
Oculus-Crawl, a Software Tool for Building Datasets for
Computer Vision Tasks

Iván de Paz Centeno, Eduardo Fidalgo Fernández, Enrique Alegre Gutiérrez, Wesam Al Nabki
Dpto. Ingeniería Eléctrica y de Sistemas y Automática,

Universidad de León, Campus de Vegazana s/n, 24071 León, Spain,
ipazc@unileon.es, efidf@unileon.es, ealeg@unileon.es, mnab@unileon.es

Abstract

Building datasets for Computer Vision tasks re-
quire a source of a large number of images, like
the ones provided by the Internet search engines,
joined with automated scraping tools, to construct
them in a reasonable time. In this paper it is pre-
sented Oculus-Crawl, a tool designed to crawl and
scrape images from the search engines Google and
Yahoo Images to build datasets of pictures, that
is modular, scalable and portable. It is also dis-
cussed a benchmark for this crawler and an inter-
nal feature for storing and sharing big datasets,
that makes it suitable for Computer Vision and
Machine Learning tasks. In our tests we were able
to crawl and fetch 11.555 images in less than 14
minutes, including also their meta-data descrip-
tion, showing that it might be well-suited for re-
trieving large datasets.

Key words: crawler, search engine, dataset,
images, computer vision.

1 INTRODUCTION

Nowadays there exist a huge number of search
engines that allow us to search content on the
web including almost any type of resource, rang-
ing from documents and pictures to sounds and
videos. The nature of the web is to link multiple
resources as hyper-links among them and, follow-
ing the analogy, the process of reaching an end
resource is done by crawling the interconnected
nodes. Historically, the search engines have been
fed by multiple web crawlers [4, 6, 9] that auto-
matically track and follow the hyper-links from the
content of the web, creating a database of entries
that are usually formatted into a human-readable
view in order to be presented to humans and to be
read by humans. This adds an overhead in the au-
tomatic retrieval of content from search engines,
as most of the times their results require to be ana-
lyzed and parsed from a markup language; in addi-
tion, the way to navigate through their content is
usually handled dynamically by JavaScript code in
form of AJAX calls [5], which requires of a sort of
human intervention like scrolling down the content

or clicking on certain regions of the view, adding
extra layers of complexity to the task of crawl-
ing those web sites. Even though most of them
are not program-friendly in terms of extracting
information, there have existed many successful
attempts in retrieving useful information by auto-
matically parsing the results from those search en-
gines, like the framework Scrapy [15], the project
icrawler [3] for python, or Apache Nutch [2], which
takes advantage of big data tools such as Apache
Hadoop [1]. Despite Computer Vision is one of
the computer fields that most demand of large
numbers of images, commonly required to solve
specific classification or detection problems, crawl-
ing and scraping tools might be well suited for
it. Even though most of the times Computer Vi-
sion problems leverage into public datasets, some-
times it exists the need to improve them or cre-
ate new ones. For those situations where a dis-
tributed crawling is required and there is a lack of
a distributed infrastructure, we provide an alter-
native named Oculus-Crawl, a crawler in the form
of command line tool for images from the search
engines Google and Yahoo, that can follow conve-
niently a distributed nature [10], which is isolated
from underlying Big Data frameworks, and that
can be shipped in the form of Docker containers
[11]. It does not require to write code and is pro-
jected to be used as a source for Computer Vision
and Machine Learning datasets.

The paper is structured in 4 sections, being the
section 1 dedicated to the introduction; the section
2 is destined to an overview of the architecture of
the solution which gives small insights about its
main features; the section 3 summarizes the exper-
iments and results we had with the tool applied to
different topology configurations and tool options;
and the section 4 dedicated to the conclusions and
possible future works for this tool.

