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a b s t r a c t 

In this work we propose a two-dimensional multi-species model to describe the dynam- 

ics of biofilms formed by the pathogenic bacteria Listeria monocytogenes . Different Listeria 

monocytogenes strains produce biofilms with different structures, namely flat, honeycomb 

and clustered. Previous works showed that glucose impaired uptake and the appearance of 

damaged or dead cells are critical mechanisms underlying Listeria monocytogenes biofilm 

dynamics. Here we explicitly propose an extension of the two-dimensional multi-species 

model proposed by Alpkist and Klapper to account for those mechanisms. The result is 

a continuous two-dimensional multi-species model with non-linear detachment and mass 

action nutrient consumption. Moreover, we also propose a set of efficient numerical meth- 

ods to solve the coupled model and we have developed their computer implementation 

from scratch in C/C++. Mainly based on finite differences schemes, these numerical tech- 

niques include Crank-Nicolson schemes for time discretization, Gibou’s ghost node tech- 

niques and level set methods to cope with the free boundary associated to the determi- 

nation of the time-dependent biofilm domain. To finish with, we compare our simulation 

results with the dynamics of real biofilms as observed in the laboratory. More precisely, 

by using model parameters calibrated to experiments, the numerical results clearly illus- 

trate the performance of the proposed model and the numerical methods to reproduce 

the real dynamics of flat, clustered and honeycomb structures shown by different Listeria 

monocytogenes strains. 
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Fig. 1. Fundamental parts of a bacterial biofilm system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The vast majority of bacteria tend to grow forming biofilm systems. A bacterial biofilm is a layer of cells anchored to

a substrate layer that keeps them fed and embedded in the exopolisaccharides matrix (EPS), which is formed by polymers

and grants protection to stress and removal, including biocides. Biofilm structures prevent bacteria from being washed out,

in contrast to planktonic bacteria, and grant a safe environment where they can grow (provided that enough nutrients are

available), and form different biological niches for those bacteria that are not able to compete in a fully homogeneus system.

The fundamental parts of a biofilm system ( Fig. 1 ), are the surface (where bacteria are attached to), the proper biofilm

(formed by one or more cell species and the EPS), the media (with nutrients), and the environmental conditions that deter-

mine the biofilm development (temperature, pH and hydrodynamics, among others). 

There are beneficial biofilms [48] , such as the ones used in water treatment plants (RBC, biological reactors), or the ones

colonising rocks in rivers and lakes that help decontaminating waters, and harmful biofilms, such as the ones appearing in

medical implants [52] or in the dental plaque [25] . 

Under the last category lie the biofilms formed by Listeria monocytogenes , a Gram-positive, food-borne pathogen specially

problematic in food industry, that can cause systemic infections in immune compromised, pregnant or elderly patients [11] .

Out of the around fifteen serotypes reported, there are three that account for the majority of human diseases: 1/2a, 1/2b and

4b [43] . Transmission of this pathogen to humans is primarily due to consumption of contaminated food, usually by contact

with unhygienic work surfaces or facilities, where biofilms are found [21,43,49] . L. monocytogenes biofilms can emerge on

common food contact surfaces, such as plastic, polypropylene, rubber, stainless steel or glass [41] , and are protected from

a variety of environmental factors, such as temperature, salt, sugar or pH [28] . They also tolerate better biocides, thus hin-

dering the surface decontamination process to the point that many L. monocytogenes strains have been isolated from food

processing plants despite the programs to sanitize them [10,38] . Miettinen et al. [27] showed that L. monocytogenes biofilms

can persist several years in food processing plants. The most recent outbreaks in Spain and UK (2019) resulted in various

death people and dozends of hospitalisations. Therefore it is of critical importance to unravel how L. monocytogenes form

biofilms, their structure and their life cycle. These facts reflect the relevance of biofilms for the food industry [28] and

identify L. monocytogenes as a major concern. 

L. monocytogenes biofilms can depict different structures: mono-layer of adhered cells, flat unstructured multi-layers, 

honeycomb structures or clusters [6,7,14,26,35,37] . In order to study the dynamics of L. monocytogenes biofilms, there are

two different approaches: experimental techniques and mathematical modelling. These approaches are not mutually ex- 

clusive and, in fact, produce better results when coupled together. The former includes many different techniques such

as plaque count, widely used to analyse biofilms although unable to provide information about the structure [13] , or mi-

croscopy based techniques, the most successful among them being confocal laser scanner microscopy (CLSM), that enables

in situ and in vivo three-dimensional biofilm optical imaging [42] . In this context, recent works suggest several alternative

work-flows and software tools for the systematic analysis of microscopy images, such as IMARIS (a commercial software

that enables the reconstruction of 3-D structures); COMSTAT [18] , ISA 3D [5] , or PHLIP [31] (that allow quantifying CLSM

images); BIOFILMDIVER [29] permits the quantification of biofilms areal porosity, covered area, diffusion distances or the

spatio-temporal population distribution from 2-D images taken with epifluorescence and CLSM; or machine learning algo-

rithms (that permits the analysis of scanning electron microscopy images [45] ). 

On the other hand, mathematical modelling is a tool that can complement the experimental studies due to its great

capability of adaptation and change (easily including new mechanisms coming into play), and its reproducibility. Since the

inception of the first simple empirical models around mid 20th century, mathematical models became much more complex,

taking into account multiple species, both of bacteria and nutrients, together with different microbiological, chemical and

physical processes giving place to multi-dimensional PDE systems. The evolution of biofilm mathematical models is linked

to the evolution of the experimental analysis of biofilms [46] . 
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This work pretends to take advantage of both tools: from the experimental one we take certain parameters obtained

when calibrating the models to fit experimental measurements and from the mathematical modelling we adapt existing

models and develop efficient numerical techniques to simulate them. Thus, we address the numerical solution of a contin-

uous two-dimensional multi-species biofilm model describing biofilm formation in a hydrostatic setup. The model consists

of a set of non-linear equations, that represent the dynamics of the biofilm system by considering the evolution of the

steady-state Poisson equations related to the concentration of nutrients and the growth expansion pressure, and the time-

dependent advection equations related to the active biomass and inactive biomass concentrations. 

More precisely, starting from the model proposed by Alpkvist and Klapper [1] , we introduce original modifications follow-

ing the insights obtained by Balsa-Canto et al. [4] to incorporate several realistic structures and mechanisms. In particular,

we modify nutrient consumption from Monod to mass action and we introduce a non-linear detachment due to biofilm

aging, i.e. due to the presence of damaged or dead cells. The resulting innovative model is solved sequentially by using a set

of highly efficient numerical methods such as the Crank-Nicolson method, Gibou’s ghost nodes strategy [16] and level set

methods first introduced in [33] . All these numerical methods have been implemented from scratch in C/C++. The involved

model parameters were derived from [4] , which contains a rigorous analysis of several one-dimensional (1-D) models that

reproduce the dynamics of the L. monocytogenes L1A1 strain. 

The here proposed model achieves the qualitative structure and temporal dynamics that describes the Listeria monocyto-

genes L1A1 strain which tends to form rough or flat structures. Previous work [4] showed that biofilm maximum height was

quite sensitive to the growth rate and the rate of activation of detachment or inactivation rate. By modifying these param-

eters, the current model is also able to describe various typical structures developed by other strains of L. monocytogenes ,

such as clustered or honeycomb structures, and gives rise to biofilms of different heights. All in all, we end up obtaining a

model that reproduces the experimental behaviour of several L. monocytogenes strains. 

The structure of the paper reads as follows. In Section 2 the mathematical model is presented. Section 3 describes

the numerical methods used, as well as the numerical strategy followed in order to solve numerically the presented

model. Section 4 provides various numerical examples that illustrate the numerical solution obtained by the model. Finally,

Section 5 serves as a summary of the results concluded by this work. 

2. Mathematical model 

In the recent work [4] the study of the dynamics of L. monocytogenes L1A1 strain is addressed by means of a 1-D model.

This simplification could be achieved because L1A1 strain develops rather flat structures. For these flat structures, 1-D mod-

els and suitable numerical methods to simulate them can be considered (see [3,4] , for example). The model was reconciled

with experimental data through experimental data fitting and it was able to predict the dynamics of the biofilm height

and nutrients consumption. The sensitivity analysis of the model revealed that nutrient impaired uptake and the presence

of damaged or dead cells was critical to explain the system dynamics. It must be emphasized that in [4] the presence of

damaged or dead cells was not modeled, but experimental data were used as an input to the system of partial differential

equations. 

