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ABSTRACT This paper presents SeQual, a scalable tool to efficiently perform quality control of large
genomic datasets. Our tool currently supports more than 30 different operations (e.g., filtering, trimming,
formatting) that can be applied to DNA/RNA reads in FASTQ/FASTA formats to improve subsequent
downstream analyses, while providing a simple and user-friendly graphical interface for non-expert users.
Furthermore, SeQual takes full advantage of Big Data technologies to process massive datasets on
distributed-memory systems such as clusters by relying on the open-source Apache Spark cluster computing
framework. Our scalable Spark-based implementation allows to reduce the runtime from more than three
hours to less than 20 minutes when processing a paired-end dataset with 251 million reads per input file on

an 8-node multi-core cluster.

INDEX TERMS Big data, next-generation sequencing (NGS), bioinformatics, quality control, apache spark.

I. INTRODUCTION

The development of Next-Generation Sequencing (NGS)
technologies [1], [2] has revolutionized biological research
over the last decade by drastically decreasing the cost
of DNA/RNA sequencing and significantly increasing the
throughput of generated data. The quality of NGS data is
considered very important for various downstream analyses
such as gene expression studies and genome sequence assem-
bly [3]. However, NGS platforms introduce, as a downside,
different kinds of artefacts in the raw sequence fragments
(the so-called “reads’) such as duplicates, poor-quality reads
and insertions/deletions, which can lead to serious negative
impact on downstream analyses. Therefore, most bioinfor-
matics pipelines start by applying a quality control over the
input datasets in order to increase the accuracy of subse-
quent processing. Some examples of these operations are
the removal of duplicate reads, the deletion of reads with
low average quality, or their transformation to maintain only
the fragments with high quality (trimming). Moreover, dur-
ing this preprocessing step the datasets sometimes must be
transformed in order to adapt them to the requirements of
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the pipeline. For instance, transforming the input data from
FASTQ to FASTA format may be necessary if any bioinfor-
matics application can only work with data stored in the latter
format. Currently, there are several tools to perform quality
control and preprocessing of raw NGS data in order to ensure
the necessary quality for further processing [4], [5].
However, state-of-the-art tools still require excessive time
to process the increasingly large datasets generated through
mainstream NGS platforms. Although there are some par-
allel tools that allow to accelerate their computations on
shared-memory systems thanks to including efficient multi-
threading support, this is not enough to complete the quality
control of current large datasets in reasonable time since their
scalability is limited to the resources of a single machine.
In this context, the exploitation of Big Data technologies
seems an adequate approach in order to accelerate those
calculations on distributed-memory systems such as clus-
ters and cloud platforms, as extensively demonstrated by
the existing literature [6]—[8]. In this paper we introduce
SeQual', a scalable tool for quality control and preprocessing
of raw sequencing data implemented upon the most popular
open-source distributed framework for Big Data processing:

ISource code available at https://github.com/roigalegot/SeQual.
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Apache Spark [9]. SeQual is mainly inspired by PRINSEQ
[10], one of the most popular tools for quality control which
has been widely used in many recent biological studies [11],
[12]. The main advantages of PRINSEQ over alternative tools
are its simplicity and great functionality, providing support
not only for a wide range of quality control operations (such
as filtering and trimming), but also for data formatting. Our
tool also provides all this functionality (and even more) but in
a significantly lower runtime by fully exploiting the parallel
processing capabilities of Spark. Although there are a few
parallel tools to remove duplicate DNA/RNA sequences (one
specific operation that can be used for quality control) on
distributed-memory systems [13], [14], up to our knowledge,
SeQual is the first publicly available tool intended for this
type of parallel systems that provides full functionality (more
than 30 operations) instead of only allowing to remove dupli-
cate reads. Furthermore, SeQual includes a graphical user
interface intended for simplifying its usage.

The remainder of the paper is organized as follows.
Section II discusses the related work. Section III describes
the overall functionality provided by SeQual. Section IV
describes our parallel approach. The performance of SeQual
is evaluated and compared to state-of-the-art quality control
tools in Section V. Finally, Section VI concludes the paper
and proposes future work.

