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Resumen

Controlling protein expression level is of interest
in many applications. Yet, the stochastic na-
ture of gene expression plays an important role
and cannot be disregarded. We propose a gene
synthetic circuit designed to control the mean
gene expression in a population of cells and its
variance. The circuit combines an intracellular
negative feedback loop and quorum sensing based
cell-to-cell communication system. Our in silico
analysis using stochastic simulations reveals
significant noise attenuation in gene expression
through the interplay between quorum sensing
and negative feedback, and explain their different
roles for different noise sources. Preliminary in
vivo results agree well with the computational
results.

Palabras clave: cellular noise, noise atten-
uation, protein expression control, quorum
sensing, feedback control.

1. Introduction

Noise is pervasive in the cellular mechanisms un-
derlying gene expression [26]. It propagates to
downstream genes at the single cell level, and
eventually causes variation within an isogenic pop-
ulation [25, 19] that may determine the fate of
individual cells and that of a whole population
[8, 19].

At the gene level, noise can be traced back to
intrinsic sources due to stochastic fluctuations in
transcription and translation mechanisms, and ex-
trinsic ones corresponding to gene independent
fluctuations in protein expression due to external
factors [8, 3, 14]. To minimize the deleterious ef-
fects of noise, cells have evolved different strategies
at the single-cell level: from different transcription
and translation efficiency so as to reduce transla-
tion burst rates in key genes [16] to more elabo-
rated strategies, such as negative feedback regu-
lation to reduce noise by shifting the noise spec-
trum to a higher frequency region [26]. Yet, cells
live in communities, forming a population. At this

level, extracellular signaling propagates intracel-
lular stochastic fluctuations across the population
[34]. Thus, cells have adapted their communica-
tion mechanisms in order to improve the signal-to-
noise ratio [40]. One of such communication mech-
anisms is quorum sensing.

Quorum sensing (QS), initially discovered in V.
fisheri and P. putida, is a cell-to-cell communica-
tion mechanism whereby bacteria exchange chemi-
cal signaling molecules, called autoinducers, whose
external concentration depends on the cell popu-
lation density. It is known that synchronization
and consensus protect from noise [33]. Cells de-
tect a threshold concentration of QS autoinducers
and alter gene expression accordingly [10], driv-
ing the population as a whole to achieve a de-
sired consensus gene expression level despite the
individual noise of each member of the popula-
tion. Cells consensus induced by QS is thought
to reduce extrinsic noise by reducing the trans-
mission of fluctuating signals in the low-frequency
domain [35], enhances intrinsic stochastic fluctua-
tions [34], and allows entrainment of a noisy pop-
ulation when faced to environmental changing sig-
nals [22]. Therefore QS seems an effective tool to
control the phenotypic variability in a population
of cells [40].

Phenotypic variability has important practical
relevance in many applications in the areas of
biomedicine, biotechnology and other branches of
biological science [11] as the presence of heteroge-
neous subpopulations may have significant impact
on the yield and productivity of industrial cultures
[21, 9, 2]. Thus, improving homogeneity of protein
expression in industrial cultures is a goal of eco-
nomic relevance for microbial cell factory process-
es. that has traditionally been attempted either
by optimizing environmental conditions in the cul-
ture or by careful selection of the strain. Open
loop strategies based on sensitivity analysis have
been used to provide guides as to how properly
tune transcriptional and translational parameters
so that the noise levels can be controlled while
the mean values can be simultaneously adjusted
to desired values [18]. While sensitivity analysis
gives very valuable insights, open loop control is
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Figura 1: LuxI noise strength under presence/absence of quorum sensing and negative feedback. (A). Proposed
synthetic gene circuit. (B) Circuits topologies: NoQS/NoFb (top) and QS/Fb (bottom). (C) Representative com-
putational (left) and experimental (right) population histograms of LuxI noise strength for QS/Fb (orange)
presenting a narrower gaussian-like distribution as compared to the Poisson-like one of NoQS/NoFb (purple).
From computational simulations: (D) Sampled combinations of LuxI expression parameters for fixed LuxR ones
show larger values of LuxI noise strength vs. mean for NoQS/NoFb (purple dots) than for QS/Fb (orange dots).
(E) The QS/Fb circuit significantly reduces the average noise strength for the sampled parameters space by 41 %,
from 〈η2NoQS/NoFb〉 = 0.1263 down to 〈η2QS/Fb〉 = 0.0744. (F) For varying LuxI parameters the average reduction
of noise strength in LuxI ranges from 30 % up to 60 % and shows dependence on the mean expression level. Data
shown for LuxI means between the biotechnological relevant range [300, 8000] molecules/cell. (G) Comparison of
experimental and computational statistical moments.

