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Abstract

Establishing meaningful shape correspondences between objects as in neuroimaging
problems is crucial for improving matching processes. For instance, the correspondence
problem consists of finding meaningful relations between any pair of brain structures as
in the static registration problem, or analyzing temporal changes of a given neurodegen-
erative disease across time for dynamic brain shape analysis. Unfortunately, in many
correspondence frameworks, similarity metrics are required to establish shape relations
which are difficult to defined and limit the ability of modeling complex shape variations
(i.e., large deformations in multiview shape analysis). Besides, these approaches only
work over objects of the same size, and prealigned views, which gives poor performances
in non-rigid matching problems. This thesis is concerned with solving these problems
through developing unsupervised models for shape correspondence analysis.

In this thesis, we develop two methods for probabilistic correspondence analysis
useful in neuroimaging problems. These approaches based on probabilistic nonlinear
latent variable models can handle complex shape variations such as high curvedness
regions, occlusions, and topological noise. Thus, these shape variations can be encoded
through nonlinear mapping functions, which have correspondence assignments in the
latent space. We show how to perform this task, creating a system that explores non-
rigid object shapes by learning shape correspondences in an unsupervised manner.

The introductory chapters contain a review of the existing approximations to the
correspondence problem. A special focus is given to a set of correspondence approaches
in the context of shape analysis for image processing.

Secondly, we present a method for shape correspondence analysis based on nonlinear
unsupervised clustering of groupwise 3D shape descriptors. The clustering process is
carried out by a nonlinear probabilistic latent variable model, in which we use random
Fourier features of the input data observations. Finally, this thesis develops a multi-
view warped mixture model having nonparametric cluster shapes, and a corresponding
latent space in which each correspondence assignment has an interpretable parametric
form. This probabilistic warped mixture representation allows for strong model learn-
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ing, resulting in rich latent space representations of the shape variations. The developed
methods are demonstrated in experiments with synthetic and real 3D shape datasets.
The results show that the developed correspondence approaches perform accurately on
shape matching processes, even when the shape structure has complex variations.
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Mathematical notation

Generalities
V number of views
Nv Number of objects (observations) in the vth view
Dv dimensionality of the v-th view
Lv Dimensionality of the observed features in the vth view
K Dimensionality of the latent feature vector

J
Number of correspondences (latent vectors) to which objects are
assigned

Operators
E[·] expected value
tr(·) trace of a matrix

Functions
k (·, ·) covariance function for a Gaussian process of xvn

fd(t) d-th output or response function evaluated at t

φ (·) nonlinear mapping function
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Vectors and matrices
xvn Observation of the nth object in the vth view, xvn ∈ RDv
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Abbreviations
LVM Latent Variable Model
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GP-LVM Gaussian Process Latent Variable Model
iGMM Infinite Gaussian Mixture Model
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Chapter 1

Introduction

The correspondence problem in neuroimage analysis is a challenge research topic con-
sisting in establishing meaningful relations between any pair of brain structures (static
registration problem) (Lin et al., 2014), or analyzing temporal changes of a given neu-
rodegenerative disease across time (dynamic analysis of brain structures) (Durrleman
et al., 2014). For instance, modeling brain volumes in neurodevelopmental outcomes is
a challenge research topic in applications to asses primary adverse outcome in perinatal
asphyxia.1 Here, brain structures have significant morphology variation as part of brain
development, which makes the analysis process a complex task (Weeke et al., 2018).

Most of the correspondence methods for medical image problems focus on computing
different similarity metrics based on texture descriptors such as the bag-of-words features
(Bronstein et al., 2011), largest common point-sets (Aiger et al., 2008; Cosa et al., 2013),
and geodesic contours (Liang et al., 2015). Though, these approaches only work over
objects of the same size, which gives a poor accuracy in non-rigid matching processes
(Brunton et al., 2014).

Although similarity metrics could potentially capture shared information between
objects, these metrics are not easy to define (Cortés and Serratosa, 2015) since brain
structures are non-rigid objects that exhibit morphological changes between subjects
(brain volumetry over a population) and shape deformations over time in a neurodegen-
erative disease (i.e., Alzheimer and Parkinson) (Cosa et al., 2013). Figure 1.1, shows
an example of the shape correspondences from matched clusters, we can notice a large
amount of geometric variations between the brain shapes which make the computation
of such correspondences difficult.

1Perinatal asphyxia is a lack of blood flow or gas exchange to or from the fetus in the period
immediately before, during, or after the birth process.
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Figure 1.1: Shape correspondences from matched clusters. The goal is to establish
meaningful relations between a pair of brain structures.

Instead of defining similarity metrics, an alternative approach consists in using un-
supervised learning for object matching. These methods aim to establish meaningful
correspondences in scenarios where a non-rigid object describes a given shape, and the
similarity measure between objects cannot be computed (Yang et al., 2013). Varia-
tional Bayesian matching (Klami, 2012) and Bayesian canonical correlation analysis
(Klami et al., 2013) are some examples of these methods in which a given probabilistic
framework is used to model features between objects and establish shape correspon-
dences. Nonetheless, these methods only handle full correspondence frameworks (i.e.,
point-to-point matching) and linear analysis over the shape descriptors (i.e., appearance
descriptors), which makes them unsuitable to model shared information between non-
rigid objects, i.e., tissue shapes in MRI data (van Kaick et al., 2011) or volumes of brain
structures for studying progression of Alzheimer’s disease (Hill, 2010; Thompson et al.,
2003). High variability of these patterns such as curvedness and size makes it necessary
to compute the correspondences between objects in a groupwise manner (Sidorov et al.,
2011).

Probabilistic groupwise methods for unsupervised clustering have the benefit that we
can model multiple view data without any correspondence information. Hence, we can
compute shared information among domains instead of analyzing full correspondences by
establishing linear relations between objects as Iwata et al. present in (Iwata et al., 2016).
However, these relations are impractical in applications where non-linear representations
of shape objects are needed (i.e., non-rigid matching tasks).
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1.1 Aims

1.1.1 General aims

To develop a probabilistic approach based on latent variable models for shape correspon-
dences analysis, that allows temporal and structure learning of non-rigid shapes relevant
in medical imaging problems.

1.1.2 Specific aims

1. To propose a probabilistic model that extends the latent variable model frame-
work for unsupervised object matching, allowing to learn temporal and structure
information of shape correspondences between non-rigid objects.

2. To design an inference method for learning the shape structure, temporal informa-
tion and parameters of the probabilistic latent variable model.

3. To validate the performance of the proposed method over synthetic and medical
imaging data, comparing its performance against commonly used shape correspon-
dence methods in the state-of-the-art.

1.2 Outline of the Thesis

From the modeling perspective, we introduced nonlinear versions of the models proposed
by Iwata et al. (2016) and Damianou et al. (2012). In particular, our contribution is
to develop methods for shape correspondence analysis based on nonlinear unsupervised
clustering of groupwise 3D shape descriptors. The clustering process was carried out
by nonlinear probabilistic latent variable models, with the aim to model the multiview
data. In other words, we extend the many-to-many object matching proposed by Iwata
et al. (2016) exploring Hilbert space embeddings of the input data as in Cutajar et al.
(2017); Rahimi and Recht (2007) and Gaussian Processes to obtain more representative
latent descriptions of the input data (Damianou et al., 2012). Once the models are
defined, we provide the mathematical framework and algorithms that allow computing
the necessary posterior distributions of the probabilistic models.

From the neuroimage perspective, our contribution was based on the probabilistic for-
mulation of the correspondence problem in which we explore the process of establishing
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meaningful relations between 3D image data through unsupervised clustering of shape
descriptors. That is, compute shape correspondences without any similarity measure.

In detail, the rest of the thesis is structured as follows:

• Chapter 2 constitutes a brief introduction to the correspondence problem. A spe-
cial focus and a unifying view is given for a set of correspondence approaches in
the context of shape analysis.

• Chapter 3 defines Nonlinear Unsupervised Clustering Matching (NL-UCM), a non
linear latent variable model which incorporates observations from several views.
We provide a method for shape correspondence analysis based on nonlinear un-
supervised clustering of groupwise 3D shape descriptors. The clustering process
is carried out by a nonlinear probabilistic latent variable model, in which we use
random Fourier features of the input data observations (Rahimi and Recht, 2007).
In other words, we extend the many-to-many object matching proposed by Iwata
et al. (2016) using Hilbert space embeddings of the input data (Rahimi and Recht,
2007).

• Chapter 4 presents a Multiview Bayesian clustering model in which the correspon-
dences have nonparametric shapes, called the multiview infinite warped mixture
model. The density manifolds learned by this model follow the contours of the
data density, and have interpretable, parametric forms in the latent space. The
marginal likelihood lets us infer the effective dimension and shape of each cluster
separately, as well as the number of clusters.

Chapter 5 summarizes the key contributions of the thesis and discusses ideas for
future work.

1.3 Associated Publications and Software

The work presented in Chapter 3 is based on two published papers. First paper (García
et al., 2015) states the motivation of the probabilistic analysis of the correspondence
problem. Then, paper (García et al., 2018) extend the linear latent variable model pro-
posed by Iwata et al. (2016).

The work presented in Chapter 4 is based on a paper by Garcia, H.F. and Álvarez M.
A., which is in preparation at the time of writing this thesis. Finally, four publications
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(García et al., 2014, 2016a,b, 2017) co-authored by myself are not discussed in this thesis
since, although relevant to the general research area, they explore probabilistic models
such as Gaussian processes for affective computing systems, and Bayesian optimization
for fitting brain structures.

The software developed to accompany the methods described in chapters 3 and 4
is publicly available under a unified repository at https://github.com/fepo68/probCorr

https://github.com/fepo68/probCorr


Chapter 2

Correspondence Analysis

This chapter describes how to tackle the correspondence problem from different per-
spectives: similarity-based correspondence, rigid alignment, non-rigid alignment, time-
varying registration, deep learning, and probabilistic correspondence approaches. We
also describe relevant shape descriptors that allow us to establish the similarity between
shapes indirectly.

The original contribution of this chapter is to offer a tutorial showing the implications
of different correspondence problems, and some of the frameworks which can be obtained
by combining them.

2.1 Overview of correspondence problem

Currently, a variety of problems can be classified in the field of shape correspondences
analysis such as shape isomerty-invariant similarity (Bronstein et al., 2009), partial sim-
ilarity, and non-rigid correspondence (Bronstein et al., 2008). However, since all these
different problems address the same fundamental task, we can group them into a unified
analysis by considering the following problem: given input shapes S1,S2, . . . ,SN (e.g.,
brain structures), the main task is to establish meaningful relations R between their ele-
ments.1 Besides, when two shapes are related to each other (i.e., (s, z) ∈ R) for elements
s ∈ Si y z ∈ Sj with i ̸= j), it is commonly said that these shapes are in correspondence
or they match each other. The relation can be constrained in different manners, such
as one-to-one (e.g., analyze two MRI volumes) (Cosa et al., 2013), one-to-many (e.g.,
match a given brain atlas to a MRI dataset) (Cabezas et al., 2011), or many-to-many
correspondence (e.g., temporal behavior of a MRI dataset) (Zheng et al., 2010).

1Meaningful relation means which correspondence should be selected or is closer to our objective.
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The correspondence problem can then be divided into the following categories:

• Similarity-based correspondence

• Rigid alignment

• Non-rigid alignment

• Time-varying registration

• Probabilistic correspondence analysis

In addition, for medical imaging analysis, we can compute correspondences for a given
pair of brain images by the similarity of their elements or applying some alignment
process between shapes and then derive a correspondence from the proximity of the
aligned elements (e.g., brain atlas reconstruction (Cabezas et al., 2011)). It is worth
noting that the alignment between the shapes is a side product of the computation
which is useful and sometimes essential to the underlying application (Salama et al.,
2016). We will address the issue of correspondence analysis by considering the case in
which no alignment is required, and then we discuss the scenarios where the relation R
is derived from aligning the shapes in a rigid or a non-rigid manner. Figure 2.1, shows
an illustration of the shape correspondence scheme on which the problem can be view
as a quality measure or a structure similarity.

Figure 2.1: Scheme of Shape Correspondence Problem. “Correspondence quality =
structure similarity” Bronstein et al. (2008). Blue and red circles relate bad and good
matches, respectively.
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2.1.1 Similarity-based correspondence

The most common way of computing correspondences is to analyze pairs of shape el-
ements or feature points to estimate the similarity between these features (commonly
called the feature matching approach in neuroimaging). These elements are commonly
characterized by shape descriptors (e.g., texture properties of brain tissues) (Kanavati
et al., 2017). We can obtain the correspondence by optimizing an objective function
that allows us to select assignments between pairs of elements. This objective function
is composed of two terms, one term seeks to maximize the similarity between the descrip-
tors of corresponding elements, while the other one seeks to minimize the distortion that
would be introduced in the shapes if they were deformed to align their corresponding
elements (e.g., brain atlas matching) (Cabezas et al., 2011; Castellani et al., 2008).

In the medical imaging field, this is the most common method for neuroimaging
analysis (Hill, 2010). Here, texture descriptors are computed from the MRI volume
to establish similarity metrics between volumes (e.g., Euclidean, cross-correlation and
super-voxels) (Sjoberg and Ahnesjo, 2013). The approach can be global, where the
whole MRI volume is parametrized by statistical texture descriptors (Salama et al.,
2016; Sjoberg and Ahnesjo, 2013), or local where the texture descriptors are computed
in local regions of the MRI volume (Cosa et al., 2013; Hill, 2010; Kanavati et al., 2017).

