe - inlet to the tank – is surcharged due 
to the boundary condition imposed by the tank when is fully filled with water (see Figure 
40). This situation is common in the areas upstream of the CSO tanks, and there is no 
need to worry as long as no flooding occurs. 
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Figure 40. CSO stormwater model results with the design rainfall: pipe flow summary and longitudinal profile 
between the N.1 manhole and WWTP outfall. 

In order to analyse flooding, manhole and CSO tank water depth safeguard may be 
checked in the Node Depth tab of the Summary Report (Figure 41). The lowest safeguard 
is 21 cm in node N.4 (the maximum water depth is 2.29 m and the total manhole height 
is 2.50 m). The water surface in the tank reaches a height of 2.14 m, so the maximum 
level above the spillway crest is 14 cm. 

 

Figure 41. CSO stormwater model results with the design rainfall: maximum node depth 



An introduction to sewer network design using SWMM 

 44 

Finally, the behaviour of the stormwater tank with the design rainfall of T=10 years is 
evaluated. Figure 42 shows the tank inlet, outlet and CSO flow discharge illustrating the 
operation of the tank and its effect on the drainage network. To plot this figure, the 
option Report >> Graph >> Time Series has been used. The inflow hydrograph (red line) 
has a maximum flow rate of 2.82 m3/s at the 43rd minute of the simulation (see also 
Figure 40). The CSO discharge hydrograph (magenta line) reaches a maximum of 1.84 
m3/s at the 56th minute of the simulation. The differences between the maximum flows 
and the time of the peak flow are due to the storage flow attenuation at the tank. The 
WWTP throttle discharge (blue line) is bounded by a maximum flow rate of 90 L/s 
(corresponding with 3-QDp,total). The figure also shows how tank emptying extends 
beyond the maximum simulation time. 

 

Figure 42. CSO stormwater model results with the design rainfall: tank inlet, outlet and CSO discharge. 

5.3 CSO stormwater tank sizing using the average year rainfall record 

The evaluation of drainage network using the design rainfall aims to prevent flooding. 
In this section, the system will be evaluated for an average year of rainfall.  

The model developed in the previous section will be used as starting point, by saving the 
file using a different name. To perform the continuous model analysis, the dry weather 
flow allocations and the rain record must be modified in the model, and also an 
evapotranspiration value must be introduced in the model. 

The dry weather wastewater flow rate, which is entered in node N.5, should be fixed as 
the total daily peak flow rate (QDp,total). We must edit the Inflows property in N.5 node 
Properties window and include an average flow rate of 30 L/s on the Dry Weather tab 
(Figure 43). 
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Figure 43. Definition of QDp,total in node N.5 for the continuous model simulation. 

The next step consists of preparing a rainfall data file with the average year rainfall 
record to be modelled. The characteristics of the average year are indicated in the 
ITOHG SAN 1/5 regulation (Augas de Galicia, 2010). In the provided supporting 
electronic files, two files containing the average rainfall record are delivered in .xls and 
.dat formats, in addition to the model files (see chapter 6). The .xls file contains the time 
series of the representative raingage in the average year, which in this case is the year 
2008. The .dat file is the input file format that must be selected to run the model in 
SWMM.  

To build the input file for the model, the time series records with zero rain volume must 
be removed. A plain text file must be created with the following structure: 

Station ID Year Month Day HH MM P 
R01  2008 1 1 9 30 1.2  

The Station ID parameter is the name of the raingage. Then, the time stamp of each rain 
record is provided by entering in each column the value of the year, month, day, hour, 
and minute. The recording interval must be constant, and the rainfall record must have a 
maximum of ten-minute temporal resolution. In the last column, the rainfall is added in 
volume format, millimetres of accumulated rain for each time interval (mm), or in rain 
intensity format (mm/h). Usually, long-term rainfall records are expressed in rainfall 
volume format (mm or L/m2). In the rainfall input file (average_year_18.dat), rainfall is in 
volume format (mm), has a time resolution of 10 minutes and the raingage is called R01. 

The precipitation is configured in the PL1 raingage properties where the following 
options must be modified (Figure 44): 

- Rain Format: VOLUME. 
- Time interval: 10 minutes. 
- Data Source: FILE. 
- DATA FILE/File Name: File path. 
- Raingage name (DATA FILE/Station ID): R01. 
- Rain Units (DATA FILE/Rain Units): mm. 
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Figure 44. Raingage properties in the continuous simulation model. 