2 ARCHITECTURE

The tool has three roles out-of-the-box: a factory,
a crawler and a client. Each role is performed by
its correspondent entry point in the application,
and they communicate each other through the fac-
tory, which exports an API-REST interface on a

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es

specific port. The generation of a dataset com-
prises 5 stages:

1. The request to the factory for the generation
of a dataset, done by the client.

2. The crawling of images, done by the crawlers.

3. The fetching of crawled images, done by the
factory.

4. The packaging of the images into a single zip
file with their crawled meta-data, done by the
factory.

5. The publication of the dataset into a public
directory, done by the factory.

An overview of the stages can be seen in Figure 1.

Figure 1: The 5 stages in the generation of a
dataset of images.

The factory allows to create requests for genera-
tion of datasets within a single HTTP call. Each
request for generation of a dataset is formed by
a set of search requests for a specific search en-
gine and a search words to be used, among other
parameters; a visualization of this scheme can be
found in Figure 2.

Figure 2: A dataset generation request is an ag-
gregation of search requests. It is handled by the
factory and the crawlers.

The crawlers, that might be running on any
host, steadily poll the factory for requests of new
datasets until one is retrieved, which initiates the

crawling process. This process consists of re-
trieving search requests from the dataset request,
crawling their results and returning them back to
the factory. The final scenario is a system on
where the available crawlers compete to retrieve
search requests and process them until all are pro-
cessed. Then, they jump to the next available
dataset request or stay idle waiting for new ones.
This crawler’s behavior leads to a scalable dis-
tributed system, where increasing the number of
crawlers reduces proportionally the overall time
for crawling. Note that since the factory is an
HTTP API-REST server, it can also be scaled up
by load balancing it the same way a web server is
usually scaled up.

When a dataset is completely crawled, the factory
starts fetching all the crawled items in order to
generate the final elements of the dataset, each
consisting of the content of the image and its as-
sociated meta-data in JSON format. Note that
the crawlers only gather the meta-data referenced
by the search engine, including the URL to the
images; and the factory, once the crawler process
is finished, fetches their content.

2.1 THE SEARCH SESSION

The search session is the key feature in Oculus-
Crawl as it preserves the whole dataset state in
form of a serializable JSON structure that can be
saved directly to a file. Therefore, each dataset
request will have a search session attached that
can be managed remotely, through the factory’s
API-REST. It can be used to backup a process of
dataset creation at any time and to restore this
process remotely, from the client side.

The proposed key feature in Oculus-Crawl suits
perfectly in the creation of Computer Vision
datasets, as once this session is filled up, it can
be used as a pre-fetching step on the creation of a
dataset, avoiding the need to crawl again. More-
over, the serialization of the session state eases the
sharing of the dataset over the network, hence,
reduces the bandwidth, since its size is several
times smaller than the complete fetched dataset,
as shown in Figure 3.

Figure 3: The search session representing an entire
dataset. It contains information enough to rebuild
the dataset without the need to crawl again.

XXXVIII Jornadas de Automática

992

2.2 THE SEARCH ENGINES

It is a common practice for search engines to as-
sociate meta-data to each of the elements they
present to the final user. This meta-data might
be useful for tagging the resources displayed by a
search engine, as it is common to find resources
with a descriptive text attached. Oculus-Crawl
takes advantage of this behavior, storing the de-
scriptive text with the width, height and file exten-
sion in the meta-data file of the final raw dataset.
Currently, Google Images and Yahoo Images are
officially supported by Oculus-Crawl. During the
development phase of the tool, Bing Images was
also supported, but a change in their presenta-
tion scheme left the search engine currently out of
support. It is stated that search engines set limits
on the number of elements they display for a sin-
gle search request, as it is demonstrated that the
behavior of most of the users is to look and use
only the first entries of the results [16]. This leads
the search engines to leave the less accurate ele-
ments they display on the least results they show,
or to limit the number of results they provide e.g.
Google Images is limited to 400 elements. When
a search engine is not limited or its limit is too
high, like Yahoo Images, the tool establishes a soft
limit on approximately 500 results. This soft limit
avoids to process an excessive number of pictures
from a single Document Object Model (DOM) and
also discards the least accurate resources. In Table
1 are shown the limits for each search engine.