In principle, we can obtain a solution that is geometrically meaningful by satisfying
this objectives function (similarity based metrics). Besides, this solution is typically
obtained with a standard optimization method such as quadratic programming (Salama
et al., 2016). That is why we can apply feature matching in any context where can be
possible to compute a set of descriptors for these elements (MRI volumes) (Castellani
et al., 2008; Cortés and Serratosa, 2015).

2.1.2 Rigid alignment

Another way to view the correspondence problem in neuroimaging problems is to present
it as a searching process for a geometric transformation that aligns the MRI volumes
(input shapes). The most common method for this purpose is the rigid alignment of
geometry scans, used for shape acquisition and medical image registration (Aiger et al.,
2008; Panda et al., 2017). One important feature of the rigid alignment problem is that
the objects do not change from one scanning pass to another (MRI volumes remains their
structure after the interaction) and the shapes are assumed to be aligned by a Euclidean
transformation involving a rotation and translation (Oliveira and Tavares, 2014; Tam
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et al., 2013).
Furthermore, most of the common applications derived from the rigid alignment

are focused on capturing a given transformation that can match one MRI volume into
another (Panda et al., 2017), initialize a given atlas transformation (e.g., adapt a given
brain atlas into a new MRI volume) (Cosa et al., 2013; Sjoberg and Ahnesjo, 2013) and
analyze rigid properties of the brain structures such as size, translation and rotation
(Ngo et al., 2017; Oliveira and Tavares, 2014).

Shapes alignment is just one example of many medical applications that rely on the
assumption of rigidity in the MRI datasets (Hill, 2010; Podolak et al., 2006). For two
shapes given as 3D point sets S and Z (e.g., brain structure analysis), the problem of
rigid alignment can be posed as: find the rigid transformation that, when applied to S,
maximizes the number of points in S that align to points in Z. This goal is usually
dependent on a threshold ε that indicates when two points are close enough and can be
considered as matching to each other (Cortés and Serratosa, 2015).

Rigid alignment is a challenging problem because the data itself poses many diffi-
culties, which may include noise, outliers, and limited amounts of overlap (Oliveira and
Tavares, 2014). Outliers are unwanted points far from the surface, which can seriously
affect the alignment process if not discarded (Oliveira and Tavares, 2014). Also, noise
information may take the form of unwanted points close to a 3D shape (Salama et al.,
2016). This method might be the less robust to compute a correspondence between
brain shapes, but it is commonly used to initialize some other methods (e.g., non-rigid
methods) due to fast convergence (Aiger et al., 2008).

2.1.3 Non-rigid alignment

Now let us consider the case in which we need to analyze the shape deformation process
between a set of brain structures. Unlike the rigid case, where a few correspondences
are sufficient to define one candidate rigid transformation, we need to compute both
deformation and alignment in the non-rigid case, without prior assumptions (Sotiras
et al., 2013). Thus, this method often requires a lot more reliable correspondences to
define the matching process (Tam et al., 2013). Some examples of non-rigid alignment
processes include brain shape correspondence for objects with different geometries with
parts that are semantically related (Cabezas et al., 2011; Chang and Zwicker, 2009;
Zhang et al., 2008), and the correspondence of anatomical shapes (i.e., brain structures,
organs) (Lin et al., 2014), which can be deformed elastically by introducing stretching
to localize regions of the shape (Weingarten et al., 2015).
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Due to the local stretching and bending presented between brain structures (e.g.,
local variations related to shapes in Parkinson disease) in the non-rigid case, we can see
the need to analyze how these shapes can be brought into correspondence (Weingarten
et al., 2015). This can be achieved by taking into consideration non-rigid transformations
over the analyzed MRI volumes (i.e, B-splines and thin-plates) (Wang and Pan, 2014).
Moreover, these transformations can be applied separately to local portions of the shapes.
Here, this transformation applied to a given brain structure can be represented as a set
of displacement vectors with the aim to match accurately the target shape (Sidorov
et al., 2011; Xiao et al., 2010).

However, although heuristic solution methods are available in the state-of-the-art,
such as diffeomorphic registration (Tang et al., 2013), elastic methods (Soon and Qiu,
2015), and fluid registration methods (Shi et al., 2013), the quality of the results will
typically depend on the complexity of the medical problem instance and the level of
approximation introduced by these methods (Cai et al., 2015; Wang and Pan, 2014).

2.1.4 Time-varying registration

Space-time correspondences analysis has an increasing attention in the last few years
(Weingarten et al., 2015). Since neurodegenerative diseases are difficult to monitoring
(e.g., analyze brain evolution over time in Alzheimer’s disease), the reconstruction of
3D brain structures acquired over time while moving and deforming (e.g., as the disease
evolves on time) is one particular topic in which both rigid and non-rigid alignment
have been studied (Cosa et al., 2013; Lin et al., 2014; Weingarten et al., 2015; Zheng
et al., 2010). In this framework, a fixed number of scans is acquired per time step
(i.e MRI volumes, 3D point cloud of brain shapes), and these scans have to be aligned
to perform the reconstruction of both the shape object and the motion sequence (Li
et al., 2009; Sharf et al., 2008). However, recovering the temporal transformation is a
difficult task, since the dimensionality of MRI data is higher than the data instances
that neuroimaging problems usually present (e.g., few MRI volumes to be analyzed for
one patient over time). As a consequence, most of the temporal approaches to analyze
high-dimensional datasets are focused on capture shape primitives to describe the entire
dynamic dataset (i.e., shape skeletons in temporal registration frameworks) (Hill, 2010;
Zheng et al., 2010).

In addition, it is noticed that for the classic registration problem, all shapes can be
aligned to compose a single and coherent object, while the time-varying problem in-
troduces additional difficulties. The main reason for this assumption is that the brain
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shapes may change along time (deformed significantly from one frame to the other in a
given neurodegenerative disease) (Hyun et al., 2016; Zheng et al., 2010). However, a large
amount of missing data (due to the evolution of the neurodegenerative diseases) that
can be present in each frame (Pekelny et al., 2008; Stylianou et al., 2016), and datasets
that were captured over sparse time (e.g., MRI data for monitoring brain volumetry)
(Chang and Zwicker, 2009; Hyun et al., 2016; Wolk et al., 2017) remain a challenging
topic in neuroimaging problems. Furthermore, adding temporal constraints to the cor-
respondence model can help in reducing the size of the search space, and can bring more
information about the dynamics of a given brain structure over time (Stylianou et al.,
2016; Sússmuth et al., 2008; Weingarten et al., 2015).

2.1.5 Deep learning approaches for shape correspondence

Deep learning has become in a popular learning framework were complex datasets are
modeled through combinations of simpler models in a hierarchical, or multilayer manner
(i.e., artificial neural networks). Besides, model-based approaches based on deep learning
concepts have achieved accurate performances in several fields such as image processing,
speech recognition, natural language processing, and computer vision (Tygert et al.,
2016).

In particular, convolutional neural network (CNN) architectures currently present
state-of-the-art performance on a variety of computer vision tasks when dealing with
1D, 2D, or 3D Euclidean-structured data such as acoustic signals, images, or videos
(Lundervold and Lundervold, 2019). Hence, we can consider images as functions on the
Euclidean space (plane), or sampled on a grid (e.g., MRI data used for medical image
analysis) (Cosa et al., 2013; Wu et al., 2015).

However non-Euclidean geometric data arises in numerous applications that range
from modeling users attributes in social networks (i.e., signals of the vertices), to graph
models in neuroscience (Tan et al., 2019; Wee et al., 2019). Thus, anatomical and
functional structures of the brain can be modeled as Riemannian manifolds (i.e., mesh
surfaces) endowed with properties such as texture, shape structure, and curvedness (Su
et al., 2015).

Besides in computer vision applications, finding similarity and correspondence be-
tween shapes are examples of manifold learning problems (Litany et al., 2016). Con-
volutional neural networks on non-Euclidean domains (surfaces) were first presented by
Masci et al. (2015) with the introduction of the geodesic CNN model. Here, the clas-
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sical convolution operation is replaced by a local geodesic2 system of polar coordinates
to extract patches (i.e., a small part of a given brain structure). Then, from these
patches, surface descriptors can be learned to compute the correspondences. Moreover,
Boscaini et al. (2016) used anisotropic heat kernels (Bronstein and Kokkinos, 2010) as
an alternative way of extracting intrinsic patches to represent the shape descriptors.

Therefore, these methods are instances of a broader recent trend of geometric deep
learning attempting to generalize successful deep learning paradigms to data with a
non-Euclidean underlying structure such as manifolds or graphs (Bronstein et al., 2017).
Finally, since this is a newly emerging field on computer vision and our research path
is focused on probabilistic models, we are concern about the uncertainty of the shape
geometry that will be captured in a latent space, rather than exploring surface descriptors
from geometric learning (i.e., compute correspondences through similarity metrics).

2.1.6 Probabilistic correspondence analysis

Although similarity metrics could potentially capture shared information between ob-
jects, these metrics are not easy to define (Cortés and Serratosa, 2015) since brain struc-
tures are nonrigid objects that exhibit morphological changes between subjects (brain
volumetry over a population) and shape deformations over time in a neurodegenerative
disease (e.g., Alzheimer and Parkinson) (Cosa et al., 2013).

Instead of defining similarity metrics, an alternative approach consists of using prob-
abilistic methods for object matching. These methods aim to establish meaningful cor-
respondences in scenarios where a nonrigid object describes a given shape, and the
similarity measure between objects cannot be computed (Yang et al., 2013). Variational
Bayesian matching (Klami, 2012) and Bayesian canonical correlation analysis (Klami
et al., 2013) are some examples of these methods in which a given probabilistic frame-
work is used to model features between objects and establish shape correspondences.
Nonetheless, these methods only handle full correspondence frameworks (e.g., point-to-
point matching) and linear analysis over the shape descriptors (e.g., appearance descrip-
tors), which makes them unsuitable for modeling shared information between non-rigid
objects such as tissue shapes in MRI data (van Kaick et al., 2011), and volumes of
brain structures for studying the progression of Alzheimer’s disease (Hill, 2010; Thomp-
son et al., 2003). Thus, the high variability of these patterns such as curvedness and
size makes it necessary to compute the correspondences between objects in a groupwise

2A geodesic is a curve representing in some sense the shortest path between two points in a surface
(i.e., Riemannian manifold)
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manner (Sidorov et al., 2011).
Recently, approaches formulated as Gaussian Processes Latent Variable Models (GP-

LVMs) have been successful in applications derived from a low-dimensional representa-
tion that arises the shape structure as a manifold of feature descriptors (i.e., variables
that are not directly observed such as latent variables)(Ek et al., 2008b; Shon et al.,
2005). Nevertheless, these models consider a single latent variable to represent the mul-
tiview data (i.e., data that comes from different sources), assuming that the modalities
can be fully aligned (e.g., multimodal image registration between computed tomography
(CT) and MRI).

To improve the latent data representation, the idea of a segmented latent space was
explored in works such as Ek et al. (2008a), Salzmann et al. (2010) and Damianou et al.
(2012), where each view is handled as independent data with an additional private space
(to represent the variance which cannot be aligned). Probabilistic groupwise methods for
unsupervised clustering have the benefit that we can model multiple view data without
any correspondence information. Hence, we can compute shared information among do-
mains instead of analyzing full correspondences by establishing point-to-point relations
(Damianou et al., 2012; Iwata et al., 2016; Tomoharu Iwata, 2013).

Finally, table 2.1 shows a summary of the relevant approaches for shape correspon-
dence analysis. Besides, the table describes the criteria of the different correspondence
frameworks.

2.2 Magnetic resonance imaging

In this project, we will use Magnetic resonance imaging (MRI) as the input data where
all the analysis will be derived. The motivation is that MRI is the preferred medical
technique used in radiology to capture brain images of healthy and pathological tissues.
As it has better resolution than CT, MRI offers better visualization of the posterior
fossa. The contrast provided by the gray and white matter of the MRI data makes it the
best choice for many conditions of the central nervous system, including demyelinating
diseases, dementia, cerebrovascular disease, infectious diseases and epilepsy. Since many
images are taken milliseconds apart, it shows how the brain responds to different stimuli;
researchers can then study both the functional and structural brain abnormalities in
psychological disorders (e.g., brain volumetry analysis in Alzheimer’s disease) (Salama
et al., 2016). MRI is also used in MRI-guided stereotactic surgery and radiosurgery
for treatment of intracranial tumors, arteriovenous malformations and other surgically
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Table 2.1: Summary of the different frameworks of the correspondence problem
Input Geometry representation Points, skeletons, feature

points, surfaces
Dimensionality of the data 2D, 2D+Time, 3D, 3D+Time

Correspondence Translation, rigid, similarity,
Correspondence representation and transformation affine, non-rigid

Output Correspondence only Bijective, injective, crisp,
probabilistic

Full vs. Partial
Dense vs. sparse

Objetive Function Similarity-based (Cosa et al., 2013) Similarity only,
correspondence (Kanavati et al., 2017) similarity and distortion
Rigid alignment (Sjoberg and Ahnesjo, 2013) Largest common pointset,

(Cortés and Serratosa, 2015) geometric distance
Non-Rigid alignment (Bronstein et al., 2009) Geometric distance and

(Bronstein et al., 2011) regularization
Transformation search (Soon and Qiu, 2015) Alignment, point cluster,

nonrigid alignment
Approach Solution paradigm Correspondence search (Cortés and Serratosa, 2015) Continuous optimization,

combinational search
Hybrid search (Liu et al., 2015) ICP, prealignment+ICP,

embedding+ICP
Geometric Deep Learning (Bronstein et al., 2017) Volumetric CNNs, Intrinsic

Global vs. local search (Boscaini et al., 2016) CNNs, Geodesic CNNs
Pairwise vs. groupwise Probabilistic search (Iwata et al., 2016) Linear latent variable

(Damianou et al., 2012) Models, Gaussian Processes

treatable conditions using a device known as the N-localizer (Cabezas et al., 2011; Cosa
et al., 2013; Mercier et al., 2012).