Furthermore, we have to modify the simulation starting and ending analysis dates from 
01/01/2008 - 00:00 to 01/01/2009 - 00:00 at the Options >> Dates window (Figure 45).  

 

Figure 45. Edition of starting and end analysis date. 

To finish model update, a daily evapotranspiration mean value must be introduced to 
allow surface shallow depression volume to evaporate after rainy events. In the 
navigation panel we will introduce in the Evaporation tab of the Climatology option an 
evaporation value of 1.5 mm/day (Figure 46).  
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Figure 46. Edition of evapotranspiration properties in continuous model. 

Then, the model can be executed again by clicking on the icon . The model run may 
take a couple of minutes to finish the simulation. Afterwards, a window indicates that 
the execution has been successful with small continuity errors. If any error occurs in the 
simulation, the error codes shown in the status report must be checked to solve them. 

In the Status report (Report >> Status) error messages or continuity problems can be 
consulted. Meanwhile, flooding episodes can be found in the Summary report (Report 
>> Summary). If any incidence is detected, model must be checked. 

The analysis of the average year will focus on determining both CSO spill volume and 
frequency. ITOHG regional regulations (Aguas de Galicia, 2010) proposes the following 
Emission Standards to assess CSO tank performance: 

- CSO spill frequency ranging between 15-20 spill per year. 
- CSO annual volume is limited to a maximum value of 15%-20% of the total annual 

runoff volume. This is equivalent to fix a throttle runoff flow volume to WWTP 
ranging from 85% to 90% of the total annual volume. 

To check compliance with ITOHG ES in SWMM, two different tools will be used. To 
determine the percentage of annual runoff volume spill by the CSO tank, the Outfall 
Loadings tab of the Report Summary will be considered (Figure 47). The summary table 
shows the total volume of water discharged in the simulation through the throttle flow 
regulator outfall to the WWTP and to the aquatic media through the CSO outfall.  
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Figure 47. CSO stormwater model results with the annual rainfall record: outfall volumes summary. 

The following methodology can be used to determine the percentage of runoff 
discharged by the CSO, also called tank performance or efficiency in terms of runoff 
volume: 

1. The total annual wastewater volume during dry and weather periods can be 
estimated as the sum of the throttle flow volume conducted to the WWTP and 
the CSO spill volume: 1,188,308 m3/year. 

2. Dry weather wastewater flow volume is equal to 30 L/s, which accounts 946,080 
m3/year. 

3. Urban runoff volume is determined by subtracting the previous two values. 
Therefore, the annual runoff volume is 242,228 m3/year. 

4. Tank volumetric performance is the ratio of CSO spill volume (16,368 m3/year) 
and the total stormwater runoff volume (242,228 m3/year). Stormwater tank 
spill efficiency is 6.75%, which is below the limit established in the ITOHG. 

SWMM statistical analysis tool will be used to evaluate CSO spill frequency, which can 
be accessed by pressing  button on the toolbar. This tool allows to perform statistical 
analysis on all the elements of the network and also in the whole drainage system. A 
couple of examples are presented in Figure 48 and Figure 49 to show the capabilities of 
this tool, including the determination of CSO spill frequency. 

Figure 48 shows the input data window to perform a statistical report, as well as the 
summary of parameters obtained when analysing the rain events recorded in the annual 
rainfall record. The statistical report window allows selecting the type of object to be 
analysed and the variable to be analysed. In this case, as the rainfall is referred to the 
whole model, the System option is chosen as Object Category. The variable to be analysed 
is the precipitation (Variable Analyzed >> Precipitation), although other variables could be 
selected such as direct runoff, infiltration, etc. Then, time period is defined to be analysed. 
In the Event Time Period variable, you can choose to analyse isolated rain events (Event-
Dependent) or perform daily, monthly or annual statistical analyses. The last variable in 
the reports is the type of statistic to be analysed. For example, the average intensity, the 
maximum intensity, or the total volume of each rainfall event can be determined. The 
latter is the option selected in Figure 48 (Statistic >> Total). 
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Figure 48. CSO stormwater model results with the annual rainfall record: rainfall event analysis. 

