
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN TECNOLOXÍAS DA INFORMACIÓN

Application for the analysis of investment
fund portfolios

Estudante: Miriam Breijo Fachal
Dirección: Paula María Castro Castro

José Pablo González Coma

A Coruña, xuño de 2020.

To my parents and my little sister Malena

Acknowledgements

First of all, I would like to thank my family for supporting me unconditionally and placing all
their trust in me. I would especially like to name Emma, for how brave she is and the strength
she has given me during these months.

Thanks also to my friends, thank you Sergio, for always being by my side. Of course,
thanks to the great friends that I have met during the grade that have made these 4 years
unbeatable.

Finally, many thanks to my project managers José Pablo González Coma and Paula María
Castro Castro, without whom I could not have carried out this project. Thank you for all your
attention and especially in this delicate situation that we have all experienced.

Abstract

An investment fund is a vehicle that collects the money of various citizens or companies to
invest together.

With a single investment, you can have different stocks or bonds in your portfolio. In
addition, when doing it together with other investors, the sum is greater and allows access to
the best managers and at a lower cost than if we did it individually.

Once invested in a certain fund, we delegate to a manager the ability to decide where to
invest. However, it is us, the investors, who will make the decision on which funds to invest
in. Thanks to our application that gives us detailed and tailored information about the funds
in our investment portfolio and our movements, making these decisions will be a much easier
task.

Our application also displays charts that allow us to compare the funds in our portfolio
at a glance. The calculation of the metrics and the returns (fiscal, financial dependent on our
transactions and financial of the fund) is one of the main objectives of our project, since they
will help us determine the future of our investments.

Resumo

Un fondo de inversión es un vehículo que reúne el dinero de diversos ciudadanos o com-
pañías para invertirlo de modo conjunto.

Con una sola inversión, puedes tener distintas acciones o bonos en cartera. Además, al
hacerlo junto con otros inversores, la suma es mayor y permite tener acceso a los mejores
gestores y a un menor coste que si lo hiciésemos de modo individual.

Una vez invertido en un determinado fondo, delegamos en un gestor la capacidad de deci-
dir dónde invertir. Pero somos nosotros mismos, los inversores, los que tomaremos la decisión
de en qué fondos invertir. Gracias a nuestra aplicación que nos da una información detallada
y a medida de los fondos de nuestra cartera de inversión y de nuestros movimientos, tomar
estas decisiones será una tarea mucho más fácil.

Nuestra aplicación también muestra gráficas que nos permitirán comparar los fondos de
nuestra cartera de un vistazo. El cálculo de las métricas y las rentabilidades (fiscal, financiera
dependiente de nuestras transaccions y financiera del fondo) es uno de los principales objeti-
vos de nuestro proyecto, ya que nos ayudarán a determinar el futuro de nuestras inversiones.

Keywords:

• Fund.

• Portfolio.

• Transaction.

• Currency.

• Net Asset Value.

• Profitability.

• Metrics.

• Graphics.

Palabras chave:

• Fondo.

• Cartera.

• Transacción.

• Divisa.

• Valor liquidativo.

• Rentabilidad.

• Métricas.

• Gráficas.

2

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Motivation . 2
1.3 Work Structure . 2

2 Theoretical Bases 5
2.1 Investment Funds . 5
2.2 Operations and Fund Tracking . 6

2.2.1 Operations . 6
2.2.2 Fund Tracking . 7

2.3 Fund Types . 7
2.4 Investment Selection Criteria . 9
2.5 Profitabilities . 9
2.6 Ratios or Metrics . 11

3 State of the Art 15
3.1 MorningStar . 15
3.2 Banks . 17
3.3 Applications To Manage Our Investments . 18
3.4 Conclusions . 18

4 Technological Bases 19
4.1 Version Control Tools . 19
4.2 Project Management Tool . 19
4.3 Software Modelling Tools . 20
4.4 Project Development Tools . 20
4.5 Database Tools . 21
4.6 Graphical Interface Development Tools . 21

i

Contents

4.7 Graphics Creation Tool . 22
4.8 HTML Parser Tool . 22
4.9 Testing Tool . 22
4.10 Text Edition Tool . 23

5 Methodology 25
5.1 Scrum . 25

5.1.1 Artifacts . 26
5.1.2 Sprint . 26
5.1.3 Roles . 27

5.2 Scrum applied to our Project . 28
5.2.1 Product Backlog . 28
5.2.2 Sprints . 29

6 Planning and Cost Estimate 31
6.1 Initial Planning . 31
6.2 Resources and Cost Estimate . 31

6.2.1 Human Resources . 31
6.2.2 Software Resources . 32
6.2.3 Hardware Resources . 32
6.2.4 Estimated Total Cost . 33

6.3 Project Follow-up . 33

7 Requirements Analysis 39
7.1 Functional Requirements . 39
7.2 Non-Functional Requirements . 40
7.3 Use Cases . 41

8 Design 49
8.1 Architecture . 49
8.2 Database Design . 50

9 Development 53
9.1 Database Implementation . 53
9.2 Service Implementation . 55
9.3 GUI . 62

9.3.1 Main Screen . 62
9.3.2 Portfolio Screen . 67
9.3.3 Fund Screen . 71

ii

CONTENTS

10 Tests 77
10.1 Model Layer Tests . 77
10.2 Functionality Testing . 77
10.3 Usability Testing . 78
10.4 Graphs Tests . 78

11 Conclusions and Future Work 79
11.1 Conclusions . 79
11.2 Future Work . 80

List of Acronyms 83

Bibliography 85

iii

Contents

iv

List of Figures

2.1 Diagram representing the flow of transactions to be traced to calculate tax
profitability. 11

3.1 Result of searching for an ISIN at morningstar.com. 16
3.2 Returns provided by MorningStar about the chosen fund. 16
3.3 Result returned by the search for a fund in Santander bank. 17

5.1 Sprint cycle. 27

6.1 Gantt diagram with the 6 Sprints. 34
6.2 Gantt diagram with the first 3 Sprints and their specific tasks. 35
6.3 Gantt diagram with the last 3 Sprints and their specific tasks. 36

8.1 MVC Design Pattern. 49
8.2 Database design. 52

9.1 Model class diagram. 53
9.2 Service diagram. 56
9.3 PropertyValidator class diagram. 57
9.4 Main Screen. 62
9.5 File Menu displayed. 63
9.6 Dialogue that we get to add a new portfolio. 63
9.7 Dialogue that we get to add a new fund. 63
9.8 Import Menu displayed. 64
9.9 Dialogue that allows us to select a file to import currency. 64
9.10 Dialogue that allows us to open the website where we choose the NAVs to

import. 65
9.11 Dialogue where we enter the URL with the NAVs. 65
9.12 Example of using the searcher returning some funds. 66

v

List of Figures

9.13 Example of using the searcher returning a fund. 66
9.14 Screen shown when clicking on portfolio. 67
9.15 Dialogue that we get to add a new fund. 68
9.16 Dialogue where we choose among the existing funds which we add. 68
9.17 Pressing on a fund activates the button to delete it. 69
9.18 Confirmation of deletion of the selected fund. 69
9.19 Example of the graph representing investments. 70
9.20 Example of Funds Profitability graphic. 70
9.21 NAV tab. 71
9.22 NAVs table. 71
9.23 Dialog that allows adding a new NAV. 72
9.24 Graph and its corresponding ToolBar. 72
9.25 Transactions and Metrics tab. 73
9.26 Dialog shown to add a new transaction. 73
9.27 Performance results. 74
9.28 Ratios calculations. 74
9.29 Fund Profitability graph. 75

vi

List of Tables

6.1 Hourly cost of human resources. 32
6.2 Estimated cost of total project resources. 33
6.3 Comparison between forecast and follow-up. 37

7.1 Add a fund. 41
7.2 Find funds by keywords. 41
7.3 Add a portfolio. 42
7.4 Add fund to portfolio. 42
7.5 Remove fund from portfolio. 43
7.6 Add a transaction. 43
7.7 Add a NAV. 44
7.8 Import NAVs. 44
7.9 Import currencies. 45
7.10 View all funds in a portfolio. 45
7.11 Display transactions from a specific fund and portfolio. 46
7.12 View NAVs of selected fund. 46
7.13 Display graphs and calculated profitabilities and metrics. 47

vii

List of Tables

viii

Chapter 1

Introduction

Making an investment can be key for a person or a company to achieve a significant economic
gain in the short or long term. However, we are often reluctant to invest in financial products
for various reasons: lack of adequate knowledge, lack of time to properly monitor the markets,
not having sufficient savings to start investing… Meanwhile, others only invest to benefit
from tax advantages or to increase their liquidity. The best solution for all these needs is an
investment fund.

The basic principle of an investment fund is that it groups together a large number of
investors, who receive a proportional title to the fund’s assets in the form of units, according
to the amount contributed. The fund manager uses the total assets contributed by the partic-
ipants to buy and sell assets on behalf of the investors, forming a portfolio of securities. As
this portfolio receives benefits, they are distributed among investors in the same proportion
that investors have invested.

1.1 Goals

This project aims to obtain a desktop application in which users can obtain graphs, numerical
data and results from one or more investment fund portfolios.

The purpose of this application is to simplify and facilitate how users manage the data
published by websites or financial entities. In this way, through the generation of graphs
and the calculation of indicators, the goal is to synthesize and visualize the data quickly and
simply.

This desktop application contains the funds’ files and user portfolios. For each fund, we
track all its operations so that we can return real profitabilities, calculate the evolution over the
desired time periods, compute useful ratios, etc. For each portfolio, it is possible to visualize
the distribution of the invested capital, the total return on the portfolio, the more and less
profitable funds, etc. And all this information displayed in an organized and detailed way.

1

1.2. Motivation

Among the returns that we calculate, there is one that has a special importance, called
fiscal return. With this calculation we trace the provenance of all the transactions of the
selected fund, this is of great importance since in order to pay our taxes it is crucial to know
if the deposit comes from cash or from money invested in another fund.

The measurements are customizable, allowing us to choose time periods. This type of
functionality is not found in web services, since they only show pre-calculated data to users.
In the same way, both the fiscal profitability and the profitability calculated according to our
investments are two of our main objectives since they are functionalities not provided by any
application or website.

The project does not include obtaining the necessary financial data to track. These data
are provided by the corresponding financial entity. However, the application allows import
funds with their net asset values from an url where we find a wide range of funds, as well as
the possibility of importing currencies from a csv file.

1.2 Motivation

Unfortunately, with the situation we are experiencing socially and economically, there is a
great instability in the stock market. This instability caused by COVID-19 opens the door
to new scenarios in the global economy [1] [2]. There is much fear on the part of investors
about how this situation will progress, despite being impossible to predict, we hope that our
application can help make the best decisions with regard to our purchases and sales of shares.

In addition to the reason explained above, we should mention that to this day there is no
application that meets all the features offered by our proposal, so we foresee a great future
for this application.

Because it responds to this growing demand that we have mentioned and because I have
always been interested in the stock market, I have chosen this project offered by my tutors.

1.3 Work Structure

Below we will briefly describe the chapters in which the report has been structured.

• Chapter 1. Introduction: We describe our objectives, motivations and memory struc-
ture.

• Chapter 2. Theoretical Bases: We explain what investment funds consist of, how
they are classified and what criteria we should use when investing. We will also define
ratios that will help us make these decisions and what operations will occur between
our funds and portfolios.

2

CHAPTER 1. INTRODUCTION

• Chapter 3. State of the Art: We evaluate the tools that currently exist in the market
that are related to our project.

• Chapter 4. Technological Bases: We explain what tools we have used to develop our
application.

• Chapter 5. Methodology: We describe the chosen methodology, the elements that
compose it and how we have applied it to our project.

• Chapter 6. Planning and Cost Estimate: Project planning, follow-up and the esti-
mated cost of our application are defined.

• Chapter 7. RequirementsAnalysis: We will describe the functional and non-functional
requirements of our app.

• Chapter 8. Design: We explain the chosen architecture and how we have designed
the database.

• Chapter 9. Development: We describe the implementation of the database and the
service. We will also show the interface and its use, along with an explanation of its
development.

• Chapter 10. Tests: We explain how we have verified the correct operation of our
application and that the requirements are met.

• Chapter 11. Conclusions and Future Work: We will describe the conclusions ob-
tained and how we could improve or continue implementing it so that our project im-
proves and grows.