not robust against system uncertainty and/or vari-
ations. There is an ever-growing appreciation that
biological complexity requires new bioprocess de-
sign principles.

Synthetic biology, sometimes defined as the engi-
neering of biology, has the potential to engineer
genetic circuits to perform new functions for use-
ful purposes in a systematic, predictable, robust,
and efficient way [38]. In the last years, several
synthetic circuits have been proposed with the ul-
timate goal of dealing with gene expression noise
[43, 44]. Though circuits using negative feedback
have been proved to decrease gene expression noise
[5], single-cell intracellular feedback loops do not
take into account that in practice one is interest-
ed in controlling gene expression mean value and
noise across a population of cells. Feedback across
a population of cells can be implemented by means
of quorum sensing-based strategies, and has been
shown to reduce noise effects [35, 39, 40]. Indeed,
cell-to-cell communication by means of quorum
sensing induces consensus among cells [27], that
is, contributes to reduce the difference of internal
state among cells in a population. This, in turn,
may contribute to protect from noise [33]. Thus,

the idea of joining both intracellular negative feed-
back and extracellular feedback via quorum sens-
ing is a natural one, that has been suggested in
[1, 37, 42].

In this work we analyze the synthetic gene cir-
cuit designed previously in [1] depicted in Fig 1A,
designed to reduce gene expression noise while
achieving a desired mean expression level in a pro-
tein of interest [37]. The circuit uses the repress-
ible promoter Plux designed in [7] to implement
a negative feedback loop over the gene of inter-
est, and adds a QS mechanism based on N-acyl-L-
homoserine lactone (AHL) [31, 10] to induce popu-
lation consensus (Section 2). We used the stochas-
tic Chemical Langevin Equation [13] to explore
the impact of some key circuit parameters on noise
strength (Section 3). To assess the role played by
feedback and QS we compared the proposed cir-
cuit, denoted as QS/Fb, with constitutive expres-
sion (NoQS/NoFb) (Fig. 1B). Extrinsic noise was
modeled by randomizing values of the model pa-
rameters [15, 36]. Our in silico analysis (Section
4) reveals significant noise attenuation in gene ex-
pression through the interplay between quorum
sensing and negative feedback, and explain their
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different roles for different noise sources, highlight-
ing the need for proper characterization of extrin-
sic noise. Preliminary in vivo (Section 5) results
agree with the computational ones.

2. Circuit description

The synthetic gene circuit (Fig. 1A) combines two
functional subsystems already implemented in E.
coli. The first subsystem implements a cell-to-
cell communication mechanism via quorum sens-
ing, based on exchange of the small signaling au-
toinducer molecule N-acyl-L-homoserine lactone
(AHL) [17, 10]. This autoinducer molecule pas-
sively diffuses across the cellular membrane to and
from the external environment. Intracellular AHL
is synthesized by the protein LuxI expressed by an
homolog of the gene luxI of V. fisheri [31]. The sec-
ond subsystem uses the synthetic repressible pro-
moter Plux designed in [7] to control transcription
of the gene luxI. This promoter is repressed by the
transcription factor (LuxR.AHL)2. Protein LuxR
is expressed by gene luxR under the constitutive
promoter Pc. Proteins LuxR and AHL bind cre-
ating the heterodimer (LuxR.AHL), which sub-
sequently dimerizes forming the heterotetramer
(LuxR.AHL)2. This way, the negative feedback
control of the LuxI expression is effectively im-
plemented.