MRI of the nervous system uses magnetic fields and radio waves to produce high
quality 2D/3D images of nervous system structures without the use of ionizing radiation
(X-rays) or radioactive tracers (Salama et al., 2016). Image contrast may be weighted
to demonstrate different anatomical structures or pathologies. Each tissue returns to its
equilibrium state after excitation by the independent processes of T1 (spin-lattice) and
T2 (spin-spin) relaxation.

Figure 2.2 shows an example of MRI T1 and T2 images related to the brain.

2.3 Shape descriptors

Most of the matching methods in the state-of-art use surfaces to represent the shape
of a given object. These methods are based on isometric surfaces (Zhang et al., 2008),
deformation (Huang et al., 2008), template matching (Li et al., 2009) and articulated
shapes (Chang and Zwicker, 2009). Motion reconstruction or dynamic volume registra-
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(a) MRI T1 sample (b) MRI T2 sample

Figure 2.2: Samples of MRI T1 and T2 images. The above figures show that for different
schemes of acquisitions, MRI images exhibit changes in their texture descriptors related
to each tissue (e.g., brain structures such as gray and white matter).

tion methods use Time-varying surfaces to analyze the shape variability over time (Sharf
et al., 2008). Finally, skeleton shapes is the more general framework of shape represen-
tations such as the medial axis and curve skeletons (Gall et al., 2009; Kin-Chung Au
et al., 2010).

Extracting representative points from a given shape can give us another set of infor-
mation about the shape (computing descriptors for these points). These descriptors will
be scalar or vectors of scalars that capture some properties about the shape (Lin et al.,
2014). From these descriptors, we can establish a given similarity measure between the
shapes to be analyzed (Kalogerakis et al., 2010). Furthermore, if two or more descriptors
are similar, we can say that their corresponding points should also be similar (Bronstein
et al., 2011). Since surfaces can give relevant information about the shape structure of
a given brain structure, in this work we will use shape descriptors as input features for
the probabilistic correspondence method.

2.3.1 Scale-invariant Heat Kernel Signature (SI-HKS)

Using a shape descriptor that maintains invariance under a wide class of transformations
is convenient when it comes to shape analysis. The SI-HKS is a scale-invariant version
of the heat kernel descriptor where an intrinsic local shape descriptor based on diffusion
scale-space analysis is performed in order to describe a given shape X(Bronstein et al.,
2011). Here, brain structures are modeled as Riemannian manifolds in order to compute
the shape descriptors from the heat conduction properties (Bronstein and Kokkinos,
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2010). Heat propagation on non-Euclidean domains is governed by the heat diffusion
equation,

(
∆X + ∂

∂t

)
u (x, t) = 0, (2.1)

where ∆X is the Laplace Beltrami operator and u (x, t) is the heat distribution at a
point x at time t. The solution of the equation (2.1) with point distribution u0(x) =
δ (x− x′) as initial condition, describes the amount of heat on a given surface at point
x in time t. This solution is called the heat kernel and is denoted by KX,t (x, x′). Thus,
the heat kernel signature can be described as

h (x, t) = KX,t (x, x) =
∞∑

i=0
e−λitφi(x)2, (2.2)

where λ0, λ1, . . . ≥ 0 are eigenvalues, and φ0, φ1, . . . are the corresponding eigenfunc-
tions of the Laplace-Beltrami operator, satisfying ∆X · φi = λiφi. One disadvantage of
the heat kernel signatures is their sensitivity to scale. Given a shape X and its scaled
version X ′ = βX, the new eigenvalues and eigenfunctions will satisfy λ′ = β2λ¸ and
φ′ = βφ.

In order to achieve scale invariance, Bronstein proposes to remove the dependence
of h from the scale factor β (Bronstein and Kokkinos, 2010). First, the HKS is sampled
logarithmically in time (t = ατ ) at each shape point x to obtain a discrete function of h

as hτ . Finally, they use the discrete-time Fourier transform of hτ to shift in time into a
complex phase H ′ (w) = H (w) e2πws.

Figure 2.3 shows an example of computing SI-HKS descriptors over three kind of
brain structures (ventricle, putamen and thalamus). The figure shows that spatial re-
gions related to the same descriptor (i.e., same color), share common information which
can be exploited to model the correspondence between brain structures.
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(a) Ventricle (b) Putamen

(c) Thalamus

Figure 2.3: Samples of SI-HKS descriptors for three brain structures: Ventricle, Puta-
men, and Thalamus, respectively. The figure shows the early and advanced stage of the
Alzheimer disease for each brain structure (left and right shape per brain structure).
The color bar indicates high and low salience regions, respectively.



Chapter 3

Nonlinear Unsupervised Clustering
Matching

Probabilistic groupwise methods for unsupervised clustering have the benefit that we
can model multiple view data without any correspondence information. Hence, we can
compute shared information among views instead of analyzing full correspondences by
establishing linear relations between objects as Iwata et al. present in (Iwata et al., 2016).
However, these relations are impractical in applications where nonlinear representations
of shape objects are needed (i.e., non-rigid matching tasks). In this chapter, we introduce
a nonlinear version of the model proposed by Iwata et al. (Iwata et al., 2016). In
particular, we provide a method for shape correspondence analysis based on nonlinear
unsupervised clustering of groupwise 3D shape descriptors. The clustering process is
carried out by a nonlinear probabilistic latent variable model, in which we use random
Fourier features of the input data observations (Rahimi and Recht, 2007). In other
words, we extend the many-to-many object matching proposed by Iwata et al. (2016)
using Hilbert space embeddings of the input data (Rahimi and Recht, 2007). Once the
model is defined, we provide an stochastic EM algorithm for computing the necessary
posterior distributions of the probabilistic model.

3.1 Unsupervised Cluster Matching via Linear La-
tent Variable Models

Unsupervised object matching is a task that involves finding relations between obser-
vations in different views without any correspondence information. Methods for un-
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supervised object matching have been proposed in the state-of-the-art to model shape
structures where there are no full correspondences between objects, or it is challenging to
compute some similarity measures between them. Yang et al. (2013). Some works such
as least squares object matching Yamada and Sugiyama (2011), variational Bayesian
matching Klami (2012) and kernelized sorting Quadrianto et al. (2009), use probabilis-
tic methods to modeling features between objects to establish matching processes.

Let us first introduce the classical linear latent variable models for unsupervised
object matching. Thus, we describe the model proposed by Iwata et al. (2016) in which
a given task for multiview object matching is performed. Besides, this model assumes
that there is an infinite number of latent vectors that are shared by all views, and each
object is generated from one of the latent vectors and a view-specific projection matrix.
Figure 3.1 shows the relationship between latent vectors and objects in two different
views, where arrows that indicate the corresponding latent vectors for each observation
are hidden.
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Fig. 1. Example of the input (top) and output (bottom) for the proposed model with two domains. The vertical axis represents object indices, and the

horizontal axis represents observation feature indices for each matrix. The object indices of the output are permutated so that matched objects are aligned.
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Fig. 2. Relationship between latent vectors and objects in two domains.

model with two domains, where the numbers of objects in the first and second domains are 50 and 60, and the numbers

of observation features are 70 and 50, respectively. The color shows the value of the observation feature. In this case, the

proposed model found five clusters, and the object indices are permutated so that matched objects are aligned.

The model proposed for this task is a probabilistic latent variable model. The proposed model assumes that (1) there is

a potentially infinite number of clusters, and (2) each cluster j has a latent vector z j ∈ RK in a K-dimensional latent space.

Each object xdn in the dth domain is generated depending on domain-specific projection matrix Wd ∈ RMd×K and latent

vector zsdn
that is selected from a set of latent vectors Z = {z j}∞

j=1
. Here, sdn ∈ {1, . . . , ∞} is the latent cluster assignment of

object xdn. Objects that use the same latent vector, or that have the same cluster assignment, are considered to match. Fig. 2

shows the relationship between latent vectors and objects in two domains, where arrows that indicate the corresponding

latent vectors for each object are hidden.

To be precise, the proposed model is an infinite mixture model, where the probability of object xdn is given by

p(xdn|Z,W , θ) =
∞∑

j=1

θ jN (xdn|Wdz j, α
−1I), (1)

where W = {Wd}D
d=1

is a set of projection matrices, θ = {θ j}∞
j=1

is a set of mixture weights, θ j represents the probability that

the jth cluster is chosen, α is a precision parameter, and N (μ,�) denotes a multivariate normal distribution with mean μ
and covariance matrix �. In the proposed model, a set of latent vectors Z is shared among multiple domains, but projection

matrix Wd depends on the domain. The benefit of the proposed model is as follows:

Please cite this article as: T. Iwata et al., Probabilistic latent variable models for unsupervised many-to-many object match-

ing, Information Processing and Management (2016), http://dx.doi.org/10.1016/j.ipm.2015.12.013

objects in
the view 2 

Figure 3.1: Relationship between latent vectors and input observations in two views
(Iwata et al., 2016).

3.1.1 The linear model

The linear model assumes that we are given objects (i.e., observations in the input space)
for V views {Xv}V

v=1 where Xv = {xvn}Nv

n=1 is a set of observations in the vth view, and
xvn ∈ RDv is the input vector of the nth observation in the vth view. Besides, since we
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are unaware of any correspondences between objects in different views, the number of
observations Nv and the dimensionality Dv for each object (e.g., brain structure) can
be different from those of other structures. Therefore, our task is to match clusters
of objects (i.e., groupwise correspondences) across multiple views in an unsupervised
manner (Iwata et al., 2016).

As we describe above, this model assumes that there is a potentially infinite number of
clusters (i.e., groups of correspondences), and each cluster j has a latent vector zj ∈ RK ,
in a K-dimensional latent space. Specifically, the proposed model is an infinite Gaussian
mixture model (iGMM), where the probability of object in the input space xvn is given
by

p (xvn|Z, W , θ) =
∞∑

j=1
θjN

(
xvn|Wvzj, α−1I

)
(3.1)

where W = {Wv}V
v=1 is a set of projections matrices, θ = (θj)∞

j=1 are the mixture
weights, θj represents the probability that the jth cluster is chosen and α is a precision
parameter. Besides,

Since each object xvn in the v-th view is generated depending on a view-specific
projection matrix Wv ∈ RMv×K and a latent vector zsvn that is selected from a set of
latent vectors Z = {zj}∞

j=1. Here, sdn = {1, . . . ,∞} is the latent cluster assignment of
object xvn. Observations that use the same latent vector, or that have the same cluster
assignment svn, are considered to match.

3.2 Probabilistic Nonlinear Latent Variable Model
for Groupwise Correspondence

Regarding the multiview dataset in the observed space X = {Xv}V
v=1 , where Xv =

{xvn}Nv

n=1 is a set of objects (i.e., shape descriptros) in the vth view, and xvn ∈ RDv is
the input vector of the nth object in the vth view, we aim to map the input observations
to the feature space. Thus, by introducing a function k : X × X 7→ R called the
kernel, that performs a given nonlinear mapping over the objects, φ : X → H such that
∀x, x′ ∈ X ,

k (x, x′) := ⟨φ (x) , φ (x′)⟩H, (3.2)
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we can cluster groups of correspondences by using nonlinear mapping functions that
represents the shape descriptors in the Hilbert space. As in nonlinear latent variable
models, we want to map the input data to a feature space through a nonlinear map φ (·),
so we can compute clusters of feature vectors by using nonlinear functions (Schölkopf
et al., 1999).

As we are unaware of any correspondence between feature sets Φ = {Φv}V
v=1 in

different views, we set different number of feature vectors Φv = {φ (xvn)}Nv

n=1, and
different dimensionalities Lv such that φ (xvn) : RDv → RLv . Our approach assumes
that we can find an infinite number of correspondences between feature vectors, and each
correspondence j has a latent feature vector ζj ∈ RK in a latent space of dimension K.
Thus, feature vectors that have the same cluster assignments svn, or are related by the
same latent feature vector, establish a meaningful correspondence.

Each feature vector in φ (xvn) ∈ H in the vth view is generated depending on the
view-specific projection matrix Bv ∈ RLv×K and the latent feature vector ζsvn that is
selected from a set of latent feature vectors Z = {ζj}∞

j=1. Here, sdn = {1, . . . ,∞} is the
cluster assignment of feature vector φ (xvn). Then, by using a latent space representation
of an infinite Gaussian mixture model, we define the probability of a feature vector
φ (xvn) as

p (φ (xvn)|Z, W , θ) =
∞∑

j=1
θjN

(
φ (xvn) |Bvζj, α−1I

)
,

where W = {Bv}V
v=1 is a set of projections matrices, θ = (θj)∞

j=1 are the mixture
weights, θj represents the probability that the jth cluster is chosen and α is a precision
parameter. By employing different projection matrices in a Hilbert space for each feature
vector (view-specific), we can handle multiple feature sets with nonlinear properties and
different dimensionalities (i.e., size of the brain structures). Figure 3.2 shows the scheme
of the proposed model, in which we describe the relationship between feature vectors
and latent feature vectors in a Hilbert space.