3

1.3. Work Structure

4

Chapter 2

Theoretical Bases

In order to carry out this project, the first step was devoted to the search for information
about the world of finance, more specifically about investment funds, in order to know how
they work, how to calculate their returns and ratios and what criteria should we use to invest.

2.1 Investment Funds

To begin we will define what a fund is, how it works and the elements that intervene on it.
An investment fund is a capital made up of the sum of monetary contributions done

by several people [3]. This capital will be invested in a series of assets with the objective of
obtaining the maximum possible profitability. Depending on the evolution of these assets, the
fund will throw positive or negative results, which will be distributed among each investor
according to the proportion that their investment represents over the total assets of the fund.
Each fund is identified by an International Securities Identification Number (ISIN) [4]. This
code uniquely identifies a movable value on an international level.

Investment funds are divided into proportional parts calledholdings and their owners are
called participants. The number of participants is not fixed, but depends on their purchases
and sales. Its value, called the Net Asset Value (NAV) [5], is daily calculated as follows:

NAV =
Fund Assets− Fund Liabilities
Number of Units Outstanding , (2.1)

where

• Fund Assets includes the total market value of the fund’s investments, cash and cash
equivalents, receivables and accrued income;

• Fund Liabilities are money owed to the lending banks, pending payments and a variety
of charges and fees owed to various associated entities, and

5

2.2. Operations and Fund Tracking

• Number of Units Outstanding is the total number of shares outstanding.

This value depends, therefore, on the daily evolution of the values that make up the fund assets
and will be one of the fundamental indications that the application will use when making the
records of the different funds.

In a fund, investment decisions are made by a fund manager that manages and represents
the fund, while the function of custody and monitoring assets is carried out by the depositary,
usually a financial institution. Normally the manager charges a series of management fees
that are subtracted from the fund, which decreases the NAV of each holding.

In the next section we will explain what type of operations we can perform on them.

2.2 Operations and Fund Tracking

In this section we will talk about the operations of subscription, reimbursement and transfer
of an investment fund. We will also explain how to track your profitability.

2.2.1 Operations

The method to make an investment in a fund is the subscription [6] of holdings. The manag-
ing entity issues a series of them and each investor obtains as many as the result of dividing
the capital invested by the NAV applicable to the operation. Normally, the applicable NAV is
the same as the day of the request or the next day. Some funds may be subject to subscription
fees of up to 5% of the investment.

If an investor wants to recover his money, he must request a refund [6] of all or part
of his/her holdings, receiving the result of multiplying the NAV of the participation by the
number of holdings he/she wants to reimburse. The applicable NAV is the same as in the
previous case. The period in which the investor receives his money is a maximum of 3 to 5

days, and said reimbursement may have a commission of up to 5%. The investor will know
the result of the investment (positive or negative) when the refund is paid.

In the case of wanting to transfer from one fund to another, there is a refund of the first
and the immediate subscription of the second. The units that we sell in each refund are the
first ones that were bought and, of course, have not been sold yet.

There are four parts involved in a transfer:

• Source fund: Fund in which the investment is maintained before the transfer.

• Target fund: Fund in which you want to invest the capital that is repaid from the
source fund.

• Source entity: The one that markets or manages the source fund.

6

CHAPTER 2. THEORETICAL BASES

• Target entity: The one that markets or manages the target fund.

Each fund will use its own currency and in the event that the source fund and target fund
of a transaction have different ones, we must apply the currency exchange [7].

However, since it is a reimbursement and subscription operation, the respective commis-
sions that have both funds established must be paid.

In addition to pay commissions, tax capital gains [8] are something for which we must
pay taxes. However, in the case of transactions between funds, these capital gains will only be
taxed when we withdraw the money invested from the fund, not when we make operations
between them.

The result is not perceived effectively until the refund of the holdings takes place and
it will be at that moment in which the participants must pay taxes for the result of their
investment.

2.2.2 Fund Tracking

The process of monitoring an investment fund can be carried out mainly through two sources:

• The documentation provided by the managing entity, since it is mandatory that the
participants be provided with periodic information about the evolution of their invest-
ments.

• The disclosure of data on investment funds provided by newspapers or several Internet
portals. From this last source we will obtain the necessary data for the initial operation
of the application.

The following points will focus on knowing the different types of funds on which we will
carry out our operations and the criteria that should be used for our choice.

2.3 Fund Types

We are going to explain several types of investment funds [9], describing their characteristics
and the investor profile for which they are the most suitable. This knowledge will help us
making decisions about them.

• Fixed-Income Funds: These funds are those where the majority of the capital is in-
vested in fixed-income assets, with changes to interest rates being the factor that will
influence on the evolution of these funds the most. The shorter the maturity period for
the assets the fund is investing in, the lower the risk and therefore the lower the return.

This kind is especially suitable for investors with a conservative profile, who are willing
to accept lower returns in exchange for greater peace of mind.

7

2.3. Fund Types

• Variable-Income Funds: Also known as equity funds, the majority of the capital is in-
vested in variable-income assets (stocks). In contrast to the situation with fixed-income
funds, variable-income funds offer higher potential returns because the risk assumed is
also higher.

Subcategories are normally established within equity funds, depending on the market
being invested in (Spain, Eurozone, USA, etc.), depending on the sectors being invested
in (technology, financial, etc.), or depending on other characteristics of the securities
being invested in (size of the company, etc.).

Because of their characteristics, variable-income funds are recommended for a more
resolute investor profile. Greater risks are assumed during investment, but this can
bring with it higher potential returns.

• Mixed-Income Funds: These funds diversify the investment by investing part of their
capital in fixed-income assets and the rest in variable-income assets. It is especially
important to know these proportions, since they will determine how much risk is as-
sociated with the fund and therefore the size of the potential returns.

Mixed-income funds are products designed for all types of investor profiles, from the
most conservative to the most resolute, depending on the percentages dedicated to
fixed-income and variable-income.

• Guaranteed Funds: These funds guarantee, up to a specific date, preservation of the
capital initially invested. However, not all of these funds guarantee that the investor
will receive additional returns. In general, they tend to require investors to keep their
money invested for a long period of time.

The risk associated with funds of this type is quite low, which means that they are
suitable for investors with a conservative profile.

So far we have discussed the risks we will take depending on what type of fund we invest
in, but in the next two types we will discuss what will be done with the benefits.

• Distribution Funds: These funds periodically distribute dividends to their investors
(monthly, quarterly, twice-yearly, or yearly). The amount of these payments will de-
pend upon the dividends distributed by the companies in which the fund has invested.
This provides liquidity for the investor, but taxes must also be paid on the dividends
received.

• Accumulation Funds: These funds do not distribute dividends to their investors. In-
stead, the manager reinvests the dividends that the companies pay out back into the
same fund. This means that the fund’s net asset value grows progressively.

8

CHAPTER 2. THEORETICAL BASES

2.4 Investment Selection Criteria

As we have seen in the previous section, there are several types of investment funds adapted
to different needs. When choosing a particular fund, there are some ratios and indicators that
can help determine which one is best suited to investor preferences.

Normally, when selecting a fund, the investor should consider what is his capacity to
assume losses (because the greater the risk, the greater the profitability). We will also observe
the time horizon during which you wish to keep the investment, because depending on the
fund’s policy, it may be advisable to be willing to keep the investment for a certain period of
time.

In addition, we should take into account the fees charged to investment funds, since they
affect profitability. It is possible for a fund to apply different types of commissions to the
different types of shares it issues.

We must also consider the historical behaviour that a fund has had over time. It is impor-
tant to know the returns obtained in the past, although this does not mean that a similar line
is followed in the future. In the application to be developed, historical records of the returns
referring to a certain period (quarter, semester …) will be included; so that when comparing
different funds, the returns in the same periods can be checked. It is worth mentioning that
it is necessary that the funds follow the same investment policy in order for the comparison
to be significant.

It is possible that during the life of a fund it will change its investment policy and even
the management group, so when consulting past returns, it should be taken into account that
they may have changed. It is important to know the date of said change and take into account
only the returns from that moment.

2.5 Profitabilities

Also, the fund’s profitability is a very important metric. This is calculated using the percentage
difference between the NAV on the date of purchase of the holding (subscription) and the date
of sale (refund), as follows,

Profitability =
Final NAV− initial NAV

Initial NAV × 100. (2.2)

9

2.5. Profitabilities

However, it should be taken into account that the previous percentage does not reflect
annual profitability, but the one obtained in the period between the date of the initial value
and that of the final value. To obtain the annual rate of return it is necessary to annualize the
profitability [10] using the following formula,

Annual profitability =

((
Final NAV
Initial NAV

)365/d

− 1

)
× 100, (2.3)

where d is the number of days between the initial and final NAVs.
We will not only calculate the fund’s return, which is independent of our movements. We

will calculate two profitabilities that will depend on the investment decisions (refunds and
deposits) that we have performed.

• Financial Own Profitability: This is the profitability calculated not only from the
initial and final NAV of the selected range, but also taking into account the purchases
and sales made in the selected fund.

Financial Own Profitability =
NAV× holdings + refunds− deposits

deposits , (2.4)

where

– NAV is the value of the last NAV that we found;

– holdings are the units that we currently have in the fund;

– refunds are the shares that we have sold, and

– deposits are the number of units we have purchased.

• Tax Return: To calculate this return, we will need to track the origin of the money in
each transaction. This supposes a recursive search, where the money can come from
a cash purchase, from a past transaction or from several (in the case of coming from
transactions we will have to continue tracking each one). Once the provenance of each
of the transactions that make up the fund is found, we will be able to see the return
value associated with the number of units acquired in the fund.

As we explained at the beginning of the chapter, having the tax return calculated for
each fund will be of great help when it comes to investing.

10

CHAPTER 2. THEORETICAL BASES

Figure 2.1: Diagram representing the flow of transactions to be traced to calculate tax prof-
itability.

2.6 Ratios or Metrics

Now, we will see a series of ratios or metrics that will help us finding an investment fund that
suits our needs, depending on our risk profile.

• Sharpe Ratio [11] This ratio helps investors understand the return of an investment
compared to its risk. It is calculated as follows,

Sharpe Ratio =
R−Rf

σ
, (2.5)

where

– R profitability of our fund;

– Rf is the risk-free rate, and

– σ is the standard deviation of the fund’s excess return.

• Beta [12] A beta coefficient is a measure of the volatility, or systematic risk, of an indi-
vidual stock in comparison to the unsystematic risk of the entire market. It is calculated
as follows,

β = pim
σi
σm

, (2.6)

11

2.6. Ratios or Metrics

where

– pim is the correlation between the fund and the benchmark;

– σi is the standard deviation of the fund, and

– σm is the standard deviation of the benchmark (IBEX 35 for example).

• Treynor Ratio [13] Also known as the reward-to-volatility ratio, is a performance
metric for determining how much excess return was generated for each unit of risk
taken on by a portfolio.

Treynor Ratio =
R−Rf

β
, (2.7)

where

– R fund return;

– Rf is the risk-free rate, and

– β is the beta of the fund.

• Jensen’s alpha [14]: It is used to determine the abnormal return of a security or fund
of securities over the theoretical expected return. It is given by

αJ = R− [Rf + β · (RM −Rf)], (2.8)

where

– R is the realized return;

– RM is the market return;

– Rf is the risk-free rate, and

– β is the beta of the fund.

• Correlation coefficient [15]: It measures the meaning and similarity in the relation-
ship between the fund and the market. It oscillates between 1 and−1. Positive indicates
the fact that the market and the fund fluctuate in the same direction. This is an impor-
tant ratio in the construction of investment fund portfolios, since the positive effect of
diversification depends on the correlation between the different assets of a portfolio. It
is defined as follows,

ρX,Y =
cov(X,Y)

σXσY
, (2.9)

12

CHAPTER 2. THEORETICAL BASES

where

– cov(X,Y) is the covariance of fund and market;

– σX is the standard deviation of the fund, and

– σY is the standard deviation of the market.

• Maximum Drawdown (MDD) [16]: It is the maximum observed loss from a peak to
a trough of a fund, before a new peak is attained. Maximum drawdown is an indicator
of downside risk over a specified time period. It is defined as follows,

MDD =
Trough Value− Peak Value

Peak Value . (2.10)

13

2.6. Ratios or Metrics

14

Chapter 3

State of the Art

In this chapter we review the software similar to our application. We discuss the characteris-
tics of these tools in order to appreciate the novelties that our project brings.