3. Mathematical model

To analyze how our genetic circuit affects intrin-
sic and extrinsic noise, we needed an appropri-
ate model and a computationally efficient method.
Both aspects are intertwined. We considered an
equivalent set of pseudo-reactions resulting from
the deterministic model of the circuit, and then
derived a stochastic model for a population of N
cells whose mean corresponds to that of the de-
terministic one. We used the Chemical Langevin
Equation approach (CLE). Though computation-
ally much more efficient than the Chemical master
equation (CME) or even the Gillespie algorithm,
the CLE is still computationally demanding when
the goal is to simulate a whole population of cells.
Since the CLE approximates the CME by a system
of stochastic differential equations of order equal
to the number of species, a reduced deterministic
model with as few species per cell as possible was
desirable.

3.1. Reduced deterministic model

We aimed at obtaining a reduced model more
amenable for computational analysis, but avoid-
ing excessive reduction that would lead to lack

of biological relevance. In particular, the species
we obtained in the reduced model are not lumped
ones. Reduced models accounting for total mRNA
and total transcription factor have been proposed
to match modeled species with measurable ones
[12]. In our case we explicitly modeled bound and
unbound forms of the transcription factor, but the
model accounts for the total LuxI protein. For our
circuit this is a good proxy for the amount of pro-
tein of interest if both are co-expressed, and tran-
scriptional noise dominates.

Thus, in a first step we used the mass-action kinet-
ics formalism [4] to get a deterministic model of
the full reactions network corresponding to the ge-
netic circuit [1]. We then got a reduced order mod-
el by applying the Quasi Steady-State Approxima-
tion (QSSA) on the fast chemical reactions and
taking into account invariant moieties [1, 20, 24].
The resulting deterministic reduced model is de-
scribed by equations (1)-(2).
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where n(t)i =
[n1(t)i, n2(t)i, n3(t)i, n4(t)i, n6(t)i]T is the vector
of species LuxI, LuxR, (LuxR.AHL)2, intra-
cellular AHL and (LuxR.AHL) for the ith cell
respectively, and n5 is the extracellular AHLext.

3.2. Stochastic model

To model gene expression intrinsic noise we de-
rived a stochastic CLE-based model whose mean
corresponds to that of the deterministic reduced
model (1)-(2). To this end we first considered the
equivalent set of pseudo-reactions (3) for the de-
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terministic model in the ith cell.

(LuxR · AHL)2
f(n3,t)
−→ LuxI + (LuxR · AHL)2

LuxI
kA−→ LuxI + AHL

ttLuxR−→ LuxR

LuxR + AHL
k−1/kd1

�
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LuxR · AHL

2(LuxR · AHL)
g(n6,t)

�
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AHL
D
�

DVc

AHLext
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dI−→∅

LuxR
dR−→∅

(LuxR · AHL)2
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AHL
dA−→∅

AHLext
dAe−→∅

(3)

where we denoted f(ni3, t) ,
CIpI

dmI

(
kdlux+αIn

i
3
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)
as

the Hill-like function associated to LuxI expres-
sion, g(ni6, t) corresponds to the dimerization re-
flected in equation (2), and ttLuxR = CRpR

dmR
repre-

sent the transcription-translation activity of luxI
and luxR respectively, Vc = Vcell

Vext
is the ratio be-

tween the cell volume and the culture medium vol-
ume, and ∅ denotes species degradation.