When analysing single events, some thresholds values has to be fixed to determine 
when two consecutive rains are considered as a single event and when they are 
accounted as two different events. For instance, if it starts raining for 2 hours, then stops 
for a period of 15 minutes, and then rains again for 3 hours, how do we consider this 
rain sequence? Are we talking about two rain events or one single event with a short 
break in the middle? The answer to this question is not trivial. There are several ways, 
more or less sophisticated, to decide whether in the above example we are talking about 
one or two rain events. If we wish to go deeper into the problem of the adequate 
definition of the separation time between rain events, also called inter-event time, 
chapter 4 of Adams and Pappa (2000) book can be consulted. In Spain it is recommended 
to use an inter-event time of roughly 3 hours. Thus, Separation Time variable, in Event 
Thresholds, is fixed in 3 hours in Figure 48. 

Precipitation and Event Volume options allow defining other thresholds to rule out, for 
example, small rain events with very little intensity or volume. For instance, it is common 
to exclude rain events of less than 1 mm in volume because, due to depression storage, 
evaporation and eventual infiltration losses, they will not produce surface runoff. In this 
example, Event Volume is defined as 1 mm (Figure 48). 

SWMM provides us as a report of the statistic analysed. In this example, 141 rain 
episodes are recorded during the average year. The average rainfall volume of each 
event is 7 mm, although the maximum record is 63.8 mm. 

After showing the capabilities of SWMM statistical tool, we will move on determining 
CSO frequency. Before clicking statistical tool button , it is recommended to select the 
object to be studied. In this case, click on the Spillway link. Thus, when opening the tool 
with the button, this element is already selected for analysis. The variable to be analysed 
is the flow rate (Variable Analyzed >> Flow), using an Event-dependent analysis with 
Total flow statistic, which corresponds to the spill volume (Figure 49). The thresholds 
values to define single CSO events are: minimum discharge volume of 50 m3 (Event 
Volume >> 50) and event separation time of 3 hours (Separation Time >> 3). 
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CSO spill frequency statistical report is presented on the right side of Figure 49. It can be 
observed that the total number of spills is 11 during the average year. This value is also 
smaller than the limit established by the ITOHG by 15-20 discharges. 

 

Figure 49. CSO stormwater model results with the annual rainfall record: CSO spill frequency. 

Therefore, the proposed stormwater tank added easily fulfil ITOHG standards in terms 
of CSO spill frequency and CSO volume. For this reason, CSO tank design could be 
optimized by slightly reducing its storage volume, either by reducing the tank surface 
area or tank height. Usually, we will proceed by reducing tank surface, because crest 
elevation is commonly constrained by drainage and discharge point ground levels. The 
optimization of the tank volume by changing the surface in the tank storage curve, 
remains as a working proposal for the students of this manual. 
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6 DATA PROVIDED TO DEVELOP THE EXAMPLES 

The compressed zip file with the permanent URL https://doi.org/10.17979 
/spudc.9788497497909 contains the examples and files needed for the development of 
the models.  

Table 7 shows a short guide with the links between each chapter and the files provided, 
the folder in which SWMM input files are allocated, as well as the supplementary files 
(such as backgrounds and rainfall series) and the name of each file. A brief description 
of each model example is included in SWMM input .inp files. 

To use the data in this Manual, it is recommended to copy SWMM Manual folder (found 
in the zip) to hard disk root directory (C:\SWMM Manual). 

Table 7. Supplementary files provided in the Manual. 

EXAMPLE Chapter Folder File name 

PCHEU model 3 Ex 1.PCEHU 
PCEHU_solved.inp 
Block_network.jpg 

Block_subcathments.jpg 

Combined sewer 
network model 4 Ex 2.Combined sewer 

Combined_sewer_initial.inp 
Combined_sewer_solved.inp 

Combined_sewer.jpg 
rain_T10.dat 

CSO stormwater tank 
model 5 Ex 3.CSO tank 

CSO_tank_initial.inp 
CSO_tank _T10.inp 

CSO_tank_annual_rain.inp 
rain _T10.dat 

average_year_18.xlsx 
average_year _18.dat 

https://doi.org/10.17979/spudc.9788497497909
https://doi.org/10.17979/spudc.9788497497909


An introduction to sewer network design using SWMM 

52 

7 REFERENCES 

Adams, B.J. y Pappa, F. (2000). Urban Stormwater Management Planning with Analytical 
Probabilistic Models. New York: John Wiley & Sons. 