Il. RELATED WORK

To address the sequencing quality problem, besides the
quality control pipeline supplied by some sequencing plat-
form manufacturers, several standalone tools have been
proposed in the literature. A representative list includes
tools such as FASTX-Toolkit [15], FastQC [16], PRINSEQ
[10], NGS-QC [17], QC-Chain [18], FaQCs [19], Trimmo-
matic [20], PEAT [21], AfterQC [22], FastProNGS [23]
and PRINSEQ++ [24]. With the expected increase in total
generated data and decrease in costs associated with NGS
technologies, one important concern is their processing
speed. Some tools do not provide parallel implementations
(FASTX-Toolkit, PRINSEQ), whereas others (FastQC) han-
dle parallelism only at the file level, so they cannot accelerate
the processing of a very large single dataset. The remaining
tools do provide some kind of parallel support but all of them
are based on multithreading, so their overall speed is limited
to the computational resources of a single machine.

In terms of functionality, FastQC does not have trimming
and filtering features, whereas Trimmomatic is focused on
just one operation type (trimming), and PEAT provides very
few filter options to the users. FASTX-Toolkit does not even
support paired-end datasets, requiring further postprocess-
ing to link paired reads. Other tools (FaQCs, FastProNGS)
do not support FASTA as input format, while also pro-
vide basic user interfaces only limited to command-line
interaction. Moreover, there are tools that just seem to be
currently unavailable as their websites do not longer work
(NGS-QC, QC-Chain). Among all of them, PRINSEQ is
by far the solution that provides the widest functionality
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supporting different quality-control and preprocessing opera-
tions together with a nice web-based graphical user interface.
This is the main reason why the functionality of SeQual
has been based on PRINSEQ, even extending it. However,
the sequential implementation of PRINSEQ using Perl
clearly hinders its performance for large datasets, whereas
its multithreaded C++version (PRINSEQ++) is much faster
but provides less functionality than the original tool, while its
scalability is still limited to a single machine.

SeQual tries to combine the functionality and usability of
PRINSEQ together with the performance of PRINSEQ++
but in a distributed manner relying on Big Data technologies.
In fact, the exploitation of Big Data clusters to accelerate the
storage, processing and visualization of large NGS datasets
has been recently explored in multiple previous works. For
instance, many bioinformatics tools implemented on top
of Big Data processing frameworks such as Hadoop [25]
and Spark [9] have emerged in recent years, from error
correction [26], [27], duplicate read removal [13] and
sequence alignment [28]—[31], to variant calling [32], de novo
genome assembly [33], [34] and protein structure prediction
[35]-[37], among many others. Most of these tools are exe-
cuted within a bioinformatics pipeline (or scientific workflow
engines such as SAASFEE [38] or Pegasus [39]) that usually
starts with a quality control of the input FASTA/FASTQ
datasets. Therefore, they will benefit from SeQual in order
to accelerate this first step of the pipeline, which reinforces
the need of our proposal in the context of quality control and
preprocessing.

Ill. OVERVIEW OF SeQual

SeQual is a parallel tool implemented in Java that currently
provides a full set of 33 operations for performing qual-
ity control and preprocessing on raw NGS datasets. It can
receive as input either single-end or paired-end DNA/RNA
sequences, which can be stored either in FASTA or FASTQ
files, as these are the most popular unaligned sequence for-
mats. The operations provided by SeQual can be divided into
the following four main functionalities:

1) Filters. These operations discard those input reads that
do not fulfill a certain criteria specified by the user.
Filters are divided into two categories, depending on
the number of sequences involved in the filter rule:

« Single filters, which evaluate reads one-by-one.
SeQual includes 12 single filters. For instance,
sequences can be filtered according to their length,
quality or the absence/presence of a certain pattern
in their bases.

o Group filters, which compare reads by pairs and
discard those that are equal (keeping the one
with the highest quality score when possible).
SeQual contains 5 group filters that allow, for
instance, to compare the sequences as complement
or reverse-complement. The user can also specify
a certain number of allowed mismatches to discard
those sequences that are almost equal.
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Start job

FIGURE 1. Graphical user interface included with SeQual.