However, the presence of internal channels, inner voids or other biofilm structures (such as rugose, mushroom-shaped

or clustered biofilms), cannot be explained with 1-D models. Thus, in order to explore those different structures we need

to define suitable two-dimensional (2-D) models that, in addition, should incorporate several components and/or species

such as viable cells (from one or several microbial species), damaged or dead cells, EPS, various nutrients, etc. From now on,

these models will be regarded as multi-species. 

The first relevant multi-species model was presented in Wanner and Gujer [47] , usually referred as W-G model. The

model consists of a set of 1-D partial differential equations that describes the dynamics of a multi-microbial biofilm, usually

with predefined microbial distributions. After that, more elaborated 2-D models were developed. Several authors suggested

individual based models (see for instance, [22,23,34,44,50,51] ) or cellular automaton based models (see [19,32] , for example)

to explain single and two-species biofilms. 

The work by Wanner and Gujer [47] and the subsequent extension to the multidimensional case proposed by Alpkvist

and Klapper [1] have been extensively used and thus the model we propose here is an extension with novel mechanisms

of an already popular model. In particular, we adapt the model to account for two additional mechanisms that have been

shown to be relevant for the dynamics of L. monocytogenes biofilms in batch cultures: glucose impaired uptake and biofilm

aging [4] . 

This extension to the original Alpkist-Klapper model will enable us not only to recover flat but also clustered or honey-

comb structures. 

Alpkvist et al. [1] proposed a continuum model of the W-G type that allows the inclusion of multi-species as well as the

study of spatial heterogeneities. When applying the model to a flat biofilm, it works as a W-G 1-D model, although it can

also be used to capture different spatial structures. This model takes into account the active and inactive biomass of the

same species and only one limiting nutrient. While referring to active biomass (represented by its volumetric fraction, v 1 ),

we are considering the components of the biofilm actively reacting with the nutrients , the concentration of which is denoted

by s . The inactive biomass (also represented by its volumetric fraction, v 2 ), includes all other materials that do not explicitly

affect the nutrients concentration, such as damaged cells, dead cells or EPS. 

The two dimensional domain of the problem, � = [0 , L ] × [0 , H] , is represented in Fig. 2 . 
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Fig. 2. Dimensionless solving domain for the 2D case. 
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At each time t , the domain is decomposed into two disjoint subdomains: the biomass region, �t 
1 
, and the bulk (the

region without biomass), �t 
2 
. It must be noted that the regions �t 

1 
and �t 

2 
change with the evolution of the biomasses with

time. Let us denote by �t 
0 

the free boundary separating �t 
1 

and �t 
2 
. In order to track the evolution of �t 

0 
, we introduce a

time dependent level set function, φ, so that, at every time t ≥ 0, 

�t 
0 = { (x, y ) ∈ �/φ(x, y, t) = 0 } . 

In other words, �t 
0 

represents the level set zero of the function φ. Furthermore, the domains �t 
1 

and �t 
2 

can be repre-

sented in terms of the function φ as 

�t 
1 = { (x, y ) ∈ �/φ(x, y, t) < 0 } , �t 

2 = { (x, y ) ∈ �/φ(x, y, t) ≥ 0 } . 
Similarly, at a fixed given distance, H b , from �t 

0 
we define the boundary 

�t 
H b 

= { (x, y ) ∈ �/φ(x, y, t) = H b } , 
which is the level set H b of the function φ. This is a non-physical frontier above which there is enough availability of

nutrients. The set �t 
H b 

also represents the upper boundary of the following domain 

�t 
H b 

= { (x, y ) ∈ � / φ(x, y, t) < H b } . 
Finally, the left and right boundaries of the domain � are denoted by 

�L = { (x, y ) ∈ � /x = 0 } , �R = { (x, y ) ∈ � /x = L } , 
whereas the top and bottom boundaries are denoted by 

�B = { (x, y ) ∈ � /y = 0 } , �H = { (x, y ) ∈ � /y = H} . 
This model takes into account the following assumptions [1,2] : 

i. The biofilm is described as a viscous fluid. 

ii. Nutrients and biomasses concentrations are governed by a mass conservation equation. 

ii. Active and inactive biomasses are of the same microbial species, thus implying that their density, ρ , is the same. Also,

they are assumed to be incompressible, so that the density is constant. 

iv. The biofilm system hosts reaction processes (production or consumption of nutrients or biomasses), transport processes

(movement inside the same domain) or transference processes (movement between different domains). 

v. Expansion or contraction of the biofilm is due to processes included in the model. 

vi. The processes associated to the biomasses are much slower that the ones contributing to the nutrients evolution. 

ii. Nutrients production or consumption is due to biotic or abiotic reaction processes. 

ii. Nutrients are diluted in the media and, therefore, are present in the whole system, whereas biomass is not diluted and

exists only inside the biofilm. 

The description of the biofilm postulated by (i) allows to describe in a simple way the different interactions between

species. Due to (vi) , nutrients are considered in a quasi-steady state. 

Postulate (viii) implies that nutrients transport is governed by a diffusion mechanism, described by Fick’s Law. On the

other hand, biomasses transport is regulated by and advection process. The reaction included in biomasses equations cause

an increase or decrease of the biomasses concentration which, in turn, translates into an increase or decrease of the volume
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of the biofilm. The evolution of the biomasses concentration gives rise to a growth expansion pressure, p . The advective trans-

port of biomass is understood as a movement away from the regions with high growth expansion pressure and is described

through an advective expansive velocity field , � u , which depends on the pressure as stated in Darcy’s Law. As previously indi-

cated, the evolution of �t 
0 

depends on the evolution of the biomasses concentration. More precisely, all level sets of φ are

going to move following the normal velocity, f e , which represents an extension to all � of the normal component of � u , at

�t 
0 
. In other words, f e is the extension to � of ( � u · � n ) | 

�t 
0 

, where � n is the vector normal to �t 
0 
. 

The previous assumptions are completed with the following considerations [4] : 

x. Nutrients uptake (and, therefore, biomass growth), follows a mass action law. 

x. Biofilm dynamics are affected by ageing. 

Thus, the spatio-temporal variables of the model are 

• t ≥ 0: time, 
• ( x, y ) ∈ �: spatial coordinate, 
• v i ( x, y, t ): active (i = 1) and inactive (i = 2) biomasses volumetric fractions, 
• s ( x, y, t ): nutrients concentration, 
• p ( x, y, t ): growth expansion pressure. 
• �

 u (x, y, t) : expansive growth velocity field, 
• f e ( x, y, t ): extended normal expansive velocity to � for the level set method, 
• φ( x, y, t ): level set function. 

The model is given by the following set of equations [1] : 

−D ∇ 

2 s = R (v 1 , v 2 , s ) in �t 
H b 

, (1)

−ρλ∇ 

2 p = G 1 (v 1 , v 2 , s ) + G 2 (v 1 , v 2 , s ) in �t 
1 , (2)

�
 u = −λ∇p in �t 

1 , (3)

∂ t φ + f e ||∇φ|| = 0 in �, (4)

ρ( ∂ t v i + ∇ · ( � u v i ) ) = G i (v 1 , v 2 , s ) , for i = 1 , 2 , in �t 
1 , (5)

where D is the diffusion coefficient, R ( v 1 , v 2 , s ) is the nutrients uptake rate and G i ( v 1 , v 2 , s ) are the biomasses growth rates

( i = 1 for the active biomass and i = 2 for the inactive biomass). The second order elliptic partial differential Eq. (2) states

that: when the biomass concentration increases, the pressure generated causes an expansion on the biofilm volume,

whereas, when the biomass concentration decreases, the biofilm shrinks. The parameter λ is called the Darcy’s parame-

ter and depends on the viscosity of the media [15] . It can be proven [1] that p is proportional to λ−1 , so that we can take

λ = 1 . 