3.1 MorningStar

Morningstar, Inc. [17] is a global financial services firm headquartered in Chicago founded
by Joe Mansueto in 1984. It provides an array of investment research and investment man-
agement services.

Morningstar’s research and recommendations are considered by financial journalists as
influential in the asset management industry, and a positive or negative recommendation
from its analysts can drive money into or away from any given fund.

If we use the search engine and enter the ISIN, this famous website, MorningStar, will
return various data on the fund: category, Net Asset Value, benchmark… If we want to add
a fund to the portfolio as we would in our app, we must be members, otherwise there is no
possibility.

It also provides us with an assessment that they themselves make of the fund, some graphs,
how it is managed and a link to useful definitions that will help us if we do not know the
terminology.

If we access the Profitability tab, it tells us about annual and accumulated returns, but
it does not inform us about the own returns for eligible periods, and do not provide the tax
return.

On the Home page we find news, rankigs, etc. that will help and encourage us to make
new investments. In our example, it talks about the ranking of Spanish managers in May, the
rebound that is taking place in the stock market and whether it is appropriate to buy now and
the top 10 companies with cheapest values but that are increasing their competitiveness.

15

3.1. MorningStar

Figure 3.1: Result of searching for an ISIN at morningstar.com.

Figure 3.2: Returns provided by MorningStar about the chosen fund.

16

CHAPTER 3. STATE OF THE ART

3.2 Banks

Of course the banks also offer us funds to invest in, although there are some funds that they
have reserved for premium or VIP clients (they will invest much larger amounts).

For example, there are 132 Spanish fund managers where the average investment of the
participants exceeds one million euros, according to calculations based on data from Inverco,
the industry association [18]. And if we make the cut in the 100 000 euros of average partic-
ipation, which is already a considerable amount of money, we find another 500 funds.

Any of the large banks in Spain (BBVA, CaixaBank, Santander, Bankinter, Sabadell, Bankia…)
offers us a variety of funds. We are going to show the example of the Santander bank. It has
a search engine where the funds that it markets appear, where we can view some of the most
important information: returns calculated for the fund (not for its specific operations), con-
tinuing without showing the tax return and a history of NAVs.

Figure 3.3: Result returned by the search for a fund in Santander bank.

17

3.3. Applications To Manage Our Investments

3.3 Applications To Manage Our Investments

There are some applications that allow us to be aware of our investments, some only offer us
information on the financial market, where it has nothing to do with our specific investments.
For example, Fonditus [19] is an app where we can add the funds that interest us and where
we can see the history of their NAVS, calculation of performance, etc.

On the other hand, there are some apps that allow us to invest from themselves or to sim-
ulate our investments, either by copying investments from professionals or by offering daily
offers chosen by its own algorithm. This is the case of Finizens [20], which are specialists in
passive investment (trying to replicate a certain index instead of beating it, as active manage-
ment attempts), it shows information about our funds but not the detailed information of our
transactions as it can be the dates of refund and deposit.

3.4 Conclusions

In this section we will show a comparative table of the functionalities that MorningStar in-
corporates, the Santander bank and the two applications that we have explained with the
application that we have developed (FundApp).

MorningStar Santander Fonditus Finizens FundApp
Fund information 3 3 3 3 3

NAVs history plot 3 7 7 3 3

Charts comparing
portfolio funds 7 7 7 7 3

Allow to invest or
simulate investments 7 3 7 3 3

Detailed transactions 7 7 7 7 3

Returns of our fund 3 3 3 3 3

Profitability tailored
to our movements 7 7 7 7 3

Fiscal return 7 7 7 7 3

After searching for information on numerous occasions, the conclusion is that the ap-
plications that manage our portfolio are scarce and we have not found any that provide us
specific information about our investments. Most of the opinions that we have found only
recommend seeing the MorningStar page, they do not speak of the real usefulness of any
application.

18

Chapter 4

Technological Bases

This chapter describes the tools and technologies that have been taken into account for the
development of the project.

4.1 Version Control Tools

The main alternatives for the project repository are the following:

• GitHub: GitHub is a Git repository hosting service, but it adds many of its own features.
While Git is a command line tool, GitHub provides a Web-based graphical interface. It
also provides access control and several collaboration features, such as wikis and basic
task management tools for every project.

• GitLab: It is a repository manager which lets teams collaborate on code. Written in
Ruby and Go, GitLab offers some similar features for issue tracking and project man-
agement as GitHub.

GitHub has been chosen as the version management system of the project over its main
alternative, GitLab, since it is the most used platform and it has been easier for us to make
project collaborators.

4.2 Project Management Tool

• Microsoft Project: It is a project management software product. Microsoft Project is
designed to assist a project manager in developing a schedule, assigning resources to
tasks, tracking progress, managing the budget, and analyzing workloads.

Because it is one of the most widespread software for this task and because we are already
familiar with it, it has been our choice.

19

4.3. Software Modelling Tools

4.3 Software Modelling Tools

The main alternatives for software modeling are the following:

• Visual ParadigmCommunity Edition: It is a tool for application development using
Unified Modeling Language (UML) recommended for the application and monitoring
of the Rational Unified Process (RUP). It provides assistance to perform the analysis,
design, use cases and UML models of the project.

• Dia: It is an application for creating diagrams. It is conceived in a modular way, with
different packages of shapes for different needs.

Visual Paradigm Community Edition has been chosen for the realization of most project
diagrams, such as UML or those of the relational model because it provides higher quality
diagrams.

4.4 Project Development Tools

The main alternatives for Integrated Development Environment (IDE) are the following:

• Eclipse IDE 2019-12: It is an open source software development platform based on
Java. It is valid for almost any language, although Java is the most used. It also provides
a series of plugins for version control and frameworks for the development of graphic
applications.

• NetBeans IDE: It is a free integrated development environment that allows applica-
tions to be developed from a set of software components called modules. NetBeans is
designed primarily for the development of Java applications and contains a framework
that simplifies the development of Java Swing desktop applications.

Eclipse has been chosen as the development platform for this project instead of NetBeans
because it has been the platform used in most subjects of the computer engineering degree,
so its operation is more familiar.

The main options such as project management software are the following:

• Apache Maven: It is a project management software developed by Apache. It is based
on the concept of Project Object Model (POM). Maven allows to manage dependencies,
modules, components and the order of construction.

• Gradle: It is a software construction tool that combines Ant’s flexibility with Maven’s
conventions that uses a Directed Acyclic Graph (DAG) to determine the order in which
tasks should be executed.

20

CHAPTER 4. TECHNOLOGICAL BASES

Maven has been chosen for the same reason as the previous software, it is the most used
and known manager during our undergraduate studies.

4.5 Database Tools

The main alternatives regarding database management software are the following:

• MySQL [21]: It is a Relational Database Management System (RDBMS) developed by
Oracle Corporation and is considered the most popular open source database in the
world. MySQL provides a very fast database in reading but it might incur into problems
in environments of high concurrence in the updates.

• PostgreSQL: It is an object-oriented relational database management system, which
provides high concurrency and a wide variety of natives.

It has been decided to use MySQL because our application will mainly use simple queries,
usually reading, and MySQL is oriented to this type of tasks providing better performance
than its competitor. MySQL itself will generate the Entity-Relationship diagrams.

The main options as an object-relational mapping framework are:

• Hibernate [22]: It is an object-relational mapping tool for the Java programming lan-
guage. Its use facilitates the mapping of attributes between a traditional relational
database and the object model of an application, using files called eXtensible Markup
Language (XML) or annotations in the beans of the entities to establish these relation-
ships.

• Apache iBATIS: It is a persistence framework which automates the mapping between
SQL databases and objects in Java, .NET… In Java, the objects are POJOs (Plain Old
Java Objects). The mappings are decoupled from the application logic by packaging
the SQL statements in XML configuration files. Other persistence frameworks such as
Hibernate (named before) allow the creation of an object model (in Java, say) by the
user, and create and maintain the relational database automatically. iBATIS takes the
reverse approach: the developer starts with a SQL database and iBATIS automates the
creation of the Java objects.

Finally we decided to use Hibernate because it has a great integration with our IDE and
we already have prior knowledge.

4.6 Graphical Interface Development Tools

The main alternatives such as graphic libraries for Java are the following:

21

4.7. Graphics Creation Tool

• Swing: It is a Graphical User Interface (GUI) widget toolkit for Java. It includes widgets
such as text boxes, buttons, drop-down boxes, tables…

• JavaFX [23]: It is a set of graphics and media packages that enables developers to
design, create, test, debug, and deploy rich client applications that operate consistently
across diverse platforms. JavaFX is intended to replace Swing as the standard GUI
library for Java SE, but both will be included for the foreseeable future.

It has been decided to use JavaFX because it has richer GUI components and fast UI develop-
ment with screen builder [24].

4.7 Graphics Creation Tool

The main option as a library for creating graphics is the following:

• JFreeChart: It is an open-source framework for the programming language Java, which
allows the creation of a wide variety of both interactive and non-interactive charts.
JFreeChart supports a number of various charts, including combined charts: X-Y charts
(line, spline and scatter), pie charts, Gantt charts, bar charts (horizontal and vertical,
stacked and independent)… It is possible to place various markers and annotations on
each plot.

This library is by far the most used by Java applications that use graphics, so it gives us
more possibilities than we could find in most web interfaces.

4.8 HTML Parser Tool

The main alternative as an Application Programming Interface (API) for parse HTML to Java
is:

• Jsoup [25]: It is a Java library for working with real-world HTML. It provides a very
convenient API for fetching URLs and extracting and manipulating data, using the best
of HTML5 DOM methods and CSS selectors.

4.9 Testing Tool

The main option as a test framework is the following:

• JUnit: It is a unit testing framework for the Java programming language, allowing to
perform tests in a controlled way and evaluate the operation of each of the methods of
the classes. JUnit is linked as a JAR at compile-time.

22

CHAPTER 4. TECHNOLOGICAL BASES

4.10 Text Edition Tool

• LaTeX: It is a high-quality typesetting system; it includes features designed for the
production of technical and scientific documentation. LaTeX is the de facto standard
for the communication and publication of scientific documents.

This is the chosen option because it is the editor that we must use to write the project,
being also a very handy tool and already known to us.

23

4.10. Text Edition Tool

24

Chapter 5

Methodology

“A software development methodology is kind of like a cooking recipe. Like a recipe tells you
how to cook a meal, a software development methodology tells you how to build a software
product.” So one of the most important decisions of the project is which methodology we are
going to use.

Waterfall methodology is the traditional one and is a Liner Sequential Life Cycle Model
whereas Agile is a continuous iteration of development and testing in the software develop-
ment process. Also, Agile is completely based on the incremental progress. Therefore, both
the client and the team exactly know what is complete and what is not. This reduces risk in
the development process.

We have chosen the iterative and incremental approach since it provides us more adapt-
ability and assures that quality of the development is maintained.

When we say a methodology is Agile, it means that it follows the set of values and prin-
ciples recorded in a namesake manifesto. However, there is more than an unique way to
implement it. In fact, there are many different types of Agile methodologies that you can
choose from when organizing your project. There are Kanban, Extrem Programming (XP),
Feature-Driven Development (FDD)… But we are going to choose the most widely spread
that is Scrum, one of the frameworks that revolutionized the software development industry
in recent years.

5.1 Scrum

Scrum [26] is a framework that helps teams work together. Much like a rugby team (where
it gets its name) training for the big game, Scrum encourages teams to learn through expe-
riences, self-organize while working on a problem, and reflect on their wins and losses to
continuously improve.

25

5.1. Scrum

5.1.1 Artifacts

First, we should define what artifacts mean. They are something that we make, like a tool to
solve a problem and there are three types:

• Product Backlog: It is an inventory that contains any type of work that needs to be
done on the product: requirements, use cases, tasks and dependencies. It is the main
source of information about the product in Scrum, a list, in any format, that contains
all the requirements that we need to implement in the product. It must be exclusively
managed by the Product Owner.

• Sprint Backlog: This is a list of items to work on during the current Sprint cycle and
is managed by the Development Team.

• Increment or Sprint Goal: It is the sum of all the tasks, use cases, user stories and
any element that has been developed during the Sprint; that will be made available to
the end user in the form of software, providing business value to the product being
developed. Briefly, it is the result of the Sprint.