Table 1: Search engines limits. Hard limit is
imposed by the search engine. Soft limit is
imposed by Oculus-Crawl.

Search Engine Results Limit Type
Google Images 400 Hard
Yahoo Images 500 Soft

In order to circumvent these limits and at the same
time retrieve the most accurate results for a given
topic, Oculus-Crawl follows a divide-and-conquer
strategy, splitting each search request in multi-
ple search requests, having each slight changes
that consist of appending an adjective to the main
search words. This task is accomplished by the
client role of Oculus-Crawl, which accepts a set of
adjectives in addition to the main search words,
and automatically combines them, therefore, gen-
erating multiple and different search requests that
forces the search engines to change the nature and
order of the elements displayed for each. Hence, a
list of adjectives compatible with the main search
words should be manually provided during the in-
vocation of the client.

2.3 USAGE OF ADJECTIVES

The Oculus-Crawl client accepts as input a set
of adjectives in order to combine them with the
original search words with the goal of increasing
the number of pictures retrieved. Each combina-
tion leverages into a different set of results but
sharing all of them the same inner semantic. A
restriction, however, is that the adjectives chosen
should be applicable to the search words context,
e.g. a chair can be blue, beautiful or small; but can
not be angry or thirsty. Even though the search
engines always retrieve results regardless of the
search keywords used, the results of using incom-
patible adjectives lead to an unknown or incor-
rect semantic, where most of the results are prob-
ably going to be out of the context of the original
search words. This is explained by the fact that
search engines associate key words to images, be-
ing the origin of these key words in the description
that usually users attach next to the images in the
HTML documents.

2.3.1 Number of adjectives to use.

The number of adjectives used for crawling affects
the number of images retrieved. In order to know
how many adjectives are needed to build a cer-
tain dataset of N images for a single topic, being
Li the limit for the search engine i, the Eq. (1)
approximate it.

Adjv(N) =
N∑|L|
i=1 Li

(1)

Even though the number of images should be pro-
portional to the number of adjectives used, the
factory implements a deduplication mechanism of
images, during the fetching stage, that may de-
crease the number of total pictures compared to
the results retrieved with Eq. (1), the higher the
number of adjectives used.

2.4 THE FETCHING STAGE

When the crawling process is finished, the fac-
tory fetches all the resources crawled. The fetch-
ing stage consists of a pool of 10 workers that
downloads distributed the content of each of the
crawled resources, which implies that up to 10 im-
ages can be downloaded simultaneously. Having
increased this value might have forced the DNS
servers to resolve too frequently the addresses
of the hosts that contains the resources, which
could potentially be blocked due to the Request
Response Limit (RRL) of certain Domain Name
Servers (DNS) [17], which can lead to a temporal

XXXVIII Jornadas de Automática

993

ban from the DNS resolver, hence, stopping the
factory from successfully generating the dataset.
Nonetheless, this parameter will eventually be-
come configurable. Lastly, when a resource is re-
quested to a host, the Oculus-Crawl factory sets
a timeout of 15 seconds for the host to answer
this request before it is marked as invalid and dis-
carded from the dataset.

2.4.1 Deduplication of resources.

It is common for multiple search engines to re-
fer to the same resources in certain number of
results. This can be split into two different sit-
uations: 1) the same resource is hosted by two
different hosts; 2) multiple search engines provide
a reference to exactly the same host. In both
cases, the end resource is the same, but the de-
scription used as meta-data might be different. A
way to tackle this problem is to hash the resources
in order to discard duplicates. In Oculus-Crawl,
the hashing is done by using the MD5Hash [14]
algorithm for each resource, which allows to re-
trieve the links and search engines that point to
the same resources and storing them along with
the meta-data element for each resource. For this
reason, Oculus-Crawl might be also useful to catch
hosts with duplication of resources. The reasons
for choosing MD5Hash instead of a more secure
hashing method is: 1) even though a collision of
hashes is possible [18], in the case of a hash colli-
sion for different resources in high sized datasets,
it is probably not going to cause a big trouble
for the end dataset; 2) low sized datasets are not
prone to present collisions and 3) because in scaled
environments where a high sized dataset is re-
quired, the speed in hashing takes importance and
MD5Hash is one of the fastest and reliable-enough
hashing methods. However, it is common to have
the same picture duplicated with different dimen-
sions or formats each, a situation that MD5Hash
or most of the hashing methods are not able to
tackle. In this case, a more complex hash algo-
rithm can be used like the Perceptual Hashing [12],
which Oculus-Crawl will include in the future.