From Eqs. (2) and (3) we get 

−λ∇ 

2 p = −∇ · � u = 

2 ∑ 

i =1 

G i (v 1 , v 2 , s ) 
ρ

. (6)

Next, by considering that ∇ · ( � u v i ) = 

�
 u · ∇v i + v i ∇ · � u and taking λ = 1 , Eq. (5) becomes 

∂ t v i − ∇p · ∇v i = 

G i (v 1 , v 2 , s ) 
ρ

− v j 
2 ∑ 

j=1 

G j (v 1 , v 2 , s ) 
ρ

, for i = 1 , 2 . (7)

At this point, we would like to emphasize the proposed modification with respect to Alpkvist model [1] . First, we note

that the third 1-D model proposed in [4] concludes that for L1A1 nutrients uptake is impaired and biofilm dynamics is

affected by ageing, i.e. by the presence of inactive biomass. Therefore, we introduce the same mechanisms in the here

proposed 2-D model. Thus, assuming that in our experimental scheme nutrients are not limited, we propose to modify the

Monod term and use a linear nutrients uptake formulation. In addition, we replace the linear detachment by the inactive

cell dependent detachment. Also note that the current model accounts for inactive cells, so that both equations are also

coupled by the detachment term. Therefore, the proposed new reaction term can be expressed as 

R (v 1 , v 2 , s ) = 

−ρv 1 μs 

Y 

, (8)

for the nutrients uptake, where 

• Y: growth yield, 
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• μ: maximum growth rate. 

and 

G 1 (v 1 , v 2 , s ) = v 1 μs − v 1 
t −1 

D 

1 + exp (K d (D min − mean (v 2 ))) 
− v 1 k i , (9)

G 2 (v 1 , v 2 , s ) = v 1 k i , (10) 

for the biomasses growth, where 

• t D : number of seconds per day, 
• k i : inactivation rate, 
• K d : rate of detachment activation, 
• D min : percentage of damaged or dead cells before detachment, 
• mean ( v 2 ): mean concentration of inactive biomass. 

Remark that, in this way, the detachment process starts when there is a given mean inert biomass in the biofilm and

cells detach in all areas of the biofilm. 

Finally, boundary conditions must be imposed. First of all, at the left and right boundaries, �L and �R respectively, we

will consider periodic boundary conditions, i.e, 

f (0 , ·) = f (L, ·) , 
for any function f . Secondly, we consider the bottom boundary of the domain, �B , impermeable, so that a no-flux condition

is imposed, i.e, 

∂ f 

∂n 

= 0 on �B . 

In a similar manner, at the top boundary of the domain, �H , a zero flux condition is imposed for the level set function.

The value of H is taken large enough so that the boundary �t 
H b 

never leaves �. We assume that above �t 
H b 

there is enough

nutrients availability. Furthermore, the concentration and flux of nutrients through �t 
H b 

must be continuous. Finally, active

biomass, inactive biomass and pressure are set to be zero at �t 
0 
. 

In summary, the model is described by Eqs. (1) –(4) and (7) , with reaction terms (8) –(10) , together with the following

boundary conditions 

s = s ∗ on �t 
H b 

, ∂ y s = 0 on �B , (11) 

p = 0 on �t 
0 , ∂ y p = 0 on �B , (12) 

∂ y φ = 0 on �H , ∂ y φ = 0 on �B , (13) 

v 1 = v 2 = 0 on �t 
0 , ∂ y v 1 = ∂ y v 2 = 0 on �B , (14)

where s ∗ is the maximum nutrients concentration, and periodic boundary conditions on �L and �R are considered. 

2.1. Dimensionless model 

For computational reasons, let us consider a dimensionless model by introducing the dimensionless spatial and temporal

variables 

X = 

x 

H 

, Y = 

y 

H 

, τ = 

t 

t D 
, 

where t D is the number of seconds per day and H is the height of the domain. The dimensionless nutrients, pressure,

velocities, level set function and volumetric fractions are defined by 

S = 

s 

s ∗
, P = 

λt D p 

H 

2 
, �

 U = 

�
 u , F e = f e , 	 = φ, V i = v i . 

By applying the previous dimensionless spatio-temporal variables and unknowns, the system of Eqs. (1) –(4) and (7) be-

comes 

−∇ 

2 S = −V 1 ̂
 h 

2 
T S in �τ

ˆ H b 
, (15) 

−∇ 

2 P = V 1 
ˆ 
S − V 1 F D (V 2 ) in �τ

1 , (16) 
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Table 1 

Parameters involved in the equations. 

Parameter Description 

L, H Domain length and height 

H b Boundary layer height 

ρ Biomass Density 

D Diffusion coefficient 

Y Growth yield 

μ Maximum growth rate 

K d Rate of detachment activation 

D min Percentage of damaged or dead cells 

k i Inactivation rate 

t D Number of seconds per day 

s ∗ Maximum nutrients concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�
 U = −∇P in �τ

1 , (17)

∂ τ	 + F e ||∇	|| = 0 in �, (18)

∂ τV 1 − ∇P · ∇V 1 = V 1 

[
ˆ 
S − ( F D (V 2 ) + ε2 ) − V 1 ( ̂  
S − F D (V 2 )) 

]
in �τ

1 , (19)

∂ τV 2 − ∇P · ∇V 2 = V 1 ε2 − V 2 

(
V 1 

ˆ 
S − V 1 F D (V 2 ) 
)

in �τ
1 , (20)

where 

F D (V 2 ) = 

1 

1 + exp (K d (D min − mean (V 2 ))) 
, (21)

and the involved dimensionless constants are 

ˆ h 

2 
T = 

H 

2 μρ

YD 

, ˆ 
 = μs ∗t D , ε2 = t D k i , 

where the involved parameters are described in Table 1 . The model is completed with the following dimensionless boundary

conditions: 

S = 1 on �τ
ˆ H b 

, ∂ Y S = 0 on �B , (22)

P = 0 on �τ
0 , ∂ Y P = 0 on �B , (23)

∂ Y φ = 0 on �H , ∂ Y φ = 0 on �B , (24)

V 1 = V 2 = 0 on �τ
0 , ∂ Y V 1 = ∂ Y V 2 = 0 on �B , (25)

jointly with periodic boundary conditions on �L and �R . 

3. Numerical methods 

In order to solve the system (15) –(20) jointly with the boundary conditions we consider a finite difference discretization

in the time and spatial domain. As the equations involved in the system are coupled, we develop a sequential solution

of them. Each equation needs specific numerical techniques. Therefore, in the following section we first introduce general

notations associated to the finite differences discretization and briefly sketch the steps of the global algorithm. Next sections

are devoted to the description of particular numerical techniques proposed for the equations to be solved at each step of

the global algorithm. Note that we have chosen efficient numerical techniques which are suitable for the PDE problem at

each step. Although we have obtained a good numerical convergence and stability behaviour, the theoretical analysis of the

convergence of the global algorithm is an open problem which is out of the scope of the present article. The computer

implementation of the proposed global algorithm has provided the numerical results shown in Section 4 . These numerical

results illustrate the agreement with the experiments in the laboratory, so that the proposed model has been validated. 

All the codes corresponding to the numerical methods have been developed from scratch in C/C++, so that no commercial

or professional software has been used. 
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3.1. General notations and global algorithm 

In order to describe the numerical strategy, let us introduce certain general notations. First of all, as we are working in

a finite differences framework, let M X and M Y be the number of spatial intervals in directions X and Y , respectively, and

let N be the number of time intervals. For the sake of simplicity, let us consider a square domain with H = L and let us

take M X = M Y = M. Therefore, we can define the temporal and spatial steps of the finite different mesh as �τ = T max /N and

�X = �Y = 1 /M. Thus, the spatial nodes of the finite differences mesh are (X i , Y j ) = (i �X, j�Y ) , with i, j = 0 , . . . , M and

the time nodes are τn = n �τ, with n = 0 , . . . , N. Moreover, the approximations of the unknowns of the system at the finite

differences nodes are denoted by 

• S n 
i, j 

≈ S(X i , Y j , τn ) , with i, j = 0 , . . . , M and n = 0 , . . . , N, 

• P n 
i, j 

≈ P (X i , Y j , τn ) , with i, j = 0 , . . . , M and n = 0 , . . . , N, 

• 	n 
i, j 

≈ 	(X i , Y j , τn ) , with i, j = 0 , . . . , M and n = 0 , . . . , N, 

• V n 
1 i, j 

≈ V 1 (X i , Y j , τn ) , with i, j = 0 , . . . , M and n = 0 , . . . , N, 

• V n 
2 i, j 

≈ V 2 (X i , Y j , τn ) , with i, j = 0 , . . . , M and n = 0 , . . . , N. 