3.2.1 Stick-breaking representation

A stick-breaking process is an approach to generate a random vector with a Dirichlet
distribution Dir(·), that involves iteratively breaking a stick of length one into k pieces in
such a way that the lengths of the k pieces θk follow a Dir(γ) distribution (Sethuraman,
1994). First, choose a beta random variable β1 ∼ Beta(1, γ) and break of β1 of the
stick. For each remaining segment, choose another beta distributed random variable,
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Latent feature vectors

Descriptors in domain 1 Descriptors in domain 2
H H

B1 B2

Φ(X1) Φ(X2)

Z

Figure 3.2: Scheme for the unsupervised nonlinear clustering method for groupwise
correspondence analysis. The figure shows an example of establishing correspondences
in a Hilbert space for two brain structures (left putamen).

and break off that proportion of the remainder of the stick. This gives us an infinite
collection of weights θk,

βk ∼ Beta(1, γ), (3.3)

θk = βk

k−1∏
j=1

(1− βj) k = 1, 2, 3, . . . (3.4)

This representation of the Dirichlet process, and its corresponding use in a Dirichlet
process mixture allows us to compute a variety of functions of posterior DPs (Gelfand
et al., 2005). As in Iwata et al. (2016), we use a stick-breaking process to set the mixture
weights θ for a Dirichlet process with concentration parameter γ.

3.2.2 The model

The proposed model generates feature sets in multiple views Φ according to the following
process,

1. Draw mixture weights θ ∼ Stick(γ)

2. Draw a precision parameter α ∼ G(a, b)

3. For each cluster: j = 1, . . . ,∞
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(a) Draw a latent vector ζj ∼ N (0, (αr)−1I)

4. For each view: v = 1, . . . , V

(a) For each object: n = 1, . . . , Nv

i. Draw a cluster assignment svn ∼ Categorical(`)
ii. Draw a feature vector φ (xvn) ∼ N (Bvζsvn , α−1I)

Here, r is a precision parameter of the latent vectors, Stick(γ) is the stick-braking
process that generates the mixture wights for the DP with concentration parameter γ

(Sethuraman, 1994), and G(a, b) is a Gamma distribution with parameters a and b.
As for the priors of the latent vectors Z and precision parameter α, we use a Gauss-

Gamma distribution, because it is a conjugate-prior for a Gaussian

p(φ (xvn) |ζj, α, W) = N (φ (xvn) |Bvζj, α−1I), (3.5)

and it enables us to analytically integrate out the latent vectors as show in Appendix
B.1. The joint probability of the feature vectors Φ, and the cluster assignments S ={
{svn}Nv

n=1

}V

v=1
is given by

p (Φ, S|W , a, b, r, γ) = p (S|γ) p (Φ|S, W , a, b, r) , (3.6)

where a, b and r are the hyperparameters.
By marginalizing out the mixture weights θ, p (S|γ) becomes

p (S|γ) =
γJ

J∏
j=1

(N·j − 1) !

γ (γ + 1) · · · (γ + N − 1) ,

where N =
V∑

v=1
Nv is the total number of feature vectors, N·j represents the number of

feature vectors assigned to the cluster j, and J is the number of clusters that satisfies
N·j > 0. Figure 3.3, shows a graphical model representation of the proposed model,
where shaded and unshaded nodes indicate observed and latent variables, respectively.

For our non-linear model, we give the derivation of the likelihood in (3.3), in which
latent feature vectors Z and precision parameter α are analytically integrated out. The



24 Nonlinear Unsupervised Clustering Matching

xvn

φ (xvn)snvθγ Bv
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r
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∞

Figure 3.3: A graphical model representation of the Non-Linear Latent Variable Model
for Groupwise Correspondence, where the shaded and unshaded nodes indicate observed
and latent variables, respectively, and plates indicate repetition.

resulting expression is defined as

p (Φ|S, W , a, b, r) = (2π)−
∑

v
LvNv

2 r
KJ

2
ba

b′a′
Γ (a′)
Γ (a)

J∏
j=1
|Λj|1/2. (3.7)

Here, a′ = a +
∑

v
LvNv

2 ,

b′ = b + 1
2

V∑
v=1

Nv∑
n=1

φ (xvn)⊤ φ (xvn)− 1
2

J∑
j=1

µ⊤
j Λ−1

j µj, (3.8)

and

µj = Λj

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn),

|Λ−1
j | =

V∑
v=1

NvjB
⊤
v Bv + rI, (3.9)

where r is a parameter for controlling the precision of the latent feature vectors Z, and
Nvj is the number of feature vectors assigned to cluster j in the v view (see Appendix
B.1 for further details). Finally, the posterior for the precision parameter α is given by

p (α|Φ, S, W , a, b) = G (α|a′, b′) , (3.10)

and the posterior for the latent vector ζj is given by

p (ζj|α, Φ, S, W , r) = N
(
ζj|µj, α−1Λj

)
. (3.11)
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See Appendix B.2 for the derivation.

3.3 Inference

Stochastic expectation maximization (EM) algorithm comes as an attractive alternative
to EM. The main idea of Stochastic EM is to impute for the missing data with plau-
sible values given the observed data and a current estimate of the model parameters
(McLachlan and Krishnan, 2008). Moreover, Stochastic EM is particularly useful in
problems where EM is intractable. For instance, in problems where the latent variables
are integrate out to obtain the marginal likelihoods.

To marginalize out the latent feature vectors Z, and the precision parameter α, we use
an stochastic EM algorithm (Iwata et al., 2016). Hence, we alternatively iterate collapsed
Gibbs sampling for the cluster assignments S, and maximum joint likelihood estimation
of the projection matrices W . By collapsing the latent variables (i.e., marginalizing
out), the time-consuming step of drawing these variables is skipped, and the sample
auto-correlations are usually reduced (Liu, 1994).

In the E-step, a new value for sdn is sampled from

p
(
svn = j|Φ, S\vn, W , a, b, r, γ

)
∝

p
(
svn = j, S\vn|γ

)
p
(
S\vn|γ

) p
(
Φ|svn = j, S\vn, W , a, b, r

)
p
(
Φ\vn|S\vn, W , a, b, r

) ,

(3.12)

where \vn represents a value excluding the nth feature vector in the vth view. The first
factor in the expression above is given by

p
(
svn = j, S\vn|γ

)
p
(
S\dn|γ

) =


N.j\vn

N−1+γ
for an existing cluster

γ
N−1+γ

for a new cluster
,

using (3.7). Then, using (3.7) the second factor becomes

p
(
Φ|svn = j, S\vn, W , a, b, r

)
p
(
Φ\vn|S\vn, W , a, b, r

) = (2π)− Dv
2 r

1
2 I(j>J\vn) b

′a′
vn

\vn Γ
(
a′

svn=j

)
|Λj,svn=j|

1
2

b
′a′

svn=j

svn=j Γ
(
a′

\vn

) ∣∣∣Λj\vn

∣∣∣ 1
2
, (3.13)

where svn = j indicates the value when the feature vector xvn is assigned to cluster j

(i.e. correspondence group) as follows (see Appendix B.3 for further details of collapsed
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Gibbs sampling stage at E-step),

a′
sdn=j = a′, (3.14)

b′
svn=j = b′

\vn + 1
2φ (xvn)⊤ φ (xvn) + 1

2µ⊤
j\vnΛ−1

j\vnµj\vn −
1
2µ⊤

j,svn=jΛ−1
j,svn=jµj,svn=j,

(3.15)

µj,svn=j = Λj,svn=j

(
B⊤

v φ (xvn) + Λ−1
j\vnµj\vn

)
, (3.16)

Λ−1
j,svn=j = B⊤

v Bv + Λ−1
j\vn, (3.17)

and I(·) is used to denote the indicator function, i.e. I(A) = 1 if A is true, I(A) = 0
otherwise.

In the M-step, the projection matrices W are estimated by maximizing the logarithm
of the joint likelihood (3.6). The gradient of the joint likelihood is computed by

∂ log p (X, S|W , a, b, r, γ)
∂Bv

= −a′

b′
∂b′

∂Bv

+ 1
2

J∑
j=1

tr
(

Λ−1
j

∂Λj

∂Bv

)

= −a′

b′

 J∑
j=1

NvjBvµjµ
⊤
j −

∑
n:svn=j

φ (xvn) µ⊤
j




−
J∑

j=1
NvjBvΛj. (3.18)

We can obtain the projection matrices that maximize the joint likelihood analytically
as follows,

Bv = −a′

b′

 J∑
j=1

∑
n:svn=j

φ (xvn) µ⊤
j

 J∑
j=1

NvjΛj + a′

b′ Nvjµjµ
⊤
j

−1

. (3.19)

See Appendix B.3 for the complete derivation of the projection matrices.
Finally, Algorithm 1 shows the procedure for inferring our approach based on the

stochastic EM algorithm. For the input, we initialize the cluster assignments S by
randomly selecting an integer from {1, . . . , J}. The projection matrices W are initialized
by Gaussian with zero mean and small variance. T is the maximum number of iteration
for the learning algorithm.
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Algorithm 1 Learning procedure for the nonlinear unsupervised clustering matching.
Input: Multiview dataset projected into the feature space Φ, initial number of clusters

J , maximum iteration number T , and hyperparameters a, b, r, γ
1: Initialize S and W .
2: for t = 1, . . . , T do
3: // E-Step
4: for v = 1, . . . , V do
5: for n = 1, . . . , Nv do
6: sample svn using the p

(
j|Φ, S\vn, W , a, b, r, γ

)
(3.12) from j = 1, . . . , J + 1

7: if svn = J + 1 then
8: update the number of clusters J ← J + 1
9: end if

10: end for
11: end for
12: // M-Step
13: for v = 1, . . . , V do
14: update each projection matrix Bv using (3.19)
15: end for
16: end for
Output: projection matrices W , and cluster assignments S (i.e., groupwise correspon-

dences)

3.4 Random Fourier Features

Since the model parameters depicted above depend on the feature vectors φ (xvn), the
expression for µj in the equation (3.9) becomes intractable due to the non-linear relation-
ships between variables. Here, we can notice that a given kernel induces an inner product
between infinite dimensional feature vectors. As in Rahimi and Recht (2007), we propose
to approximate the mapping functions φ (xvn) by computing a randomized feature map
ϕ (xvn) : RDv → RLv so that the inner product in equation (3.8) ensures that we can ap-
proximate the kernel, k (x, x′) = ⟨φ (x) , φ (x′)⟩ ≈ ϕ (xvn)⊤ ϕ (xvn) (Rahimi and Recht,
2007). Thus, we consider the spherical Gaussian kernel as k (x, x′) = exp (−γ||x− x′||2).
Consequently, we compute these feature vectors by using random Fourier bases as

ϕ (xvn) ≡
√

2
Lv


cos

(
ω⊤

1 xvn + υ1
)

...
cos

(
ω⊤

Ld
xvn + υLd

)
 , (3.20)
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where {ωm ∼ N (0, β−1I)}Lv

m=1 and υm is drawn from the uniform distribution as

{υm ∼ U (0, 2π)}Ld

m=1 . (3.21)

3.5 Experimental results

3.5.1 Synthetic datasets

The table 3.1, shows four different metrics for comparing partitions (Hubert and Arabie,
1985). Results for adjusted Rand index, unadjusted Rand index, Hubert’s index, and
Mirkin’s index are reported for comparison (See appendix A for details of the evaluation
metrics for cluster analysis). Every index was computed for the three synthetic datasets
(latent dimensionality K = 3, 5, 10), which were averaged over ten experiments.
The results show that even for high latent dimensionalities, the proposed method is
able to group data successfully (AR = 0.9096 for Synth10). Thus, the model can infer
matching clusters by assuming a shared latent space.

Table 3.1: Average of the Rand indexes and its standard deviation (mean± std), for the
three synthetic datasets. The table shows the adjusted rand intex (AR), the unadjusted
rand index (RI), Hubert’s index and the Mirkin’s index.

Dataset AR RI Hubert Mirkin
Synth3 0.9757± 0.0559 0.9897± 0.0235 0.9794± 0.0469 0.2653± 0.0444
Synth5 0.9763± 0.0502 0.9898± 0.0216 0.9796± 0.0433 0.2316± 0.0887
Synth10 0.9096± 0.1903 0.9607± 0.0831 0.9214± 0.1661 0.2968± 0.1435

Figure 3.4, shows the adjusted Rand index for all three synthetic datasets achieved
by the proposed model with different latent dimensionalities. The value was highest
when the latent dimensionality of the model was the same (or near) as the true latent
dimensionality. The proposed model with K ̸= K∗ also performed accurate matching.
This result indicates that the proposed model is robust to the latent dimensionality
settings.

In addition, figure 3.5 shows a few examples of the resulting likelihood for the three
synthetic datasets (latent space dimensionality K = 3, 5, 10). The figure shows that the
likelihoods reach their maximums values among the iterations properly.