2.4.2 Inferring the extension of the
pictures

When the crawling process is finished, the factory
fetches all the resources crawled. In order to know
the extension of the fetched picture, the name of
the URL that points to it can not be trusted, as it
does not necessarily point to a file-system file, e.g.
a URL that apparently refers to an image because
ends with ".jpg" might refer to an HTML docu-
ment or a binary executable file instead. Hence,
finding the correct extension requires of checking
at the response headers of an HTTP HEAD call

to the remote server that is hosting the picture,
and to process the MIME-type header that spec-
ifies what kind of resource it is returning. Even
though this MIME-type header can not be com-
pletely trusted, as not all the web servers return a
correct MIME-type header for the resources they
send, it is the fastest method for inferring the re-
source’s format in a reliable-enough way. Note
that MIME-Type is the most reliable method just
after the checking at the resource’s content it-
self, and it is also used by the web browsers to
correctly parse the retrieved content for the web
pages they render. For this reason, Oculus-crawl
follows an extension inferring procedure that, by
priority, consists of: 1) retrieve the extension from
the MIME-type; 2) use the URL name to inaccu-
rately infer the extension when the first method
fails. If none of both methods are able to report
a valid picture extension, the file is stored in the
dataset without extension.

2.5 TECHNOLOGIES USED

Oculus-Crawl has been built entirely in Python3.
The project can be directly executed in any
x86_64 architecture by using Docker with the lat-
est Docker image for Oculus-Crawl1, which con-
tains all the dependencies satisfied.

2.5.1 Factory process.

The factory process uses the Python’s library
Flask [7] to expose an API-REST which allows
standardized interactions for crawlers and clients
with the datasets’ sessions. Moreover, this func-
tionality can be easily tested and consumed ex-
ternally (e.g. using HTTP calls with the UNIX
tool cURL) or wrapped and interfaced in a web
view. This means that the creation of a dataset
can be invoked, tracked, backup-ed or dumped at
any time without the need to have explicitly a
client; however, Oculus-Crawl bundles a specific
client for managing these tasks. The factory is a
multi-tasked process which uses the Python’s li-
brary urllib2 to fetch the crawled resources when-
ever the crawling stage has finished, distributed
among processes by using the Python’s library
multiprocess. It also uses the Python’s library
hashlib to perform MD5Hash on each fetched re-
source in order to avoid exact duplications of re-
sources. The final zipped dataset is generated by
using the library shutil from Python.

1https://hub.docker.com/r/dkmivan/
oculus-crawl/tags/

XXXVIII Jornadas de Automática

994

https://hub.docker.com/r/dkmivan/oculus-crawl/tags/
https://hub.docker.com/r/dkmivan/oculus-crawl/tags/

2.5.2 Crawler process.

The crawler process takes advantage of the frame-
work Selenium and its web-drivers [13] for the
web-browser Firefox. This framework allows a di-
rect interaction with the elements from the DOM
and, at the same time, to perform common user’s
actions like clicking on buttons, performing scrolls
or filling forms on the HTML view. Moreover,
this scheme takes advantage of the JavaScript en-
gine from the web-browser since the page gets ren-
dered. This way of crawling through Selenium
adds overhead on the processing of the HTML
by increasing the load times due to rendering the
web-page rather than only parsing the HTML,
however this behavior reduces the probability for
the crawler of getting detected as a bot. Even
though it uses a graphical web-browser instead of
direct HTTP calls, it can run in non-graphical en-
vironments by using the library PyVirtualDisplay
to wrap the view in a virtual display. Further-
more, a crawler process can be split in several
workers taking advantage of the Python’s library
multiprocess, behaving each as a single crawler in-
stance and increasing the overall speed for crawl-
ing the resources within a single host.