For the computational analysis we used the Euler-
Maruyama discretization (4) of the stochastic
model resulting from the set of pseudo-reactions
(3) :

n(t+δt) = n(t)+S·a(n)δt+S·N ·
√
a(n)
√
δt, (4)

where n(t) = [n(t)i, . . .n(t)N, n5]T are the number
of molecules of each species in the population. The
stoichiometry matrix S, whose elements are the
stoichiometry submatrices for each cell Scell and
the external stoichiometry Sext, has structure:

S =

[
Scell ⊗ IN 0N×1

Sext ⊗ 11×N −1

]
, (5)

where ⊗ is the Kronecker product, IN the identity
matrix of dimension N ×N , 0N×1 and 11×N are
vectors of zeroes and ones respectively, and the
coefficients in the stoichiometry matrices Scell and
Sext, obtained from the set of pseudo-reactions
(3), are:

Scell =


1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0 0
0 0 0 1 −1 0 0 0 0 1 −1 −1 1


Sext =

[
0 0 0 0 0 0 0 0 0 0 0 1 −1

]
.

The term a(n) in (4) is the associated vector of
reaction propensities for the whole population of

cells, with:
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Finally, N(JN+1)×(JN+1), where J = 13 is the

number of reactions for the ith cell, is a diago-
nal matrix of continuous normal random variables
with zero mean and unit variance.

Notice we used lumped propensity functions de-
rived from the reduced model, like the f(n3) Hill-
like function associated to LuxI repression. This
approach has already been used in [41]. We vali-
dated it for our model by simulating the pseudo-
reaction associated to f(ni3) using CLE, and com-
paring the result with that obtained by simulating
the set of corresponding original reactions using
Gillespie’s direct method SSA [1].

Extrinsic noise was modeled by randomizing the
values of the model parameters [15, 36], an ap-
proach that can easily be integrated within the
CLE framework. We assumed a normal distribu-
tion to generate the model parameters of the ith

cell in the population.

The stochastic simulations we performed for 400
min using δt = 25 · 10−4 sec.

4. Computational analysis

We used the stochastic model (4) of the pro-
posed circuit, hereafter denoted as circuit QS/Fb,
to explore the impact of some key circuit pa-
rameters on noise. As control circuit to compare
with, we considered a second circuit which re-
moves both QS and the feedback loop, denoted
as NoQS/NoFb. For the computational analysis,
this accounts to setting the synthesis of AHL to ze-
ro (kA = 0 min−1) in model (4). This condition is
achieved in the lab experimental implementation
by taking out the gene coding for LuxI (Section
5).

Gene expression noise was evaluated using the
squared coefficient of variation, i.e. the noise
strength measure (η2 = (σ/µ)2). This measure
properly captures the contributions of both intrin-
sic and extrinsic noise [23], and allows comparisons
for different expression rates.

We followed the following general procedure. First,
for different combinations of the model parame-
ters, we performed temporal simulations of the
number of molecules of each species in the cir-
cuit for every cell in the population of our sys-
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tem. Extrinsic noise was modeled by random-
izing the values of the model parameters using
a normal distribution with a variance of 15 %.
The models were implemented using OpenFPM
(http://openfpm.mpi-cbg.de), a C++ version
of the Parallel Particle Mesh (PPM) library al-
lowing efficient computational particle-mesh sim-
ulations [30]. The code is available in (http:
//sb2cl.ai2.upv.es/content/software). In all
simulations we used a population of N = 240 cells
in a culture volume of 10−3µl, corresponding to
an optical cell density OD600 = 0.3.

Then, we obtained the first two statistical mo-
ments µ and σ2 for each species in the cell popu-
lation at every time tk. We used the laws of total
expectation and total variance. From these mo-
ments, we calculated long-term distributions to in-
fer the noise strength of each species.