2) Trimmers. SeQual includes 10 operations in order to
trim the beginning or ending of the sequences by
removing those bases that are not interesting for the
user. The user can specify the number of bases that
must remain, or the quality required for the trimmed
sequences.

3) Data formatters. Three functions to convert from DNA
to RNA reads (and vice versa) or from FASTQ to
FASTA formats are also provided by our tool.

4) Statistical operations. Finally, SeQual provides three
additional functions to obtain some statistics about the
initial and/or final data. For instance, these operations
can be used to count the number of input sequences,
or to calculate their average length/quality.

Regarding to the usage of the tool, SeQual provides two

execution modes:

o Through the command-line interface by specifying:
(1) the path to the dataset(s) as input arguments; (2) the
operations to be performed on these datasets using a Java
Properties file.

o Through a graphical interface provided by SeQual in
order to simplify its usage to non-computer science
experts (see Fig. 1). This graphical interface has been
implemented upon the open-source JavaFX project [40],
which allows built-in separation between the application
logic and the visual part of SeQual.

It is worth noting that the user can apply multiple

operations to the same input dataset in a single execution
(see the available check boxes in Fig. 1). In this scenario,
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SeQual implements a priority-based strategy for all filters
and trimmers to improve overall performance when multiple
ones are selected by the user. Based on their priority, SeQual
automatically sorts them to apply first those filters that can
potentially discard more reads and those trimmers that can
reduce more their length. This strategy aims to reduce overall
runtime as subsequent operations can be accelerated taking
advantage of this approach.

For more details about all the available operations,
compilation and execution instructions, as well as a brief
overview of the graphical interface, refer to the detailed
README file available at the SeQual’s website.

IV. IMPLEMENTATION
At the highest level of abstraction, the overall workflow of
SeQual is divided into the following three main stages:

1) Reading of the input dataset(s) specified by the user,
consisting of one or two FASTQ/FASTA text-based
sequence files when working in single- or paired-end
mode, respectively.

2) Processing of the input files according to the
quality-control operations selected by the user in
the graphical interface or, otherwise, specified in a
Properties file when using the command-line interface.

3) Writing of the processed dataset(s) to their correspond-
ing output text files as a result of the computations
previously performed.

In order to understand how these stages have been imple-

mented on top of Spark (Sections I'V-B and IV-C), some basic
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FIGURE 2. Spark example of combining map/filter transformations and count action over an RDD of type Integer.

@SRR921890.500 HAL:1217:C1ONCACXX:2:2310:5797:41908 length=100

TGTTAGATTTATTTGTTTTATAATTTTTGTTAGGTTTATTGTGTTTTTGTTTAGTTTTTGTTTTTATGATTTGTATGTTGGTGAAAGTGGTGTGTTGAAG
+SRR921890.500 HAL:1217:C1ONCACXX:2:2310:5797:41908 length=100
BC@FFFDFHHHHG]JEGITJ]JJJJJJJJHIIII?FHGITIHHDHIIIIIJJJIFHIIIHIJIIIIIHII ] JHFAEHEHFDFF@EECCDEBDBBDDDCC
@SRR921890.501 HAL:1217:C1ONCACXX:2:2310:5850:41919 length=100
ATTTGAGTTTTGTGGTTTATTTTTTTAGGTAGTAAGAGAAAAGTTATTTTGAGAAATGTTTTTTGATTTTTATTTATGTGTTGTGACGTGTGGTTTGAGT
+S5RR921890.501 HAL:1217:C1ONCACXX:2:2310:5856:41919 length=100
@@@FFDD ; DFACCFGHHGHHIJIIGIGII : BFO:DGGH99BDDFFIIJIIIGG@@3=C=DHGGHFFFEEEE9@>CDC@CDFDDDDDDDDDCDDDDDD>@C

FIGURE 3. Example of two DNA reads in FASTQ format (100 base pairs).

concepts about the programming model provided by this Big
Data framework need first to be introduced (Section IV-A).