2.5.3 Client process.

The client process wraps all the API-REST calls
from the factory for the generation and tracking of
datasets by using the Python’s requests library. It
is a simple client that generates a dataset request
on the factory and steadily polls for its status until
it is finished, showing a progress bar for each of
the stages in the dataset generation.

3 EXPERIMENTS AND
RESULTS

We tested the tool in two dedicated servers In-
tel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz, one
dedicated server Intel(R) Xeon(R) CPU D-1531
@ 2.20GHz and one virtual private server Intel(R)
Xeon(R) CPU E5-2650 0 @ 2.00GHz, each of them
connected to different networks of 1 Gbps of con-
nectivity. We followed different topologies, run-
ning each Oculus-Crawl role in different machines
and also combining all the roles together in a sin-
gle machine to measure the performance impact.
In order to help in the measurements of our tests,
we defined a measurement variable that we called
adjective_rate, which represents the ratio of ad-
jectives per crawler. We realized that, for a small
adjective_rate, a computer with poor performance
running a crawler does not improve significantly
the overall performance of the crawling process
when added to the crawlers pool, as shown in

the Table 2 for the cases A1 and B1. Nonethe-
less, the performance increases only on situations
where the adjective_rate is larger, as shown in
the Table 2 for the cases A2 and B2. This fact
is explained because the search-requests are re-
trieved by the crawlers whenever they get freed
rather than equally distributed among them; lead-
ing faster crawlers to process most of the requests,
a situation that is best used in the case of a high
number of adjectives.

Table 2: Benchmark of crawling same search
words with 3 adjectives. Ai for the case of a
single and fast crawler and Bi for the case of
sharing the crawling process from the same fast
crawler with an extra slow crawler.

Crwls Adjv Size Imgs Time
A1 3 465 MB 2118 4m 20s
B1 3 612 MB 2525 4m 17s
A2 15 2,4 GB 11342 14m 47s
B2 15 2,4 GB 11555 13m 40s

A1: 1 crawler x 3 workers
B1: 1 crawler x 3 workers + 1 slow crawler x 1 worker
A2: 3 crawlers x 3 workers
B2: 3 crawlers x 3 workers + 1 slow crawler x 1
worker

During the crawling process, Oculus-Crawl mixes
the search words with each adjective in order to
generate new search requests, which usually re-
sults in different images being displayed by the
search engine. The number of images retrieved
is proportional to the number of adjectives used
for generating the dataset; however, as it can be
stated in the Figure 4, the number of images is
less than expected the more adjectives are used.

Figure 4: Relation between number of images re-
trieved and number of adjectives used to crawl.

The reason behind this distribution is that Oculus-
Crawl hashes the images by their MD5Hash in or-
der to discard duplicates, and it is more likely to

XXXVIII Jornadas de Automática

995

find more duplications or pictures out of service
the more adjectives used for crawling. However,
we noticed that when the crawlers were spread
among servers located in different countries rather
than a single country, the number of images re-
trieved was higher, as shown in the Table 2 in the
case of B1 and B2. This is explained by the fact
that some search engines, like Google, displays dif-
ferent results for the same search words based on
the geographic localization of the IP that made
the request [8], which reduces the probability of
duplication of images.

We also measured the time spent by Oculus-
Crawl to process 4 adjectives using from 1 single-
threaded crawler to 4 single-threaded crawlers
spread on 4 different machines and networks, as
shown in Figure 5.

Figure 5: Time benchmark for 4 adjectives in func-
tion of the number of crawlers with a single worker
each.