As we are dealing with a time dependent biofilm domain, it will come in handy to introduce the indicator function ℵ 

n ,

that identifies the nodes of the discretization that lie inside the biofilm domain at time τ n , �
τn 
1 

, and those that do not lie

inside. This indicator function is defined in terms of the level set function as follows (note that the boundary of the biofilm

domain corresponds to the zero level set): 

ℵ 

n (X, Y ) = 

{
1 , if 	(X, Y, τ n ) < 0 , 

0 , otherwise. 
(26) 

Analogously, as the solving domain of the nutrients equation at time τ n , �
τn 

ˆ H b 
, includes part of the bulk (see Fig. 2 ), the

indicator function ℵ 

n 
S 

identifies the nodes of the discretization that lie inside �τn 

ˆ H b 
, and those that do not lie inside. This

function is defined in terms of the level set function as 

ℵ 

n 
S (X, Y ) = 

{
1 , if 	(X, Y, τn ) < 

ˆ H b , 

0 , otherwise. 
(27) 

As with the rest of the involved functions, we use the notation ℵ 

n 
i, j 

≈ ℵ 

n (X i , Y j ) and ℵ 

n 
S i, j 

≈ ℵ 

n 
S 
(X i , Y j ) , with i, j = 0 , . . . , M

and n = 0 , . . . , N. 

Finally, as we are imposing periodic boundary conditions at �L and �R , we consider the identities 

Q 

n 
M, j = Q 

n 
0 , j , ∀ j = 0 , . . . , M, ∀ n = 0 , . . . , N, 

where Q 

n 
i, j 

≈ Q (X i , Y j , τn ) for any function or unknown, Q , of the problem. In practise, this means that we are only consid-

ering the unknowns corresponding to the indices i = 0 , . . . , M − 1 . 

The model presented in Section 2 consist of a system of coupled differential equations. It is not possible to compute the

analytical solution and solving the whole system at once requires a great effort from the numerical point of view. Therefore,

the idea is to solve sequentially the involved equations at each time step. Thus, the global algorithm reads as follows (see

Fig. 3 ): 

1. Initialise the variables V 0 
1 

, V 0 
2 

and 	0 . 

2. Start the temporal loop (indexed by n , corresponding to time τ n ). 

3. Solve the nutrients Eq. (15) . 

4. Solve the pressure Eq. (16) . 

5. Compute the normal extended velocity, F e , that moves the level sets by applying Eq. (17) and the velocity extension

method. 

6. Advance one time step in the level set Eq. (18) . 

7. With the new level set function, 	n +1 , define the updated solving domains, �
τn +1 

1 
and �

τn +1 

ˆ H b 
, the updated domain rep-

resenting the bulk, �
τn +1 

2 
and the updated boundaries, �

τn +1 

0 
and �

τn +1 

ˆ H b 
. 

8. Advance one time step in the active biomass Eq. (19) . 

9. Advance one time step in the inactive biomass Eq. (20) . 

0. If n + 1 < N, repeat the process from step 3. 

The applied numerical methods vary depending on which equation is being solved, due to the particularities of each one.

In next sections we describe the different methods. 

3.2. Numerical methods for the nutrients and pressure equations 

The semi-linear Poisson equations governing the nutrients (15) and the expansive growth pressure (16) , are solved at

each time iteration. As the solving process is decoupled by solving the model sequentially, we must use the values of the
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Fig. 3. Flowchart of the global numerical algorithm. 

 

 

 

 

 

 

 

 

active biomass from the previous iteration (or from the initial condition if we are solving the first iteration), in order to

reach the steady-state of the nutrients. Once computed, the new values of the nutrients are used jointly with the values of

the biomasses from the previous iteration to solve the pressure equation. The time independence makes the resolution of

this equation easier than the biomasses equations. 

Nutrients equation is solved in the domain �τ
ˆ H B 

, the boundaries of which are �L , �R , �B and �τ
ˆ H b 

. As stated before, the

problem conditions grant enough availability of nutrients above �τ
ˆ H b 

, although in the region between �τ
ˆ H b 

and �τ
0 

nutrients

concentration is affected by the proximity to the biofilm. On the other hand, pressure equation is solved in the domain �τn 
1 

,

the boundaries of which are �L , �R , �B and �τn 
0 

, as shown in Fig. 2 . Above �τ
0 

there is no presence of biomass, so that

the pressure is zero. In both equations the spatial variables are discretised using standard finite differences, modified as in

Gibou et al. [16] . 
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Remark 3.1. In order to explain the idea of Gibou’s method, let us consider the one dimensional equation 

u xx = f in � = [0 , L ] . (28) 

Let { x i } M 

i =0 
be the set of nodes of a uniform finite differences mesh of the domain �, with x 0 = 0 , x M 

= L and �x = x i − x i −1

constant. Moreover, we denote u i ≈ u ( x i ) and f i = f (x i ) . Using a standard finite differences approximation, the discretization

of (28) leads to the system of equations: [ 
u i +1 − u i 

�x 
− u i − u i −1 

�x 

] 
1 

�x 
= f i , for i = 1 , . . . , M − 1 . (29) 

Let us now assume that � has a free boundary at � = { x I } that divides the domain into two disjoint subsets and we know

the value u (x I ) = u I . In this setting, we have an index k , such that x k ≤ x I ≤ x k +1 . In Gibou’s method we use the discretization

(29) for i = 1 , . . . , k − 1 . For the node x k instead of using u k +1 , we set an approximation for the ghost node x k +1 by using a

linear extrapolation as follows: 

u 

G 
k +1 = 

u I + (θk − 1) u k 

θk 

, with θk = 

d(x k , �) 

�x 
= 

| x I − x k | 
�x 

∈ [0 , 1] . (30) 

Note that when θ k is close to zero, Eq. (30) blows up, so that: 

• If θ k ≤ �x , we take u k = u I , where u I is known. 
• Otherwise, the value of the ghost node u k +1 = u G 

k +1 
can be used in Eq. (29) for i = k, thus obtaining the following second

order discretization [ 
u I − u k 

θk �x 
− u k − u k −1 

�x 

] 
1 

�x 
= f k . 

As u I is known, it contributes to the second term of the system, so that the final equation for x k is: 

−
(

1 + 

1 

θk 

)
u k + u k −1 = (�x ) 2 f k −

u I 

θk 

. (31) 

In a one dimensional domain �, the discretization (29) does not cause any further problem. However, in our case, when

approaching the boundary �τ
H b 

(or �τ
0 

in the pressure equation), the geometrical aspects related to a two dimensional case

make the procedure more complex. 

In our cases of nutrients and pressure equations, we choose �X = �Y and the value of θ in Gibou’s method depends on

the node and the boundary (equation) we are considering. In the case of the nutrients equation, the value of θ at each node

is initially given by: 

θ S 
i j = 

d((X i , Y j ) , �
τ
H b 

) 

�X 

, 

while for the pressure equation the value of θ is 

θ P 
i j = 

d((X i , Y j ) , �
τ
0 ) 

�X 

. 

In our approach, we can take advantage of the level set technique, so that we actually use the expression 

θ S 
i j = 

| φ(X i , Y j , τ
n ) − φ | �τn 

H b 

| 
�X 

= 

| φ(X i , Y j , τ
n ) − H b | 

�X 

(32) 

for the nutrients equation, while we use expression 

θ P 
i j = 

| φ(X i , Y j , τ
n ) − φ | �τn 

0 
| 

�X 

= 

| φ(X i , Y j , τ
n ) | 

�X 

(33) 

for the pressure equation. 

Let us assume that we are solving the model at time step n+1. Therefore, we need to solve first the nutrients equation 

−∇ 

2 S n +1 = −V 

n 
1 

ˆ h 

2 
T S 

n +1 , in �τn 

ˆ H B 
. (34) 

and then, the pressure equation, 

−∇ 

2 P n +1 = V 

n 
1 

ˆ 
S n +1 − V 

n 
1 F D (V 

n 
2 ) , in �τn 

1 
, (35) 

where 

F D (V 

n 
2 ) = 

1 

1 + exp (K d (D min − mean (V 

n ))) 
. (36) 
2 
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If we apply a standard finite differences scheme coupled with Gibou’s method [16] , the discretization of Eq. (34) leads to

the linear system of equations 

ℵ 

n 
S i, j+1 

S n +1 
i, j+1 

+ ℵ 

n 
S i +1 , j S 

n +1 
i +1 , j 

−
[ 

4 + ( θ S 
i j 

− 1) ̄ℵ 

n 
S i, j 

θ S 
i j 

+ (�X ) 2 V 

n 
1 i, j 

ˆ h 

2 
T 

] 

S n +1 
i, j 

+ 

ℵ 

n 
S i, j−1 

S n +1 
i, j−1 

+ ℵ 

n 
S i −1 , j 

S n +1 
i −1 , j 

+ 

4 − ℵ̄ 

n 
S i, j 

θ S 
i j 

S n +1 
I = 0 , if ℵ 

n 
S i, j 

= 1 , (37)

for i = 0 , . . . , M − 1 , j = 0 , . . . , M. The term ℵ 

n 
S i, j 

= ℵ 

n 
S 
(X i , Y j ) is defined in (27) , whereas ℵ̄ 

n 
S 

denotes 

ℵ̄ 

n 
S i, j 

= ℵ 

n 
S i, j+1 

+ ℵ 

n 
S i, j−1 

+ ℵ 

n 
S i +1 , j 

+ ℵ 

n 
S i −1 , j 

, (38)

and S n +1 
I 

= 1 , as stated by the boundary condition (22) for the nutrients concentration on �τn 

ˆ H b 
. 