A. APACHE SPARK

Spark [9] is a popular Big Data processing framework that
supports efficient in-memory computations by relying on a
novel, distributed data abstraction known as Resilient Dis-
tributed Dataset (RDD) [41]. Basically, an RDD is a par-
titioned collection of data elements that can be distributed
across the nodes of a commodity cluster. One important
feature of RDDs is that their partitions can be operated in
parallel and cached in memory to be reused in subsequent
MapReduce-like operations [42]. A Spark programmer can
create an RDD in two different ways: either by parallelizing
an existing collection of objects (e.g., a list); or by loading
an external dataset from a supported file system. In order to
allow data processing in a distributed manner, Spark provides
support for the Hadoop Distributed File System (HDFS) [43]
so that RDDs can be created and efficiently processed from
datasets stored in it. Nowadays, HDFS is considered the
most popular open-source distributed file system for Big Data
processing, providing the fundamental storage layer within
the Hadoop ecosystem [25].

The RDD programming API provided by Spark supports a
wide range of data-parallel operations that can be performed
over an RDD. Those operations can be divided into trans-
formations and actions. On the one hand, transformations
(e.g., map, filter, join) create a new RDD from an exist-
ing one. For instance, a map transformation processes each
RDD element through a user-defined function, returning a
new RDD as result. Another example is filter, which returns
a new RDD formed by selecting only those elements of
the source RDD on which a user-defined function returns
true. Note that transformations are lazily evaluated in Spark,
so they do not compute anything until an action that requires
the result from them is triggered. On the other hand, actions
return non-RDD values, converting the laziness of transfor-
mations into actual computation. Actions can be used to
either return a result to the main Spark program (e.g., reduce,
collect, count), or to store an RDD in external storage
after running a certain computation (e.g., saveAsTextFile,

146078

saveAsObjectFile). For instance, the reduce action aggregates
all the RDD elements according to a user-defined function
and returns the final result to the main program. As an illus-
trative example, Fig. 2 shows the chaining of a map and filter
transformations together with a count action over an RDD
of type Integer. Note that the user-defined functions executed
over the input RDD are shown below the corresponding boxes
for map and filter transformations.

Finally, another interesting feature of Spark is that it allows
to explicitly cache or persist the RDD elements in memory,
thus providing much faster access to them the next time
they are queried. This is extremely useful for implementing
efficient iterative algorithms [44].

B. RDD MANAGEMENT IN SeQual

All the RDD objects managed by SeQual are created from
the input datasets stored in HDFS, which represents the
first stage of the overall workflow previously described.
The most straightforward way to create an RDD from an
input text file stored in HDFS would be using the fextFile
method provided by Spark. Unfortunately, this method is
not able to handle properly the specific structure of the
FASTQ/FASTA text-based file formats, as both involve mul-
tiple lines per sequence (e.g., four lines for FASTQ, as shown
in the example of Fig. 3). This Spark method relies by default
on newline characters to identify the individual records in
the input file (i.e., it creates one input record per line).
Although it is possible to change the default delimiter to
separate individual records according to the sequence format
(e.g., FASTQ reads begin with character ‘@), this solution
would not work since such character can also occur in the
string that represents the quality scores associated with each
base (qualities are stored in the fourth line of each FASTQ
read, as shown in Fig. 3).

To overcome such issues, other previous bioinformatics
tools implemented using Big Data technologies [28], [45]
generally perform a preprocessing of the input files to convert
them into the required line-by-line format (i.e., one read per
line). Next, the converted files are copied to HDFS to be
processed. In the specific case of Spark, another solution
is to create the RDD using the previous textFile method

VOLUME 8, 2020
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Input RDD<Sequence> RDD<Sequence> RDD<Sequence> Output
@) TCGATGC DNATORNA UCGAUGC TRIMLEFT GAUGC )
FASTQ | [ GATGCTC GAUGCUC uGCuC . v FASTQ
m m
FASTA % — — TGCTCGA — ap = uccucea ap CUCGA => [saveAsTextFile/ = % FASTA
file CCGACCC ; CCGACCC ‘ GACCC file
‘ { x => x.getBases().replace('T', 'U') } ‘ { x => x.setBases(x.getBases().substring(2)) }‘

