
Journal of Experimental & Theoretical Artificial Intelligence. 2019; 32(2):243-271 

Population subset selection for the use of a validation dataset 
for overfitting control in genetic programming 

Daniel Rivero, Enrique Fernandez-Blanco, Carlos Fernandez-Lozano,  Alejandro 
Pazos 

aDept. of Computer Science, University of A Coruna, Facultad de Informatica, CITIC, A Coruna, Spain; 
bInstituto de Investigacion Biomedica de A Corua (INIBIC), Complexo Hospitalario Universitario de A   
Corua (CHUAC), A Coruna, Spain 

Abstract 

Genetic Programming (GP) is a technique which is able to solve different problems through the evolution 
of mathematical expressions. However, in order to be applied, its tendency to overfit the data is one of its 
main issues. The use of a validation dataset is a common alternative to prevent overfitting in many Machine 
Learning (ML) techniques, including GP. But, there is one key point which differentiates GP and other ML 
techniques: instead of training a single model, GP evolves a population of models. Therefore, the use of the 
validation dataset has several possibilities because any of those evolved models could be evaluated. This 
work explores the possibility of using the validation dataset not only on the training-best individual but also 
in a subset with the training-best individuals of the population. The study has been conducted with 5 well-
known databases performing regression or classification tasks. In most of the cases, the results of the study 
point out to an improvement when the validation dataset is used on a subset of the population instead of only 
on the training-best individual, which also induces a reduction on the number of nodes and, consequently, a 
lower complexity on the expressions. 

Keywords:  

Genetic programming, overfitting, validation, evolutionary Computation 
  



Introduction 

For more than 20 years, Genetic Programming (GP) has been one of the most successful 
Evolutionary Computation (EC) techniques applied to solve a wide diversity of problems. The 
main reason for its success over time is its capability to generate mathematical expressions which 
are easily analysed and validated. 

 
One of the main issues that most of the Machine Learning (ML) techniques has to tackle is 

setting constraints on the complexity of the system to be developed. For example, a polynomial 
regression model needs to set the polynomial order in advance, or an artificial neural network 
(ANN) needs to set the number of neurons within the network. Therefore, those constraints limit 
the complexity of the problems that the network or polynomial will be able to solve. Oppositely, 
GP has no beforehand constraints on problem complexity. Since the most common expression in 
GP has the shape of a tree and given the possibility that this tree may grow, the corresponding 
mathematical expression can have an arbitrary complexity, although some measures may be taken 
to avoid excessively large trees, such as limiting the maximum height of the tree. 

 
However, this great advantage of GP is also one of its main drawbacks. Expressions allowed to 

be arbitrarily complex may become overfitted to the training dataset. In those cases, the noise 
within the training dataset is treated as a feature and the generated expressions try also to learn the 
noise information. Usually, this effect is evidenced by having a very low error on the training 
dataset, whereas the evaluation on the test dataset achieves a very high error. 

 
Therefore, overfitting is a direct consequence of the possibility of generating complex 

expressions. The GP evolutionary process generates trees which progressively adapt to the 
problem being solved, which are typically more and more complex, resulting in trees with a larger 
number of nodes. This effect is related to the phenomenon known as bloat, which can be defined 
as the uncontrolled growth in a tree size with a small impact on fitness. Both effects, bloat and 
overfitting, are usually treated as related since the bloated models are usually more likely to overfit 
data than those with a smaller number of nodes. 

 
A common approach to address this issue is to use a third dataset called validation dataset. This 

dataset allows to calculate the validation error on the expressions generated by GP. A rising error 
could indicate that the training dataset may be beginning to overfit, and the training should be 
stopped. Nonetheless, this is not an easy decision because the error in the validation dataset may 
decline in future generations. 

 
The main aim of this work is to study the impact of using a validation dataset to select the 

individual to be returned by the GP process. This decision is usually made by using only the 
validation dataset on the individual with the best fitness during training, the training-best 
individual. Even there are works that use more than the training-best individual (Danandeh Mehr, 
Kahya, Uyumaz, & Erdem, 2014) (Danandeh Mehr & Nourani, 2017), this possibility has hardly 
been explored. The results of this paper point out to a better outcome by taking a percentage of the 
population to carry out the validation. 

 

Related work 

First and foremost, it should be highlighted that the use of a validation dataset is not a concept 
belonging to GP. Most of the ML techniques have been using this technique for a long time since 
it is one of the main resources to deal with overfitting. In the specific case of GP, other alternative 
techniques have been also developed. 

 
 



 
 
For instance, in (Langdon, 2011) the authors propose to use a smaller set of patterns, and, as 

they state, this could lead to avoiding overfitting. Other approaches based on evaluating a random 
subset of the training set were also published. These approaches were compared to different 
strategies when using a validation set (Gonçalves & Silva, 2011). Finally, other works use model 
selection strategies based on cross-validation, although their results are not directly related to GP 
(Cawley & Talbot, 2010) 

 
One of the first alternatives was a technique which consisted of controlling the bloat 

phenomenonpoli(Poli & McPhee, 2014; Silva & Costa, 2009; Vanneschi, Castelli, & Silva, 2010). 
The proposal defines a penalty term which multiplies the number of nodes in the tree-shape model 
by a weight number and, then, adds the result of that multiplication to the fitness value. This 
penalisation allows to control the bloat effect by reducing the size and, as a collateral effect, 
controlling overfitting (Ekárt & Nemeth, 2001; Gagné, Schoenauer, Parizeau, & Tomassini, 2006; 
Gustafson, Ekárt, Burke, & Kendall, 2004; Soule & Foster, 1998; Zhang & Mühlenbein, 1995). 
However, other studies have shown that even in an environment with bloat control, overfitting 
may occur (Vanneschi & Silva, 2009), and that low complexity expressions may have a greater 
generalisation error (Cavaretta & Chellapilla, 1999). 

 
Other approaches are based on similarities between the trees. The method called Semantic 

Similarity-based Crossover calculates a measure of similarity between two trees or subtrees 
(Sampling Semantics Distance), based on the similarity of their semantics (Uy, Hien, Hoai, & 
ONeill, 2010). In that paper, it was stated that the crossover between two trees was more useful 
when they were not too similar or too different, resulting in lower overfitting. Alternatively, in 
(Vanneschi & Gustafson, 2009), the overfitted solutions were maintained in a list so that any new 
solution, before being included in the population, could be compared to solutions from that list, 
and be discarded if it was too similar to the others. 

 
A similar technique is the so-called Random Sampling Technique (Gathercole & Ross, 1994), 

which is based on not using the whole training dataset in the fitness function. Instead of it, a 
random subset of the training dataset is generated in each generation to calculate the fitness of 
individuals. This technique was initially suggested as a way to speed up GP. Nevertheless, other 
studies showed that it could also be used to control the GP overfitting (Gonçalves & Silva, 2011; 
Gonçalves, Silva, Melo, & Carreiras, 2012; Liu & Khoshgoftaar, 2004) 

 
On the same line, Interleaved Sampling (Azad, Medernach, & Ryan, 2014; Gonçalves & Silva, 

2013) is found. This technique is based on the condition that the evaluation of the fitness function 
alternates between using the entire dataset and a single data point. Depending on whether the 
intention is to put more pressure on the set of patterns or on each isolated piece of data, more or 
fewer generations can be devoted to evaluating the entire dataset (interleaved all) or to 
alternatively evaluate a single data point (interleaved single). The results show that this technique 
allows the reduction of overfitting and the improvement of generalisation. 

 
To prevent overfitting, the use of a validation dataset was also deeply studied (Gagné et al., 

2006; Žegklitz & Pošík, 2015). For example, Canary Functions were introduced in a work in 
which a validation dataset is used to measure overfitting. These functions are different from the 
fitness function, even they pursue the same goal. When the values of those functions differ 
significantly from the fitness value, overfitting may be occurring (Foreman & Evett, 2005). Other 
studies using a validation dataset do not stop the evolutionary process, although the returned 
individual is the one which obtained the best fitness value in the validation dataset. This process is 
known as Backwarding (Robilliard & Fonlupt, 2001; Žegklitz & Pošík, 2015). 

 
 



Other works have previously explored the possibility of selecting the best individual not only 
as a the training-best, but from a subset of the population, using different measures for this 
selection (Danandeh Mehr et al., 2014) (Danandeh Mehr & Nourani, 2017). However, a deep 
study on how many individuals to be evaluated with the validation dataset is still missing. 