5.1.2 Sprint

Sprint is the actual time period when the scrum team works together to finish an increment.
The duration of a Sprint is determined by the minimum period in which a Development Team
can generate value. Besides, Sprint is the container for all other Scrum events.

Ceremonies or roles

• Sprint Planning: It is a meeting that takes place at the beginning of each Sprint where
the entire Scrum team participates. It is used to inspect the Product Backlog and for
the development team to select the Product Backlog Items to work on during the next
Sprint. These Product Backlog Items are what will make up the Sprint Backlog.

• Daily Scrum: The goal of this daily super-short meeting is for everyone on the team
to be on the same page, aligned with the Sprint goal, and to get a plan out for the next
24 hours.

• Sprint Review: It is the meeting that occurs at the end of the Sprint. Here the Product
Owner and the Development Team present the finished increment to stakeholders for
their corresponding inspection and adaptation.

• Sprint Retrospective: The idea is to create a place where the team can focus on what
went well and what needs to be improved for the next time, and less about what went
wrong.

26

CHAPTER 5. METHODOLOGY

Figure 5.1: Sprint cycle.

5.1.3 Roles

Each of these three roles [27] has different responsibilities and must be held accountable dif-
ferently, both among themselves and for the rest of the organization. The sum of all the roles
is what we call the Scrum Team.

• Product Owner: He or she is in charge of optimizing and maximizing the value of
the product, being the person in charge of managing the flow of product value through
the Product Backlog. With each Sprint, the Product Owner must make a development
investment that must produce value. Marking the Sprint Goal clearly and agreed with
the development team makes the product constantly increases its value.

• Scrum Master: He/she has two main functions within the framework: managing the
Scrum process and helping to remove impediments that may affect product delivery.
The Scrum Master must be responsible for ensuring that this framework is carried out,
transmitting its benefits to the organization.

27

5.2. Scrum applied to our Project

• Development Team: They are in charge of developing the product, self-organizing
and self-managing to deliver a software increment at the end of the development cycle.
The Sprint Goal is made from the selected Product Backlog elements (Sprint Backlog)
during Sprint Planning.

5.2 Scrum applied to our Project

In this section it is shown how we have implemented Scrum in our project.

5.2.1 Product Backlog

This part will list the functionalities of the different intermediate products that make up this
project.

0. Research:

• Search for information about investment funds with their corresponding metrics,
criteria and transactions.

• Review and search for technologies and tools for project development.

1. Requirements analysis:

• Define the functional and non-functional requirements of our application.

• Illustrate the requirements as use cases and what characters or entities will inter-
act with them, actors.

2. Data modelling design:

• Decide what entities we need, what attributes and what relationships.

• Avoid redundancy and determine what attributes to put or not depending on
whether it would be better to permanently have it in the DB or dynamically cal-
culate it each time.

3. Database creation and start of layered development:

• Create tables with their corresponding attributes (columns).

• Create model layer with their DTOs.

• Define service interface.

4. Deepening in the development and design of the graphical interface:

28

CHAPTER 5. METHODOLOGY

• Implementation of the service comprising all the logic. Therefore, here we develop
the calculations for all the necessary ratios and metrics.

• Controller creation.

• Design and constitution of graphical interface.

• Graphics generation for portfolios and funds.

5. Work disclosure:

• Reflect conclusions of our project and the result of our application.

5.2.2 Sprints

The project is divided into Sprints as indicated by the methodology we have chosen and they
will be adapted to the duration of our project and the difficulty that prevails in each phase.

Sprint 0: Research

In this initial phase we acquire the necessary theoretical knowledge about investment funds
and find out which technologies are most suitable for our project.

Once this Sprint is finished, we already know the costs of the resources and, with the
concepts we have learned, we can undertake the requirements analysis phase.

Sprint 1: Requirements analysis

Defining the specific functionalities that our system must fulfil is the first step before being
able to develop. We have to identify functional and non-functional requirements. Once they
are identified, we will illustrate them in their corresponding use cases with a sufficient level
of detail.

Sprint 2: Data modelling and architecture design

Before beginning development, we need to identify the entities and the relationships among
them. We have to be very careful not to generate redundancies or inconsistencies. Also
deciding whether an attribute will be persistent or dynamically calculated can be a crucial
decision in our project.

A design pattern is a reusable way to solve a common problem. It describes the problem,
the solution, when to apply the solution, and its consequences. So we have to reason and
analyse which patterns will our architecture follow.

29

5.2. Scrum applied to our Project

Sprint 3: Database creation and start of layered development

With the design obtained in the previous Sprint, we can now get down to work with the
creation of the database. Once finished, we can start with the model and its corresponding
DTOs. Finally in this Sprint, we will generate the service interface with the corresponding
methods that will implement the logic.

Sprint 4: Deepening in the development and design of the graphical interface

As we have already said, it is time to implement logic. In the previous point we have defined
the methods and now we have to do the relevant calculations and operations.

Finally, we will design and build the graphical interface. The creation of graphics that are
as representative as possible of our funds and portfolios is highly relevant in this application
in particular.

Sprint 5: Work disclosure

Although the writing of the report has been progressive (from research, analysis, design to
development), in this last Sprint, we will explain the conclusions obtained from our project
and what is the result of our application.

Tests

It should be noted that there will be a test phase in all Sprints that include design or develop-
ment. This will prevent us from encountering a cluster of errors at the end point for which
we do not even know their source.

Meetings

Throughout the project, we have been holding meetings between the three project members.
At first, more dispersed and as the project began to be designed and developed, the meetings
began to be held weekly.

30

Chapter 6

Planning and Cost Estimate

In this chapter we will include the planning of our project and its estimation in cost. We will
also present a follow-up of such a planning.

6.1 Initial Planning

First, we can see the tasks with their corresponding Gantt diagram (see Fig. 6.1) where we
show the six Sprints constituting our project.

In the previous chapter (see Chapter 5) we have explained our Sprints in detail, so we will
also see their planning with the specific tasks of the first three Sprints (see Fig. 6.2) and of
the remaining ones (see Fig. 6.3). We have adapted the duration of each Sprint to the number
of tasks that make it up and its difficulty. For example, the Sprint that includes part of the
service implementation and the interface has a much longer duration programmed than the
Sprint of the database design or that of the conclusions.

Also, in Sprints 3 and 4, which include the total of the development, a large number of
tests will be produced and therefore requires a longer duration (see Chapter 10).

6.2 Resources and Cost Estimate

Project resources are people, capital and/or material goods required for the successful exe-
cution and completion of a project. They should be assessed and allocated before a project
begins. Poor resource planning can result in running out of resources midway through a
project, delaying deadlines, and delaying delivery of the final product or service.

6.2.1 Human Resources

As we have explained, there are three roles defined in Scrum that are distributed among the
three members of the project as follows:

31

6.2. Resources and Cost Estimate

• José Pablo González Coma as Product Owner.

• Paula María Castro Castro Coma as Scrum Master.

• Miriam Breijo Fachal as the unique member of the Development Team. Although it
usually consists of from 3 to 9 professionals, this is a methodology adaptation to the
context of this work.

Of course, depending on the role you have and your responsibilities, the quantity you will
earn per hour is different. Here, we have a table with the estimated costs for each one:

Product Owner Scrum Master Development Team
José Pablo González Coma 30€ - -
Paula María Castro Castro - 30€ -

Miriam Breijo Fachal - - 25€

Table 6.1: Hourly cost of human resources.

Considering that the Development Team works an average of 5 hours a day and both
Scrum Master and Project Owner work 1 hours a day, in a project that lasts 90 days, the total
cost of human resources is 16 650€. We have estimated the cost of the hours of each of the
roles using a study of the IT sector in Galicia [28].

6.2.2 Software Resources

All the mentioned tools in Chapter 4 are open source or have a free student license, so these
will not add any cost to our project.

6.2.3 Hardware Resources

• Personal laptop:

– Model: Dell Inspiron 14 5000 Series 2-in-1 -5482.

– CPU: Intel® CoreTM i7-8565U.

– Hard disk: 512GB Solid State Drive (SSD).

– RAM: 16GB.

– OS: Windows 10 Home (64 bits).

– Graphic card: Intel® UHD 620.

The cost of the hardware is calculated as the time of use of this type of resources during
the project in relation to their lifespan. For a laptop, we consider that its average life is four
years. So reviewing the cost of ours that is 1 098.99€ and dividing it by 4, we obtain the cost

32

CHAPTER 6. PLANNING AND COST ESTIMATE

per year (274.75€). As our project lasts 3 months, that is, a quarter of a year, the cost of our
hardware will be 68.69€.

6.2.4 Estimated Total Cost

Once we have analysed all the types of resources and their associated costs, we can calculate
the total project cost, that is:

Resources Cost
Human 16,650€

Software 0€
Hardware 68.69€
TOTAL 16,718.69€

Table 6.2: Estimated cost of total project resources.

6.3 Project Follow-up

Our project has followed the plan of the project, except for the implementation of the tax-

Performance function, which has required considerably more hours than expected due to its
complexity.

On the other hand, not all the tasks have exactly fulfilled the planned duration, but we
have compensated the hours. The graphical interface has taken a few more days since it has
not only been implementing, but also learning how to use the tool itself (JavaFX). However,
thanks to having been doing an internship, the process of implementing the model and part
of the service was faster than scheduled.

The need to spend more hours on the project is also an extra cost, since we have more
hours of work by the three team members and also more hours of use of our hardware.

While with respect to hardware, increasing the duration of the project does not increase
the cost even by 4€, with respect to human resources, it will mean a cost growth of more than
1,000€.

Table 6.3 reflects the impact of those deviations on the initial time and cost planning for
this project.

33

6.3. Project Follow-up

Figure 6.1: Gantt diagram with the 6 Sprints.

34

CHAPTER 6. PLANNING AND COST ESTIMATE

Figure 6.2: Gantt diagram with the first 3 Sprints and their specific tasks.

35

6.3. Project Follow-up

Figure 6.3: Gantt diagram with the last 3 Sprints and their specific tasks.

36

CHAPTER 6. PLANNING AND COST ESTIMATE

Planned Follow-up
Start Date 03/02/2020 03/02/2020
Finish Date 05/06/2020 15/06/2020
Duration 90 days 96 days
Work 630 hours 672 hours
Cost 16,718.69€ 17,832.26€

Table 6.3: Comparison between forecast and follow-up.

37

6.3. Project Follow-up

38

Chapter 7

Requirements Analysis

Global analysis of application requirements is a process of conceptualization and formula-
tion of the concepts that specifically involves. It is a fundamental part of the application
development process, most of the defects found in the the final product originate from the
requirements analysis phase and they are also the most expensive to repair. This chapter
corresponds to Sprint 1, in the same way as Chapters 2 and 4 correspond to Sprint 0.

7.1 Functional Requirements

Functional requirements are product features or functions that developers must implement
to enable users to accomplish their tasks. Our project has the followings:

• Add fund. The system must allow adding a new fund to the database.

• Find funds by keywords. Funds which contain certain words in their names are
returned.

• Add portfolio. The system must allow adding a new portfolio to the database.

• Add fund to portfolio. We can add a new fund or an existing one to a portfolio.

• Remove fund from portfolio. Our system allows to remove funds that do not have
transactions for that portfolio.

• Add transaction. Add a new transaction for a specific fund and portfolio, it can have
as source cash or another fund with its matching portfolio.

• Add NAV. The system allows to add net asset values to a specific fund.

• Import NAVs. We can import net asset values from an URL.

39

7.2. Non-Functional Requirements

• Import currencies. The system allows to import currencies from a .csv file obtained
from the European Central Bank.

• View all funds in a portfolio. We can see all the funds associated with a portfolio.

• Display transactions for a specific fund and portfolio. We show all transactions
whether they are deposits or refunds of a specific fund and portfolio.

• View NAVs of a fund. Show all the Net Asset Values of a fund.

• Display graphs and calculated metrics for a fund or portfolio. The user will be
able to see the ratios explained in the Chapter 2 or some representative graphs.

7.2 Non-Functional Requirements

Non-Functional Requirements (NFR) specify the quality attribute of a software system. They
judge the software system based on Responsiveness, Usability, Security, Portability and other
non-functional standards that are critical to the success of the software system. The NFRs of
the application are:

• Usability. It is the ease at which the users operate the system and make productive
use of it.