FIGURE 4. SeQual example of combining DNATORNA and TRIMLEFT operations.

and then operate over it with additional transformations and
actions to obtain the desired format [29]. However, those
approaches incur additional disk/memory overheads, degrad-
ing the overall performance. Instead, SeQual relies on the
Hadoop Sequence Parser (HSP) library [46] to create the
input RDDs in order to avoid any additional preprocess-
ing/transformation of the input files. HSP is a Java-based
library that provides specific and optimized routines to parse
FASTQ/FASTA files directly from HDFS, and it is cur-
rently compatible with Hadoop, Spark and Flink [47] data
processing frameworks.

Once the input RDDs are created using the HSP library
(first stage), the transformations and actions provided by the
Spark’s API can process their partitions during the second
stage according to the quality-control operations specified by
the user, as will be explained in the next subsection. Finally,
the RDDs resulting from performing those operations are
written back to HDFES by SeQual to create the output files
(third stage). In this case, Spark provides a suitable RDD
action (saveAsTextFile) to do so straightforwardly.

C. SPARK-BASED QUALITY CONTROL AND
PREPROCESSING

To efficiently implement all the functionality provided by
SeQual (see Section III), each supported quality operation
must be translated into the appropriate combination of trans-
formations/actions to be performed over the input RDDs
which have been previously created using the HSP library.

Regarding to single filters, these operations were imple-
mented using an RDD filter transformation, as they evaluate
input reads one-by-one. As mentioned before, this transfor-
mation returns a new RDD that contains only those elements
of the input RDD on which a user-defined function returns
true. So, the implementation of each single filter provides two
functions for single- and paired-end mode, and their specific
logic depends on the rule used to filter out sequences. For
instance, the LENGTH filter compares the length of each
read (i.e., the number of bases) with a minimum or maximum
threshold specified by the user, returning false when the
read must be filtered out from the resulting RDD and true
otherwise.

Group filters represent a much more complex computa-
tion as input reads are compared by pairs. For instance, the
DISTINCT filter requires to check all read pairs in order to
remove duplicated sequences. These group filters first gener-
ate a PairRDD, which is an RDD consisting of key/value pairs
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as elements. To do so, these operations apply a mapToPair
transformation to the input RDD, which is similar to map but
it allows returning a PairRDD. The function executed by map-
ToFair outputs as key a string that represents the bases of each
read for the DISTINCT filter (or the reverse, complementary
or reverse complementary if the filter requires so). As value,
the function outputs the sequence object itself, which con-
tains not only the bases but also the sequence identifier
and the qualities (if available). Once this PairRDD<String,
Sequence> is created, a reduceByKey action is applied over
it so that all the values (i.e., sequences) for each key are
aggregated and then reduced based on a given user-defined
function. The reduce function simply discards one of these
similar sequences, keeping the one with the highest quality
score (if available). Note that the group filters are consid-
ered network-intensive operations as the reduceByKey action
requires to shuffle data over the network in order to aggregate
all the values for the same key.

The implementation of trimmers and data formatters both
rely on applying a single map transformation over the input
RDD, performing the appropriate modifications to each read
depending on the specific operation. For instance, the func-
tion executed by the map transformation in the case of
TRIMLEFT (operation that removes a number of bases spec-
ified by the user starting from the left) modifies the string
that represents the bases for each read using the substring
Java method. Such modifications must also be performed
on the string that represent the quality scores when avail-
able. An example of a data formatter is DNATORNA, whose
function executed by map replaces each thymine base from
the input DNA reads (represented by a ‘T’ character) by its
corresponding uracil counterpart (a ‘U’ character) in the out-
put RNA reads, using the replace method provided by Java.
As a representative example, Fig. 4 shows the combination
of both operations (DNATORNA and TRIMLEFT) over an
input RDD containing four DNA reads.