 
Finally, a different approach, which also uses a validation dataset, is Validation Start. In this 

case, the fitness is calculated by using the weighted sum of the error on the training dataset and the 
absolute difference of the error on the training dataset and the error on the validation dataset. The 
returned individual is the one with the lowest fitness value. The idea behind this modification of 
the fitness function is that a solution which produces a low error on the training dataset is 
expected, but the difference between this error and the one measured on another set of patterns 
(validation) should also be low (Gonçalves & Silva, 2011). 

 

Method 

Overfitting can be measured for a given expression as the difference between the error in the 
test dataset and the one in the training dataset (Gonçalves & Silva, 2013; Gonçalves et al., 2012). 
In order to control this value, as it was exemplified in Section 2, the validation dataset allows to 
detect overfitting. Since the validation dataset does not have an influence on the fitness value, it is 
a set of patterns that are not involved in the training and therefore will provide an approximation 
of the test error. Another definition of overfitting can be found in (Vanneschi et al., 2010), in 
which training and test errors are calculated throughout the training process. 

 
An interesting work describing the use of different datasets for learning machine evolution is 

(Igel, 2013). However, that work has a big difference with this: in (Igel, 2013) the evolutionary 
algorithm evolved the hyperparameters of a learning machine. Therefore, the evaluation of each 
individual involves training this learning machine. This leads to having 3 different datasets:  
Strain, Sevolve and Sfinal. In the case of this work, each individual represents an expression that does 
not have to be trained. Thus, in this work, we dont need Strain. Sevolve corresponds to the training set. 
Regarding to Sfinal, as described in the reference, only promising candidates should be considered 
in this selection process and promising candidates could be the set of those individuals which were 
the best in some generation, which is similar to the validation set used here: evaluate only the best 
individuals of the population with this dataset. However, since Sfinal is used to make decisions, the 
results on this dataset are not truly independent from the whole learning process, i.e. they would be 
optimistic and thus another dataset is needed: a test dataset. In our work, the results are calculated 
in a dataset that does not have any influence in the whole evolutionary process. 

 
This work applied the validation dataset in its most common form, which evaluates the output 

of the algorithm in each iteration with the validation dataset. This evaluation provides an 
estimation of how the model will behave on the test dataset. Therefore, if the validation error 
increases, this may be an indication that the system is starting to overfit. This could lead to the 
decision of prematurely stopping the training process. However, although the validation error 
increases in a given iteration, this error may decrease in successive generations. For this reason, 
prematurely stopping the training is usually not a good strategy. Due to this probable premature 
undesired stop and the unknown number of the optimum number of generations, this work has 
performed the training processes during a number of generations which is typically considered as 
high in the related literature (1000). When the generations had elapsed, instead of returning the 
model generated in the last generation, the returned model is the validation-best individual, which 
obtained the lowest error on the validation dataset, similarly to the approach proposed in other 
studies, called Backwarding (Žegklitz & Pošík, 2015). In this work, the error measurement was 
performed using the Root Mean Squared Error (RMSE) between the output and predicted values 
for regression problems, and the misclassification rate for classification problems, as described in 
Section 4. 



 
However, if the population size is N individuals, in every generation GP will produce 

approximately N new individuals. Some individuals would be copies of the previous generation, 
but overall, it is expected that the new generation should be better than the previous one. 
Therefore, considering that N new models have been produced, it is possible not only to evaluate 
the training-best individual but all individuals, with the validation dataset. 

 
Among these individuals, the training-best individual is the one that obtained the lowest error 

in the training dataset. If only the training-best individual of each generation of the population is 
considered for evaluating the validation dataset, other individuals which do not obtain such a low 
error in the training dataset may not be considered. These individuals, despite obtaining a higher 
error in the training dataset, may have a lower error in the validation dataset, and therefore, they 
may be less overfitted. The main difference between this method and Backwarding is that this 
method proposes the evaluation of more than just the training-best individual with the validation 
dataset. A formal description of this algorithm is shown on Algorithm 1. This pseudocode starts by 
defining a random population which is evaluated with the training dataset on steps 4–6. After that, 
steps 8–13 evaluate the N individuals with the best training fitness with the validation dataset and 
choose the validation-best individual as the one who obtained the best fitness in the validation 
dataset. Once the validation is finished, step 15 checks the termination criteria if this is not 
fulfilled, a new population will be built on the step 15 which will go through a new evaluation on 
the training and validation datasets. Otherwise, if the termination criteria is fulfilled, the 
validation-best individual will be returned after being evaluated with the test dataset. It should be 
highlighted that the validation dataset is not used to perform the selection genetic operator, but 
only to select the best-so-far individual between the N individuals with the best training fitness. 

 
The extreme case of this method would take place by evaluating all new individuals in each 

generation with the validation dataset. This is not a good strategy either, because the more 
individuals are used for validation evaluation, the more chances will be to find one that overfits the 
validation dataset. 

 
Therefore, a balance should be found between evaluating too few or too many individuals. In 

this work, experiments have been conducted with different percentages of the population, as 
shown in Section 5. In addition, since the population size is also another important parameter, 
experiments also took into account that information, in order to study its impact on the overfitting 
of expressions. 

 
An important difference between this work and the classic GP approach is that, once the 

evolutionary process is finished, the individual to be returned may not have to be the training-best 
individual in any generation, but the validation-best individual. 
  



Algorithm 1: Pseudocode of the used algorithm 
 
1 best_individual = empty 
 
2 population = new random population 
 
3 
 
4 foreach new_individual in the population do 
 
5  new_individual.training_fitness = fitness(training_dataset) 
 
6 end 
 
7 
 
8 foreach individual of the N best individuals in the population do 
 
9 individual.validation_fitness = fitness(validation_dataset) 
 
10 if individual.validation_fitness is better than 
 
     best_individual.validation_fitness then 
 
11 best_individual = individual 
 
12 end 
 
13 end 
 
14 
 
15 if termination criteria is NOT satisfied then 
 
16 Build new population through genetic operators based on training_fitness 
 
17 Go to step 4 
 
18 end 
 
19 
 
20 best_individual.test_fitness = fitness(test_dataset) 
 
21 return Best_individual                                                                                       

 
 

Datasets 

The experiments in this study were conducted using five different databases. On one hand, two 
of them were chosen from the scope of symbolic regression problems because they have been 
previously used in other studies about overfitting in GP (Archetti, Lanzeni, Messina, & Vanneschi, 
2007; Gonçalves & Silva, 2013). 
 

The first of the databases, Toxicity, contains 234 data points. Each data point is a vector of 627 
elements: 626 molecular descriptor values identifying a drug, and the known median lethal dose. 
The last value is the target to be predicted from the 626 remaining values. This database is 
available online (Archetti et al., 2007; Gonçalves & Silva, 2013). 
 

 



The second database, Bioavailability, contains 359 instances. Every instance is a vector 
consisting of 242 values: 241 molecular descriptor values identifying a drug, and the percentage of 
the initial orally submitted drug dose that effectively reaches the systemic blood circulation after 
passing through the liver. As previously mentioned, the last value is the target to be predicted from 
the previous ones (Archetti et al., 2007; Gonçalves & Silva, 2013). 
 

On the other hand, the remaining three datasets correspond to classification problems, and they 
are well-known datasets used as benchmark in many different works. These databases were taken 
from UCI (Dheeru & Karra Taniskidou, 2017), which is a public repository of databases used by 
the ML community. 
 

One of the problems to be solved involves the classification of breast cancer into two possible 
types: benign and malignant samples. The database has 699 cases: 458 benign (65.5%) and 241 
malignant (34.5%). Each data point is characterised by 9 attributes that are considered to be 
continuous, although they take discrete values ranging between 1 and 10. 
 

Another problem consists of classifying radar measurements from the ionosphere. These data 
were taken by a system in Goose Bay, Labrador, Canada. This system consists of a set of 16 high-
frequency antennas with a transmission power of about 6.4 kilowatts. The good measurements are 
those that demonstrate evidence of some type of structure in the ionosphere. The bad 
measurements are the ones that do not demonstrate this kind of evidence, i.e. the signals pass 
through the ionosphere. From a set of 34 attributes, the objective is to predict whether there are 
structures or not. In this case, there are 351 instances. 
 

The objective of the last problem is to detect whether heart disease is present or not. These data 
correspond to 13 measurements taken from 303 patients at the V.A. Hospital of Cleveland. 
 

