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Abstract: Previous works have reported different bacterial strains and genera as the cause of different
clinical pathological conditions. In our approach, using the fecal metagenomic profiles of newborns,
a machine learning-based model was generated capable of discerning between patients affected by
type I diabetes and controls. Furthermore, a random forest algorithm achieved a 0.915 in AUROC.
The automation of processes and support to clinical decision making under metagenomic variables
of interest may result in lower experimental costs in the diagnosis of complex diseases of high
prevalence worldwide.
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1. Introduction

It is known that diabetes type I (DTI) is a disease that is closely linked to changes in the
microbiota [1]. Typically, works that study the metagenomic profile of a microbe in DTI uses only
conventional statistical approaches [2]. Therefore, in this work a novel methodology to analyze DTI
status using machine learning (ML) is proposed. In addition, new metagenomics genera are been
identified with potential in the development of this disease.

2. Materials and Methods

OTUs genera faecal samples from 124 newborns were downloaded from Diabinmune project [2].
The experimental design starts removing near zero features and scaling the data; Random Forest
(RF) [3] and glmnet [4] algorithms were used following a nested cross validation (CV) approach for
training the models. A holdout was used for hyperparameter tuning (2/3 for training and 1/3 for
testing) followed by a 10-fold CV for model validation (repeated 5 times).

3. Results

We have obtained 45 genera suitable for carrying out the study. Figure 1a showed the experimental
results carried out. We found a statistical difference between the models and the best results were
achieved with RF. Feature importance is shown in Figure 1b. Prevotella is the bacteria with the higher
accumulated importance along with Anaerotruncus, Scherichia, Eubacterium, Odoribacter and Collinsella.
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Figure 1. (a) Comparison of the 5 times 10-fold CV using a Wilcoxon test and (b) RF variable importance.

4. Discussion

We found in the literature that Prevotella and Eubacterium are strongly linked to DTI and
Anaerotruncus with gestational diabetes. All of them are also correlated with instestinal dysbiosis
processes [5,6]. In summary, we demonstrated the feasibility of a ML analysis of metagenomic profiles.
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