Finally, figure 3.6 shows the experimental results when the number of views, V ,
increases for the three synthetic datasets. The result shows that our model improves the
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Figure 3.4: Adjusted Rand index achieved by the proposed model with different latent
dimensionalities K for the all datasets whose true latent dimensionalities are K∗ =
3, 5, 10.

performance of the Iwata’s approach.
To explore the accuracy of our approach, we show the performance of our approach on

real-world non-rigid datasets. Then, we present a comparative analysis of unsupervised
clustering methods over well-known machine learning databases. Finally, we discuss the
benefits of performing probabilistic correspondence analysis over neuroimaging data.

3.5.2 Non-rigid real-world datasets

First, we used the Gorilla 3D shapes of the TOSCA dataset to show more comprehen-
sively the correspondence problem over non-rigid shapes. This dataset contains three-
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Figure 3.5: Samples of the log-likelihood for the proposed model with different latent
dimensionalities K for the all datasets whose true latent dimensionalities are K∗ =
3, 5, 10.

dimensional non-rigid shapes in a variety of poses for non-rigid shape similarity and
correspondence experiments which is challenging and can give us an important evalua-
tion of our correspondence method. We used the triangular faces and a list of vertex
XY Z coordinates as our input data (Bronstein et al., 2007b).

3.5.3 Real-world datasets

Second, we test our method with three well-known machine learning datasets such as Iris,
Glass, and MNIST.1 We set up our experiments by randomly splitting the input data

1We use the database of handwritten digits developed by LeCun et. al. available at http://yann.
lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Figure 3.6: Adjusted Rand index for the three synthetic datasets (K∗ = 3, 5, 10)
with different numbers of views, V .

(i.e., features of the datasets) into two views as Iwata et al. did for their experiments in
(Iwata et al., 2016).

3.5.4 Brain structures dataset

For the neuroimage analysis, we used the MRI DB-UTP database from the Universi-
dad Tecnológica de Pereira, COL. This database contains volumetric MRI data from
four patients with Parkinson’s disease (at earlier and advanced stage of the disease).
The database was labeled by neurosurgeons from NEUROCENTRO: The Institute of
Parkinson and Epilepsy, located in Pereira-Colombia. The database contains T1 se-
quences with 1mm × 1mm × 1mm voxel size and slices of 512x512 pixels. The atlas
was derived from a volumetric T1-weighted MR-scans, using semi-automated image seg-
mentation, and three-dimensional reconstruction techniques. The current version of this
dataset consists of 1) the original volumetric whole brain MRI of the volunteers; 2) a set
of detailed label maps and 3) the three-dimensional models of the labeled anatomical
brain structures.

3.5.5 TOSCA Non-rigid shapes

To show more appropriately the correspondence results on 3D shapes, we test our method
on the TOSCA dataset. We compute 3D shape descriptors based on scale-invariant
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Heat Kernel Signatures (SI-HKS) as in (Bronstein and Kokkinos, 2010). We used these
descriptors as input data to compute the correspondences. We test our method against
KM and UCM in correspondence tasks. Figure 3.7 shows the experimental results of the
non-rigid correspondence analysis. The results show that our method establishes more
meaningful correspondences between two real-world samples than KM and UCM. We
can notice from these results that our approach finds accurate correspondences between
shapes (Standing and sitting gorilla respectively). For instance, we can see in figure
3.7(c) that regions related to arms, head, and body match entirely in both shapes (that
is not the case for the KM, and UCM approaches, where hands are matched wrongly,
see figures 3.7(a) and 3.7(b)).

3.5.6 Comparison with linear approaches

First, we test the performance of our approach regarding the adjusted Rand index (we
report both average and standard deviation), to quantify the similarity between the
inferred clusters (Iwata et al., 2016). For comparison, we use unsupervised clustering
matching (UCM) (Iwata et al., 2016), k-means (KM), and convex kernelized sorting
(CKS) (Djuric et al., 2012). Table 3.2 shows that our approach outperforms the state-
of-the-art methods for unsupervised clustering for the three databases. The results also
show that by mapping the observed data through random feature expansions, the model
can handle real-world datasets with better performance than linear approaches (i.e., 0.17
for the MNIST dataset against 0.085 obtained from the UCM method).

Table 3.2: Adjusted Rand index of the proposed method against the state-of-the-art
methods for unsupervised clustering.

Approach
Database UCM KM KM-CKS Ours

Iris 0.383± 0.189 0.224± 0.0910 0.254± 0.154 0.546± 0.080
Glass 0.160± 0.020 0.050± 0.008 0.052± 0.011 0.378± 0.045

MNIST 0.085± 0.016 0.030± 0.007 0.037± 0.008 0.167± 0.013

3.5.7 Groupwise shape correspondences

To establish groupwise correspondences between brain structures, we used again the SI-
HKS as shape descriptors. Then, we perform a random feature expansion to compute the
features vectors. We set each view as a 3D shape descriptor for a given brain structure.
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(a) KM

(b) UCM

(c) Ours

Figure 3.7: Correspondence estimates for different clustering methods. The figure shows
a comparison of correspondence experiments on different Gorillas shapes from TOSCA
dataset.

We evaluate our model by using three relevant brain structures in the Alzheimer’s disease
such as the ventricle, thalamus, and putamen.

Figure 3.8 shows the experimental results of the brain correspondence analysis. These
experiments show our framework working with two brain structures at different times
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of the disease (early and advanced stage). From the results, it can be noticed that even
when the brain volumetry of a given shape (i.e., see Putamen results in figure 3.8(a))
has lost part of their mass as consequence of the neurodegenerative process, our model
is capable of establishing relevant correspondences between brain structures.

(a) Putamen (b) Ventricle

(c) Thalamus

Figure 3.8: Experimental results of brain correspondences analysis using the proposed
method. The figure shows a comparison between brain structures at different stages of
the disease (left and right depicts early and advance stage of the disease). Same colors
are considered as candidate matching regions.

In addition, table 3.3 shows the comparison for different surface descriptors, SI-HKS,
the Classic HKS and the classic Laplace-Beltrami operator (LBO) (Bronstein and Kokki-
nos, 2010). The results show that when we used SI-HKS, the correspondence is more
accurate than HKS and LBO (i.e. adjusted rand index of 0.287± 0.035, 0.269± 0.030
and 0.221± 0.053 for ventricle brain structures). These results are evidence of the in-
variant properties of SI-HKS, in which we can model locally-elastic deformations that
stretch or shrink the brain structure in a given neurodegenerative process.

Finally, the table 3.4 shows both mean and standard deviations computed from
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Table 3.3: Adjusted Rand index for different surface descriptors on brain structures.
Brain Structure Ventricle Putamen Thalamus

SI-HKS 0.287± 0.035 0.312± 0.023 0.332± 0.017
HKS 0.269± 0.030 0.305± 0.042 0.311± 0.047
LBO 0.221± 0.053 0.253± 0.048 0.266± 0.042

ground-truth correspondences established through Voronoi tessellation. Here, the results
show that our model has better performance than the unsupervised linear approach. The
results prove that by modeling nonlinear mapping functions of the shape descriptors,
the model can establish meaningful correspondences between brain structures.

Table 3.4: Adjusted Rand index for the groupwise correspondence analysis on brain
structures.

Brain Structure UCM Ours
Ventricle 0.092± 0.015 0.287± 0.035
Putamen 0.098± 0.013 0.312± 0.023
Thalamus 0.157± 0.003 0.332± 0.017

As for the correspondence evaluation, we use an optimal correspondence metric based
on the structure preservation criterion shown in (Kim et al., 2011), which is the Prince-
ton benchmark protocol for correspondence quality. Hence, one can obtain a criterion
of shape similarity as the amount of structure distortion. The results for the TOSCA
dataset, show that our method computes point-to-point relations for geodesic errors low-
ers than 0.18, which is a good result in comparison with the correspondences approaches
in the state-of-the-art. Additionally, the results for the Brain dataset show geodesic er-
rors lower than 0.29, which is a good result for partial shape matching approaches in the
state-of-the-art. These results evidence that for large deformations over a given brain
structure, the distortion increases as a result of the neurodegenerative disease (partial
correspondence problem).

3.6 Conclusions

In this chapter, we have presented an unsupervised clustering method for brain cor-
respondence analysis through random Features expansion. We demonstrated that by
using random Fourier features, the clustering process becomes more accurate in com-
parison with common state-of-the-art methods. Besides, the latent feature space shared
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among views holds more relevant information about the nonlinear mapping of the ran-
dom feature expansion. Moreover, the experimental results showed that our approach
establishes meaningful correspondences between 3D brain structures and we can match
non-rigid real world shapes accurately. In addition, since the inferred correspondences
fit a ground-truth Voronoi tessellation accurately, our method proved to be useful in ap-
plications derived from matching processes. As future works, we plan to analyze other
inference methods based on variational inference to make our model fully Bayesian.



Chapter 4

Multiview Warped Mixture Model

In the previous chapter, we showed how nonlinear latent variable models allow the au-
tomatic determination of the proper relation between nonrigid shapes when building
unsupervised matching models for shape correspondence analysis. However, an im-
portant issue that arose in the previous chapter is the need to define a view-specific
underlying representation for each shape. Hence, modeling shape correspondences with
shared latent vectors sometimes lead to mismatches when the number of views grows
(Zhao et al., 2017). Moreover, when shape descriptors from different views are related
to a common latent feature vector, the information about the private latent structure of
a given data-view is limited (i.e., poor representation of complex shape variations within
views). Besides, since the feature map for the model proposed in Chapter 3 is built using
samples drawn from a spectral measure (i.e., through random Fourier features) (Rahimi
and Recht, 2007), the complete kernelized version of the multiview approach remains to
be reached.

In consequence, this chapter presents a multiview learning approach to model nonlin-
ear groupwise correspondences of complex shapes by using a multiview warped mixture
model. In particular, we assume that each shape descriptor has its correspondence in
the latent space, and is generated by warping the latent correspondence via nonlinear
mapping functions from the latent space to the input space. Thus, we use Gaussian
processes (GP) (Rasmussen and Williams, 2005), which enable us to infer the nonlinear
warping function from the input data (i.e., shape descriptors). Gaussian processes have
also been used in unsupervised learning and dimensionality reduction scenarios where
the output dimensionality of the input data can even be much larger than the instances
(i.e., number of shape descriptors per view Nv)(Lawrence and Quiñonero Candela, 2006).

However, the main challenge in the unsupervised GP problems is that the input
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data set Xv is not directly observed. Therefore, Gaussian process latent variable models
(GP-LVM) (Lawrence, 2005) offer an elegant solution to this problem by treating the
unobserved inputs as latent variables, while employing a product of Dv independent GPs
as prior for the latent mapping.

In fact, the presence of multiple views motivate Gaussian Process latent variable
models, which relates different views (i.e., pair of 3D shapes) by assuming that the data
variance is shared among views (Damianou et al., 2012). Thus, the remaining variance
is explained with latent spaces that are private to each view (i.e., by preserving the
non-related shape information among views). As a result, this property will derive in a
more meaningful correspondence descriptor.

In addition, we assume an infinite Gaussian mixture (iGMM) model in the latent
space, which allows us to infer the shape correspondences automatically (i.e., by clus-
tering candidate objects) (Iwata et al., 2016). As in Tomoharu Iwata (2013), we use
Gaussian processes to set the priors on the nonlinear mapping functions. Thus, this
prior will enable us to infer the nonlinear warping function from the shape descriptors
flexibly.

Besides, the model structure allows inference when partial shape correspondence per
view is available (i.e., by handling observations of different size per view) and, because
the observation spaces have been warped, it is possible to transfer shape information
between views by conditioning the model through the underlying concept.

4.1 Gaussian Process Latent Variable Models

Gaussian process latent variable models (GP-LVM) are probabilistic, non-linear, latent
variable models that generalize principal component analysis (Lawrence, 2005). Here, a
GP-LVM brings an efficient probabilistic mapping and also allows the uncertainties of
the low dimensional embedding data to be estimated. By additionally learning a latent
dynamical model, the GP-LVM gives a closed-form expression for the joint distribution
of the observed sequences and their latent space representations (Ek et al., 2007). There-
fore, we can regularize the latent space for modeling shape sequences by incorporating
dynamics to the model.
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4.1.1 Model definition

Let us define a set of observations Xv = [x1, . . . , xNv ]⊤ for a single v-th view, with
xi ∈ RDv . Similarly, let Zv = [z1, . . . , zNv ]⊤ denote the matrix whose rows represent
corresponding positions in the latent space, zi ∈ RK . The Gaussian Process Latent
Variable Model relates a high-dimensional data set, Xv, and a low dimensional latent
space, Zv, using a Gaussian process mapping from the latent space to the input space
(Lawrence, 2005). Given a covariance function for the Gaussian process, k (z, z′), the
likelihood of the data given the latent positions is defined as

p (Xv|Zv, θv) = 1√
(2π)NvDv |Kv|Dv

exp
(
−1

2tr
(
K−1

v XvXv
⊤
))

, (4.1)

where elements of the kernel matrix Kv are defined by the covariance function
(Kv)i,j = k (zi, zj), and the kernel hyperparameters by θv. We use a radial basis function
(RBF) kernel with an additive noise term,

k (z, z′) = α exp
(
− 1

2l2 ||z− z′||2
)

+ δz,z′β−1,

where α is the output variance, l2 is a scale parameter and δz,z′ denotes the Kronecker
delta.