Table 1 shows a summary of the most important features of the 5 problems to be solved. All of 
these datasets were divided into three disjoint subsets with 33% of the data each, for training, 
validation, and test datasets. Also, in the case of classification problems, this division was 
stratified, so the same proportion of data points of each class were used for training, validation and 
test. Table 1 also shows the size of the training/validation/test datasets. 

Table 1. Summary of used datasets. 
 

 
Problem 

Num. 
of 
inputs 

Num. 
of data 
points 

Type of 
problem 

Mean 
inputs 

StdDev. 
inputs 

Mean 
outputs 

StdDev. 
outputs 

Size of 
subsets 

Toxicity 626 234 Regression 386.67 11,540.59 1672.73 11,540.59 78 

Bioavailability 242 359 Regression 16.12 371.45 66.40 371.45 120 

Wisconsin 
Breast Cancer 

9 699 Classification 3.15 2.90 2.70 2.90 233 

Ionosphere 34 351 Classification 0.25 0.58 0.64 0.58 117 

Heart Disease 13 303 Classification 0.40 0.38 0.46 0.38 101 

 
  



Summing up, 2 regression and 3 classification problems were chosen for the benchmark 
dataset. Since in this paper both types of problems, regression and classification, are used to 
evaluate the system, two different measures have been defined to evaluate the fitness of each 
individual. For the regression problems, RMSE has been used as fitness measurement. However, 
in classification problems, individuals with a higher RMSE can show higher accuracy while 
individuals with lower RMSE can have lower accuracy. For this reason, the misclassification 
pattern rate was used for the classification problems instead of RMSE. However, in any 
classification system, some correct classifications can be due to chance. To measure the level of 
agreement apart from chance, Heidke skill score, or kappa, can be used. This skill can be an 
important fitness measurement, that should be maximized. Misclassification rate and kappa are 
closely related, since the higher is the first, the lower is the second. Since tournament was used as 
selection algorithm, when two individuals are randomly taken from the population, their fitness is 
compared and the one with better fitness is chosen for reproduction. If another selection algorithm 
such as wheel selection, which gives a probability based on the fitness, was used, then the use of 
kappa or misclassification rate would have a higher impact on the behaviour of the algorithm. In 
this work, the misclassification rate is used because, apart from being the most common fitness 
measure in GP, it reflects better the performance of the classification system. 

 
In the Wisconsin Breast Cancer classification problem, the targets take values of 2 and 4. 

These values were changed into 0 and 1 respectively. In the other 2 classification problems, the 
targets were already 0 and 1. In these 3 problems, a threshold of 0 was applied to the output of 
each individual, so a negative output was classified as 0, and a positive output was classified as 1. 
The fitness of this individual is calculated as the number of incorrectly classified patterns divided 
by the number of patterns. 

 

Results and discussion 

This section outlines the experiments carried out, as well as the results. 
 
As it was aforementioned, this work is focused on evaluating the influence of using a certain 

number of individuals to calculate the validation value, instead of using only the best individual. 
Consequently, different experiments were conducted by using different percentages of the best 
individuals of the population used in the validation. The experimentation tried to cover a wide 
range of possibilities by repeating the test for 0%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 
80% and 100%. It may be highlighted that, when a 0% is used, no individual was evaluated with 
the validation dataset and, therefore, after the evolutionary process, the individual to be returned is 
the one which obtained the best result in the training dataset. Oppositely, 100% means that, in each 
generation, all individuals are evaluated with the validation dataset. With an intermediate 
percentage, a given amount of individuals are evaluated. In addition to these percentages, in other 
experiments, only the individual with the lowest training error was used to evaluate the validation 
dataset. 

 
Taking into account that the population size is a very important parameter in a normal GP run, 

in this situation this parameter is even more relevant. The same percentage of individuals in a 
larger population will lead to the use of a greater number of individuals for validation. To study its 
influence, two very different values in terms of population size were used: 100 and 1000 
individuals. 

 
As described in Section 3, the system was run until reaching 1000 generations, when, the 

individual with the lowest error in the validation dataset, was returned as the solution. 
 
 



For each combination of percentage, population size and different problem, 50 independent 
runs were carried out. The results shown herein correspond to the median and average of 50 runs 
performed. In each of these 50 runs, the database was randomly split into training, validation and 
test datasets, having each of them 33% of the patterns. The reason for that unusually high percent 
for validation and test is that it ensures that validation and test datasets do not have non-
representative of patterns because the objective is to measure the impact of the validation. 

 
The function sets used by GP contain only arithmetic operators (+, -, *, %). The operation % is 

the protected division, which returns a result of 1 when the second argument is 0. The terminal 
only contains those variables corresponding to the independent terms of the database, and an 
ephemeral random constant between 0 and 1. 

 
In addition to the above-mentioned parameters, for each run, the following values were used 

for the different GP parameters: 
 
• Selection algorithm: two-individual tournament. 
• Creation algorithm: ramped half-and-half. 
• Crossover rate: 95%. 
• Mutation probability: 4% 
• Maximum tree depth: 9 

 
The experiments described in this section were carried out using a proprietary GP library 

written in C++ and the equipment of the Galician Supercomputing Center (CESGA). 
 
Figure 1 shows the results in the test, therefore, the lower the value, the better it is. Since 

average results are susceptible to outliers, solid lines show the median of the results in the test of 
the individuals which provided the lowest error in the validation dataset in each of the 50 different 
runs for each percentage. In addition, dashed lines show the average values of these independent 
runs. The results obtained for the population size of both 100 (left graphs) and 1000 (right graphs), 
as well as for the 5 problems are shown separately. Note that the case in which only the training-
best individual of the population is selected for validation corresponds to a percent of 1% for a 
population size of 100, and 0.1% for a population size of 1000, and therefore their values are 
plotted very close to 0. Also, horizontal lines in this graph show the case when no validation 
dataset was used. In this case, the training-best individual of the last generation is returned as the 
algorithm output and used for evaluation of the test dataset. 

 
As observed in this figure, and as expected, in all cases where validation is not performed, the 

error in the test dataset is much higher than when validation is done. A common approach when 
using a validation dataset is using only the best individual in each generation. As can be seen in 
Figure 1, better results can be found in all of the cases if more than 1 individual is validated. 
However, the best percentage of population size for validation is different for each problem and 
population size. 

 
As it was previously defined in Section 2, overfitting can be defined numerically as the 

difference between the error in the test dataset and the error in the training dataset (Gonçalves & 
Silva, 2013; Gonçalves et al., 2012). Figure 2 shows, in terms of the 5 problems and 2 population 
sizes, the different overfitting values obtained for each of the percentage values. As before, the 
horizontal line indicates overfitting in the case where no validation dataset is used. Solid lines 
correspond to median results, and dashed lines correspond to average results. 



 

Figure 1. Test error for each problem and population size, considering different percentages of individuals to perform 
validation. Solid lines: median of the results in test for each percentage. Dashed lines: average results in test for each 
percentage. Horizontal lines: results without validation dataset (solid: median, dashed: average). 

As was expected, overfitting gets the highest values when no validation dataset is used. 
However, its values are not always the lowest in those cases in which the best test results were 
returned (Figure 1). For example, in the case of the ionosphere problem, with a population size of 
100 individuals, the best test results were obtained when evaluating 20% of the population. In the 
overfit graph, it gets its lowest value when all of the individuals are evaluated. This is happening 
because the evaluation of an individual with the validation dataset is independent of the training 
dataset, and it is possible to obtain an individual with a worse training result and a good validation. 
This possibility is higher as the percentage of individuals used for validation gets higher too. 

 
In addition to Figure 2, a different measure of overfitting was calculated. This measure 

calculates the overfit for each generation (Vanneschi et al., 2010) and the results can be seen in 
Figure 3. This figure shows the overfit calculated for each generation when no validation was 
performed (dashed lines) and when validation was used with different percentages (solid lines). 
Although the solid lines in each graph are mixed and it is impossible to differentiate between 
percentages, the difference between using and not using validation is very clear. The values shown 
on this figure correspond to the median of the overfitting values of each of the different 
executions. 



 
 
 

Figure 2. Overfitting for each problem and population size, considering different percentages of individuals to perform 
validation. Solid lines: median of the results in test for each percentage. Dashed lines: average results in test for each 
percentage. Horizontal lines: results without validation dataset (solid: median, dashed: average). 
  