The measurement was done by using the UNIX
time command preceding the invocation of the
dataset creation, which gives an exact execution
time. The highest increase rate in time per-
formance was achieved by using two crawlers,
which passed from 12 minutes to 7. However, the
best performance was achieved by using as many
crawlers as adjectives. When the crawling pro-
cess is finished, the factory starts to fetch each re-
source from the references and finally to compress
it in order to be published in a directory, which
adds a static time independently of the number
of crawlers working in the same pool. This static
time depends on: 1) the connection speed of the
factory’s host and the throughput of the factory’s
hard disk; 2) the size, availability and connection
speed of each crawled resource’s host. Under our
tests, 4 adjectives leveraged into 3200 images, a
total of 800 MB of size and it took 2 minutes and
20 seconds from the start of the fetching stage un-
til the publishing stage.

Finally, we counted the extensions inferred by

Oculus-Crawl by checking the MIME-Type from
the response headers and the URL names when-
ever a MIME-Type was missing, showing that the
most used picture extensions belong to the JPEG
extension group. In ours tests, we realized that
there were some files fetched by the factory that
were executables, like shown in the Table 3. This
implies that search engines for images sometimes
might refer to resources that are not images, even
though originally they were images, showing that
a preprocessing of the files to ensure that they are
images is desirable.

Table 3: Extension for images found by
crawling 3 adjectives.

Extension Count Representation
.jpg 3190 93,91%
.png 117 3,44%
.gif 81 2,38%
.jpeg 4 0,12%
.html 2 0,06%
.jpg c200 1 0,03%
.bin 1 0,03%
.exe 1 0,03%

4 CONCLUSIONS AND
FUTURE WORKS

We developed and presented Oculus-Crawl, an
stand-alone alternative for existing crawling tools
that serves for building Computer Vision datasets
by crawling images from Google and Yahoo im-
ages. It was discussed its suitability for build-
ing large datasets due to its modular and scal-
able architecture and its capacity to circumvent
the search engines limits by combining adjectives
with search words. Within our tests, we were able
to crawl and fetch 11.555 images in less than 14
minutes. We concluded that the best results are
achieved by distributing crawlers’ workers among
different countries, which leads to a different set
of pictures being displayed for the same search
words reducing the probability of duplications and
increasing the quality and richness of the final
dataset; also, the usage of as many crawlers as ad-
jectives gives the best performance. We provided a
relation between number of adjectives and number
of images retrieved for a single search-word topic
and a function to know an approximation of how
many adjectives should be used to retrieve a spe-
cific number of images for a given topic. We also
discussed about one benchmark for performance in
function of the number of crawlers used and an-
other benchmark for the impact of different speeds
in multiple crawlers, In addition, we found a prac-
tice on certain hostings of swapping an original

XXXVIII Jornadas de Automática

996

indexed image with an executable, thus a check of
image correctness before fully using the scraped
dataset is advisable. During our tests we used
high-end machines that vastly satisfied the needs
of the tool; a much lesser specifications might be
capable of achieving the same results.

The creation of a dataset of images is the first
step in building a working model for Computer
Vision and Machine Learning, but in some cases
it is required to label each of the elements that
compose the dataset; for this reason it might be
useful to combine the results of this tool with some
logic able to take advantage of the extracted meta-
data for each element in order to infer a correct
label for each resource.

Also, future directions point towards retrieving
other kind of resources like sounds, music, doc-
uments and videos; and to increase the number of
supported search engines. Even though this soft-
ware is non graphical, it might be able to be in-
terfaced as a web page. In addition, another way
of improving this tool is to automate the genera-
tion of adjectives that are semantically valid with
the main search words, e.g. by using Natural Lan-
guage Processing (NLP) techniques based on the
language that the main search words belong to.

Lastly, we propose a session scheme, which is a
way to share datasets based on crawling, that
contains references instead of the whole crafted
dataset’s content. This tool is able to use this ses-
sion scheme to rebuild the same dataset in any
other computer, easing the sharing process of a
crawled dataset.