Note that the value of θ S 
i j 

is given by expression (32) . If all neighbouring nodes of ( X i , Y j ) are located bellow the boundary

�τn 

ˆ H b 
then expression (38) implies that ℵ̄ 

n 
S i, j 

= 4 , so that the dependence on θ S 
i j 

disappears in the discretized equation for the

node ( X i , Y j ) and we recover the standard discretization without ghost node. 

In order to establish a linear system involving the value of the nutrients at all mesh nodes, we extend the value S ≡ 1

on the boundary �τn 

ˆ H b 
to the set �\ �τn 

ˆ H b 
. Therefore, we add the following equations 

S n +1 
i, j 

= 1 , if ℵ 

n 
S i, j 

= 0 . (39)

The resulting linear system is solved through an LU method with partial pivoting [36] . 

Once the linear system given by Eqs. (37) and (39) is solved, we proceed to solve the pressure Eq. (35) by applying a

standard finite differences scheme coupled with Gibou’s method. We obtain the following set of equations: 

ℵ 

n 
i, j+1 P 

n +1 
i, j+1 

+ ℵ 

n 
i +1 , j P 

n +1 
i +1 , j 

−
[ 

4 + ( θ P 
i j 

− 1) ̄ℵ 

n 
i, j 

θ P 
i j 

] 

P n +1 
i, j 

+ 

ℵ 

n 
i, j−1 P 

n +1 
i, j−1 

+ ℵ 

n 
i −1 , j P 

n +1 
i −1 , j 

− (�X ) 2 V 

n 
1 i, j 

(
F D (V 

n 
2 ) − ˆ 
S n +1 

i, j 

)
= 0 , if ℵ 

n 
i, j = 1 , (40)

for i = 0 , . . . , M − 1 , j = 0 , . . . , M. The term ℵ 

n 
i, j 

= ℵ 

n (X i , Y j ) is defined in (26) , whereas ℵ̄ 

n denotes 

ℵ̄ 

n 
i, j = ℵ 

n 
i, j+1 + ℵ 

n 
i, j−1 + ℵ 

n 
i +1 , j + ℵ 

n 
i −1 , j , (41)

Analogously to the nutrients equation, we note that the value of θ P 
i j 

is given by expression (33) . Moreover, If all neigh-

bouring nodes of ( X i , Y j ) are located bellow the boundary �τn 
0 

then expression (41) implies that ℵ̄ 

n 
i, j 

= 4 , so that the depen-

dence on θP 
i j 

disappears in the discretized equation for the node ( X i , Y j ) and we recover the standard discretization without

ghost node. 

Following the steps of Gibou’s method, there should be a term P n +1 
I 

, corresponding to the value of the pressure at the

interface �τn 
0 

. However, as the boundary conditions state that P n +1 
I 

= 0 , this term vanishes. 

In order to establish a linear system involving the value of the pressure at all mesh nodes, we extend the value P ≡ 0 on

the boundary �τn 
0 

to the set �τn 
2 

. Therefore, we add the following equation 

P n +1 
i, j 

= 0 , if ℵ 

n 
i, j = 0 . (42)

The resulting linear system is solved through an LU method with partial pivoting. 

3.3. Numerical methods for the level set equation 

The level set Eq. (18) describes the evolution of the level set function, 	, which is used to track the position of the free

boundary �τ
0 

as the zero level set that identifies the boundary of the biofilm domain. Also it allows to identify the boundary

�τ
ˆ H b 

. Therefore, the level set equation is part of the numerical strategy to identify the unknown location of changing domains

with time and not a proper equation of the model. Introducing the level set equation simplifies the whole numerical solving

process, as we can easily describe the solving domains for each equation, without actually locating the position of �τ
0 

and

�τ
ˆ H b 

, for example, or renewing the mesh at every time step. 

In order to solve numerically the level set equation, we simply follow the steps of the Level Set method as developed in

[39] , a mathematical tool used to track the movement of free boundaries driven by a certain velocity field. Note that a level

set method has also been used in combination with an immersed interphase technique in a Hele-Shaw modelling approach

to the biofilm problem in [12] . The method proceeds as follows. 

First of all, at the beginning of the numerical solution, the level set function must be appropriately defined by using the

initial expression for �0 . Then, at every time iteration, n + 1 , the following steps are addressed: 

0 
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1. computation of the expansion growth velocity, � U 

n +1 at �τn 
1 

by using Eq. (17) , 

2. computation of the advance normal velocity F n +1 = 

�
 U 

n +1 · � n at the level set �τn 
0 

, 

3. extension of the velocity F n +1 from �τn 
0 

to �, thus obtaining F n +1 
e , 

4. advance of one time step in the solution of the level set Eq. (18) , thus obtaining 	n +1 , by following the steps of the Fast

Marching Method [40] , 

5. reinitialisation of 	n +1 (only when needed). 

Once we have done all steps, we get the new level set function, 	n +1 at time τ n +1 , that defines solving domains for the

system equations, namely �
τn +1 

1 
and �

τn +1 

ˆ H b 
. For a complete description of the method, we refer to [8,9,39,40] . 

The numerical discretization of the level set equation is achieved by using standard upwind finite differences for the

spatial derivative and an explicit scheme for the time derivative. Even with the simplicity of the used numerical methods,

the discretization is accurate due to other steps of the method. In particular, the construction of the velocity guarantees

that the solution of the level set is reliable, provided that we discretise taking into account the direction from which the

information is travelling (upwind). Therefore, by applying an explicit scheme for the time derivative we obtain 

	n +1 − 	n 

�τ
= −F n +1 

e ||∇	n || . (43) 

Next, by applying an upwinding strategy in space that takes into account the sign of F , we get 

	n +1 
i, j 

= 	n 
i, j − �τF n e i, j 

[
max ( sign (F n e i, j 

) D −X 	
n 
i, j , −sign (F n e i, j 

) D + X 	n 
i, j ) 

2 + 

max ( sign (F n e i, j 
) D −Y 	

n 
i, j , −sign (F n e i, j 

) D + Y 	n 
i, j ) 

2 
]1 / 2 

, (44) 

where 

D −X 	
n 
i, j = 

	n 
i, j 

− 	n 
i −1 , j 

�X 

, D + X 	n 
i, j = 

	n 
i +1 , j 

− 	n 
i, j 

�X 

, 

D −Y 	
n 
i, j = 

	n 
i, j 

− 	n 
i, j−1 

�Y 
, D + Y 	n 

i, j = 

	n 
i, j+1 

− 	n 
i, j 

�Y 
. 

Once Eq. (44) has been applied at each mesh point, we obtain the values of 	n +1 . With these values we must define the

new biofilm domain �n +1 
1 

, which is 

�
τn +1 

1 
= { (X, Y ) ∈ � / 	n +1 (X, Y ) < 0 } . 

Similarly, the domain �
τn +1 

2 
is defined as 

�
τn +1 

2 
= { (X, Y ) ∈ � / 	n +1 (X, Y ) ≥ 0 } , 

whereas, the new boundary is 

�n +1 
0 = ∂ �τn +1 

1 
∩ ∂ �τn +1 

2 
. 

Finally, the domain �
τn +1 

ˆ H b 
is defined as 

�
τn +1 

ˆ H b 
= { (X, Y ) ∈ � / 	n +1 (X, Y ) < 

ˆ H b } , 
whereas �

τn +1 

ˆ H b 
is 

�
τn +1 

ˆ H b 
= { (X, Y ) ∈ � / 	n +1 (X, Y ) = 

ˆ H b } . 
3.4. Numerical methods for the biomasses equations 

Both biomasses equations are of advection type. However, the active biomass equation is non-linear. This is the main

difference between the numerical strategies used in the active biomass and the rest of the equations of the model, including

the inactive biomass. For both biomasses equations we apply Crank-Nicolson [24] for time discretization and an upwinding

technique for the spatial discretization, with the upwinding direction determined by the sign of the pressure derivatives. 