 
 
 
Figure 3. Overfitting on each generation. Solid lines: overfit calculated for each percentage. Dashed lines: overfit without 
validation dataset. 

Figure 4 contains the representation for each problem and population size of the error obtained 
on the test dataset. The error is plotted for each generation with different cases: only the best 
individual is evaluated (dashed lines), no validation is performed (dotted lines), and with the best 
percentage found for each combination (solid lines). Instead of plotting the curves for all percent, 
which can be quite confusing, these 3 curves can clearly illustrate the process. 

 
As it can be observed, when no validation is performed, the systems returns the worst test 

errors in most of the cases. In those cases in which it is not the worst, there is only a slight 
difference with the result using validation with only the best individual. Also, when the validation 
is carried out in the problems of toxicity, Wisconsin Breast Cancer and Heart Cleveland, the curve 
soon reaches the individual with the lowest error, with no decrease in test error from that point. 
Moreover, regarding the bioavailability problem, due to the aforementioned overfitting issue, the 
improvement of the test error seems to occur more slowly. This can be observed clearly when the 
population has fewer individuals (100) since it has to perform more generations to acquire an 
individual with a good validation score. 

 
 



 
 

 
Figure 4. The evolution for the cases where no validation (0%) is performed, it is performed only with the best individual, 
and with the best percentage found. Dotted lines: results without validation is performed. Solid lines: results for the best 
percentage found for each combination. Dashed lined: results when only the best individual is evaluated. 

To illustrate the development of the evolutionary process, Figure 5 shows for each problem, 
population size and percentage the average number of generations needed to find the individual 
with the lowest validation error. As in the previous graphs, solid lines represent median values 
while dashed lines represent average values, while horizontal lines represent the median (solid) 
and average (dashed) number of generations in the experiments with no validation. As can be seen, 
in toxicity and bioavailability problems the number of generations needed to obtain the best results 
without validation is the maximum number of generations (1000). This means that, for these two 
problems, not using a validation dataset makes the system to keep improving the training results 
until the last generation, while the test results were worsening. This can also be seen in Figure 4. 

 
These graphs show that, except once, when the validation is performed, the individual to be 

returned was found after a longer period of time compared to when a single individual was used 
for validation. In addition, it seems that when using a higher percentage, the system takes more 
generations to find that individual. When using a higher percentage of individuals for evaluation 
on the validation dataset, more chances will be that the system finds individuals with lower 
validation error (i.e. higher accuracy) on a higher number of generations. 



Moreover, in many of these graphs, the number of generations employed is substantially higher 
than in the case of using a single individual for validation. It seems that higher percentages have an 
impact on GP behaviour and its convergence is slower. However, many other factors may 
influence this effect. 

 
Related to Figure5, the number of data points evaluated to find each solution can be calculated, 

which gives a measure of the computational effort needed by the process. When working with GP, 
computational efficiency plays a crucial role and, therefore, it needs to be evaluated. In order to 
measure the computational cost, Figure 6 shows the number of data points evaluated in the training 
and validation process in order to obtain the result. As in previous graphs, solid lines show median 
values, while dashed lines show average values. Obviously, the number of data points evaluated is 
significantly higher when the population size is 1000 than when it is 100, due to the number of 
patterns evaluated is around 10 times higher in the first case 

 
 

 
 
 
Figure 5. Average number of generations in which the individual to be returned for each percentage was found. Solid lines: 
median of the results for each percentage. Dashed lines: average results for each percentage. Horizontal lines: results 
without validation dataset (solid: median, dashed: average). 
 
 



 
 
 
Figure 6. Computational cost for each percentage. Solid lines: median of the results for each percentage. Dashed lines: 
average results for each percentage. 

This figure shows that the computational cost needed in these experiments for finding the 
validation-best individual was lower when the percentage of individuals used for validation was 
lower too. Also, these computational costs from the experiments seem to linearly increase as the 
percentage increases. However, choosing a low percentage due to its low computational cost is not 
a good idea. Figure 1 shows that, when the percentage is very low with a low computational cost, 
the returned results are not the best ones. Therefore, a trade-off between results and computational 
efficiency is needed to obtain the best results. 

 
Related to the latter, Figure 7 shows the median and average error for each configuration when 

no validation dataset was used when the number of data points shown on 6 were evaluated. As in 
previous graphs, solid lines show median values and dashed lines show average values. As can be 
seen in comparison with Figure 1, the error obtained with the same computational cost is lower 
using a validation dataset. 

 



 
 
 
Figure 7. Error with no validation when the process is prematurely stopped. Solid lines: median of the results for each 
percentage. Dashed lines: average results for each percentage. 

The next study carried out refers to the complexity of the resulting individuals. Figure 8 shows, 
for each problem and population size, the average number of nodes of the returned individual for 
each percentage. As before, in that figure, each horizontal line indicates the number of nodes in the 
case of not using a validation dataset; solid lines show median values and dashed lines show 
average values. 

 
As expected, the number of nodes of the individuals in which no validation is performed, and 

therefore overfitted, is much higher than in the cases in which validation is performed. Comparing 
this graph to Figure 1, it can be observed that, for a given problem, obtaining a lower test error 
generally involves using fewer nodes, although this statement cannot be generalised, because, 
sometimes in order to improve an expression it is necessary to make it more complex. 

 
Tables 2–11 summarise the most important results according to the information shown on 

Figures 1–8 



 
 
 
Figure 8. Average number of nodes of the individual to be returned for each percentage.Solid lines: median of the results 
for each percentage. Dashed lines: average results for each percentage. Horizontal lines: results without validation dataset 
(solid: median, dashed: average). 
 
 

 

 



 

Figure 9. Boxplots of test results for the different problems and configurations.



Table 2. Summary of the most important results for the toxicity problem with 100 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(1%) 

5 
(5%) 

10 
(10%) 

15 
(15%) 

20 
(20%) 

30 
(30%) 

40 
(40%) 

60 
(60%) 

80 
(80%) 

100 
(100%) 

Test results, median 2494.76 2097.96 2074.11 2026.34 2138.02 2098.44 2121.08 2092.99 2123.47 2091.19 2094.18 

Test results, average 3253.20 2087.38 2364.91 2074.78 2244.09 2155.12 2211.19 2154.13 2237.34 2247.78 2525.81 

Test results, StdDev 1989.55 233.32 1447.76 196.88 739.43 391.60 548.83 307.19 604.59 897.12 1676.29 

Overfitting, median 854.83 74.97 78.55 90.80 177.46 188.93 296.64 185.39 200.69 142.24 150.67 

Overfitting, average 1640.97 116.09 417.36 107.82 286.27 245.50 314.11 267.14 275.36 277.39 494.79 

Overfitting, StdDev 2028.11 380.07 1527.65 302.98 757.57 554.24 656.81 448.47 684.61 938.32 1734.03 

Num. generations, median 998.00 91.50 94.50 106.50 93.00 138.00 160.00 139.50 123.50 160.50 233.50 

Num. generations, average 995.47 147.02 108.38 167.24 177.26 217.31 242.31 226.80 211.58 277.69 347.63 

Num. generations, StdDev 5.86 172.21 97.02 189.88 229.05 216.99 225.75 233.26 231.07 272.53 293.43 

Comp. cost, median (x10000) 799.20 74.71 80.08 94.28 86.06 132.61 165.99 155.67 157.12 228.68 368.17 

Comp. cost, average (x10000) 797.18 119.56 91.72 147.55 163.20 208.26 250.85 252.40 268.28 394.62 547.34 

Comp. cost, StdDev (x10000) 4.69 139.09 81.35 166.52 209.69 207.01 232.75 258.46 291.61 385.91 460.68 

Num. nodes, median 317.00 93.00 76.00 79.00 70.00 119.00 127.00 130.00 91.00 132.00 138.00 

Num. nodes, average 330.43 116.10 101.92 120.08 106.04 144.12 161.98 146.96 118.00 151.38 159.48 

Num. nodes, StdDev 127.05 110.16 88.00 108.85 106.96 113.13 120.78 107.85 95.80 118.69 114.15 

 



 
Table 3. Summary of the most important results for the toxicity problem with 1000 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(0.1%) 

50 
(5%) 

100 
(10%) 

150 
(15%) 

200 
(20%) 

300 
(30%) 

400 
(40%) 

600 
(60%) 

800 
(80%) 