• Integrity. The degree to which the data maintained by the software system are accu-
rate, authentic, and without corruption.

• Reliability. The extent to which the software system consistently performs the speci-
fied functions without failure.

40

CHAPTER 7. REQUIREMENTS ANALYSIS

7.3 Use Cases

In this section we detail the different use cases for each of the functional requirements.

Name Add a new fund.
Description Add a new fund to the database.
Trigger The client requests to add a fund.
Actors User.
Preconditions -

Flow

1. The user requests to add a fund.
2. The system provides a dialog to enter the data.
3. The user enters the data.
4. The user confirms the data.
5. The system adds the fund to the database.

Alternative flow 4.1 The user cancels the operation.
Postconditions The fund will belong to the database.
Exceptions The ISIN already exists or has an incorrect format.

Table 7.1: Add a fund.

Name Find funds by keywords.
Description We show the funds which have keywords in their name.

Trigger Write in a search engine the word or letters that will
contain the name of the funds.

Actors User.
Preconditions -

Flow
1. The user types what he wants in the search engine.
2. The system shows us the funds that contain keywords
in all the portfolios that are.

Alternative flow -
Postconditions -
Exceptions -

Table 7.2: Find funds by keywords.

41

7.3. Use Cases

Name Add a new portfolio.
Description Add a new portfolio to the database.
Trigger The client requests to add a portfolio.
Actors User.
Preconditions -

Flow

1. The user requests to add a portfolio.
2. The system provides a dialog where to enter the data.
3. The user enters the portfolio data.
4. The user confirms what has been entered.
5. The system adds the portfolio to the database.

Alternative flow 4.1 The user cancels the operation.
Postconditions The portfolio must belong to the database.
Exceptions The name of the portfolio is not null or repeated.

Table 7.3: Add a portfolio.

Name Add an existing fund to a portfolio.
Description An existing fund will be added to a portfolio.
Trigger The client requests to add an existing fund to a portfolio.
Actors User.

Preconditions The fund and portfolio exist in the database.
Have a selected portfolio.

Flow

1. The user requests to add an existing fund to a portfolio.
2. The system provides a dialog that shows the funds that
exist to be added to the portfolio in which we are.
3. The user confirms the operation.
4. The system adds the fund to the portfolio in the database.

Alternative flow 3.1 The user cancels the operation.
Postconditions The fund is related to the portfolio in the database.
Exceptions The fund is already added to that portfolio.

Table 7.4: Add fund to portfolio.

42

CHAPTER 7. REQUIREMENTS ANALYSIS

Name Remove a fund from a portfolio.
Description Remove a fund from a portfolio.
Trigger The client requests to remove a fund from a portfolio.
Actors User.

Preconditions The fund and portfolio exist in the database.
Have a portfolio and fund selected.

Flow

1. The user requests to remove a fund from a portfolio.
2. The system provides a confirmation dialog to remove
the selected fund.
3. The user confirms the operation.
4. The system removes the fund from the portfolio in the database.

Alternative flow 3.1 The user cancels the operation.
Postconditions The fund is no longer related to that portfolio.
Exceptions The fund did not belong in that portfolio.

Table 7.5: Remove fund from portfolio.

Name Add a transaction.
Description Add a transaction between funds in the same portfolio.
Trigger The client requests to add a transaction.
Actors User.
Preconditions The portfolio and funds exist in the database.

Flow

1. The user requests to add a transaction.
2. The system provides a dialog to enter the data
of the transaction.
3. The user enters the data.
4. The user confirms the data is correct.
5. The system adds the transaction to the database.

Alternative flow 4.1 The user cancels the operation.
Postconditions The transaction must belong to the database.

Exceptions

Target date is greater than today or source date
greater than target date.
Source fund does not have enough money to
transfer the indicated amount.

Table 7.6: Add a transaction.

43

7.3. Use Cases

Name Add a new NAV.
Description Add a NAV to the selected fund.
Trigger The client requests to add a NAV.
Actors User.

Preconditions
The fund to which we want to add the NAV
exists in the database.
Fund must be selected.

Flow

1. The user requests to add a NAV.
2. The system provides a dialog to enter the data
of the NAV.
3. The user enters the data.
4. The user confirms the data is correct.
5. The system adds the NAV to the database.

Alternative flow 4.1 The user cancels the operation.
Postconditions The NAV must belong to the database.

Exceptions Date is greater than today.
The value of the NAV is negative.

Table 7.7: Add a NAV.

Name Import NAVs.

Description
Import a set of Net Asset Values next to the fund
they belong to from a URL or only NAVs if the
fund already exists.

Trigger The client requests to import NAVs.
Actors User.
Preconditions -

Flow

1. The user requests to import NAVs.
2. The system provides the option to open the browser
with the website from where we import the funds.
3. The system displays a dialog where you can copy
the URL of the background you want.
4. The user confirms the operation.
5. The system adds the NAVs and, maybe, the fund to
the database.

Alternative flow 4.1 The user cancels the operation.
Postconditions The NAVs and the fund must belong to the database.
Exceptions Those net asset values already exist for that fund.

Table 7.8: Import NAVs.

44

CHAPTER 7. REQUIREMENTS ANALYSIS

Name Import currencies.

Description Import the change of euro to other currencies
from a .csv file for a specific date.

Trigger The client requests to import currencies.
Actors User.
Preconditions -

Flow

1. The user requests to import currencies.
2. The system opens a window that allows to select
the file to import.
3. The user selects the file.
4. The user confirms the operation.
5. The system adds the currencies to the database.

Alternative flow 4.1 The user cancels the operation.
Postconditions The currencies must belong to the database.
Exceptions -

Table 7.9: Import currencies.

Name View all funds in a portfolio.

Description Show all funds added to the selected portfolio
with their details.

Trigger The client requests to view funds from that
portfolio.

Actors User.

Preconditions The portfolio must exist in the database.
Have a portfolio selected.

Flow
1. The user requests to view funds from portfolio.
2. The system displays the funds that belong to the
portfolio.

Alternative flow -

Postconditions The system displays the funds that belong to the
portfolio.

Exceptions -

Table 7.10: View all funds in a portfolio.

45

7.3. Use Cases

Name Display transactions for a specific fund and portfolio.

Description Show transactions with their detail for a fund and
portfolio.

Trigger The client requests to view transactions.
Actors User.

Preconditions The portfolio and fund must exist in the database.
Have a fund selected.

Flow

1. The user requests to view transactions from
portfolio and fund.
2. The system displays the transactions that belong to
fund and portfolio.

Alternative flow -

Postconditions The system displays the transactions that belong to the
fund and portfolio.

Exceptions -

Table 7.11: Display transactions from a specific fund and portfolio.

Name View NAVs of a fund with its customize graphic.

Description Show NAVs of the selected fund and the graph
that represents them for the selected range.

Trigger The client requests to view NAVs.
Actors User.

Preconditions The portfolio and fund must exist in the database.
Have a fund selected.

Flow
1. The user requests to view NAVs from fund.
2. The system displays the NAVs that belong to selected
fund and its graph.

Alternative flow -
Postconditions The system displays the NAVs and its graphic.
Exceptions -

Table 7.12: View NAVs of selected fund.

46

CHAPTER 7. REQUIREMENTS ANALYSIS

Name Display graphs and calculated profitabilities and metrics.

Description Show the ratios, the returns and the graph of a fund or the
graphs of a portfolio.

Trigger The client requests to view graphs or/and metrics from
fund or portfolio.

Actors User.

Preconditions The portfolio and/or fund must exist in the database.
Have a portfolio or fund selected.

Flow

1. The user requests to view metrics, returns and graph
from fund.
2. The system displays the ratios, profitabilities and
graphics that belong to selected fund.

Alternative flow
1.1 The user requests to view graphs from portfolio.
2.1 The system displays graphics that belong to selected
portfolio.

Postconditions The system displays metrics, profitabilities and/or
graphics.

Exceptions -

Table 7.13: Display graphs and calculated profitabilities and metrics.

47

7.3. Use Cases

48

Chapter 8

Design

System design is the process of designing the elements of a system such as the architecture
and the data that goes through that system. Of course, this chapter corresponds to Sprint 2.

8.1 Architecture

The architecture follows the Model View Controller (MVC) design pattern, which specifies
that an application consist of a data model, presentation information, and control information.
The pattern requires that each of these be separated into different objects.

Figure 8.1: MVC Design Pattern.

49

8.2. Database Design

• The Model contains only the pure application data, it contains no logic description on
how to present the data to a user.

• The View presents the model’s data to the user. The view knows how to access the
model’s data, but it does not know what this data means or what the user can do to
manipulate it.

• The Controller exists between the view and the model. It listens to events triggered
by the view (or another external source) and executes the appropriate reaction to these
events. In most cases, the reaction is to call a method on the model.

8.2 Database Design

As we can see in the following figure, we have five tables that represent the 6 classes of our
project and in addition one table resulting from the N-to-N relationship between funds and
portfolios.

1. Portfolio. It is a collection of investment funds. It consists of a name and an id that will
be the primary key.

2. Fund. A fund can belong to one, several or no funds. Each fund has a name, an ISIN,
deposit and refund fees, and an associated currency. Also, it has an auto-generated id
as primary key.

3. Transaction. A transaction is associated with at least one fund and one portfolio (as
destination, with a certain date). In addition, you can have another association in case
that the transaction operates between two funds (in this case we would need another
date), i.e., the amount invested is not coming from cash. Finally, of course, we must
indicate the amount we want to invest, by default it will be in euros, regardless of the
currencies of both funds. Lastly, they will also have an id as the primary key.

4. NAV. A net asset value has as attributes a date and a value, associated with a fund. In
the same way as the previous entities, the primary key is an id.

5. Currency. For the currency entity we have the attribute: target, that is the exchange of
euro to certain currency called. The primary key continues to be an auto-generated id.

6. Spot. In the same way that we have the NAV entity with respect to the funds, we have
this entity associated with the currencies, its attributes are spot (the change from euro
to that currency) and date, since for each date the spot varies. Like the previous 5
classes, the primary key is an auto-generated id.

50

CHAPTER 8. DESIGN

All the ids are autogenerated, including Fund class where we could use the candidate
key ISIN (unique identifier), defined as a Varchar that must be unique and not null. It was
decided that it would be the autogenerated id like the others for performance reasons, since
the primary key (PK) will be repeated in each of the large number of NAVs.

51

8.2.
D
atabase

D
esign

Figure 8.2: Database design.

52

Chapter 9

Development

In this chapter, we will explain the most relevant aspects of the entire development phase,
which corresponds to Sprints 4 and 5

9.1 Database Implementation

To implement the database using Hibernate, we must first model the Java classes correspond-
ing to the tables of the relational model, as shown in Fig. 9.1.

Figure 9.1: Model class diagram.

53

9.1. Database Implementation

All id attributes, which correspond to the primary key of each class, are created by the
database with the generation strategy GenerationType.IDENTITY, that means autoincrement.
This is a concept supplied by MySQL, that other database management softwares like Oracle
don’t provide.

In order to map the relationships (1:N, N:1 and N:N), Hibernate needs us to use its an-
notations to know what kind of relationship there is, if there will be a cascade effect in any
action, how to load the data, etc.

Below, we indicate the different annotations we have used and their definition:

• @Id. It is indicated that it is the primary key of the table.

• @GeneratedValue. You can define the identifier generation strategy thanks to this an-
notation.

• @Column. The column used for a property mapping is defined using this annotation.

• @ManyToOne. Many-to-one associations are declared at the property level with this
annotation. In conjunction with @ManyToOne, we use @JoinColumn which is used to
indicate the join column, of course.

• @OneToMany [29]. One-to-many associations are declared at the property level with
this annotation. In this case, the attributes are lists of the convenient object, such as
the Net Asset Values in the Fund class. With the attribute mappedBy [30] refers to the
property name of the association on the owner side.

We also use cascade [31] attribute to indicate transitive persistence and cascading of
operations in Hibernate. Continuing with the example of the NAVs, when we delete a
fund, all its Net Asset Values will be deleted, so we must indicate CascadeType.REMOVE.

We have the ability to either eagerly or lazily fetch associated entities. The fetch param-
eter can be set to FetchType.LAZY or FetchType.EAGER [32]. EAGER will try to use an
outer join select to retrieve the associated object, while LAZY will only trigger a select
when the associated object is accessed for the first time.