Moreover, note that due to the application of the Crank-Nicolson method we have an explicit part in which both the pres-

sure and active or inactive biomass spatial derivatives in the previous step are involved, that is ∇P n and ∇V n 
1 

in Eq. (19) or

∇ P n and ∇ V n 
2 

in Eq. (20) . These derivatives, as well as the term ∇P n +1 in the implicit part, are computed by using a WENO

scheme [20] . 

The biomasses equations are solved in the recently computed domain �
τn +1 

1 
, which is bounded by �L , �R , �B and �

τn +1 

0 
.

We first solve the active biomass Eq. (20) , which is the next-to-last equation of the model to be solved. At time step n + 1

we need to compute the values V n +1 
1 

, which represents the approximation of the active biomass at the mesh nodes. For this

purpose, by applying a Crank-Nicolson scheme to Eq. (19) , we obtain 

V 

n +1 
1 

− V 

n 
1 = 

1 

[∇ P n +1 · ∇ V 

n +1 
1 + V 

n +1 
1 

(
ˆ 
S n +1 − ( F D (V 

n 
2 ) + ε2 ) − V 

n +1 
1 

(
ˆ 
S n +1 − F D (V 

n 
2 ) 

))]

�τ 2 
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+ 

1 

2 

[∇ P n · ∇ V 

n 
1 + V 

n 
1 

(
ˆ 
S n − ( F D (V 

n 
2 ) + ε2 ) − V 

n 
1 

(
ˆ 
S n − F D (V 

n 
2 ) 

))]
, in �

τn +1 

1 
, (45)

where 

F D (V 

n 
2 ) = 

1 

1 + exp (K d (D min − mean (V 

n 
2 
))) 

. 

In order to establish a linear system involving the value of the biomass at all mesh nodes, we extend the value V 1 ≡ 0

on the boundary �
τn +1 

0 
to the set �

τn +1 

2 
. Therefore, we add the following equation 

V 

n +1 
1 = 0 , in �

τn +1 

2 
. (46)

Note that P n , P n +1 , S n , S n +1 and V n 
1 

are all known values. The decay term F D is a function that depends on the mean

concentration of inactive biomass. In order to decrease the difficulty of the problem, instead of considering the mean inactive

biomass of the current iteration, we use the mean inactive biomass from the previous iteration, V n 
2 

, so that mean (V n 
2 
) is also

a known value. In order to compute ∇ P n +1 , ∇ P n and ∇V n 
1 

we use a WENO scheme, while to discretise ∇V n +1 
1 

we use an

upwind strategy, so that Eq. (45) results into: 

V 

n +1 
1 i, j 

− 1 

2 

�τ

[ 

max (P n +1 
X , 0) 

V 

n +1 
1 i +1 , j 

− V 

n +1 
1 i, j 

�X 

+ min (P n +1 
X , 0) 

V 

n +1 
1 i, j 

− V 

n +1 
1 i −1 , j 

�X 

+ 

max (P n +1 
Y , 0) 

V 

n +1 
1 i, j+1 

− V 

n +1 
1 i, j 

�Y 
+ min (P n +1 

Y , 0) 
V 

n +1 
1 i, j 

− V 

n +1 
1 i, j−1 

�Y 
+ 

V 

n +1 
1 i, j 

(
ˆ 
S n +1 

i, j 
− ( F D (V 

n 
2 ) + ε2 ) 

)
− (V 

n +1 
1 i, j 

) 2 
(

ˆ 
S n +1 
i, j 

− F D (V 

n 
2 ) 

)] 
−

1 

2 

�τ
[∇ P n i, j · ∇ V 

n 
1 i, j 

+ V 

n 
1 i, j 

(
ˆ 
S n i, j − ( F D (V 

n 
2 ) + ε2 ) 

)
−

(V 

n 
1 i, j 

) 2 
(

ˆ 
S n i, j − F D (V 

n 
2 ) 

)]
− V 

n 
1 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 1 , (47)

whereas Eq. (46) becomes 

V 

n +1 
1 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 0 , (48)

for i = 0 , . . . , M − 1 , j = 0 , . . . , M. For the purpose of clarity, let us introduce the following notation 

P + X i, j 
= max (P n +1 

X , 0) , P + Y i, j 
= max (P n +1 

Y , 0) , (49)

P −X i, j 
= min (P n +1 

X , 0) , P −Y i, j 
= min (P n +1 

Y , 0) , (50)

α1 = 

�τ

2�X 

= 

�τ

2�Y 
( as we choose �X = �Y ) , (51)

θ k 
i, j ≡ θ (S k i, j ) = 

ˆ 
S k i, j − F D (V 

n 
2 ) , with k = n, n + 1 , (52)

σ k 
i, j ≡ σ (S k i, j ) = 

ˆ 
S k i, j − F D (V 

n 
2 ) − ε2 , with k = n, n + 1 , (53)

g n i, j ≡ g(P n i, j , V 

n 
1 i, j 

) = ∇ P n i, j · ∇ V 

n 
1 i, j 

+ V 

n 
1 i, j 

σ n 
i, j − (V 

n 
1 i, j 

) 2 θn 
i, j , (54)

δn +1 
i, j 

= 1 + α1 P 
+ 
X i, j 

− α1 P 
−
X i, j 

+ α1 P 
+ 
Y i, j 

− α1 P 
−
Y i, j 

− α1 �X V 

n +1 
1 i, j 

σ n +1 
i, j 

. (55)

Then, the system of Eqs. (47) and (48) can be written in equivalent form 

−α1 P 
+ 
X i, j 

V 

n +1 
1 i +1 , j 

− α1 P 
+ 
Y i, j 

V 

n +1 
1 i, j+1 

+ δn +1 
i, j 

V 

n +1 
1 i, j 

+ α1 �X (V 

n 
1 i, j 

) 2 θn +1 
i, j 

+ α1 P 
−
X i, j 

V 

n +1 
1 i −1 , j 

+ α1 P 
−
Y i, j 

V 

n +1 
1 i, j−1 

−α1 g 
n 
i, j − V 

n 
1 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 1 , (56)

V 

n +1 
1 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 0 , (57)

for i = 0 , . . . , M − 1 , j = 0 , . . . , M. Thus, we end up obtaining the non-linear system of Eqs. (56) and (57) that can be solved

by a Newton method. At each Newton iteration, an LU method with partial pivoting is applied to the resulting linear system.



14 E. Balsa-Canto, A. López-Núñez and C. Vázquez / Applied Mathematics and Computation 384 (2020) 125383 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At step n + 1 , we finally need to compute the values V n +1 
2 

, which represent the approximation of the inactive biomass

at the mesh nodes, by solving the inactive biomass equation. In order to do so, we apply a Crank-Nicolson scheme for time

discretization to (20) , thus obtaining 

V 

n +1 
2 

− V 

n 
2 

�τ
= 

1 

2 

[∇ P n +1 · ∇ V 

n +1 
2 + V 

n +1 
1 ε2 − V 

n +1 
2 

(
V 

n +1 
1 

ˆ 
S n +1 − V 

n +1 
1 F D (V 

n 
2 ) 

)]
+ 

1 

2 

[∇ P n · ∇ V 

n 
2 + V 

n 
1 ε2 − V 

n 
2 

(
V 

n 
1 

ˆ 
S n − V 

n 
1 F D (V 

n 
2 ) 

)]
, in �

τn +1 

1 
, (58) 

where 

F D (V 

n 
2 ) = 

1 

1 + exp (K d (D min − mean (V 

n 
2 
))) 

. 