1000 
(100%) 

Test results, median 3463.90 2130.54 2112.28 2008.37 2132.00 2095.28 2089.12 2091.10 2167.43 2130.15 2209.54 

Test results, average 5717.03 2125.42 2472.91 2046.01 2415.81 2687.92 2308.90 2150.85 2382.32 2270.70 2926.34 

Test results, StdDev 5745.12 241.48 1787.11 204.44 1033.36 3419.40 1196.12 451.70 990.74 1007.55 3225.67 

Overfitting, median 2208.44 209.25 134.39 62.34 329.16 146.93 172.65 250.05 286.77 260.51 266.16 

Overfitting, average 4427.59 210.37 535.77 103.15 587.96 802.62 396.52 279.37 553.32 369.27 722.48 

Overfitting, StdDev 5777.87 403.10 1936.64 403.13 1127.77 3486.34 1271.02 617.72 1063.83 1100.12 2740.41 

Num. generations, median 996.00 58.00 57.00 88.00 88.50 88.50 87.00 95.50 117.00 146.00 162.50 

Num. generations, average 990.66 89.34 112.00 147.46 149.48 156.90 131.18 163.36 215.98 245.56 232.21 

Num. generations, StdDev 17.26 129.49 208.91 204.40 196.43 184.38 132.85 188.09 235.40 245.54 206.42 

Comp. cost, median (x10000) 7976.00 472.45 486.33 780.53 819.37 853.83 907.28 1069.22 1489.16 2081.52 2566.95 

Comp. cost, average (x10000) 7933.26 723.42 947.51 1301.99 1377.64 1506.33 1362.78 1821.11 2738.28 3491.32 3661.37 

Comp. cost, StdDev (x10000) 138.05 1036.90 1751.75 1792.59 1798.29 1759.02 1369.72 2084.09 2970.69 3476.89 3240.78 

Num. nodes, median 248.00 35.00 34.00 73.00 54.00 69.00 66.00 74.50 85.00 119.00 119.00 

Num. nodes, average 264.03 56.50 56.62 82.58 79.56 86.65 76.42 88.58 91.29 122.15 131.04 

Num. nodes, StdDev 76.52 64.05 63.68 62.94 68.78 66.37 56.00 60.50 67.00 83.74 65.01 



 
Table 4. Summary of the most important results for the bioavailability problem with 100 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(1%) 

5 
(5%) 

10 
(10%) 

15 
(15%) 

20 
(20%) 

30 
(30%) 

40 
(40%) 

60 
(60%) 

80 
(80%) 

100 
(100%) 

Test results, median 35.88 32.30 33.31 32.70 33.28 34.85 32.65 33.62 32.07 33.17 32.96 

Test results, average 46.91 33.49 34.87 33.53 39.18 36.03 35.84 35.77 32.87 33.87 40.22 

Test results, StdDev 36.56 4.68 7.13 3.59 33.13 6.90 10.64 10.35 3.77 4.04 39.96 

Overfitting, median 10.56 3.80 5.35 4.95 5.70 6.55 5.32 5.29 4.18 4.38 4.19 

Overfitting, average 21.95 4.91 7.06 5.49 11.26 8.06 7.54 7.37 4.30 5.34 10.52 

Overfitting, StdDev 37.09 5.14 7.48 3.96 33.04 7.17 10.88 10.89 4.05 4.63 40.70 

Num. generations, median 996.00 380.00 438.50 450.50 549.00 532.50 465.50 559.00 569.50 546.00 646.00 

Num. generations, average 992.58 433.51 523.64 504.52 552.47 551.44 501.56 569.48 582.02 581.90 653.69 

Num. generations, StdDev 9.92 244.58 286.19 288.36 295.28 282.83 273.84 266.87 271.82 247.56 261.60 

Comp. cost, median (x10000) 1216.34 469.32 562.12 604.11 768.35 776.78 734.27 947.52 1099.92 1183.71 1552.80 

Comp. cost, average (x10000) 1212.17 535.23 671.01 676.39 773.25 804.35 791.03 965.25 1124.06 1261.40 1571.27 

Comp. cost, StdDev (x10000) 12.10 301.27 366.04 385.83 412.45 411.80 431.02 451.55 524.06 535.71 627.84 

Num. nodes, median 344.00 241.00 263.00 228.00 277.00 269.00 261.50 249.00 227.00 260.00 311.00 

Num. nodes, average 328.98 265.18 275.08 267.48 279.37 277.26 266.14 249.02 257.58 280.64 292.69 

Num. nodes, StdDev 108.85 95.72 112.68 113.25 110.15 109.18 100.84 93.67 97.55 98.16 101.01 

 
 



 
Table 5. Summary of the most important results for the bioavailability problem with 1000 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(0.1%) 

50 
(5%) 

100 
(10%) 

150 
(15%) 

200 
(20%) 

300 
(30%) 

400 
(40%) 

600 
(60%) 

800 
(80%) 

1000 
(100%) 

Test results, median 36.93 31.45 30.77 31.47 31.27 31.46 31.64 31.25 31.15 31.29 30.89 

Test results, average 46.98 33.68 40.42 34.89 32.16 38.29 32.38 32.42 33.46 31.47 31.14 

Test results, StdDev 26.55 14.02 36.14 19.36 3.76 33.76 3.14 4.71 8.43 2.11 2.53 

Overfitting, median 14.13 3.46 3.64 3.93 2.47 3.91 3.43 3.41 3.32 2.66 1.60 

Overfitting, average 24.15 5.57 12.95 7.17 4.43 10.96 4.38 4.74 5.61 2.72 1.27 

Overfitting, StdDev 27.01 14.54 35.97 19.51 5.00 34.24 3.96 5.39 9.11 3.31 7.15 

Num. generations, median 996.00 136.00 226.00 197.00 210.50 286.00 224.00 246.50 245.00 379.00 297.00 

Num. generations, average 991.46 182.21 319.38 301.62 295.70 389.98 304.62 365.02 364.80 441.88 391.55 

Num. generations, StdDev 10.50 139.60 248.04 226.59 240.50 304.53 254.46 274.14 258.49 298.15 266.81 

Comp. cost, median (x10000) 12,163.40 1673.02 2903.33 2649.24 2954.66 4178.72 3541.50 4187.70 4742.88 8223.20 7152.00 

Comp. cost, average (x10000) 12,107.97 2237.30 4097.66 4049.06 4144.90 5692.67 4810.46 6193.06 7052.55 9583.92 9421.22 

Comp. cost, StdDev (x10000) 128.13 1704.72 3172.40 3031.79 3359.84 4433.96 4005.20 4638.44 4983.62 6452.00 6403.56 

Num. nodes, median 221.00 115.00 162.00 151.00 153.00 165.00 141.00 149.00 167.00 172.00 151.00 

Num. nodes, average 226.65 121.77 159.20 157.74 158.52 160.36 151.08 152.86 172.39 171.48 161.55 

Num. nodes, StdDev 46.43 48.32 48.71 49.10 66.41 53.98 58.63 52.64 61.11 55.85 45.69 

 
 
 



 
Table 6. Summary of the most important results for the Wisconsin Breast Cancer problem with 100 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(1%) 

5 
(5%) 

10 
(10%) 

15 
(15%) 

20 
(20%) 

30 
(30%) 

40 
(40%) 

60 
(60%) 

80 
(80%) 

100 
(100%) 

Test results, median 0.22 0.22 0.21 0.21 0.20 0.20 0.21 0.21 0.21 0.20 0.21 

Test results, average 0.22 0.22 0.21 0.21 0.20 0.20 0.22 0.21 0.21 0.20 0.21 

Test results, StdDev 0.05 0.03 0.03 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.04 

Overfitting, median 0.12 0.06 0.06 0.05 0.03 0.03 0.04 0.04 0.03 0.02 0.03 

Overfitting, average 0.12 0.06 0.05 0.05 0.03 0.04 0.04 0.03 0.02 0.02 0.03 

Overfitting, StdDev 0.07 0.05 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.06 

Num. generations, median 333.50 48.00 131.50 148.00 111.00 130.00 91.50 96.50 123.50 135.00 161.00 

Num. generations, average 376.96 63.76 236.82 200.28 166.06 195.84 162.44 188.86 211.46 208.68 245.24 

Num. generations, StdDev 280.97 70.44 216.54 203.82 158.76 200.69 180.60 227.93 230.45 204.95 209.94 