• @ManyToMany [33]. A many-to-many association is defined logically using the @Many-
ToMany annotation. You also have to describe the association table and the join con-
ditions using the @JoinTable annotation. The JoinTable defines a foreign key to the
source object primary key (joinColumns) [30] and a foreign key to the target object
primary key (inverseJoinColumns). Normally the primary key of the JoinTable is the
combination of both foreign keys.

It is important to know that the attribute that we associate with this annotation must
be a set, not a list. Otherwise, it gives problems of constraints violation.

54

CHAPTER 9. DEVELOPMENT

• @Fetch. In addition to the FetchType, we will also talk about the FetchMode. Which
FetchMode to use depends heavily on the application, environment and typical usage.
In the case of NAVs, we will use FetchMode.SUBSELECT which will provide us with
greater performance.

• @OrderBy. To order lists in memory, we use this annotation that takes into parameter
a list of comma separated properties and order the collection accordingly.

The correct configuration of the hibernate.cfg.xml file is important. There we define the
classes that will be mapped, the url that we need to connect to the DB, the user and the
password. We will also indicate that console queries are displayed to facilitate the recognition
and fix of errors during implementation.

We have created a class called HibernateUtil where the methods where the session is
created (buildSessionFactory) and closed (shutdown) are implemented. When we make the
login call, in the event that they are not yet built, the tables will be created.

9.2 Service Implementation

In the service, we will implement the logic of our application. The methods necessary to
add, search or delete each object, depending on their needs (for example, you cannot delete
transactions because we need to have a record of all of them), will be found in this interface
with its corresponding implementation.

In the next diagram of Fig. 9.2 we have an interface for each table in the database and in
this way see the operations related to each one, but the reality is that all these methods are
united in the same interface.

55

9.2.
Service

Im
plem

entation

Figure 9.2: Service diagram.

56

CHAPTER 9. DEVELOPMENT

In the event that these methods do not have the expected behaviour, they may throw one
of these exceptions or both, depending on the operation, as follows,

• InstanceNotFoundException [34]. As its own name says, it occurs when the desired ele-
ment is not found (either when we search, modify or delete).

• InputValidationException. In the event that the data entered is not correct, this exception
will be returned.

To ensure that the entered data meets the requirements, we have created a class exclu-
sively dedicated to validate the input parameters, it is called PropertyValidator.

Figure 9.3: PropertyValidator class diagram.

In the service, we have a method for each class that calls the PropertyValidator operations
based on their needs:

• validateFund. We have to validate that the ISIN has the correct format (two letters and
10 numbers below), that the name is a non-empty string, that the commissions are a
float greater than 0 and at the same time validate that the objects it contains (currency
and NAVs) are also correct.

• validateNAV. For the Net Asset Values, we check that the value is a float greater than 0

and that the date is not later than the current day.

• validateTransaction. In this case we will check if there is sourceDate and if so, that it
is not later than the targetDate or today. We must also validate targetDate in the same
way. And, finally, we will check that the grossAmount is an integer greater than 0 and in
the case of having a sourceFund, that this fund has enough shares to make that refund.

57

9.2. Service Implementation

• validateCurrency. Validates that target is a string containing three characters, that the
date is not later than the current day and the value is a float greater than 0.

• validatePortfolio. Portfolio only has one parameter to check and it is the name, so there
is no method as such but we call validateMandatoryString.

Now, we will proceed to explain each method in depth:

• Fund:

– addFund. We add a fund to the database. Each fund will have a currency associated
with it and at first it will not be added to any portfolio, this will be a later step.

– findFundByISIN. ISIN means unique identifier so this method will return, if it ex-
ists, the fund with the indicated ISIN.

– removeFund. We indicate the fund id and, if there is one, we will delete it with its
corresponding NAVs.

– findAllFunds. This method returns all the existing funds in the database.

– findFundsByKeywords. It obtains all the funds that contain in its name the string
that we pass to it as a parameter.

– amountInvestedInFund. This method returns a list of floats, which include the
amount invested for that fund in that portfolio, total holdings, refunds and de-
posits. We do this calculation for an indicated period or for all fund transactions.

– fundProfit. Using the formula already explained in the Chapter 2, we calculate the
performance of the fund for the period we want.

– ownProfit. We do not only calculate the performance of the fund, but also the
performance that we will have depending on how and when we have made the
deposits and refunds for a specific fund and a portfolio.

– taxPerformance. As with all returns and metrics, they are already explained above.
Although in the case of this performance, it goes far beyond calculations since we
have to go back both for the transaction history and for the net asset values’ one.
We will have to see if the investment comes from cash or if it is from another fund,
if it is the last option, we must trace how those shares came to that fund.
Tracking all the funds our transactions have gone through is not an easy task, so
before implementing in our IDE, we need to previously write a pseudocode.

58

CHAPTER 9. DEVELOPMENT

Algorithm TaxPerformance
1: Input: fund, portfolio, acumulatedR, nHoldings, endDate
2: refunds← add pre-endDate refunds
3: Discard deposits corresponding to refunds (FIFO)
4: interestTransactions<n>← Select from transactions not discarded so that the sum

of the holdings of these transactions of interest equals nHoldings.
5: taxPerf← new ArrayList
6: splitHold← new ArrayList
7: for all n in interestTransactions do
8: if n.sourceFund == null then
9: currentR← NAV(endDate) / NAV(n.targetDate)
10: taxPerf← add currentR × acumulatedR
11: splitHold← add n.targetHoldings
12: else
13: currentR← NAV(endDate) / NAV(n.targetDate)
14: (taxPerfSource, splitHoldSource)← taxPerformance(n.sourceFund, n.portfolio,

currentR × acumulatedR, n.sourceHoldings, n.sourceDate)
15: taxPerf← add taxPerfSource
16: totalHoldSource← Sum of splitHoldSource
17: for all elements in splitHoldSource do
18: element = element × nHoldings

totalHoldSource
19: end for
20: splitHold← add splitHoldSource
21: end if
22: end for
23: return taxPerf, splitHold

First with respect to discarding the purchases that correspond to the sales, if the
sold units that we have left are less than the participations of the transaction, it
will be the first transaction that we will be added to those that interest us but
remaining only with the participations resulting from subtracting the sold.
The same will happen with the last transaction, in the event that the shares that
interest us (nHoldings) is less than the number of shares in the transaction, we will
add this transaction but only with the remaining holdings.
Once we have the list with all the transactions that interest us added, we will
proceed to go through it. If the transaction that we are processing does not have
a source fund, that is, it comes from cash, we will calculate the profitability and
the shares associated with that transaction, and add both values to each array of
results.
On the contrary, if the transaction comes from another fund, we will calculate the
profitability for this transaction and we will make a recursive call to this same
function. Next, with the results of the recursive call we will add the returns to its

59

9.2. Service Implementation

corresponding array of results. And finally, since the shares that the recursive call
returns to us correspond to the fund of the recursive call, not the current one, we
will do the calculation to obtain the portion of shares that correspond to our fund
and we will add it to the list of results of participations.
At last, after going through all the transactions, we will return the two result
arrays with returns and participations.

– metrics. This method brings together all the metrics calculated for that fund.

• Portfolio:

– addPortfolio. With this operation we add a portfolio to the database.

– removePortfolio. We pass the id as a parameter and delete the corresponding port-
folio.

– findPortfolio. In the same way, we will have the id as input and in the event that
there is a fund that identifies with it, we will return it.

– findPortfolio. We will provide all funds saved in the database.

• Portfolio_Fund:

– addFundToPortfolio. We pass a fund id and a portfolio id. And in the event that
both exist, we add that fund to that portfolio.

– removeFundFromPortfolio. In this case, if the fund id corresponds to a fund that
belongs to the portfolio that we also indicate, we will delete the relation between
them from the database; unless there are transactions for that fund and that port-
folio.

• FundTransaction:

– addTransaction. We add the transaction that we pass as a parameter to the database.
Although this transaction must meet the requirements that we already indicated
when explaining PropertyValidator class.

– calculateTransactionHoldings. We pass as input the transaction and the fund of
which we want to know the shares (that is, it can be source or target fund), so we
will return the calculation of the holdings.

• Currency:

– addCurrency. We add a currency to the database.

– findLatestCurrency. Having as input a currency and a date, we return the currency
with a date equal to or less than that indicated.

60

CHAPTER 9. DEVELOPMENT

– findCurrencyTarget. This function returns all the currencies of a specific target.

– findAllCurrencies. We will provide all the currencies stored in the database.

– importCurrency. We will import all the currencies that a .csv file contains that we
pass as a parameter.

– addCurrency. We add a currency to the database.

– findLatestCurrency. Having as input a currency and a date, we return the currency
with a date equal to or less than that indicated.

– findCurrencyTarget. This function returns all the currencies of a specific target.

– findAllCurrencies. We will provide all the currencies stored in the database.

– importCurrency. We will import all the currencies that a .csv [35] file contains that
we pass as a parameter.

• NAV:

– addNAV. We add a NAV to the fund that is indicated in the NAV class itself.

– importNAVs. From the url that we pass as a parameter, we add the NAVs and the
fund to which they are associated to the database.

61

9.3. GUI

9.3 GUI

In this section we will describe the interface design and how we have implemented it. Thanks
to the JavaFX tool (see Section 4.6) we have been able to implement all the methods defined
in the service in our desktop application.

To start we will have to create the window that will contain all the elements of our inter-
face, this object is called JavaFX Stage [36]. Inside a Stage you can insert a JavaFX Scene [37]
which represents the content displayed inside a window (Stage).

9.3.1 Main Screen

We will describe the interface starting with its main screen and the elements that persist
through the screens. As our model of portfolios and funds is very similar to a tree struc-
ture, being the portfolios the parent nodes and each fund a leaf, we will allow with a JavaFX

TreeeView [38] see at a glance the relationships between them, as we saw in the Fig. 9.4.

Figure 9.4: Main Screen.

62

CHAPTER 9. DEVELOPMENT

Also, we will include JavaFX MenuBar [39] provides JavaFX applications with a visual
drop down menu similar to that most desktop applications have at the top of their application
window. We will have a Menu called File (see Fig. 9.5) where we will have the possibility of
adding a portfolio (see Fig. 9.6) or a fund (see Fig. 9.7).

Figure 9.5: File Menu displayed.

Figure 9.6: Dialogue that we get to add a new portfolio.

Figure 9.7: Dialogue that we get to add a new fund.

63

9.3. GUI

We will also have another Menu (see Fig. 9.8) that will include the two types of import
that our service offers: import currencies (see Fig. 9.9) and / or import NAVs (see Fig. 9.11)
with their corresponding funds from the chosen website (see Fig. 9.10).

Figure 9.8: Import Menu displayed.

Figure 9.9: Dialogue that allows us to select a file to import currency.

64

CHAPTER 9. DEVELOPMENT

Figure 9.10: Dialogue that allows us to open the website where we choose the NAVs to import.

Figure 9.11: Dialogue where we enter the URL with the NAVs.

65

9.3. GUI

Finally, we will have a TextField that, depending on what we write, will filter the TreeView
(see Fig. 9.12 and Fig. 9.13) only showing the funds that include the indicated string in their
name.

Figure 9.12: Example of using the searcher returning some funds.

Figure 9.13: Example of using the searcher returning a fund.

66

CHAPTER 9. DEVELOPMENT

9.3.2 Portfolio Screen

When we click on a portfolio, we have a new deck of possibilities and all of them pertain to
the selected portfolio. In a JavaFX TableView [40] we will represent the funds that belong to
that portfolio. This table has the following columns: ISIN, name, deposit fees, refund fees, last
NAV and currency.

Figure 9.14: Screen shown when clicking on portfolio.

At the top of the table we have a JavaFX ToolBar [41] (horizontal or vertical bar containing
buttons), which contains several buttons (JavaFX Button) [42] and a JavaFX ChoiceBox [43].
First of all, we have two buttons:

• Add New Fund (see Fig. 9.15). With this button we will add to this portfolio a fund
that is not yet in the database, so when we accept we will add it to the DB and to the
portfolio. We introduce the data thanks to a JavaFX Dialog [44] and the answer will be
to be added or show an Alert with the appropriate error.

• Add Existing Fund (see Fig. 9.16). In this case the funds already existing in the DB will
be shown in a JavaFX ListView [45] in a new Dialog. And once we choose one, when
accepting it will be added to the selected portfolio.