Finally, the implementation of the different statistical oper-
ations differ greatly. The COUNT operation was straightfor-
ward to implement as it takes advantage of the count action
provided by Spark that returns the number of RDD elements
(i.e., sequences) in the dataset. However, the remaining two
operations (MEANLENGTH and MEANQUALITY) require
a more complex approach, being very similar for both of
them. To implement those functions, the aggregate action was
selected. This action allows operating an RDD to generate
a single final result that can be of a different type than that
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TABLE 1. Cluster node characteristics.

Hardware configuration

CPU 2 x Intel Xeon E5-2660 Sandy Bridge-EP
CPU Speed/Turbo 2.20 GHz/3 GHz
#Cores 16
Cache L1/L2/L3 32 KiB/ 256 KiB / 20 MiB
Memory 64 GiB DDR3 1600 MHz
Disk 1 x 1 TiB HDD SATA3
Networks InfiniBand FDR & Gigabit Ethernet

Software configuration

OS version CentOS release 7.7.1908
Kernel 3.10.0-1062.4.1.e17.x86_64
Java Oracle JRE 1.8.0_241
Spark 244
Hadoop 292
PRINSEQ 0.20.4
PRINSEQ++ 1.2
GNU compiler 8.3.0
Perl 5.16.3

of the input RDD. To do so, the aggregate action takes two
user-defined functions as arguments. The first one operates
once for each RDD element in a partition, so it is used to
accumulate the results for each RDD. The second function
combines all the intermediate results (one result per RDD
partition) to produce the final result that is finally returned
to the main program. For instance, the first function for
MEANQUALITY computes the number of reads in each
partition and the accumulated quality for all of them, while
the second function combines all the accumulated qualities
and number of reads for all the partitions. Next, the final result
(i.e., the mean quality) is simply obtained by dividing the total
quality score by the total number of reads.

V. PERFORMANCE EVALUATION

The correctness of the results provided by SeQual has been
assessed by checking that it provides the same outputs as
PRINSEQ (a widely used and tested tool) when applying
identical operations over the same input datasets. Therefore,
the experimental evaluation has only focused on execution
time. In order to check the correctness of the statistics
(not available in the state-of-the-art tools), we have compared
the outputs of SeQual to the statistics provided by some text
editors about the total number of lines and characters in the
output files.

To evaluate the performance of SeQual, an eight-node
multi-core cluster has been used for the experimental eval-
uation. Table 1 shows the main hardware and software
characteristics of each cluster node, which mainly consists
of two Intel Xeon ES5-2660 octa-core Sandy Bridge-EP
processors at 2.2 GHz (i.e., 16 physical cores per node),
64 GiB of memory and one local disk intended to be used
for both HDFS and intermediate data storage during the
execution of the experiments. The cluster nodes are inter-
connected through Gigabit Ethernet (1 Gbps) and Infini-
Band FDR (56 Gbps). The system runs Linux CentOS
release 7.7.1908 with kernel 3.10.0-1062 and the Java version
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TABLE 2. Main configuration parameters of Spark and HDFS.

Spark HDFS
Executors per node 1 | Block size 256 MiB
Executor heap size 55 GiB | Replication factor 3
Executor cores 16

is Oracle JRE 1.8.0_241. According to these characteris-
tics, Apache Spark version 2.4.4 was configured as shown
in Table 2, which also contains the main relevant configu-
ration parameters for HDFS (i.e., block size and replication
factor). The version of Hadoop deployed in the cluster to store
the input datasets in HDFS was 2.9.2. We have compared
SeQual with PRINSEQ [10], one of the most popular quality
control tools (see Section II), together with its multithreaded
counterpart PRINSEQ++ [24], using the latest available
version of both tools. PRINSEQ was executed with Perl
v5.16.3, whereas PRINSEQ++ was compiled with GNU
GCC v8.3.0 using the -O3 optimization flag.

Two publicly available datasets in FASTQ format
obtained from the Sequence Read Archive (SRA) [48],
[49] of the National Center for Biotechnology Information
(NCBI) [50], [51] were used for the performance evalu-
ation: SRR534301 and SRR567455. Table 3 shows their
main characteristics. The number of reads (fourth column
in the table) refers to the number of sequences per input
file contained in the dataset, whereas the read length (fifth
column) is expressed in terms of the number of base pairs (bp)
per sequence. We have selected these datasets as they repre-
sent two different scenarios in terms of size and read lengths.