The corresponding log-likelihood is then

L = −DvNv

2 ln(2π)− Dv

2 ln |Kv| −
1
2tr

(
K−1

v XvXv
⊤
)

. (4.2)

Typically, the GP-LVM is used for dimensionality reduction or high dimensional data
visualization, and the latent coordinates are set by maximizing equation (4.1). Currently,
the primary methodology for training the GP-LVM model is to find the MAP estimate
of Z while jointly optimize the hyperparameters (Lawrence, 2005). In that way, the
Gaussian prior density on zi is a regularizer which keeps the latent coordinates close
in the feature space (i.e., Local Distance Preservation in the GP-LVM through Back
Constraints) (Lawrence and Quiñonero Candela, 2006). As in Tomoharu Iwata (2013),
we instead integrate out the latent coordinates as well as the warping function.
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4.2 Warped Mixtures for Unsupervised Clustering

Let us first define the single view Warped Mixture Model (WMM) described in To-
moharu Iwata (2013), which is a nonparametric Bayesian model that finds nonlinearly
separable clusters. The model aims to compute cluster assignments by warping a la-
tent mixtures of Gaussians. Thus, the simple generative model of non-Gaussian density
manifolds allows us to infer shape correspondences nonlinearly. Here, we first introduce
the key components of this single view model.

As in the GP-LVM, the infinite WMM assumes a smooth nonlinear mapping from
a latent density to an observed density. Here, the only difference is that the iWMM
assumes that the latent density is an infinite Gaussian mixture model (iGMM)

p(z) =
∞∑

c=1
λcN

(
z|µc, R−1

c

)
, (4.3)

where λc, µc and Rc, denote the mixture weight, mean, and precision matrix of
the cth mixture component. The iWMM can be seen as a generalization of either the
GP-LVM or the iGMM: The iWMM with a single fixed spherical Gaussian density on
the latent coordinates p(z) corresponds to the GP-LVM, while the iWMM with fixed
mapping x = z and K = D corresponds to the iGMM (Tomoharu Iwata, 2013).

4.3 Latent Multiview Warped Mixture Model

We can use the single view problem of the infinite warped mixture model (iWMM) from
Tomoharu Iwata (2013) in which they warp a latent mixture of Gaussians into non-
parametric cluster shapes. Our idea is to extend the single view model by warping a
multiview latent mixture of Gaussians to produce nonparametric groupwise correspon-
dences. In addition, the possibly low-dimensional latent mixture model allows us to
summarize the properties of the high-dimensional shape correspondences (or density
manifolds) describing the shape descriptors. The number of manifolds, as well as the
shape and dimension of each manifold is automatically inferred.

4.3.1 The model

Let us define a multiview data set as X = {Xv}V
v=1, where each view is defined as

Xv ∈ RNv×Dv . Our model can be seen as an extension of iGMM, where mixtures are
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warped (i.e., by using a multiview GPLVM). Thus, given the mixture assignments (e.g.,
shape correspondences) the likelihood is set as

p (X, Z|S, θ) =
V∏

v=1
p(Xv|Zv, θv)×

∏
i∈v

∞∑
c=1

λcN
(
zi|µc, R−1

c

)
, xi ∈ Sc (4.4)

We define the dimensionalities of our variables as:

• J : number of clusters

• K: dimensionality of the Latent Space

• Dv: dimensionality of the input data in the v-th view

• λ ∈ RJ×1

• Rc ∈ RK×K

• µc ∈ RK×1

Based on the iWMM (see Tomoharu Iwata (2013)) our generative model generates
multiview observations Xv according to the following generative process:

1. Draw mixture weights λ ∼ Stick(η)

2. For each cluster c = 1, · · · ,∞

(a) Draw precision Rc ∼ W(Λ−1, v)

(b) Draw mean µc ∼ N (u, (rRc)−1)

3. For each view v = 1, · · · , V

(a) For each observation n = 1, · · · , Nv

i. Draw latent assignment snv ∼ Mult(λ)
ii. Draw latent coordinates znv ∼ N (µsnv , R−1

snv
)

4. For each view v = 1, · · · , V

(a) For each observed dimension d = 1, · · · , Dv

i. Draw function f v
d ∼ GP(0, Kv)
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5. For each view v = 1, · · · , V

(a) For each observed dimension d = 1, · · · , Dv

i. Draw projection variable wv
d ∼ N (0, ρv

d)
ii. For each observation n = 1, · · · , Nv

A. Draw feature xv
nd ∼ N (wv

df v
d (znv), β−1)

Here, r is the relative precision of µc, Stick(η) is the stick-braking process with
parameter η (see 3.2.1), Mult(λ) represents a multinomial distribution with parameter
λ, and W(·) is the Wishart distribution defined as

W
(
R|Λ−1, ν

)
= 1

G
|R|

ν−K−1
2 exp

(
−1

2 tr(ΛR)
)

(4.5)

where ν is called the number of degrees of freedom of the distribution, and G is the
normalizing constant.

Our model is set as a multiview Gaussian Process Latent Variable model as in
Lawrence (2005). First we assume that observations for each view are generated by
mapping the latent coordinates through a set of smooth functions, over which Gaussian
process priors are placed. Under the GPLVM, the probability of observations given the
latent coordinates, integrating out the mapping functions, is defined as

p (X|Z, θ) =
V∏

v=1
p (Xv|Zv, θv) =

V∏
v=1

Dv∏
d=1

p (xv
d|Zv, θv) , (4.6)

where xv
d represents the dth column of Xv and

p (xv
d|Zv, θv) = N

(
xv

d|0, β−1I + w2
dKv

)
. (4.7)

Our multiview iWMM assumes that the latent coordinates (per view) are generated
from a Dirichlet process mixture model. In particular, we use the following infinite
Gaussian mixture model,

p(zv|λ, µ, R) =
∞∑

c=1
λcN

(
zv|µc, R−1

c

)
, (4.8)
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where λc, µc and Rc are the mixture weight, mean, and precision matrix of the cth
mixture component.

As in the iWMM (Tomoharu Iwata, 2013), we place Gaussian-Wishart priors on the
Gaussian parameters {µc, Rc}.

p (µc, Rc) = N
(
µc|u, (rRc)−1

)
W
(
Rc|Λ−1, ν

)
, (4.9)

where u is the mean of µc, r is the relative precision of µc, Λ−1 is the scale matrix
for Rc, and ν is the number of degrees of freedom for Rc.

By using conjugate Gaussian-Wishart priors for the parameters of the Gaussian mix-
ture components, we can analytically integrate out those parameters, given the assign-
ments of the input observations to the components. Let snv be the latent assignment
of the nth object in the vth view. The probability of latent coordinates Zv given latent
assignments Sv = (s1, . . . , sNv) is obtained by integrating out the Gaussian parameters
{µc, Rc} as follows:

p (Zv|Sv, Λ, ν, r) =
∞∏

c=1
π−
∑

v
NvcK

2
rK/2|Λ|ν/2

r
K/2
c |Λc|νc/2

K∏
q=1

Γ
(

νc+1−q
2

)
Γ
(

ν+1−q
2

) , (4.10)

where Nvc is the number of objects in the vth view assigned to the cth cluster, Γ (·)
is the Gamma function and

rc = r +
∑

v

Nvc, νc = ν +
∑

v

Nvc,

uc = ru +∑V
v=1

∑
n:znv=c xnv

r +∑
v Nvc

,

Λc = Λ +
V∑

v=1

∑
n:snv=c

xnvx⊤
nv + ruu⊤ − rcucu⊤

c ,

are the posterior Gaussian-Wishart parameters of the cth component. We use a
Dirichlet process with concentration parameter η for infinite mixture modeling in the
latent space.

The probability of S is given as follows
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p (S|η) =
V∏

v=1

ηC ∏C
c=1 (Nvc − 1) !

η (η + 1) · · · (η + Nv − 1) , (4.11)

where C is the number of components for which Nvc > 0. The joint distribution of
the observed shape descriptors is given by

p (X, Z, S|θ, ν, u, r, η, ) =
V∏

v=1
p (Xv|Zv, θv) p (Zv|Sv, Λ, ν, u, r) p (Sv|η) . (4.12)

Figures 4.1(a) and 4.1(b) show the graphical representation of the proposed models
(figure 4.1(a) refers to the model proposed in chapter 3), where the shaded and unshaded
nodes indicate observed and latent variables respectively, and plates indicate repetition.
The probabilistic nature of the multiview WMM let us automatically infer the number,
dimension, and shape of a set of nonlinear multiview manifolds, and represent the ob-
served multiview data in a low-dimensional latent space (see figure 4.1(b)). We assume
for this model that each shape descriptor has its correspondence in the latent space,
whereas the model in chapter 3) assumes that latent vectors zj are shared among views.

4.3.2 Inference

We infer the posterior distribution of the latent coordinates Z = {Zv}V
v and cluster

assignments Sv using Markov chain Monte Carlo (MCMC). In particular, we alternate
collapsed Gibbs sampling of S (Liu, 1994), and Hamiltonian Monte Carlo (HMC) sam-
pling of Z (see appendix C). Given Zv, we can efficiently sample Sv using collapsed
Gibbs sampling, integrating out the mixture parameters. Then from Sv, we can cal-
culate the gradient of the unnormalized posterior distribution of Zv, integrating over
warping functions. This gradient allows us to sample Z using hybrid Monte Carlo (see
appendix C.1.4).

First, we derive the collapsed Gibbs sampling for S. Here, given a sample of Z,
p (S|Z, Λ, v, u, r, η) does not depend on Xv. This lets resampling cluster assignments,
integrating out the iGMM likelihood in closed form (equation (4.10)). Given the current
state of all but one latent component snv, a new value for snv is sampled from the
following probability distributions:
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Figure 4.1: Evolution of the structure of unsupervised multiview model variants. 4.1(a)
NL-UCM, where latent vectors zj are shared among views. Figure 4.1(b), shows the
graphical model we propose in this chapter. In this model, we assume that each shape
descriptor has its correspondence in the latent space znv, and is generated by warping
the latent correspondence via nonlinear mapping functions from the latent space to the
multiview input space. Differences with the single-view model as in Tomoharu Iwata
(2013) can be seen in the multiview formulation of the graphical model.

p
(
snv = c|Z, S\nv, Λ, v, u, r, η

)
∝

 Nc\nv · p
(
znv|Zc\nv, S, v, u, r

)
existing components

η · p (znv|S, v, u, r) a new cluster,
(4.13)

where Zc = {znv|snv = c} is the set of latent coordinates assigned to the cth compo-
nent, and \nv represents the value or set when excluding the n-th observation in the
v-th view. We can analytically calculate p

(
znv|Zc\nv, Λ, v, u, r

)
leading to (Fink, 1997):
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p
(
znv|Zc\nv, Λ, v, u, r

)
= π−

Nc\nvK

2
r

K/2
c\nv|Λc\nv|νc\nv/2

r′K/2
c\nv|Λ′

c\nv|ν
′
c\nv/2

K∏
q=1

Γ
(

ν′
c\nv+1−q

2

)
Γ
(

νc\nv+1−q

2

) ,

where ν ′
c, r′

c, and Λ′
c are the posterior parameters for the Gaussian-Wishart distri-

bution of the c-th component (i.e., correspondence group), when observation n-th of the
v-th view has been assigned to it. Finally, we compute the determinant of |Λ′

c\nv| using
the rank-one Cholesky update.1

To sample the latent vectors Zv through HMC, we need to compute the gradient
of the log-unnormalized posterior distribution log p(Xv|Zv, θv) + log p(Zv|Sv, Λ, ν, u, r).
Thus, the first term of the gradient is computed as

∂ log p(Xv|Zv, θv)
∂Kv

= −1
2DvK−1

v + 1
2K−1

v XvXv
T K−1

v , (4.14)

with a Gaussian Kernel per view with additive noise as

∂k (znv, zmv)
∂znv

= −
σ2

vf

ℓ2
v

exp
(
− 1

2ℓ2
v

(znv − zmv)⊤ (znv − zmv)
)

(znv − zmv) . (4.15)

Finally te second term of the gradient is set as

∂ log p(Zv|Sv, Λ, ν, u, r)
∂znv

= −νsnvΛ−1
snv

(znv − usnv) . (4.16)

We also infer kernel parameters θv via HMC, using the gradient of the log unnor-
malized posterior with respect to the kernel parameters (see appendix C.2 for more
details). Finally, Algorithm 2 shows the process to obtain samples from the posterior
p(Z, S|X, θ, Λ, ν, u, r, η) by iterating the following procedure.

1The Cholesky decomposition is a decomposition of a Hermitian, positive-definite matrix into the
product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical
solutions. Here, rank-one Cholesky update uses only the diagonal and upper triangle of the original
Cholesky decomposition of Λ.
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Algorithm 2 Sampling procedure for the MV-WMM.
Input: latent assignment S, scale matrix Λ, model parameters ν, u, r

1: for v = 1, . . . , V do
2: for n = 1, . . . , Nv do
3: Sample the correspondence assignment snv by collapsed Gibbs sampling of

p
(
snv = c|X, S\nv, Λ, v, u, r, η

)
as in (4.13)

4: end for
5: Sample latent coordinates Zv and kernel hyperparameters θv using hybrid Monte

Carlo
6: end for

Output: latent cluster assignments S (i.e., groupwise correspondences) and latent fea-
ture vectors Z

4.4 Multiview Constraints for Dynamic Analysis

As for the multiview learning approach, we are facing two types of shape analysis. Intra
shapes will be related to those topological changes within the same object (i.e., brain
structure analysis over time). Also, inter shapes will be referred to those changes that
same objects exhibit but comes from different sources (i.e., brain structure analysis
between patients) (Cosa et al., 2013). Since we want to model both intra and inter
shapes, by using our multiview learning approach, it is important to constrain our model
to avoid overtraining (i.e., maintain correspondence accuracy as the complexity of the
shapes increases).