In order to establish a linear system involving the value of the biomass at all mesh nodes, we extend the value V 2 ≡ 0

on the boundary �
τn +1 

0 
to the set �

τn +1 

2 
. Therefore, we add the following equations 

V 

n +1 
2 = 0 , in �

τn +1 

2 
. (59) 

Note that the values P n , P n +1 , V n 
1 

, V n +1 
1 

, S n , S n +1 and V n 
2 

are all known, and therefore mean (V n 
2 
) is known as well. For the

computation of ∇ P n +1 , ∇ P n and ∇V n 
2 

we use a WENO method. Finally, in order to discretise ∇V n +1 
2 

we use an upwind

strategy. The discretization of (58) results as follows: 

V 

n +1 
2 i, j 

− 1 

2 

�τ

[ 

max (P n +1 
X , 0) 

V 

n +1 
2 i +1 , j 

− V 

n +1 
2 i, j 

�X 

+ 

min (P n +1 
X , 0) 

V 

n +1 
2 i, j 

− V 

n +1 
2 i −1 , j 

�X 

+ max (P n +1 
Y , 0) 

V 

n +1 
2 i, j+1 

− V 

n +1 
2 i, j 

�Y 
+ 

min (P n +1 
Y , 0) 

V 

n +1 
2 i, j 

− V 

n +1 
2 i, j−1 

�Y 
+ V 

n +1 
1 i, j 

ε2 − V 

n +1 
2 i, j 

V 

n +1 
1 i, j 

(
ˆ 
S n +1 

i, j 
− F D (V 

n 
2 ) 

)] 
−

1 

2 

�τ
[∇ P n i, j · ∇ V 

n 
2 i, j 

+ V 

n 
1 i, j 

ε2 − V 

n 
2 i, j 

V 

n 
1 i, j 

(
ˆ 
S n i, j − F D (V 

n 
2 ) 

)]
− V 

n 
2 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 1 , (60) 

whereas Eq. (59) becomes 

V 

n +1 
2 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 0 , (61) 

for i = 0 , . . . , M − 1 , j = 0 , . . . , M. Next, we use the notation defined in (49) –(51) with the following modifications to (52),

(54) and (55) : 

θ k 
i, j ≡ θ (S k i, j ) = 

ˆ 
S k i, j − F D (V 

n 
2 ) , with k = n, n + 1 , (62)

g n i, j ≡ g(P n i, j , V 

n 
1 i, j 

, V 

n 
2 i, j 

) = ∇ P n i, j · ∇ V 

n 
2 i, j 

+ V 

n 
1 i, j 

ε2 − V 

n 
2 i, j 

V 

n 
1 i, j 

θn 
i, j , (63)

δn +1 
i, j 

= 1 + α1 P 
+ 
X i, j 

− α1 P 
−
X i, j 

+ α1 P 
+ 
Y i, j 

− α1 P 
−
Y i, j 

+ α1 �X V 

n +1 
1 i, j 

θn +1 
i, j 

. (64) 

Then, the system of Eqs. (60) and (61) can be written in the following equivalent form: 

−α1 P 
+ 
X i, j 

V 

n +1 
2 i +1 , j 

− α1 P 
+ 
Y i, j 

V 

n +1 
2 i, j+1 

+ δn +1 
i, j 

V 

n +1 
2 i, j 

+ α1 P 
−
X i, j 

V 

n +1 
2 i −1 , j 

+ α1 P 
−
Y i, j 

V 

n +1 
2 i, j−1 

− α1 g 
n 
i, j − α1 �X V 

n +1 
1 i, j 

ε2 − V 

n 
2 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 1 (65) 

V 

n +1 
2 i, j 

= 0 , if ℵ 

n +1 
i, j 

= 0 . (66) 

for i = 0 , . . . , M − 1 , j = 0 , . . . , M. An LU method with partial pivoting is applied to the linear system. 

4. Description and discussion of numerical tests 

Various recent works considered the spatial characterisation of L. monocytogenes biofilms at different times using mi-

croscopy and image analysis. For example, Rieu et al. [37] presented a comparison of biovolume and mean thickness for L.

monocytogenes biofilms under batch and flow conditions using CLSM and PHLIP. Bridier et al. [6] quantified maximum thick-

ness, biovolume and roughness using PHLIP for biofilms formed by 10 different L. monocytogenes strains at 24 h. Similarly,

Guilbaud et al. [17] studied the structural diversity of biofilms formed by 96 L. monocytogenes strains at 48 h using also

mean thickness, biovolume and roughness. Mosquera et al. [30] considered the dynamics of the structure of different strains

throughout their life cycle. 
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Table 2 

Parameters values used in the numerical tests. Note that μ and k i take different values depending 

on the considered case: a-e and I-III, respectively. 

Parameter Value Unit 

L, H 3 ×10 −4 m 

H b 0.125H m 

ρ 17 kg/m 

3 

D 2.568 ×10 −12 m 

2 /s 

Y 0.98 - 

μ a) 4.25 ×10 −5 ; b) 1.7 ×10 −4 ; c) 8.5 ×10 −4 ; d) 1.7 ×10 −3 ; e) 8.5 ×10 −3 s −1 

K d 311.5 - 

D min 5.21 ×10 −2 - 

k i (I) 8.95 ×10 −8 ; (II) 1.0 ×10 −6 ; (III) 1.0 ×10 −5 s −1 

t D 86400 s 

s ∗ 2.74 kg/m 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Those works reveal that biofilms at early times form small joint or separated clusters. As the biofilm evolves, larger

biofilms appear which may present various different structures: mono-layers of adhered cells, flat unstructured multi-layers,

honeycomb structures or large clusters [6,7,14,26,35,37] . 

Here we use the model to analyse the roles of the initial conditions (joint or separated clusters), the bacterial maximum

growth rate and the inactivation rate on the development of different structures in L. monocytogenes biofilms. As we aim to

validate the model and the numerical methods with real-world cases taken from the laboratory, we consider data from the

experiments in [4] and try to reproduce the observed results therein. 

We label the numerical tests as T1 for those cases in which the initial conditions correspond to joint clusters: 

�0 
0 = { (X, Y ) ∈ �/Y = 0 . 2 + 0 . 05 sin (4 πX ) } , (67)

�0 
1 = { (X, Y ) ∈ �/Y < 0 . 2 + 0 . 05 sin (4 πX ) } , (68)

V 1 (X, Y, 0) = 1 , V 2 (X, Y, 0) = 0 , in �0 
1 . (69)

and T2 for those cases in which the initial conditions correspond to separated clusters: 

�0 
0 ,a = { (X, Y ) ∈ �/X < 0 . 5 , Y = −0 . 3565 + 0 . 6065 ∗ sin (2 πX ) } , 

�0 
0 ,b = { (X, Y ) ∈ �/X ≥ 0 . 5 , Y = −0 . 3565 + 0 . 6065 ∗ sin (2 π(X − 0 . 5)) } , 

�0 
0 ,a = { (X, Y ) ∈ �/X < 0 . 5 , Y < −0 . 3565 + 0 . 6065 ∗ sin (2 πX ) } , 

�0 
0 ,b = { (X, Y ) ∈ �/X ≥ 0 . 5 , Y < −0 . 3565 + 0 . 6065 ∗ sin (2 π(X − 0 . 5)) } , 

where �0 
0 

= �0 
0 ,a 

∪ �0 
0 ,b 

and �0 
0 

= �0 
0 ,a 

∪ �0 
0 ,b 

. 

As stated in Section 1 , the sensitivity analysis of the parameters has been addressed in [4] . From this analysis, it follows

that the most relevant parameters involved in the growth of a Listeria biofilm are the maximum growth rate, μ, and the

inactivation rate, k i . The following Table 2 presents the parameter values as adapted from [4] . 

4.1. Flat or rough L. monocytogenes biofilms 

Visual inspection of the biofilms formed by the L. monocytogenes strain L1A1 reveals the presence of thick almost flat

biofilms, as illustrated by Fig. 2 in [4] , where the three-dimensional reconstruction of the CLSM images captured at differ-

ent times of the biofilms life cycle is presented. The images at earlier times show the presence of small clusters, which

eventually joined to each other in a honeycomb pattern. Later this pattern disappears to form an unstructured flat mass. 

L1A1 is not the only strain that develops flat or rough structures. Guilbaud et al. [17] observed that L. monocytogenes

strains without flagellum developed flat structures at 48 h. Some examples include CIP 82110 (a virulent type strain from

rabbit), LM 6298 (from soil) or H6 (from a healthy 30-year-old woman) strains. PilchovÃ!‘ et al. [35] studied structures at 1,

3 and 6 days and suggested that the EGD-e strain isolated from listeriosis outbreaks could skip the honeycomb-like pattern

during the life cycle, evolving to flat structures. 

In this work we used the proposed model to explore the role of the initial conditions, the growth rate and the inactiva-

tion rate into the formation of flat or rough structures. Figs. 4 and 5 present the dynamics of two particular cases: T1bI and

T1bIII, which would correspond to a couple of cases in which joint clusters evolve to form flat or rough structures. 