Table 4 shows the runtimes of PRINSEQ, PRINSEQ-++
and SeQual when processing those datasets both in
single- and paired-end modes (i.e., processing one or two
input files, respectively) for the following six representative
operations:

« NONIUPAC: single filter to remove those reads with one

or more Non-IUPAC bases (any base other than ‘A’, “T’,
‘G, ‘C’or ‘N’).

o« GCCONTENT: single filter to remove those reads with
a percentage of Guanine (‘G’) and Cytosine (‘C’) lower
or higher than a threshold specified by the user.

o DISTINCT: group filter to remove duplicate reads
maintaining the ones with the highest quality.

« DNATORNA: data formatter to convert from DNA to
RNA reads.

o COUNT: statistical operation to count the total number
of reads in the dataset before and after performing any
other operation over it.

« MEANQUALITY: statistical operation to compute the
average quality of all the sequences available in the input
dataset.

We have not assessed the performance of complex jobs
that combine several operations in order to keep this section
easy to read. Nevertheless, the improvement of SeQual over
PRINSEQ and PRINSEQ-++ in this type of jobs would
be at least the addition of the performance improvement
in the individual operations. Note also that Table 4 shows
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TABLE 3. Public datasets used in the experimental evaluation.

Dataset Tag Organism #Reads Read length Size
SRR534301 | SRR53 | Homo sapiens | 2 X 108.7M 101 bp 2 x 24 GiB
SRR567455 | SRR56 | Homo sapiens | 2 X 251.9 M 76 bp 2 x 45 GiB

TABLE 4. Runtimes (in seconds) for PRINSEQ (using one core), PRINSEQ++ (using one whole node, 16 cores) and SeQual (using 16 cores in one node and
128 cores in eight nodes) when performing different operations on two different datasets in single- and paired-end modes. Operations not available in

PRINSEQ and PRINSEQ++ are indicated with ‘—".

Operation Dataset | Mode | PRINSEQ | PRINSEQ++ SeQual
1 node | 8 nodes
SRRS3 Sll"lgle 2,454 1,050 767 109
Paired 5,694 2,201 2,494 410
NONIUPAC Singl 5,439 2,458 1,602 214
SRR56 | &€ \ : ’
Paired 12,321 5,262 5,409 672
SRR53 Slrllgle 2,689 588 484 104
Paired 5,886 2,146 1,497 255
GCCONTENT Singl 5,391 1,211 917 130
SRR56 | > ’ :
Paired 12,689 4,891 4,963 396
SRR53 Slr}gle 2,997 1,096 764 126
Paired 6,546 2,145 4,834 485
PISTINCT Singl 6,680 1,953 1,702 171
SRR56 | D8 ) : :
Paired 14,226 4,192 6,893 891
SRR53 Slr}glt: 2,370 - 790 86
Paired 5,472 - 2,456 355
DNATORNA Singl 5,422 1,473 219
SRR56 | >"& . . ’
Paired 11,836 - 4,969 801
SRR53 Slr}glt: - 743 177
Paired - 2,855 610
COUNT Singl 1,762 365
SRR56 | 2" . ’
Paired - 10,375 1,229
SRR53 Sll’.lgle - 861 189
Paired - 2,557 664
MEANQUALITY Sinel 1504 395
SRRS6 | EC ; :
Paired - 12,871 1,012

two runtime results for SeQual: using one whole node
(i.e., 16 cores) and the eight nodes of the cluster (128 cores
in total). PRINSEQ++ was executed on the 16 cores of one
whole node, while PRINSEQ only used one core, as it is
a sequential tool. Statistical operations could not be com-
pared as they are not available neither in PRINSEQ nor in
PRINSEQ++. Moreover, PRINSEQ++ does not provide the
DNATORNA formatter.