67

9.3. GUI

Figure 9.15: Dialogue that we get to add a new fund.

Figure 9.16: Dialogue where we choose among the existing funds which we add.

68

CHAPTER 9. DEVELOPMENT

To remove a fund, we will click on the one we want to remove and the button that allows
this action will be enabled (see Fig. 9.17). After pressing this button, a confirmation dialog
will appear (see Fig. 9.18) and we will decide if it is permanently deleted.

Figure 9.17: Pressing on a fund activates the button to delete it.

Figure 9.18: Confirmation of deletion of the selected fund.

Finally, we have a ChoiceBox where we will choose which graph we want to see. We have
three options and any of the three refer to the content of that portfolio:

• Normalized NAVs. In this case we can compare the net asset values of the funds in our
portfolio, since they have been normalized. This is the graph that comes out by default,
as we see in the previous image, Fig. 9.14.

69

9.3. GUI

• Invested In (see Fig. 9.19). In this graph we will show the amount invested in each fund
with respect to the total amount of the portfolio using a pie chart.

Figure 9.19: Example of the graph representing investments.

• Funds Profitability (see Fig. 9.20). Thanks to this graph we can compare the returns of
the funds in the same period of time (their last year with registered values).

Figure 9.20: Example of Funds Profitability graphic.

70

CHAPTER 9. DEVELOPMENT

9.3.3 Fund Screen

When we click on a fund we will find a JavaFX TabPane [46] that is a container control which
can contain multiple tabs (sections) internally, which can be displayed by clicking on the tab.
In this case we have three tabs:

• NAV (see Fig. 9.21). When we click on the tab called NAV, we will see a table that shows
us the value of the NAV, the date and the difference between that NAV and the previous
one (see Fig. 9.22).

Figure 9.21: NAV tab.

Figure 9.22: NAVs table.

71

9.3. GUI

In addition to the importNAVs option previously explained, we can also add a NAV
manually thanks to this dialog (see Fig. 9.23) that will open when you press the Add

new NAV button. As you can see the dialogue is simple, we only have to enter the value
and the desired date.

Figure 9.23: Dialog that allows adding a new NAV.

We will also display a representative graphic of NAVs over a certain period of time. To
the left of the table we have a vertical ToolBar with a JavaFX ToggleGroup [47] which
is a set of RadioButton that allows at most one to be selected at any time (see Fig. 9.24).
Each button gives the option of a date range: one month, three months, six months, one
year or at last the option of customize the range. So under the ToggleGroup, we have
two JavaFX DatePicker [48] that will allow us to select the start and the end date of the
range.

Figure 9.24: Graph and its corresponding ToolBar.

72

CHAPTER 9. DEVELOPMENT

• Transactions and Metrics (see Fig. 9.25): In this tab we will show a TableView that
contains all the transactions related to that fund, that is, when it is source and when it is
target. The columns that make up this table are: Source Fund, Source Date, Source hold-
ings, Source NAV, Target Fund, Target Date, Target Holdings, Target NAV and Gross
Amount.

Figure 9.25: Transactions and Metrics tab.

Over the table we will have a button that allows us to add a new transaction. Pressing
it opens a dialog (see Fig. 9.26) where we will indicate the portfolio, the target fund and
the source’s one if it exists, their corresponding dates and the gross amount. Since we
need to have the history of all the transactions to calculate the tax return, we will not
allow to eliminate any transaction. This will be the tab selected by default.

Figure 9.26: Dialog shown to add a new transaction.

73

9.3. GUI

Besides, we will visualize the three calculated returns: that of the fund, that calculated
from the transactions of our portfolio and the fiscal one (see Fig. 9.27).

Figure 9.27: Performance results.

On the other hand we have the value of all the ratios previously explained: Sharpe Ratio,
Correlation Coefficient, Beta, Treynor Ratio, Jensen’s Alpha and Maximum Drawdown
(see Fig. 9.28).

Figure 9.28: Ratios calculations.

74

CHAPTER 9. DEVELOPMENT

Finally, we will have a graph that compares the fund’s returns in four different periods
(see Fig. 9.29).

Figure 9.29: Fund Profitability graph.

75

9.3. GUI

76

Chapter 10

Tests

This chapter explains the tests carried out on the different aspects of our application.

10.1 Model Layer Tests

We must check that all the methods provided by the service work correctly. For this purpose
we have created ServiceTest class which uses JUnit.

Fifty tests are implemented in this class that automatically and exhaustively check the
correct operation of each of the methods created in the service.

It has been very important for these tests to check both the successful and the failed
cases. We must verify that when an entered data does not meet the requirements that we
have specified, it throws the relevant error and that if we are trying to access something that
does not exist in the database, it informs us of an InstanceNotFoundException.

These tests have evolved as the code has done. That is, when a change has occurred in
a function, such as when we realized that before adding a transaction where source fund is
different from null, we should check that this fund has sufficient amount of investment. There-
fore, we had to adapt the test already done and create more tests to check if that condition is
not met.

10.2 Functionality Testing

These tests focus on determining if the interface correctly performs the functions for which
it has been implemented.

In this case, they have been carried out manually, intensively testing all the components
in order to verify that they react as they are supposed to, and if they do not, detect and correct
them.

Having previously proven that all methods of the service were working correctly, it has

77

10.3. Usability Testing

saved us a lot of work at this stage. Likewise, in some cases we had escaped showing an alert
informing why that operation was failing and thanks to these tests, all the exceptions thrown
have their corresponding alert.

10.3 Usability Testing

With these tests we have verified that the interface is intuitive and easy to use.
These tests were made possible with the help of the Product Owner, since the person who

has implemented the interface has a different point of view and it is more difficult to see the
deficiencies in terms of intuitiveness and ease. Besides, as we have already explained, one of
the Product Owner’s responsibilities is to understand the user’s needs, making him the most
appropriate to participate in these tests.

With these tests we have perfected the interface, adjusting the table and graph sizes for a
better visualization, modifying the positions of the buttons to make them more intuitive, etc.

10.4 Graphs Tests

In the same way that it happens in the interface, we do not have an automated way to test the
obtained graphics. We have also needed the help of our Product Owner to verify that these
graphics are displayed as expected.

To ensure correct operation, we have reviewed the operations carried out carefully and
verified that what the graphs shown agree with the results of these operations.

78

Chapter 11

Conclusions and Future Work

In this last chapter we will explain the analysis, evaluation and conclusions obtained from
our project and how the application we have implemented could continue growing.

11.1 Conclusions

Firstly, it should be noted that the final product fulfils all the functionalities that we had as
goal. It is an application that allows us to have one (or several) portfolio with the funds that
we wish to add and that provides us detailed and tailored information of the funds in which
we have decided to invest and taking into account how and when we have done so. The
application does the currency exchange between funds itself and takes into account all the
history of NAVs that we can import (or add individually if we prefer) and on all the registered
transactions.

It is also basic in our application, obtaining returns and ratios that will help us with our
future investments. On the one hand, we calculate the fund’s return and the most useful
ratios to be able to make decisions comparing return-risk, what is expected with what is
actually obtained, etc. On the other hand, we will return the profitability calculated from the
movements that have been made in a certain fund, not only taking into account the values of
the NAVs in a certain period, which is what is calculated in all applications, websites, banks…
And as the most outstanding functionality we find fiscal profitability. The reason is threefold:
First due to its difficulty for implementation and the elegant solution; second, because this
functionality cannot be found on any other platform; and finally, it is a metric that can make
the difference between the money that we could earn thanks to this calculation.

The importance of the functionalities of our project lies not only in its great usefulness,
but that no application, bank or website provides most of them. So we have developed an
application with a great future projection since the information we offer will be appreciated
by any investor.

79

11.2. Future Work

All this in a simple and intuitive interface that abstracts the complexity of the system for
the user. Always allowing the users to form their portfolios with the funds they want and
above all to select and customize the information that will be displayed.

The realization of this project has not been a challenge only in terms of development but
has also required a great immersion in the world of investment funds. Discover the operation
of a fund, the meaning of the capital gains, what are the ratios and returns and how they will
help us in our investment, etc. Knowing all this information is not only necessary to be able
to use and understand the application, but is of interest in how we could increase our capital.

11.2 Future Work

The application is ready to be tested in a real environment and meets the objectives set, but
it could continue growing.

Right now we are allowing the user to import the currencies that he/she considers nec-
essary, but to improve it we could make the application automatically import the currencies
for the dates in which we have transactions, which is when we will use this change.

Another future line of work could also be that the application evaluating the returns and
the metrics calculated for our funds, which would recommend us which investments it con-
siders most appropriate.

This application was intended to be a desktop application, but it would also be very inter-
esting if it were available for mobile phones.

Finally, another possibility would be to open the application to other types of investments
such as the stock market or the currency market. In this way the user profile would be ex-
tended to other types of investors, not only those of investment funds.

80

Appendices

81

List of Acronyms

API Application Programming Interface.

CPU Central Processing Unit.

DAG Directed Acyclic Graph.

DB Database.

DTO Data Transfer Object.

GUI Graphical User Interface.

HTML HyperText Markup Language.

IDE Integrated Development Environment.

ISIN International Securities Identification Number.

IT Information Technology.

MDD Maximum Drawdown.

NAV Net Asset Value.

OS Operating System.

PK Primary Key.

POJO Plain Old Java Objects.

POM Project Object Model.

RAM Random Access Memory.

RDBMS Relational Database Management System.

83

RUP Rational Unified Process.

SSD Solid State Drive.

UI User Interface.

UML Unified Modeling Language.

XML eXtensible Markup Language.

84

Bibliography

[1] I. F. Hugo Gutiérrez, “El pánico hunde unas bolsas en caída libre: el ibex se desploma
un 14,06su historia,” 2020. [Online]. Available: https://elpais.com/economia/
2020-03-12/las-bolsas-sufren-en-la-apertura-y-el-ibex-cae-mas-de-un-5.html

[2] S. Matamoros, “Mapfre am: el coronavirus y el crudo refuerzan un escenario de
tipos bajos o negativos,” 2020. [Online]. Available: https://www.expansion.com/
mercados/2020/03/10/5e676de0468aeb0b2c8b465a.html

[3] J. C. Bogle, Bogle on Mutual Funds, wiley investment classic ed. Wiley, 2015.

[4] Wikipedia, “International securities identification number,” 2020. [Online]. Available:
https://en.wikipedia.org/wiki/International_Securities_Identification_Number

[5] J. Chen, “Net asset value – nav,” 2020. [Online]. Available: https://www.investopedia.
com/terms/n/nav.asp

[6] J. Alarcón, “Operativa en los fondos de inversión,” 2017. [Online]. Available:
https://inbestia.com/analisis/operativa-en-los-fondos-de-inversion

[7] E. C. Bank, “Euro foreign exchange reference rates,” 2020. [Online]. Avail-
able: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_
exchange_rates/html/index.en.html

[8] REALIA, “Plusvalía fiscal,” 2019. [Online]. Available: https://www.realia.es/
plusvalia-fiscal

[9] BBVA, “Tipos de fondos de inversión,” 2020. [Online]. Available: https://www.bbva.es/
finanzas-vistazo/ef/fondos-inversion/tipos-de-fondos-de-inversion.html

[10] C. Banton, “What is a good annual return for a mutual fund?”
2019. [Online]. Available: https://www.investopedia.com/ask/answers/050415/
what-good-annual-return-mutual-fund.asp

85

https://elpais.com/economia/2020-03-12/las-bolsas-sufren-en-la-apertura-y-el-ibex-cae-mas-de-un-5.html
https://elpais.com/economia/2020-03-12/las-bolsas-sufren-en-la-apertura-y-el-ibex-cae-mas-de-un-5.html
https://www.expansion.com/mercados/2020/03/10/5e676de0468aeb0b2c8b465a.html
https://www.expansion.com/mercados/2020/03/10/5e676de0468aeb0b2c8b465a.html
https://en.wikipedia.org/wiki/International_Securities_Identification_Number
https://www.investopedia.com/terms/n/nav.asp
https://www.investopedia.com/terms/n/nav.asp
https://inbestia.com/analisis/operativa-en-los-fondos-de-inversion
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html
https://www.realia.es/plusvalia-fiscal
https://www.realia.es/plusvalia-fiscal
https://www.bbva.es/finanzas-vistazo/ef/fondos-inversion/tipos-de-fondos-de-inversion.html
https://www.bbva.es/finanzas-vistazo/ef/fondos-inversion/tipos-de-fondos-de-inversion.html
https://www.investopedia.com/ask/answers/050415/what-good-annual-return-mutual-fund.asp
https://www.investopedia.com/ask/answers/050415/what-good-annual-return-mutual-fund.asp