For instance, assessing the neurodevelopmental progress for a given patient with
Alzheimer disease, is highly related to the temporal shape variability that brain struc-
tures exhibit among views (Hill, 2010). Besides, as for the large variations presented in
infants with hypoxic-ischemic encephalopathy (HIE)2, assessing the neurodevelopmental
outcome is crucial when few observations are available (i.e., small sets of MRI studies
to monitoring the encephalopathy) (Weeke et al., 2018).

Regarding the study of the temporal component through latent variable models,
the prior knowledge is incorporated into the inference of the dynamical model where
latent factors determine the observable structure (Hallac et al., 2017). In fact, temporal
information modeled through latent variables is considered to derive in a single latent
space which represents the global variations of the dynamical system (Anandkumar et al.,
2013; Jalali and Sanghavi, 2012). Hence, we choose to constrain the projection vector
wv and then add a regularizer term to prevent that latent vectors within views start too

2Hypoxic-ischemic encephalopathy, or HIE, is the brain injury caused by oxygen deprivation to the
brain, also commonly known as intrapartum asphyxia.
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far apart. Thus, shape variations in the observed space within views will maintain close.

log p(X|Z, θ) =
V∑

v=1
log p (Xv|Zv, θv) + λ

2

V∑
v=1
||wv||2, (4.17)

where λ is the regularization coefficient, and wv is the view-specific projection vector.

4.5 Results

4.5.1 Clustering performance on real datasets

We first test our model on common clustering ML datasets shown in table 4.1 (see
appendix C.3 for details of the ML datasets). Results show that by using nonlinear
models to perform the clustering task the cluster assignment becomes more accurate
(None of these datasets can be appropriately clustered through linear approaches such
as GMMs).

Table 4.1: Average Rand index for evaluating clustering performance.
Database

Approach Wine 2-curve 3-semi 2-circle Pinwheel Vowel
MV-WMM(K = 2) 0.68± 0.03 0.83± 0.02 0.83± 0.01 0.88± 0.02 0.87± 0.02 0.65± 0.01
MV-WMM(K = D) 0.85± 0.02 0.83± 0.02 0.83± 0.01 0.88± 0.02 0.87± 0.02 0.73± 0.02

Figure 4.2 shows an example of the clustering matching on synthetic datasets (pin-
wheel 4.2(a), 2-curve 4.2(b), and 2-circle 4.2(c)). The results show that our model
separates the two non-Gaussian clusters in the observed space, representing them using
two Gaussian-shaped clusters in the latent space (i.e., clustering performance on the
2-curve and 2-circle dataset). Finally, figure 4.2(a) shows that our approach can recover
an analogous latent structure from more complex datasets.

4.5.2 Comparison with linear approaches

Secondly, we test the performance of our approaches (both NL-UCM and MV-WMM)
regarding the adjusted Rand index (we report both average and standard deviation), to
quantify the similarity between the inferred clusters (Iwata et al., 2016) and the true
labels. For comparison, we use unsupervised clustering matching (UCM) (Iwata et al.,
2016), k-means (KM), and convex kernelized sorting (CKS) (Djuric et al., 2012). Table
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(a) Pinwheel

(b) 2-curve

(c) 2-circle

Figure 4.2: Experimental results for the Pinwheel, 2-curve and circles dataset. Left
column: Observed input data (white markers), and cluster densities inferred by the
model (colors). Right column: Latent and Gaussian components from a single sample
from the posterior. Each marker plotted in the latent space (K = 2) corresponds to an
input data in the observed space.
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4.2 shows that our approaches outperforms the state-of-the-art methods for unsupervised
clustering for the three databases. The results also show that by mapping the observed
data through non-linear mappings, the models can handle real-world datasets with better
performance than linear approaches as in the case of NL-UCM and MV-WMM (i.e., 0.17
and 0.33 for the MNIST dataset against 0.085 obtained from the UCM method).

Table 4.2: Adjusted Rand index of the proposed method against the state-of-the-art
methods for unsupervised clustering.

Approach
Database UCM KM KM-CKS NL-UCM MV-WMM

Iris 0.383± 0.189 0.224± 0.091 0.254± 0.154 0.546± 0.080 0.553± 0.010
Glass 0.160± 0.020 0.050± 0.008 0.052± 0.011 0.378± 0.045 0.384± 0.003

MNIST 0.085± 0.016 0.030± 0.007 0.037± 0.008 0.167± 0.013 0.334± 0.011

4.5.3 Non-rigid 3D shape datasets

To show more appropriately the correspondence results on 3D shapes, we test our method
again on the TOSCA dataset (Bronstein et al., 2007a). We compute 3D shape descriptors
based on scale-invariant Heat Kernel Signatures (SI-HKS) as in Bronstein and Kokkinos
(2010). We used these descriptors as input data to compute the correspondences. Thus,
we test our model with nonrigid shapes in a variety of poses for non-rigid correspondence
experiments. We use 3D objects exhibiting two different poses, such as gorillas, dogs,
lions, centaurs, among others. Figures 4.3 to 4.7 show the predicted correspondences
between two shapes. Here, shape regions exhibiting the same color are considered to
match (i.e., blue color on the left knee for the gorilla shapes). Besides, the zoomed
areas relate more fine correspondences (i.e., green and blue colors for head in the gorilla
shapes). Also, figure 4.4 illustrates the case where some regions (cheeks and nose of the
Dog) are matched wrongly. Particularly, latent descriptors for this part of the object are
assigned to different clusters. Hence, the model seeks to relate this area for a specific
view (i.e., Dog figure in the left colored in goldenrod).

Also, the results show that our model establishes meaningful relations between ob-
jects (i.e., see figures 4.3 to 4.5, for the Gorillas, dogs, centaurs, and cat shapes re-
spectively) with Rand indexes above 0.6. This gives us a quantitative evaluation of the
shape matching where the analyzed shapes can be matched accurately. Moreover, we
show additional experiments for non-rigid 3D objects in appendix C.4.1.
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Figure 4.3: Experimental results for the TOSCA dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting different
poses. Average Rand Index 0.667. Orange arrows describe candidate matches between
shapes. Same colors in related regions are considered candidate matches. Gray and white
markers relate a specific view (left and right object), so similar markers are candidate
matches in the latent space.

In addition, table 4.3 shows the clustering performance of the proposed method
against the state-of-the-art approaches for unsupervised object matching. The results
show that our approach (K = 2) efficiently establishes meaningful relations by exhibiting
better average Rand indexes concerning the compared methods (i.e., 0.69 for the MV-
WMM).

Table 4.3: Comparison of the unsupervised clustering performance on the TOSCA
dataset. Average Rand index and standard deviation are reported for the state-of-the-art
methods for unsupervised learning.

Approach
Database UCM KM KM-CKS NL-UCM MV-WMM
TOSCA 0.454± 0.140 0.0.326± 0.012 0.355± 0.115 0.604± 0.080 0.698± 0.050

Furthermore, figure 4.8 shows a quantitative comparison of our shape correspondence
method for the dataset in terms of the normalized geodesic error3 (see appendix A.3

3The normalized geodesics error measures the distance between the ground-truth and predicted
correspondence for a given pair of shapes.
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Figure 4.4: Experimental results for the TOSCA dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting different
poses. Average Rand Index 0.6040. Orange arrows describe candidate matches between
shapes. Same colors in related regions are considered candidate matches. Gray and white
markers relate a specific view (left and right object), so similar markers are candidate
matches in the latent space.

for details of the evaluation metrics). We measure the total percentage of matched
points within a variable amount of normalized geodesic error according to the Princeton
benchmark protocol (Kim et al., 2011). The results show that our approach performs
an accurate matching since the 100% of the correspondences are reached for geodesic
errors lesser than 0.15 which give us a relevant estimate of shape correspondences.

Finally, table 4.4 shows a comparison with relevant state-of-the-art approaches for
this dataset. We compare our model against a) Unsupervised Learning of Dense Shape
Correspondence (UL-DSC) (Halimi et al., 2019), b) product manifold filter (PMF) (Vest-
ner et al., 2017), c) Blended intrinsic maps (BIM) (Kim et al., 2011), d) spectral gener-
alized multidimensional scaling (SGMDS) (Aflalo et al., 2016), e) functional maps (FM)
(Ovsjanikov et al., 2012), and f) Random Forest (RF) (Rodolà et al., 2014). We show our
model to estimate accurate correspondences in comparison with the reported works, even
for recent graph convolutional neural network approaches as in Halimi et al. (2019)(i.e.,
both approaches reach 90% of correspondences for geodesic errors lowers than 0.01).
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Figure 4.5: Experimental results for the TOSCA dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting different
poses. Average Rand Index 0.6232. Orange arrows describe candidate matches between
shapes. Same colors in related regions are considered candidate matches. Gray and white
markers relate a specific view (left and right object), so similar markers are candidate
matches in the latent space.

Figure 4.6: Experimental results for the TOSCA dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting different
poses. Average Rand Index 0.8016. Orange arrows describe candidate matches between
shapes. Same colors in related regions are considered candidate matches. Gray and white
markers relate a specific view (left and right object), so similar markers are candidate
matches in the latent space.



54 Multiview Warped Mixture Model

Figure 4.7: Experimental results for the TOSCA dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting different
poses. Average Rand Index 0.7049. Same colors in related regions are considered candi-
date matches. Gray and white markers relate a specific view (left and right object), so
similar markers are candidate matches in the latent space.
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Figure 4.8: Performance of the proposed correspondence method on the TOSCA nonrigid
dataset. The performances were evaluated using the Princeton benchmark (Kim et al.,
2011). Each curve is averaged over all shapes in all classes. We plot a cumulative
curve showing the percentage of matches that are at most geodesically distant from the
ground-truth correspondence on the reference shape (i.e., one of the shapes is set as the
reference one).
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Table 4.4: Comparison of the matching performances on the TOSCA dataset. We
report the geodesic error for which 90% of correspondences are reached, which give
us an accurate estimate of the matching performance. Also, we report the standard
deviation (std), for which the percentage of correspondences are reached.

Approach Geodesic error std
UL-DSC (Halimi et al., 2019) 0.010 n/a
PMF (Vestner et al., 2017) 0.030 n/a
BIM (Kim et al., 2011) 0.060 n/a
SGMDS (Aflalo et al., 2016) 0.040 n/a
FM (Ovsjanikov et al., 2012) 0.065 n/a
RF (Rodolà et al., 2014) 0.045 n/a
ours 0.010 0.002

4.5.4 Deformable 3D Shapes with Topological Noise

In this section, we test our model with the KIDS dataset (Lähner et al., 2016). This
data consists of a collection of 3D shapes undergoing within-class deformations that
include topological noise. This noise simulate coalescence of spatially close surface re-
gions, a scenario that frequently occurs when dealing with real data under sub-optimal
acquisition conditions (i.e., surface models for medical image analysis). The dataset is
based on the fat kid from the KIDS dataset with additional poses. Figures 4.9 to 4.11
show the predicted correspondences between two different shapes exhibiting different
poses with topological noise. The results show that even when the pair of shapes are
contaminated with this type of noise, the model behaves appropriately as a consequence
of the probabilistic nonlinear latent representation. Besides, average Rand indexes for
these experiments remains above 0.65, which means that our approach can efficiently
establish shape correspondences even when the shape structure is not well defined.

Finally, figure 4.12 shows a quantitative comparison of our shape correspondence
method for shapes with topological noise in terms of the normalized geodesic error. The
results show that our approach performs an acceptable matching since the 80% of the
correspondences are reached for geodesic errors lesser than 0.2 which give us a relevant
estimate of shape correspondences.

4.5.5 Partial matching

In this section, we aim to test our model in a particularly challenging and widely studied
dataset for partial matching. Here, we examine the scenario of partial correspondence,
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Figure 4.9: Experimental results for the KIDS dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting differ-
ent poses. Average Rand Index 0.7432. Same colors in related regions are considered
candidate matches. Gray and white markers relate a specific view (left and right object),
so similar markers are candidate matches in the latent space.

Figure 4.10: Experimental results for the KIDS dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting different
poses. Average Rand Index 0.7179. Same colors in related regions are considered candi-
date matches. Gray and white markers relate a specific view (left and right object), so
similar markers are candidate matches in the latent space.

where one shape exhibits a portion of the reference 3D object and has to match it with
a deformable version.

Partial correspondence problems arise in numerous applications that involve real
data acquisition by 3D sensors, which leads to missing parts occlusions and partial views
(i.e., MRI acquisition problems in medical image analysis). Thus, we use the SHREC’16
benchmark to evaluate the performance of our method for establishing correspondences
between a full shape and its deformed versions (Cosmo et al., 2016).
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Figure 4.11: Experimental results for the KIDS dataset. Current mixture parameters
(input space), along with the latent positions (K = 2) for two shapes exhibiting different
poses. Average Rand Index 0.7288. Same colors in related regions are considered candi-
date matches. Gray and white markers relate a specific view (left and right object), so
similar markers are candidate matches in the latent space.
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Figure 4.12: Performance of the proposed method on the KIDS dataset. The perfor-
mances were evaluated using the Princeton benchmark (as in the previous section). Each
curve is averaged over all shapes in all classes. We again plot a cumulative curve showing
the percentage of matches that are at most geodesically distant from the ground-truth
correspondence on the reference shape.