As can be observed, SeQual is significantly faster than the
original tool PRINSEQ in all the scenarios even using only
one node. When comparing SeQual with the multithreaded
version (i.e., PRINSEQ++) using the same amount of hard-
ware resources (i.e., one whole node), SeQual is faster for half
of the scenarios (it depends on the dataset and/or the opera-
tion). For instance, SeQual is faster than PRINSEQ++ for all
the single-end experiments. Nevertheless, the main benefit of
implementing SeQual upon a cluster computing framework
such as Spark is the possibility of exploiting the performance
of multiple nodes in order to reduce even more the exe-
cution time. When exploiting the whole cluster (8 nodes),
SeQual is significantly faster than PRINSEQ++ for all the
scenarios. More specifically, our tool is on average around
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23.6 and 8.3 times faster than PRINSEQ and PRINSEQ++,
respectively, providing significant speedups of up to 41.5x
and 12.4x (both results achieved for the GCCONTENT filter
operation when processing the SRR56 dataset). It is worth
noting that the performance comparison has been limited to
PRINSEQ and PRINSEQ++ as, up to our knowledge, these
are the tools of the current state of the art with the widest
functionality (although, as can be seen in Table 4, SeQual pro-
vides even more operations). We have not compared to other
tools such as Trimmomatic [20] as the number of operations
that they offer is quite limited, and therefore in our opinion
their functionality is not comparable to that of SeQual or even
PRINSEQ. For instance, none of the operations that have
been assessed in this experimental evaluation are available
in Trimmomatic.

In order to measure the scalability provided by the
Spark-based implementation included in SeQual, Fig. 5
reports the speedups obtained when varying the number of
nodes from one to eight. The baseline is the execution time
of SeQual for each operation when using one whole node,
i.e., the speedups show the acceleration obtained thanks to
exploiting multiple nodes compared to using only one. As can
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FIGURE 5. Speedups of SeQual for six different quality-control operations when varying the number of nodes using as baseline the runtime on one

node.

be observed, the scalability of the tool is generally high, espe-
cially for those scenarios with a heavy computational demand
(e.g., paired-end processing). In fact, the scalability of SeQual
is even superlinear in some specific cases (i.e., speedups
higher than 8x using eight nodes). Note that not only more
cores and memory can be exploited when using more nodes
but also a higher aggregated I/O bandwidth is provided by
HDFS, which benefits the superlinear behaviour as the disk is
the major performance bottleneck when using a single node.
As a summary, the average speedups provided by SeQual for
these operations when using 8 nodes are: 7.2x, 7.5x, 8.4x,
7.3x, 5.5x and 6.3x, respectively, according to their order
in Fig. 5 (from top to bottom and left to right).

146082

VI. CONCLUSION

The massive amount of data produced by modern NGS
technologies reinforces the need for scalable tools with the
ability to perform parallel computations by taking advantage
of distributed-memory systems such as clusters and clouds.
In this paper we have presented SeQual, a Big Data tool
that fully exploits the features of Apache Spark to reduce
the runtime needed for the quality control and preprocessing
of DNA/RNA sequences. Our tool is based in PRINSEQ,
one of the most widely used counterparts, and, up to our
knowledge, the tool with the most extensive functionality in
the state of the art. SeQual not only improves significantly the
performance of PRINSEQ thanks to its Spark-based parallel
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implementation, but also extends its functionality with more
operations. Moreover, SeQual is especially intended for clus-
ters based on commodity processing nodes, as it does not
require any specific hardware device or feature.

The performance of SeQual has been evaluated on a
eight-node multi-core cluster using two publicly available
datasets, both of them processed in single- and paired-end
modes. The experimental results have shown that our tool
provides average performance improvements of 23.6x and
8.3x over the sequential PRINSEQ tool and its multithreaded
counterpart PRINSEQ++-, respectively.

SeQual is distributed as free open-source software released
under the GNU AGPLv3 license and is publicly available to
download at https://github.com/roigalegot/SeQual. As future
work, we aim to explore the streaming processing capabil-
ities of Spark to allow SeQual to perform quality control
and preprocessing operations while the input datasets are
being downloaded and/or stored in HDFS. Moreover, we will
try to integrate our tool with other Hadoop/Spark-based
bioinformatics tools that require quality control.
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