Finally, we explored the effect of variations in
parameters associated to expression of LuxI and
LuxR, as they are as key parameters in our cir-
cuit. For LuxI, we considered the dissociation
constant kdlux between the transcription factor
(LuxR ·AHL)2 and the repressible Plux promoter,
the translation rate pI, and the basal expression
αI of the Plux promoter. We sampled in the ranges
kdlux = [10−2000] molecules, α = [0.01−0.1], and
pI = [0.2− 10] min−1 selected from the literature
[28, 6, 32] and experimentally achievable in the
lab. As for LuxR, we considered two values for the
the translation rate pR: a strong RBS (pR = 10
min−1), and a medium-weak one (pR = 2 min−1).

5. Strains, plasmids and
experimental protocol

To validate the in silico computational results, we
implemented the QS/Fb and NoQS/NoFb circuits
in vivo. We used components from the iGEM Reg-
istry of Standard Biological Parts. All parts were
cloned using the Biobrick’s foundation 3 Antibi-
otic Assembly method. All coding sequences have
the double-terminator BBa B0015, and were con-
firmed by sequencing. The circuit QS/Fb couples
both QS-based cell-to-cell communication and the
negative feedback subsystems. It was split in two
subunits integrated in different plasmids.

On the one hand, plasmid pCB2tc contains
the gene luxR (part BBa C0062) coding for
the protein LuxR constitutively expressed un-
der the control of a medium strength promot-
er (part BBa J23106), and a strong RBS (part
BBa B0034).

This insert was cloned into the pACYC184 plas-
mid cloning vector (p15A origin, 10-12 copies/cell,
chloramphenicol/tetracycline [29]).

On the other hand, plasmid pYB06ta contains
gene luxI (part BBa C0161) under control of
the PluxR repressible promoter (part BBa R0062)
and a strong RBS (part BBa B0034). The strong
RBS BBa B0034 and the green fluorescent protein
(GFP, part BBa E0040) were inserted using GIB-
SON assembly (NEB Catalog Number E2611S)
upstream of luxI, right after the PluxR promoter.
This way, GFP, used as protein of interest (PoI in
Fig. 1A) is co-expressed with LuxI.

They were inserted into the pBR322 plasmid
cloning vector (pMB1 origin, 15-20 copies/cell,
ampicillin/tetracycline [29]). Finally, both plas-
mids pCB2tc and pYB06ta were co-transformed
in competent cells (DH-5α, Invitrogen). Notice be-
ing both plasmids low copy ones, they do not in-
troduce a big metabolic burden on the cell. On
the other hand, their variability is quite narrow
so gene copy number will not be the only relevant
extrinsic noise source in the experimental setup.

As control network, we implemented the circuit
NoQS/NoFb which removes both QS and the feed-
back loop. To this end, the plasmid pCB2tc above
was co-transformed with the plasmid pAV02ta
(pMB1 origin, ampicillin/tetracycline) containing
only GFP downstream of the PluxR repressible
promoter (part BBa R0062) and the the strong
RBS (part BBa B0034). Both were cloned in the
pBR322 plasmid cloning vector.

5.1. Experimental protocol

For the experimental validation of the circuit (pro-
tocol details are in [1]), two sets of E. coli cells
(cloning strain DH-5α) carrying the QS/Fb and
NoQS/NoFb circuits respectively, were inoculat-
ed from -80oC stocks into 3 mL of LB with ap-
propriate antibiotics, followed by an overnight in-
cubation at 37 oC and 250 rpm in 14 ml culture
tubes. When the cultures reached an optical den-
sity (OD) of 4 (600 nm, Eppendorf BioPhotometer
D30), the overnight cultures were diluted 500-fold
(OD600 of 0.02) into M9 medium with appropri-
ate antibiotics. These were used to inoculate new
cultures, which were incubated for 7 hours (37oC,
250 rpm,14 ml culture tubes) until they reached an
OD600 between 0.2–0.3. At this point, cell growth
and protein expression were interrupted by trans-
ferring the culture into an ice-water bath for 10
min. Next, 50 µL of each tube were transferred
into 1 ml of phosphate-buffered saline with 500
µg/mL of the transcription inhibitor rifampicin
(PBS + Rif) in one 5 mL cytometer tube, and
incubated during 1 hour in a water bath at 37oC,
so that transcription kept blocked and GFP had
time to mature and fold properly. Samples were
measured at different time points using the BD
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FACSCalibur flow cytometer (original default con-
figuration parameters), and flow cytometry data
analyzed with custom scripts.