Bibliography

[11] Selfbank, “¿qué es el ratio de sharpe?” 2020. [Online]. Available: https://www.selfbank.
es/centro-de-ayuda/fondos-de-inversion/que-es-el-ratio-de-sharpe

[12] W. Kenton, “Beta,” 2020. [Online]. Available: https://www.investopedia.com/terms/b/
beta.asp

[13] C. F. Institute, “What is the treynor ratio?” 2020. [Online]. Available: https:
//corporatefinanceinstitute.com/resources/knowledge/finance/treynor-ratio/

[14] J. Chen, “Jensen’s measure,” 2019. [Online]. Available: https://www.investopedia.com/
terms/j/jensensmeasure.asp

[15] A. P. Ucha, “Coeficiente de correlación lineal,” 2020. [Online]. Available: https:
//economipedia.com/definiciones/coeficiente-de-correlacion-lineal.html

[16] Robeco, “The formula: Maximum drawdown,” 2018. [On-
line]. Available: https://www.robeco.com/es/vision-del-mercado/2018/04/
the-formula-maximum-drawdown.html

[17] “Morning star,” 2020. [Online]. Available: https://www.morningstar.com/

[18] “inverco,” 2020. [Online]. Available: http://www.inverco.es/

[19] “Fonditus,” 2020. [Online]. Available: https://play.google.com/store/apps/details?id=
com.sierralion.fonditus&hl=es

[20] “Finizens,” 2020. [Online]. Available: https://finizens.com/

[21] MySQL, “Mysql: General infromation,” 2020. [Online]. Available: https://dev.mysql.
com/doc/refman/8.0/en/introduction.html

[22] developer.com, “Hibernate basics for java persistence,” 2020. [Online]. Available:
https://www.developer.com/java/other/article.php/3559931/Hibernate-Basics.htm

[23] tutorialspoint, “Javafx - overview,” 2020. [Online]. Available: https://www.
tutorialspoint.com/javafx/javafx_overview.htm

[24] EDUCBA, “Difference between java swing vs java fx,” 2020. [Online]. Available:
https://www.educba.com/java-swing-vs-java-fx/

[25] javaTpoint, “Jsoup api,” 2018. [Online]. Available: https://www.javatpoint.com/
jsoup-api

[26] Scrum.org, “What is scrum?” 2020. [Online]. Available: https://www.scrum.org/
resources/what-is-scrum

86

https://www.selfbank.es/centro-de-ayuda/fondos-de-inversion/que-es-el-ratio-de-sharpe
https://www.selfbank.es/centro-de-ayuda/fondos-de-inversion/que-es-el-ratio-de-sharpe
https://www.investopedia.com/terms/b/beta.asp
https://www.investopedia.com/terms/b/beta.asp
https://corporatefinanceinstitute.com/resources/knowledge/finance/treynor-ratio/
https://corporatefinanceinstitute.com/resources/knowledge/finance/treynor-ratio/
https://www.investopedia.com/terms/j/jensensmeasure.asp
https://www.investopedia.com/terms/j/jensensmeasure.asp
https://economipedia.com/definiciones/coeficiente-de-correlacion-lineal.html
https://economipedia.com/definiciones/coeficiente-de-correlacion-lineal.html
https://www.robeco.com/es/vision-del-mercado/2018/04/the-formula-maximum-drawdown.html
https://www.robeco.com/es/vision-del-mercado/2018/04/the-formula-maximum-drawdown.html
https://www.morningstar.com/
http://www.inverco.es/
https://play.google.com/store/apps/details?id=com.sierralion.fonditus&hl=es
https://play.google.com/store/apps/details?id=com.sierralion.fonditus&hl=es
https://finizens.com/
https://dev.mysql.com/doc/refman/8.0/en/introduction.html
https://dev.mysql.com/doc/refman/8.0/en/introduction.html
https://www.developer.com/java/other/article.php/3559931/Hibernate-Basics.htm
https://www.tutorialspoint.com/javafx/javafx_overview.htm
https://www.tutorialspoint.com/javafx/javafx_overview.htm
https://www.educba.com/java-swing-vs-java-fx/
https://www.javatpoint.com/jsoup-api
https://www.javatpoint.com/jsoup-api
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum

BIBLIOGRAPHY

[27] Deloitte, “Scrum: roles y responsabilidades,” 2020. [Online]. Available: https://www2.
deloitte.com/es/es/pages/technology/articles/roles-y-responsabilidades-scrum.html

[28] V. Boullosa, “Guia salarial sector ti galicia 2015-2016,” 2016. [Online]. Available: https:
//es.scribd.com/document/288511179/Guia-Salarial-Sector-TI-Galicia-2015-2016

[29] Baeldung, “Hibernate one to many,” 2020. [Online]. Available: https://www.baeldung.
com/hibernate-one-to-many

[30] S. Srivastava, “Difference between @joincolumn and mappedby,” 2020. [Online].
Available: https://www.baeldung.com/jpa-joincolumn-vs-mappedby

[31] L. Gupta, “Hibernate jpa cascade types,” 2018. [Online]. Available: https:
//howtodoinjava.com/hibernate/hibernate-jpa-cascade-types/

[32] T. Janssen, “Class instancenotfoundexception,” 2020. [Online]. Available: https:
//thorben-janssen.com/entity-mappings-introduction-jpa-fetchtypes/

[33] Z. H. Baeldung, “Hibernate many to many,” 2018. [Online]. Available: https:
//www.baeldung.com/hibernate-many-to-many

[34] J. P. S. E. 7, “Class instancenotfoundexception,” 2018. [Online]. Available: https://docs.
oracle.com/javase/7/docs/api/javax/management/InstanceNotFoundException.html

[35] baeldung, “Reading a csv file into an array,” 2019. [Online]. Available: https:
//www.baeldung.com/java-csv-file-array

[36] J. Jenkov, “Javafx stage,” 2018. [Online]. Available: http://tutorials.jenkov.com/javafx/
stage.html

[37] ——, “Javafx scene,” 2018. [Online]. Available: http://tutorials.jenkov.com/javafx/scene.
html

[38] ——, “Javafx treeview,” 2019. [Online]. Available: http://tutorials.jenkov.com/javafx/
treeview.html

[39] ——, “Javafx menubar,” 2018. [Online]. Available: http://tutorials.jenkov.com/javafx/
menubar.html

[40] ——, “Javafx tableview,” 2020. [Online]. Available: http://tutorials.jenkov.com/javafx/
tableview.html

[41] ——, “Javafx toolbar,” 2018. [Online]. Available: http://tutorials.jenkov.com/javafx/
toolbar.html

87

https://www2.deloitte.com/es/es/pages/technology/articles/roles-y-responsabilidades-scrum.html
https://www2.deloitte.com/es/es/pages/technology/articles/roles-y-responsabilidades-scrum.html
https://es.scribd.com/document/288511179/Guia-Salarial-Sector-TI-Galicia-2015-2016
https://es.scribd.com/document/288511179/Guia-Salarial-Sector-TI-Galicia-2015-2016
https://www.baeldung.com/hibernate-one-to-many
https://www.baeldung.com/hibernate-one-to-many
https://www.baeldung.com/jpa-joincolumn-vs-mappedby
https://howtodoinjava.com/hibernate/hibernate-jpa-cascade-types/
https://howtodoinjava.com/hibernate/hibernate-jpa-cascade-types/
https://thorben-janssen.com/entity-mappings-introduction-jpa-fetchtypes/
https://thorben-janssen.com/entity-mappings-introduction-jpa-fetchtypes/
https://www.baeldung.com/hibernate-many-to-many
https://www.baeldung.com/hibernate-many-to-many
https://docs.oracle.com/javase/7/docs/api/javax/management/InstanceNotFoundException.html
https://docs.oracle.com/javase/7/docs/api/javax/management/InstanceNotFoundException.html
https://www.baeldung.com/java-csv-file-array
https://www.baeldung.com/java-csv-file-array
http://tutorials.jenkov.com/javafx/stage.html
http://tutorials.jenkov.com/javafx/stage.html
http://tutorials.jenkov.com/javafx/scene.html
http://tutorials.jenkov.com/javafx/scene.html
http://tutorials.jenkov.com/javafx/treeview.html
http://tutorials.jenkov.com/javafx/treeview.html
http://tutorials.jenkov.com/javafx/menubar.html
http://tutorials.jenkov.com/javafx/menubar.html
http://tutorials.jenkov.com/javafx/tableview.html
http://tutorials.jenkov.com/javafx/tableview.html
http://tutorials.jenkov.com/javafx/toolbar.html
http://tutorials.jenkov.com/javafx/toolbar.html

Bibliography

[42] ——, “Javafx button,” 2019. [Online]. Available: http://tutorials.jenkov.com/javafx/
button.html

[43] ——, “Javafx choicebox,” 2016. [Online]. Available: http://tutorials.jenkov.com/javafx/
choicebox.html

[44] P. Saya, “Javafx dialog,” 2015. [Online]. Available: https://examples.javacodegeeks.com/
desktop-java/javafx/dialog-javafx/javafx-dialog-example/

[45] J. Jenkov, “Javafx listview,” 2016. [Online]. Available: http://tutorials.jenkov.com/javafx/
listview.html

[46] ——, “Javafx tabpane,” 2019. [Online]. Available: http://tutorials.jenkov.com/javafx/
tabpane.html

[47] ProgramCreek, “Java code examples for javafx.scene.control.togglegroup,” 2020. [On-
line]. Available: https://www.programcreek.com/java-api-examples/?api=javafx.
scene.control.ToggleGroup

[48] J. Jenkov, “Javafx datepicker,” 2016. [Online]. Available: http://tutorials.jenkov.com/
javafx/datepicker.html

88

http://tutorials.jenkov.com/javafx/button.html
http://tutorials.jenkov.com/javafx/button.html
http://tutorials.jenkov.com/javafx/choicebox.html
http://tutorials.jenkov.com/javafx/choicebox.html
https://examples.javacodegeeks.com/desktop-java/javafx/dialog-javafx/javafx-dialog-example/
https://examples.javacodegeeks.com/desktop-java/javafx/dialog-javafx/javafx-dialog-example/
http://tutorials.jenkov.com/javafx/listview.html
http://tutorials.jenkov.com/javafx/listview.html
http://tutorials.jenkov.com/javafx/tabpane.html
http://tutorials.jenkov.com/javafx/tabpane.html
https://www.programcreek.com/java-api-examples/?api=javafx.scene.control.ToggleGroup
https://www.programcreek.com/java-api-examples/?api=javafx.scene.control.ToggleGroup
http://tutorials.jenkov.com/javafx/datepicker.html
http://tutorials.jenkov.com/javafx/datepicker.html

	Introduction
	Goals
	Motivation
	Work Structure

	Theoretical Bases
	Investment Funds
	Operations and Fund Tracking
	Operations
	Fund Tracking

	Fund Types
	Investment Selection Criteria
	Profitabilities
	Ratios or Metrics

	State of the Art
	MorningStar
	Banks
	Applications To Manage Our Investments
	Conclusions

	Technological Bases
	Version Control Tools
	Project Management Tool
	Software Modelling Tools
	Project Development Tools
	Database Tools
	Graphical Interface Development Tools
	Graphics Creation Tool
	HTML Parser Tool
	Testing Tool
	Text Edition Tool

	Methodology
	Scrum
	Artifacts
	Sprint
	Roles

	Scrum applied to our Project
	Product Backlog
	Sprints

	Planning and Cost Estimate
	Initial Planning
	Resources and Cost Estimate
	Human Resources
	Software Resources
	Hardware Resources
	Estimated Total Cost

	Project Follow-up

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements
	Use Cases

	Design
	Architecture
	Database Design

	Development
	Database Implementation
	Service Implementation
	GUI
	Main Screen
	Portfolio Screen
	Fund Screen

	Tests
	Model Layer Tests
	Functionality Testing
	Usability Testing
	Graphs Tests

	Conclusions and Future Work
	Conclusions
	Future Work

	List of Acronyms
	Bibliography