Comp. cost, median (x10000) 796.11 122.56 366.84 403.40 313.55 426.30 362.61 325.44 487.70 689.16 794.96 

Comp. cost, average (x10000) 899.54 207.05 625.47 542.25 467.65 653.32 553.51 653.47 909.04 985.12 1179.72 

Comp. cost, StdDev (x10000) 668.71 230.38 555.73 525.42 427.99 661.30 549.29 749.17 939.54 869.33 969.30 

Num. nodes, median 128.50 42.00 98.50 87.00 62.00 105.50 77.00 74.00 88.00 89.50 110.50 

Num. nodes, average 129.70 58.72 109.22 93.54 73.32 100.58 86.82 83.76 99.16 96.40 113.16 

Num. nodes, StdDev 53.39 46.10 66.22 47.82 46.06 56.07 51.35 46.89 57.40 47.23 44.71 

 
 
 



 
Table 7. Summary of the most important results for the Wisconsin Breast Cancer problem with 1000 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(0.1%) 

50 
(5%) 

100 
(10%) 

150 
(15%) 

200 
(20%) 

300 
(30%) 

400 
(40%) 

600 
(60%) 

800 
(80%) 

1000 
(100%) 

Test results, median 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20 0.21 

Test results, average 0.23 0.21 0.21 0.20 0.20 0.21 0.21 0.21 0.21 0.20 0.21 

Test results, StdDev 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 

Overfitting, median 0.18 0.06 0.04 0.05 0.04 0.04 0.05 0.04 0.02 0.02 0.03 

Overfitting, average 0.19 0.06 0.04 0.05 0.04 0.04 0.05 0.05 0.03 0.02 0.03 

Overfitting, StdDev 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.04 0.05 0.05 

Num. generations, median 380.50 36.00 50.50 68.00 56.50 52.00 65.00 63.00 58.50 70.00 70.50 

Num. generations, average 432.14 79.22 65.50 106.34 80.78 94.38 96.26 96.80 73.10 107.16 110.88 

Num. generations, StdDev 280.24 147.19 41.65 129.07 75.65 121.21 115.65 122.16 44.34 131.26 126.96 

Comp. cost, median (x10000) 9079.70 929.10 1322.62 1984.36 1567.74 1619.94 2120.37 2329.32 2504.39 3509.24 3376.80 

Comp. cost, average (x10000) 10,308.73 2081.66 1791.27 3295.08 2241.73 3958.34 3703.58 3413.03 3292.99 5528.53 5391.62 

Comp. cost, StdDev (x10000) 6669.67 3603.82 1151.16 3674.55 2054.75 5915.23 4371.80 4009.86 2619.01 6971.25 5895.16 

Num. nodes, median 200.00 51.00 79.00 93.00 85.50 79.00 97.00 81.50 85.00 97.50 100.00 

Num. nodes, average 199.56 75.74 82.76 107.26 89.14 103.14 113.20 97.46 96.74 110.16 105.74 

Num. nodes, StdDev 67.09 75.22 43.17 59.40 49.16 67.86 69.59 48.19 48.16 51.00 53.0 

 
 
 



 
Table 8. Summary of the most important results for the ionosphere problem with 100 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(1%) 

5 
(5%) 

10 
(10%) 

15 
(15%) 

20 
(20%) 

30 
(30%) 

40 
(40%) 

60 
(60%) 

80 
(80%) 

100 
(100%) 

Test results, median 0.44 0.44 0.42 0.42 0.42 0.41 0.42 0.43 0.42 0.42 0.42 

Test results, average 0.44 0.44 0.42 0.41 0.41 0.42 0.42 0.43 0.42 0.42 0.41 

Test results, StdDev 0.07 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.06 0.06 0.06 

Overfitting, median 0.21 0.11 0.16 0.12 0.10 0.13 0.11 0.11 0.11 0.09 0.10 

Overfitting, average 0.21 0.12 0.15 0.12 0.11 0.13 0.12 0.11 0.12 0.10 0.10 

Overfitting, StdDev 0.07 0.09 0.07 0.08 0.08 0.06 0.08 0.06 0.07 0.09 0.07 

Num. generations, median 697.00 41.00 361.00 329.50 200.00 350.00 245.00 171.00 315.00 278.00 349.50 

Num. generations, average 607.54 175.54 412.66 403.32 355.38 426.10 336.06 285.96 368.56 388.78 396.62 

Num. generations, StdDev 263.14 260.40 323.29 346.89 358.53 333.46 308.19 296.03 322.63 358.85 318.50 

Comp. cost, median (x10000) 830.62 52.87 586.56 496.28 349.87 553.16 429.10 321.70 641.24 668.23 995.23 

Comp. cost, average (x10000) 724.16 218.74 571.71 545.10 495.49 657.85 540.24 503.84 750.74 874.40 1030.01 

Comp. cost, StdDev (x10000) 313.14 320.40 420.26 457.57 489.00 488.11 481.45 497.19 604.13 748.81 761.14 

Num. nodes, median 249.00 43.50 208.50 193.00 148.00 200.00 175.50 134.00 192.50 182.00 188.50 

Num. nodes, average 239.34 90.32 195.40 177.76 156.92 192.50 152.90 134.52 170.08 170.30 172.44 

Num. nodes, StdDev 70.85 93.76 104.56 105.57 103.69 101.35 94.19 97.45 104.91 102.09 94.87 

 
 
 



 
Table 9. Summary of the most important results for the ionosphere problem with 1000 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(0.1%) 

50 
(5%) 

100 
(10%) 

150 
(15%) 

200 
(20%) 

300 
(30%) 

400 
(40%) 

600 
(60%) 

800 
(80%) 

1000 
(100%) 

Test results, median 0.40 0.39 0.38 0.38 0.39 0.40 0.38 0.39 0.39 0.38 0.39 

Test results, average 0.41 0.39 0.38 0.37 0.39 0.39 0.39 0.39 0.38 0.38 0.40 

Test results, StdDev 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.05 

Overfitting, median 0.31 0.15 0.17 0.19 0.10 0.12 0.15 0.16 0.13 0.09 0.10 

Overfitting, average 0.32 0.16 0.16 0.17 0.11 0.14 0.14 0.15 0.12 0.11 0.11 

Overfitting, StdDev 0.08 0.11 0.09 0.09 0.11 0.10 0.08 0.08 0.09 0.09 0.10 

Num. generations, median 554.50 90.50 184.50 224.50 42.50 123.50 134.00 127.00 81.00 86.50 132.00 

Num. generations, average 536.46 178.76 269.98 331.36 191.74 245.80 255.00 272.48 195.56 223.36 259.04 

Num. generations, StdDev 279.36 224.05 272.71 289.21 256.01 288.31 278.25 306.01 224.19 262.36 299.40 

Comp. cost, median (x10000) 6610.45 1089.91 2558.40 3134.40 627.44 1770.39 2753.02 2141.93 2225.48 1853.25 3196.00 

Comp. cost, average (x10000) 6395.77 2157.91 3603.97 4507.27 2685.17 3527.13 4303.32 4620.28 4176.74 4939.18 6171.10 

Comp. cost, StdDev (x10000) 3324.38 2658.05 3631.69 3794.62 3533.03 4140.25 4427.71 5135.45 4695.37 5691.46 7004.57 

Num. nodes, median 313.50 137.50 225.00 243.00 74.50 158.00 181.00 171.50 146.00 133.50 163.50 

Num. nodes, average 310.56 141.88 194.86 206.18 126.46 162.82 171.22 178.30 162.84 157.58 172.40 

Num. nodes, StdDev 70.36 126.35 133.79 130.57 125.27 127.79 129.10 126.04 125.49 132.56 137.70 

 
 
 



 
 
Table 10. Summary of the most important results for the heart disease problem with 100 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(1%) 

5 
(5%) 

10 
(10%) 

15 
(15%) 

20 
(20%) 

30 
(30%) 

40 
(40%) 

60 
(60%) 

80 
(80%) 

100 
(100%) 

Test results, median 0.48 0.47 0.45 0.45 0.45 0.45 0.44 0.44 0.46 0.44 0.45 

Test results, average 0.47 0.46 0.45 0.46 0.45 0.45 0.44 0.45 0.46 0.44 0.45 

Test results, StdDev 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.04 

Overfitting, median 0.23 0.11 0.09 0.07 0.07 0.06 0.05 0.07 0.07 0.04 0.03 

Overfitting, average 0.22 0.12 0.09 0.08 0.06 0.07 0.06 0.07 0.07 0.04 0.03 

Overfitting, StdDev 0.07 0.09 0.06 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 