6. Results

We first addressed the question whether the pro-
posed QS/Fb circuit effectively reduces noise
strength with respect to the circuit NoQS/NoFb
(Fig. 1B). The last one consists of the LuxR ex-
pression on the one hand, and the protein of inter-
est (PoI) downstream the Plux repressible promot-
er, without the luxI gene coding for LuxI protein,
on the other. Since no autoinducer AHL is nei-
ther produced nor externally introduced, there is
no repression, so the expression of PoI is essen-
tially a constitutive one (Section 2). This corre-
sponds to the Poisson distribution observed in the
purple population histogram in the left panel of
Fig. 1C. Contrarily, the QS/Fb histogram departs
from the Poisson distribution to become a nar-
row Gaussian-like one in the orange population
histogram in the left panel of Fig. 1C. This fact,
and the reduction in the mean expression value,
indicate the strong presence of regulation. In both
cases we used the nominal circuit parameters [1].

Reduction in noise strength was not due to a par-
ticular choice of the circuit parameter values, but a
property of the proposed topology. Fig. 1D depicts
LuxI noise strength vs. mean expression for 60 dif-
ferent combinations of the PLuxR characteristics
for both QS/Fb (orange points) and NoQS/NoFb
(purple points). The points in the figure corre-
spond to the mean values across the cells popula-
tion for each combination of parameters (Section
4). The magnitude of noise strength reduction was
larger for medium values of mean protein expres-
sion. Noise strength levels were similar for all mean
expression values in the case of the NoQS/NoFb
circuit. Mean expression values in this case depend
only on the translation rate pI for which five dis-
crete values were used, inducing the five mean val-
ues seen in the figure. On the contrary, the QS/Fb
circuit showed lower values of noise strength and
more graded values of the mean expression lev-
el, as it depends on the combination of all three
parameters varied.

More important, noise strength was consistently
lower for the QS/Fb circuit. Taking together all
the different combinations of promoter parameters
for each circuit, and the average noise strength
was significantly reduced by 41 % in the presence
of quorum sensing and negative feedback as shown
in Fig. 1E.

For the given fixed LuxR expression parameters,
the noise strength reduction in LuxI showed a

clear dependence on its mean expression level. In
Fig. 1F the minimum and maximum values of
LuxI noise reduction are plotted as a function of
its mean value. In the range between 600 and 6000
LuxI molecules it was possible to reduce the noise
variance at least in 35 % in the worst case sce-
nario, with a maximum reduction of around 70 %
for means between 2000 and 3000 molecules.

7. Conclusion

Our results show that gene synthetic circuits ben-
efiting from the interplay between feedback and
cell-to-cell communication allow control of the
mean expression level and noise strength of a pro-
tein of interest. A few circuit parameters easy to
tune in the wet-lab can be used to achieve noise
strength reductions up to a 60 % with respect to
constitutive expression of the protein of interest.

Mean expression level and noise strength are not
independent goals. At low mean values intrin-
sic noise dominates and sets the minimum noise
strength attainable. At high mean values extrinsic
noise dominates. Thus, there is a trade-off between
expression level and noise strength, as revealed
both by system-wide experimental data and the-
oretical analysis reported in the literature. Our
computational results fitted well in this scenario,
and suggest that tuning synthetic gene circuits to
minimize noise while achieving a desired expres-
sion level will require a multi-objective optimiza-
tion approach.

The experimental results, though preliminary,
showed a high concordance the computational
ones and confirmed the capability of the proposed
circuit to reduce noise strength.
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