Augas de Galicia (2010). Instrucciones técnicas para obras hidráulicas en Galicia. Serie 
Saneamiento. Available on: https://augasdegalicia.xunta.gal/c/document_library 
/get_file?folderId=216484&name=DLFE-17836.pdf 

Puertas, J., Suárez, J., and Anta, J. (2008). Gestión de las aguas pluviales. Implicaciones 
en el diseño de los sistemas de saneamiento y drenaje urbano. Monografías CEDEX 
M98. Madrid: Centro de Publicaciones, Ministerio de Fomento. 

Rossman, L. (2015). Storm Water Management Model User’s Manual Version 5.1 
(revised version). U.S. Environmental Protection Agency, Office of Research and 
Development, Washington, DC, EPA/600/R-14/413 (NTIS EPA/600/R-14/413b). 
Available on: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100N3J6.TXT 

Rossman, L., and Huber, W. (2016). Storm Water Management Model Reference Manual 
Volume I, Hydrology (revised version). U.S. Environmental Protection Agency, Office 
of Research and Development, Washington, DC, EPA/600/R-15/162A. Available on: 
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NYRA.txt [Storm Water Manage-
ment Model Reference Manual Errata: https://www.epa.gov/sites/production/files 
/2018-08/documents/swmm_reference_manual_errata.pdf]. 

Rossman, L. (2017). Storm Water Management Model Reference Manual Volume II, 
Hydraulics. U.S. Environmental Protection Agency, Office of Research and Deve-
lopment, Washington, DC, EPA/600/R-17/111. Available on: https://nepis.epa.gov 
/Exe/ZyPDF.cgi?Dockey=P100S9AS.pdf [Storm Water Management Model Reference 
Manual Errata: https://www.epa.gov/sites/production/files/2018-08/documents 
/swmm_reference_manual_errata.pdf]. 

https://augasdegalicia.xunta.gal/c/document_library/get_file?folderId=216484&name=DLFE-17836.pdf
https://augasdegalicia.xunta.gal/c/document_library/get_file?folderId=216484&name=DLFE-17836.pdf
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100N3J6.TXT
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NYRA.txt
https://www.epa.gov/sites/production/files/2018-08/documents/swmm_reference_manual_errata.pdf
https://www.epa.gov/sites/production/files/2018-08/documents/swmm_reference_manual_errata.pdf
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100S9AS.pdf
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100S9AS.pdf
https://www.epa.gov/sites/production/files/2018-08/documents/swmm_reference_manual_errata.pdf
https://www.epa.gov/sites/production/files/2018-08/documents/swmm_reference_manual_errata.pdf

	Cover
	Table of contents
	1 Introduction
	2 SWMM model
	2.1 Introduction
	2.2 Sewer network conceptual model in SWMM
	2.3 Main elements of the sewerage systems in SWMM
	2.3.1 Visual objects
	2.3.2 Non-visual objects


	3 Performing the SWMM model of the scientific platform of urban hidrology tests facility
	3.1 Description of the Scientific Platform for Urban Hydrology Tests facility
	3.2 Problem statement
	3.2.1 Subcatchment definition
	3.2.2 Nodes and conduits
	3.2.3 Rainfall
	3.2.4 Dry weather wastewater flows
	3.2.5 Results

	3.3 Procedure to solve the problem
	3.3.1 Setting model by-default properties
	3.3.2 Drainage network and study are sketch up
	3.3.3 Editing object properties
	3.3.4 Analysis and simulation options

	3.4 Model results

	4 Simplified combined sewer network modelling
	4.1 Problem statement
	4.2 Procedure to solve the problem
	4.2.1 Model by default properties
	4.2.2 Drainage network and study area sketch up
	4.2.3 Editing object properties
	4.2.4 Analysis and simulation options

	4.3 Model results

	5 CSO stormwater tank design
	5.1 Problem statement
	5.2 CSO stormwater tank sizing using the design rainfall
	5.3 CSO stormwater tank sizing using the average year rainfall record

	6 Data provided to develop the examples
	7 References