4.1 HOW TO CONTRIBUTE

This project is released as open-source under the
GNU GPL v3 License. It can be located in a git
repository within GitHub2. Any contribution can
be done by making pull requests to the repository
or filling the issues tracker.

Acknowledgements

This research was funded by the framework agree-
ment between the University of León and INCIBE
(Spanish National Cybersecurity Institute) under
addendum 22.

References

[1] Apache Software Foundation. Hadoop.
Version 2.8.0. Mar. 22, 2017. URL:
https://hadoop.apache.org.

2https://github.com/ipazc/oculus-crawl

[2] Apache Software Foundation. Nutch.
Version 1.13.0. Apr. 22, 2017. URL:
http://nutch.apache.org.

[3] Chen, K. Python icrawler. Ver-
sion 0.3.6. May. 8, 2017. URL:
https://github.com/hellock/icrawler.

[4] Desai Student, K., Devulapalli Student, V.,
Agrawal Asst, S., Kathiria Asst, P., and Pa-
tel Professor, A., (2017). Web Crawler : Re-
view of Different Types of Web Crawler, Its
Issues, Applications and Research Opportu-
nities. International Journal of Advanced Re-
search in Computer Science, 8(3).

[5] Duda, C., Frey, G., Kossmann, D., Matter,
R., and Zhou, C. (2009). AJAX crawl: Mak-
ing AJAX applications searchable. In Pro-
ceedings - International Conference on Data
Engineering, pages 78–89.

[6] El-Ramly, N., Harb, H., Amin, M., and
Tolba, A., (2004). More effective, efficient,
and scalable web crawler system architec-
ture. International Conference on Electrical,
Electronic and Computer Engineering, 2004.
ICEEC ’04., pages 120–123.

[7] Grinberg, M., (2014). Flask Web Devel-
opment: Developing Web Applications with
Python. O’Reilly Media, Inc., 1st edition.

[8] Gupta, V., Gomes, B., Lamping, J., Mc-
Grath, M., Singhal, A., and Tong, S., (2008).
System and method for providing preferred
country biasing of search results. US Patent
7,451,130.

[9] Hafri, Y. and Djeraba, C., (2004). High per-
formance crawling system. Proceedings of the
6th ACM SIGMM International Workshop
on Multimedia Information Retrieval, pages
299–306.

[10] Kausar, M. A., Dhaka, V. S., and Singh,
S. K., (2013). Web Crawler: A Review. Inter-
national Journal of Computer Applications,
63(2):975–8887.

[11] Merkel, D., (2014). Docker: lightweight linux
containers for consistent development and de-
ployment. Linux Journal, 2014(239):2.

[12] Niu, X.-m. and Jiao, Y.-h., (2008). An
overview of perceptual hashing. Acta Elec-
tronica Sinica, 36(7):1405–1411.

[13] Razak, R. A. and Fahrurazi, F. R. (2011).
Agile testing with selenium. In Software
Engineering (MySEC), 2011 5th Malaysian
Conference in, pages 217–219. IEEE.

[14] Rivest, R., (1992). The md5 message-digest
algorithm. IETF Network Working Group,
RFC 1321.

XXXVIII Jornadas de Automática

997

https://github.com/ipazc/oculus-crawl

[15] Scrapy, A., (2016). Fast and powerful scrap-
ing and web crawling framework. Scrapy. org.
Np.

[16] Silverstein, C., Marais, H., Henzinger, M.,
and Moricz, M., (1999). Analysis of a very
large web search engine query log. ACM SI-
GIR Forum, 33(1):6–12.

[17] Vixie, P., (2014). Rate-limiting state.
Communications of the ACM: ACM Queue,
12(2):10.

[18] Wang, X., Feng, D., Lai, X., and Yu, H.,
(2004). Collisions for hash functions md4,
md5, haval-128 and ripemd. IACR Cryptol-
ogy ePrint Archive, 2004:199.

XXXVIII Jornadas de Automática

998