In Fig. 4 the model rapidly evolves to a dense flat biofilm with a maximum thickness of 0.76. Inactivation is very low

and the biofilm grows till nutrients are consumed. In Fig. 5 damaged cells slowly appear in the deepest layers of the biofilm

thus evolving toward a multi-layered practically flat biofilm as the ones observed for L1A1 [30] . Note that the detachment

induced by the presence of damaged cells sets the maximum thickness to a value of 0.64. 
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Fig. 4. Case T1bI: μ = 1 . 7 × 10 −4 ; k i = 8 . 95 × 10 −8 . Left column shows active biomass, right column shows inactive biomass. First row presents the initial 

conditions, while second and third rows show the biomasses after 5.76h and 9.6h, respectively. Two joint clusters evolve toward a thick flat structure in 

absence of damaged or dead cells. 

 

 

 

 

 

 

 

 

The question is now whether initially separated clusters can evolve to form flat biofilms as well. Fig. 6 shows that it is

indeed the case. Remarkably, this may happen for those strains in which the growth rate is within the lower range and

independently of the presence of damaged cells which will only affect the final thickness and roughness. 

Figures show that flat structures may appear regardless the initial conditions. However, final thickness is clearly affected

by the presence of joint or separated clusters at early times. In the case of separated clusters the biofilm grows horizontally

and vertically, while in the case of joint clusters, it evolves to thicker biofilms. Cases T1bI in Fig. 4 - with a maximum

thickness of 0.76 - and T2bI in Fig. 6 - with a maximum thickness of 0.63 - clearly illustrate this issue. 

These profiles can be directly compared to those ones depicted for L1A1 in [4] and CIP 82110, LM6298 or H6 in Guilbaud

et al. [17] . 

4.2. Complex structures: clusters, honeycomb and mushrooms 

Bridier et al. [6] observed that several L. monocytogenes strains produced biofilms containing several small clusters of

variable thickness in static cultures at 24h. Mosquera et al. [30] also reported the presence of clusters at early stages of
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Fig. 5. Case T1bIII: μ = 1 . 7 × 10 −4 ; k i = 1 × 10 −5 . Left column shows active biomass, right column shows inactive biomass. First row presents the initial 

conditions, while second and third rows show the biomasses after 5.76h and 9.6h, respectively. Two joint clusters evolve toward a multi-layered flat 

structure with the presence of damaged or dead cells in deep layers. 

 

 

 

 

 

 

 

 

 

 

 

biofilm formation for the strains CECT 4032 and CECT 5873. At later stages, these clusters may join to each other and form

honeycomb patterns with small channels or even voids such as those ones observed by Guilbaud et al. [17] , Picholva et al.

[35] or Mosquera et al. [30] . 

Note that Fig. 3 in Mosquera et al. [30] shows the CLSM reconstructions at different times for the strain CECT 5873.

This figure illustrates the presence of multiple microcolonies or small clusters at the initial time. Those clusters evolve to

form larger clusters which eventually disappear to form an unstructured flatter biofilm once the amount of inert biomass is

substantial. 

Again we explored the conditions for which the proposed model is able to depict this type of more complex structures

by playing around with the initial conditions, the growth and inactivation rates. Figs. 7 and 8 present the dynamics of two

particular cases: T2cI and T2cIII, which would correspond to a couple of examples in which separated clusters evolve to

form complex structures. 

In Figs. 7 and 9 (first row) the model shows how initially separated clusters rapidly evolve till they practically join

each other leaving open channels in the deepest layers of the biofilm. The maximum thickness would correspond to a

value of 0.74. Inactivation is not significant and clusters are dense. On the contrary, Fig. 8 shows a significant presence of
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Fig. 6. Final simulation time flat or rough structures . Each row corresponds to the cases: T1cI, T2bIII, T2bI, T1eI. 

 

 

 

 

 

 

 

 

 

damaged cells which induce a strong detachment process leading to the formation of mushroom type structures. Note that

the maximum thickness would be 0.61. Mushrooms are stratified with a substantial amount of damaged cells in the lower

layers. 

Remarkably, if the growth rate is higher and the inactivation rate is lower then separated clusters tend to evolve as

separated dense clusters (see Fig. 9 , second row). Thus certain inactivation, in other words detachment, is required for the

clusters to join each other. 

The question is now whether initially joint clusters can evolve to form complex structures as the ones showed in previous

figures. Fig. 9 shows that it is indeed the case. In fact, this may happen for those strains in which the growth rate is within

the upper range. 

Results reveal that the larger growth rate contributes to forming thick clusters while the lower inactivation rate con-

tributes to slowing down the detachment. As an overall effect, dense clusters are observed in which channels are formed

due to the slow superficial detachment. Again inert biomass tends to accumulate inside the clusters, as it can also be ob-

served in the CLSM reconstructions in Fig. 3 in Mosquera et al. [30] . 
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Fig. 7. Case T2cI: μ = 1 . 7 × 10 −3 ; k i = 8 . 95 × 10 −8 . Left column shows active biomass, right column shows inactive biomass. First row presents the initial 

conditions, while second and third rows show the biomasses after 5.76h and 9.6h, respectively. Two separated clusters evolve toward a thick honeycomb 

type structure in absence of damaged or dead cells. 

 

 

 

 

 

 

 

 

 

All in all, our simulation results show that the proposed 2-D multi-species model is able to qualitatively predict the

interstrain variability found in L. monocytogenes biofilms. Initial attachment (initial conditions), and detachment rate (which

relates to inactive biomass), condition the development of flat, clustered or honeycomb type structures. 

5. Conclusions 

Listeria monocytogenes is addressed as a high-risk bacteria, specially relevant in food industry. This pathogen develops

biofilms in common food contact surfaces and has a great tolerance to biocides, thus persisting despite the sanitising effort s.

Therefore, the study of L. monocytogenes biofilms is of the utmost importance. This study can be based on experiments in

laboratory or in mathematical modelling tool, as well as on the combination of both. 

In this work, a new two-dimensional deterministic mathematical model is proposed to reproduce the variability of strain

structures observed in laboratory. The model is mainly based on the work of Alpkvist and Klapper [1] and adequately mod-

ified following the insights obtained by Balsa-Canto et al. [4] . The proposed model consists in a set of coupled partial differ-

ential equations and considers the nutrients concentration and the active and inactive biomasses concentrations. Several key
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Fig. 8. Case T2cIII: μ = 1 . 7 × 10 −3 ; k i = 1 × 10 −5 . Left column shows active biomass, right column shows inactive biomass. First row presents the initial 

conditions, while second and third rows show the biomasses after 5.76h and 9.6h, respectively. Two separated clusters evolve toward a mushroom type 

structure with the presence of damaged or dead cells in deep layers of the mushrooms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

mechanisms that determine the dynamics of L. monocytogenes biofilms are included, in particular the mass action law that

describes a home made nutrients uptake and biomass growth, as well as a non-linear detachment to account for the ageing

mechanism. The mathematical analysis of the model to obtain the existence and uniqueness of solution in the appropriate

functional spaces requires further studies. As it is not possible to obtain an analytical solution for the proposed highly non-

linear coupled model, it is solved by using highly-efficient numerical methods that guarantee the robustness and stability

of the solution. These appropriate numerical techniques include the Level Set method, WENO methods, a Crank-Nicolson

scheme and a Newton method, among others. Although separately, they mostly consist of standard numerical methods,

their implementation from scratch for our complex coupled model results challenging. Also a rigorous numerical analysis to

theoretically establish convergence and stability properties of the combination of the methods to solve the coupled model

is an open question for future research. 

We have validated our model by comparing simulation results with real biofilms dynamics as obtained in the laboratory.

All things considered, the obtained numerical results allow to reproduce several different behaviours showed by various

L. monocytogenes strains. In Section 4.1 , a case is proposed where the biofilm develops a flat structure, such as the ones

exhibited by the L1A1 strain. Numerical results are in high agreement with the experimental ones obtained in the laboratory,
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Fig. 9. Final simulation time complex structures . Each row corresponds to the cases: T2dII, T2dI, T1cIII, T1eIII. 

 

 

 

 

 

 

 

thus confirming the capabilities of the model. Moreover, in Section 4.2 two additional different cases are depicted that

account for the behaviour of CECT 4032 and CECT 5873 strains: a clustered biofilm formation and honeycomb structures. 

The fact that our model is able to explain the dynamics of different structures is an important contribution of the present

work. Although the study focuses on a number of L. monocytogenes strains our model and numerical approaches may well

apply to other species. 
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