Num. generations, median 457.00 47.50 74.50 104.00 78.50 82.50 118.50 92.50 167.00 98.50 168.50 

Num. generations, average 466.78 123.54 131.82 206.18 183.22 176.52 218.52 179.28 272.38 254.64 293.58 

Num. generations, StdDev 241.98 183.38 173.10 240.35 223.02 221.42 239.01 193.26 273.84 291.66 250.38 

Comp. cost, median (x10000) 471.74 71.24 86.94 132.21 103.84 102.71 158.94 152.29 273.84 182.09 391.79 

Comp. cost, average (x10000) 481.81 143.27 148.37 245.73 224.06 230.01 295.95 265.87 445.67 471.92 637.26 

Comp. cost, StdDev (x10000) 249.24 192.68 185.86 274.66 271.13 286.03 326.37 283.21 446.36 531.93 541.35 

Num. nodes, median 127.00 63.50 68.00 67.00 54.50 61.50 61.00 83.00 85.00 82.00 92.50 

Num. nodes, average 140.72 68.02 69.82 82.68 64.28 74.16 71.40 94.96 93.82 87.16 95.76 

Num. nodes, StdDev 65.45 53.47 39.38 58.78 47.22 56.77 49.59 66.96 60.44 49.45 57.56 

 
 



 
 
Table 11. Summary of the most important results for the heart disease problem with 1000 individuals according to the size of the partition used for validation. 
 

Num. individuals to validate 
(Percentage of population) 

0 
(0%) 

1 
(0.1%) 

50 
(5%) 

100 
(10%) 

150 
(15%) 

200 
(20%) 

300 
(30%) 

400 
(40%) 

600 
(60%) 

800 
(80%) 

1000 
(100%) 

Test results, median 0.49 0.46 0.45 0.45 0.46 0.44 0.46 0.44 0.45 0.47 0.44 

Test results, average 0.49 0.46 0.44 0.44 0.46 0.45 0.46 0.44 0.44 0.47 0.44 

Test results, StdDev 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.04 

Overfitting, median 0.35 0.11 0.07 0.05 0.09 0.06 0.04 0.07 0.05 0.06 0.04 

Overfitting, average 0.35 0.13 0.08 0.06 0.09 0.05 0.07 0.07 0.04 0.07 0.05 

Overfitting, StdDev 0.10 0.09 0.10 0.09 0.09 0.10 0.10 0.09 0.09 0.07 0.08 

Num. generations, median 586.00 26.00 51.00 35.00 52.50 36.50 45.00 51.50 53.50 63.00 60.00 

Num. generations, average 558.94 79.86 102.80 71.04 103.00 68.04 93.66 96.24 99.06 101.36 158.20 

Num. generations, StdDev 251.62 152.16 157.66 124.09 135.35 116.69 161.07 144.65 175.41 137.50 225.69 

Comp. cost, median (x10000) 6046.10 278.37 561.60 452.00 631.30 602.70 625.10 822.25 978.00 1253.55 1268.75 

Comp. cost, average (x10000) 5767.38 846.04 1129.03 871.68 1544.38 1031.97 1354.21 1424.57 1654.12 1982.99 3261.40 

Comp. cost, StdDev (x10000) 2591.69 1568.11 1698.85 1401.48 2295.80 1681.95 2156.58 2075.25 2852.20 2578.41 4594.62 

Num. nodes, median 234.50 26.00 58.00 40.00 60.50 50.00 53.00 76.50 69.50 77.00 69.50 

Num. nodes, average 221.60 61.94 77.20 63.14 91.94 60.66 76.52 85.32 77.94 84.22 98.28 

Num. nodes, StdDev 76.61 66.73 67.57 52.76 84.29 57.20 70.82 64.94 53.98 62.11 69.99 



Finally, a statistical study of these results has been carried out as recommended in previous 
works Derrac, García, Molina, and Herrera (2011); L.-M. Li, Lu, Zeng, Wu, and Chen (2016); X. 
Li, Zhang, and Yin (2014); Zeng, Xie, Chen, and Weng (2019) Figure 9 shows the boxplots for 
Kruskal-Wallis tests on the test data for each problem, population size and percentage. In each 
these boxplots, the first column is for the case when no validation is done (0%), the second for 
when the best individual is taken for validation (1% in 100 individuals, or 0.1% in 1000 
individuals), and the remaining for the corresponding percent assigned on the x-axis. 

 
On Table 12, the results of the Kruskal-Wallis one-way analysis of variance (ANOVA) are 

shown. The medians for each group can be seen on Tables 2–11, on the first row, and the standard 
deviations on the third row. The significance level was 1%. As can be seen from the chi-squared 
and p-values, ANOVA rejects the null hypothesis that for each problem, the median of the results 
is equal. In any case, the results obtained with a validation dataset were statistically better than the 
results without it, which highlights, once again, the importance of the validation dataset to deal 
with the overfitting. Two of the problems, toxicity and bioavailability, showed no statistical 
difference between the test results in the different percentages. However, in the remaining 
problems, the best results obtained when using a set for validation were statistically different from 
the results when only the best individual is evaluated in with the validation dataset. Therefore, 
these results seem to point out that the use of a validation dataset with more than just one 
individual, in the worst case, leads to have similar results while, in most of the cases, improve the 
results and performance of GP. 

Table 12. Results from ANOVA analysis. 
 

Problem Number of 
Individuals 

Sum of 
Squares 

chi-square p-value 

Toxicity 100 1.1157e+06 47.9346 6.3797e-07 

  1,000 1.0073e+06 69.0203 6.8513e-11 

Bioavailability 100 5.5927e+05 23.0581 0.010534 

  1,000 1.3739e+06 64.2684 5.5932e-10 

Wisconsin Breast Cancer 100 1.2119 e + 06 48.0823 5.9955e-07 

  1,000 1.7487e+06 69.5918 5.3157e-11 

Ionosphere 100 1.0708e+06 42.4199 6.3125e-06 

  1,000 1.0167e+06 40.2977 1.5016e-05 

Heart Disease 100 1.2765e+06 50.5854 2.0826e-07 

  1,000 1.9945e+06 118.6226 9.6281e-21 

 

 

 
 



Conclusions and future work 

In classic GP, the evolutionary algorithm output is the individual with the best fitness in the 
training dataset. If a validation dataset is added, this best individual is evaluated by using the 
validation dataset, and if the validation error is lower, it is stored to be returned only when the 
process is completed. However, the results found herein show that, in all cases, the individual with 
the lowest validation error was not one of the training-best individuals in each generation. Instead, 
the individual which provided the best validation results proved to be ’hidden’ within the 
population. 

 
In addition, the results seem to differ regarding what percentage of individuals to be evaluated 

with the validation dataset is the best one to find that individual. The complexity of these five 
problems is different, and for each of them, the best percentage is different. Further research has to 
be done in this sense to develop a method to set how many individuals should be evaluated with 
the validation dataset. This method could be even more complex, not setting the number of 
individuals to be evaluated with the validation dataset, but choosing among the population those 
individuals that are likely to return best results, and then evaluating them with the validation 
dataset. 

 
The use of a validation dataset to reduce overfitting in GP has proved to be a very effective 

technique. Moreover, the possibility to evaluate more than one individual opens the door to the 
development of new techniques which allow to use the validation dataset in a more effective way 
to reduce overfitting. 

 
From the results obtained in this work, new developments can be done. First, considering that 

the best individual was found in different percentages of the population, it would be of great 
interest to conduct a similar study where the number of individuals in the population is not fixed, 
but it depends on their fitness. 

 
Related to this, a system could be developed, which, depending on the difference between the 

error values in the training and validation datasets, is able to modify the number of individuals to 
be evaluated with the validation dataset. 

 

Acknowledgments 

The experiments described in this work were performed on computers in the Supercomputing 
Center of Galicia (CESGA). Daniel Rivero and Enrique Fernndez-Blanco would also like to thank 
the support provided by the NVIDIA Research Grants Program. 

 

Disclosure statement 

No potential conflict of interest was reported by the authors.



Funding 

This work is supported by the Collaborative Project in Genomic Data Integration 
(CICLOGEN) PI17/01826 funded by the Carlos III Health Institute from the Spanish National 
plan for Scientific and Technical Research and Innovation 20132016 and the European Regional 
Development Funds (FEDER)A way to build Europe. This project was also supported by the 
General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. 
ED431G/01, ED431D 2017/16), he Galician Network for Colorectal Cancer Research (Ref. 
ED431D 2017/23), Competitive Reference Groups (Ref. ED431C 2018/49) and the European 
Regional Development Funds (FEDER) A way to build Europe Consellería de Cultura, Educación 
e Ordenación Universitaria, Xunta de Galicia[ED431C 2018/49,ED431D 2017/16,ED431D 
2017/23,ED431G/01]; Instituto de Salud Carlos III [PI17/01826]. 

 

References 

1. Archetti, F., Lanzeni, S., Messina, E., & Vanneschi, L. (2007). Genetic programming for 
computational pharmacokinetics in drug discovery and development. Genetic Programming 
and Evolvable Machines, 8(4), 413–432.  

2. Azad, R., Medernach, D., & Ryan, C. (2014). Efficient interleaved sampling of training data 
in genetic programming. In Proceedings of the companion publication of the 2014 annual 
conference on genetic and evolutionary computation,  Vancouver, Canada (pp. 127–128).  

3. Cavaretta, M. J., & Chellapilla, K. (1999). Data mining using genetic programming: The 
implications of parsimony on generalization error. In Evolutionary computation, 1999. cec 99. 
proceedings of the 1999 congress on, Washington, DC, USA, USA (Vol.2, pp. 1330–1337). 

4. Cawley, G. C., & Talbot, N. L. (2010). On over-fitting in model selection and subsequent 
selection bias in performance evaluation. Journal of Machine Learning Research, 11(Jul), 
2079–2107.  

5. Danandeh Mehr, A., Kahya, E., Uyumaz, A., & Erdem, H. (2014, 5). Rectangular side weirs 
discharge coefficient estimation in circular channels using linear genetic programming 
approach. Journal of Hydroinformatics, 16(6), 1318-1330. Doi:10.2166/hydro.2014.112  

6. Danandeh Mehr, A., & Nourani, V. (2017, 3). A pareto-optimal moving average-multigene 
genetic programming model for rainfall-runoff modelling. Environmental Modelling and 
Software, 92, 239–251.  

7. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of 
nonparametric statistical tests as a methodology for comparing evolutionary and swarm 
intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.  

8. Dheeru, D., & Karra Taniskidou, E. (2017). UCI machine learning repository. Retrieved from 
http://archive.ics.uci.edu/ml  

9. Ekárt, A., & Nemeth, S. Z. (2001). Selection based on the pareto nondomination criterion for 
controlling code growth in genetic programming. Genetic Programming and Evolvable 
Machines, 2(1), 61–73.  

10. Foreman, N., & Evett, M. (2005). Preventing overfitting in gp with canary functions. In 
Proceedings of the 7th annual conference on genetic and evolutionary computation, 
Washington, DC, USA (pp. 1779–1780).  

11. Gagné, C., Schoenauer, M., Parizeau, M., & Tomassini, M. (2006). Genetic programming, 
validation sets, and parsimony pressure. In European conference on genetic programming,  
Budapest, Hungary (pp. 109–120).  

12. Gathercole, C., & Ross, P. (1994). Dynamic training subset selection for supervised learning 
in genetic programming. In International conference on parallel problem solving from 
nature,Jerusalem, Israel. (pp. 312–321).  

13. Gonçalves, I., & Silva, S. (2011). Experiments on controlling overfitting in genetic 
programming. In 15th portuguese conference on artificial intelligence (epia 2011), Lisbon, 
Portugal,  (pp. 10–13).  

14. Gonçalves, I., & Silva, S. (2013). Balancing learning and overfitting in genetic programming 
with interleaved sampling of training data. In European conference on genetic programming, 
Vienna, Austria (pp. 73–84).  



15. Gonçalves, I., Silva, S., Melo, J. B., & Carreiras, J. M. (2012). Random sampling technique 
for overfitting control in genetic programming. In European conference on genetic 
programming,  Málaga, Spain (pp. 218–229).  

16. Gustafson, S., Ekárt, A., Burke, E., & Kendall, G. (2004). Problem difficulty and code growth 
in genetic programming. Genetic Programming and Evolvable Machines, 5(3), 271–290.  

17. Igel, C. (2013, 06). A note on generalization loss when evolving adaptive pattern recognition 
systems. IEEE Transactions on Evolutionary Computation, 17, 345–352.  

18. Langdon, W. (2011). Minimising testing in genetic programming. RN, 11(10), 1. [Google 
Scholar] 

19. Li, L.-M., Lu, K.-D., Zeng, G.-Q., Wu, L., & Chen, M.-R. (2016). A novel real-coded 
population-based extremal optimization algorithm with polynomial mutation: A non- 
parametric statistical study on continuous optimization problems. Neurocomputing, 174, 577–
587. 

20. Li, X., Zhang, J., & Yin, M. (2014). Animal migration optimization: An optimization 
algorithm inspired by animal migration behavior. Neural Computing and Applications, 24(7–
8), 1867–1877. 

21. Liu, Y., & Khoshgoftaar, T. (2004). Reducing overfitting in genetic programming models for 
software quality classification. In null, Eighth IEEE International Symposium on High 
Assurance Systems Engineering, 2004. Proceedings.56–65. 
Doi:10.1109/HASE.2004.1281730  

22. Poli, R., & McPhee, N. F. (2014). Parsimony Pressure Made Easy: Solving the Problem of 
Bloat in GP. In: Borenstein Y., Moraglio A. (eds) Theory and Principled Methods for the 
Design of Metaheuristics. Natural Computing Series. Springer, Berlin, Heidelberg. 
Doi:10.1007/978-3-642-33206-7_9   

23. Robilliard, D., & Fonlupt, C. (2001). Backwarding: An overfitting control for genetic 
programming in a remote sensing application. In International conference on artificial 
evolution (evolution artificielle), Le Creusot, France, (pp. 245–254).  

24. Silva, S., & Costa, E. (2009). Dynamic limits for bloat control in genetic programming and a 
review of past and current bloat theories. Genetic Programming and Evolvable Machines, 
10(2), 141–179.  

25. Soule, T., & Foster, J. A. (1998). Effects of code growth and parsimony pressure on 
populations in genetic programming. Evolutionary Computation, 6(4), 293–309.  

26. Uy, N. Q., Hien, N. T., Hoai, N. X., & ONeill, M. (2010). Improving the generalisation ability 
of genetic programming with semantic similarity based crossover. In European conference on 
genetic programming,  Istanbul, Turkey (pp. 184–195).  

27. Vanneschi, L., Castelli, M., & Silva, S. (2010). Measuring bloat, overfitting and functional 
complexity in genetic programming. In Proceedings of the 12th annual conference on genetic 
and evolutionary computation, Portland, OR, USA (pp. 877–884).  

28. Vanneschi, L., & Gustafson, S. (2009). Using crossover based similarity measure to improve 
genetic programming generalization ability. In Proceedings of the 11th annual conference on 
genetic and evolutionary computation, Montreal, QC, Canada (pp. 1139–1146).  

29. Vanneschi, L., & Silva, S. (2009). Using operator equalisation for prediction of drug toxicity 
with genetic programming. In Portuguese conference on artificial intelligence, Aveiro, 
Portuga (pp. 65–76).  

30. Žegklitz, J., & Pošík, P. (2015). Model selection and overfitting in genetic programming: 
Empirical study. In Proceedings of the companion publication of the 2015 annual conference 
on genetic and evolutionary computation, Madrid, Spain (pp. 1527–1528).  

31. Zeng, G.-Q., Xie, X.-Q., Chen, M.-R., & Weng, J. (2019). Adaptive population extremal 
optimization-based pid neural network for multivariable nonlinear control systems. Swarm 
and Evolutionary Computation, 44, 320–334.  

32. Zhang, B.-T., & Mühlenbein, H. (1995). Balancing accuracy and parsimony in genetic 
programming. Evolutionary Computation, 3(1), 17–38.  

 


	Journal of Experimental & Theoretical Artificial Intelligence. 2019; 32(2):243-271
	Abstract
	Keywords:

	Introduction
	Related work
	Method
	Datasets
	Results and discussion
	Conclusions and future work
	Acknowledgments
	Disclosure statement
	Funding
	References