Shapes undergoing a single cut

In this scenario, we analyze the shapes belonging to the cuts dataset. These objects have
a whole part of the shape missing in correspondence of a clean-cut over the surface (i.e.,
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shape that is represented by half of the entire object). Figures 4.13 to 4.16 show the
experimental results for the partial matching scenario. The results show that by exploit-
ing the nonlinear probabilistic latent space, our model is able to establishes meaningful
relations even when only a part of the 3D shape is observed. For instance, figure 4.16
shows that different forms of partiality can be tackled if adequately represented latent
space (i.e., corresponding regions are shown in similar color).

Figure 4.13: Experimental results for the partial matching SHREC’16 dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.6921. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.

Figure 4.14: Experimental results for the partial matching SHREC’16 dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.6838. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.
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Figure 4.15: Experimental results for the partial matching SHREC’16 dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.7744. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.

Figure 4.16: Experimental results for the partial matching SHREC’16 dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.7931. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.

Shapes with irregular holes

Another interesting dataset that can evidence the performance of our method in shape
correspondence problems is the holes dataset. The holes dataset a more challenging set
because it contains shapes whose surface has been eroded starting from some random
seeds over the surface, causing them to have holes and irregular cuts. Thus, 3D objects
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inside each dataset present different amounts of missing surface, ranging approximately
from 10% to 60% of the missing area. Figures 4.17 to 4.20 show the correspondence
performance in which we can notice that the matching process is performed with average
Rand indexes from 0.56 to 0.69. Thus, our model still establishes meaningful relations
when irregular holes are presented in the analyzed shapes. As a consequence, our model
can handle shape occlusions with acceptable performances (i.e., average Rand indexes
above 0.56).

Figure 4.17: Experimental results for the partial matching TOSCA dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.6568. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.

Finally, figure 4.21 shows a quantitative comparison of our shape correspondence
method for both cuts and holes in terms of the normalized geodesic error. The results
show that our approach performs an accurate matching since the 90% of the correspon-
dences are reached for geodesic errors lesser than 0.2 which outperforms relevant shape
correspondences approaches in the state-of-the-art (see (Cosmo et al., 2016)).

Finally, table 4.5 shows a qualitative evaluation of the matching performance by our
approach in comparison with the SHREC’16 framework (Lähner et al., 2016). Average
percentage of matches are reported in Table 4.5. Here, we compare against Partial
functional maps (PFM) (Rodolí et al., 2017), Random forest (RF) (Rodolà et al., 2014),
Scale-invariant isometric matching (IM) (Sahillioglu and Yemez, 2012), Game-theoretic
matching (GT) (Torsello, 2012), and anisotropic convolutional neural networks (ACNN)
(Boscaini et al., 2016). The results show that our approach performs partial matching
tasks accurately, in comparison with state-of-the-art approaches (i.e., Average percentage
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Figure 4.18: Experimental results for the partial matching TOSCA dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.6849. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.

Figure 4.19: Experimental results for the partial matching TOSCA dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.5991. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.

of matches of 95% and 90% for both datasets).
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Figure 4.20: Experimental results for the partial matching TOSCA dataset. Current
mixture parameters, along with the latent positions (K = 2) for two shapes exhibiting
part-to-whole matching. Average Rand Index 0.6569. Same colors in related regions are
considered candidate matches. Gray and white markers relate a specific view (left and
right object), so similar markers are candidate matches in the latent space.
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Figure 4.21: Performance of the proposed correspondence method on the SHREC’16 -
Partial dataset (cut and holes shapes were tested to obtain the accuracy). The perfor-
mances were evaluated using the Princeton benchmark. Each curve is averaged over all
shapes in all classes. We plot a cumulative curve showing the percentage of matches that
are at most geodesically distant from the ground-truth correspondence on the reference
shape for the cuts and holes datasets.
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Table 4.5: Average percentage of matches obtained by each method on the two datasets
(Holes and Cuts datasets in SHREC’16).

Approach
Database PFM RF IM GT ACNN MV-WMM

cuts 89.6 87.4 61.3 51.0 96.55 95.3
holes 83.2 45.1 78.2 76.4 87.6 90.5

4.5.6 Neurodegenerative brain dataset

With the aim to model shape variability among time in Brain structures (see section
4.4 for details), we test our model on real medical image data. Here we used the MRI
DB-UTP database from the Universidad Tecnológica de Pereira, COL. This database
contains volumetric MRI data from four patients with Parkinson’s disease (at earlier and
advanced stage of the disease). The database was labeled by neurosurgeons from NEU-
ROCENTRO: The Institute of Parkinson and Epilepsy, located in Pereira-Colombia.
The database contains T1 sequences with 1mm × 1mm × 1mm voxel size and slices of
512x512 pixels. The atlas was derived from a volumetric T1-weighted MR-scans, using
semi-automated image segmentation, and three-dimensional reconstruction techniques.
The current version of this dataset consists of: 1) the original volumetric whole brain
MRI of the volunteers; 2) a set of detailed label maps and 3) the three-dimensional
models of the labeled anatomical brain structures.

To establish groupwise correspondences between brain structures, we used SI-HKS
as shape descriptors (Bronstein and Kokkinos, 2010). We evaluate our model by using
three relevant brain structures in the Parkinson’s and Alzheimer’s diseases such as the
ventricle, thalamus, and putamen. Figures 4.22, 4.23 and 4.24 show the experimental
results of the brain correspondence analysis. These experiments test our framework
working on three brain structures at different times of the disease (early and advanced
stage). We set the regularization coefficient λ to be 0.01 in our experiments. Thus, at
this value, the regularization parameter reduces overfitting, so that latent positions will
maintain close within views. Therefore, shape correspondences among views will change
softly (i.e., by avoid creating new shape relations abruptly). In our experiments, we
found that varying the regularization parameter influences the correspondence estimate.
For instance, increasing lambda results in less overfitting (i.e., deriving in meaningful
shape relations) but also greater bias, which causes that correspondences for minor brain
shape variations, will be skipped (i.e., lower Rand indexes).

From the results, it can be noticed that even when the brain volumetry of a given
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shape (i.e., see Ventricle results in figure 4.22) has lost part of their mass as conse-
quence of the neurodegenerative process, our model is capable of establishing relevant
correspondences between brain structures. This result evidences the benefit of model-
ing shape variability among time (i.e., dynamic analysis) with multiview constraint (see
section 4.4). As a result, our model can efficiently capture neurodevelopmental changes
while preserving topological changes within the same brain structure.

Figure 4.22: Experimental results for the brain structures dataset. Current mixture
parameters, along with the latent positions for two shapes exhibiting different parts of
the ventricle. Average Rand Index 0.6071. Same colors in related regions are considered
candidate matches. Gray and white markers relate a specific view (left and right object),
so similar markers are candidate matches in the latent space.

Finally, figure 4.25 shows a quantitative evaluation of our shape correspondence
method in terms of the normalized geodesic error. The results show that our approach
reaches the 85% of the correspondences for geodesic errors lesser than 0.03, which is a
relevant indicator for shape matching approaches in the state-of-the-art. That is, we can
perform an appropriate matching task for neuroimaging problems, if at least 80% of the
correspondences are reached for geodesic errors below 0.1 (Lähner et al., 2016).

4.5.7 Neurodevelopmental dataset: In-utero brain model

Finally, we test our model on a couple of in-utero MRI scans of a fetus acquired at two-
time points, 25 and 31 weeks. Figure 4.26 shows groupwise correspondences between
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Figure 4.23: Experimental results for the brain structures dataset. Current mixture
parameters, along with the latent positions for two shapes exhibiting different parts of
the thalamus. Average Rand Index 0.6467. Same colors in related regions are considered
candidate matches. Gray and white markers relate a specific view (left and right object),
so similar markers are candidate matches in the latent space.

Figure 4.24: Experimental results for the brain structures dataset. Current mixture
parameters, along with the latent positions for two shapes exhibiting different parts of
the putamen. Average Rand Index 0.6467. Same colors in related regions are considered
candidate matches. Gray and white markers relate a specific view (left and right object),
so similar markers are candidate matches in the latent space.

the neonatal brain volumes. In this experiment, we set the regularization coefficient of
λ to be 0.25. Thus, at this value, the regularization parameter will allow creating new
shape relations properly. As a result, new brain regions for the second time-point (i.e., 31
weeks) will be created as part of the neurodevelopmental. The results show that matched
clusters between shapes are related to slight changes as part of the neurodevelopmental
outcome. Besides, different clustered regions are related to significant changes over
the brain volume as part of normal development (see zoomed areas in black plates
from figure 4.26). Preliminary results can lead to a new types of scores to predict
neurodevelopmental outcome that uses unsupervised multiview learning to establish
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Figure 4.25: Performance of the proposed correspondence method on the Neurodegener-
ative dataset. The performances were evaluated using the Princeton benchmark. Each
curve is averaged over all brain sequences in all classes (i.e., brain structure analysis).
We again plot a cumulative curve showing the percentage of matches that are at most
geodesically distant from the ground-truth correspondence on the reference shape.

meaningful relationships between a set of MRI scans (Weeke et al., 2018).

Figure 4.26: Experimental results for the brain Neurodevelopmental dataset. Current
mixture parameters, along with the latent positions for two shapes exhibiting different
parts of the brain volume. Average Rand Index 0.6948. Same colors in related regions
are considered candidate matches. Gray and white markers relate a specific view (left
and right object), so similar markers are candidate matches in the latent space.
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Figure 4.27 shows an example of the matching process using the established corre-
spondences. The results show that meaningful relations are established as part of the
unsupervised matching on which the latent space is exploited to find groupwise corre-
spondences. In addition, the results show that the brain regions assigned to the same
group show similar neurodevelopment (i.e. groups that are candidates to match).

Figure 4.27: Matching result for the brain Neurodevelopmental dataset. The figure
shows the established correspondences, starting from good to bad matches (yellow to
dark blue in the colormap). For instance, matching number 5 exhibits a good corre-
spondence estimate on which the neurodevelopmental corresponds to a plausible match
(right temporal lobe). Also, matching number 1 shows a weak estimate on which the
brain regions are related wrongly (right occipital lobe in the 25 weeks brain to the left
frontal lobe in the 31 weeks brain).

4.6 Conclusions

This chapter presented a multiview learning approach to model nonlinear groupwise
correspondences of complex shapes by using a multiview warped mixture model. In
particular, since each shape descriptor has its correspondence in the latent space, and
it is generated by warping the latent correspondence via nonlinear mapping functions,
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our model is able to establish meaningful relations between different set of 3D shapes.
The approach is very effective in modeling ambiguous views such as those that present

irregular cuts or topological noise. Thus, by incorporating multiview constraints, our
model is able to match both intra and inter shapes efficiently. Besides, the resulting nor-
malized geodesic errors evidence that by using multiview warped mixture representations
of the input data, a given matching process can be performed accurately.

A current limitation of the model is that the model complexity grows proportional to
the shape dimensionality. Thus, as future work, we plan to perform stochastic variational
inference to allow modeling large datasets (i.e., high-resolution scans) (De Sousa Ribeiro
et al., 2019).



Chapter 5

Conclusions and Future Work

This thesis considered probabilistic nonlinear latent variable models for shape corre-
spondence analysis. The objective of learning the shape structure in an unsupervised
manner is to learn the object structure without any similarity measure and to exploit the
latent representation that leads to meaningful matches between shapes. However, unsu-
pervised clustering methods for multiview learning are associated with many degrees of
freedom and, hence, are challenging to learn. Therefore, this thesis was concerned with
developing the mathematical framework and algorithms that allow for relevant latent
representation on which an unsupervised clustering task was performed.

This chapter summarizes the contributions and research work done in the thesis,
besides some future research lines are presented.

5.1 Conclusions

• Chapter 2 provided a unifying view of existing approximation to the correspon-
dence problem. A special focus is given for a set of correspondence approaches in
the context of shape analysis.

• Chapter 3 presented a nonlinear latent variable model for unsupervised groupwise
correspondences which incorporates observations from several views. We provided
a method for shape correspondence analysis based on nonlinear unsupervised clus-
tering of groupwise 3D shape descriptors. The clustering process was carried out by
a nonlinear probabilistic latent variable model, in which we used random Fourier
features of the input data observations (Rahimi and Recht, 2007). In other words,
we extended the many-to-many object matching proposed by Iwata et al. (2016)
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using Hilbert space embeddings of the input data (Rahimi and Recht, 2007).

• Chapter 4 presented a Multiview Bayesian clustering model in which the correspon-
dences have nonparametric shapes, called the multiview infinite warped mixture
model. The density manifolds learned by this model follow the contours of the
data density, and have interpretable, parametric forms in the latent space. The
marginal likelihood lets us infer the effective dimension and shape of each cluster
separately, as well as the number of groups of correspondences. Besides, by using
a multiview GPLVM, the model can handle more relevant latent representations
which derived in meaningful correspondences.

• In general, the developed models can establish relevant correspondences for neu-
roimaging problems by exploiting the latent representation captured through the
probabilistic multiview approaches. Besides, in chapter 4, it was shown that even
when large shape variations are modeled, probabilistic multiview models are still
able to learn the shape structure between views (i.e., temporal shape variability
in the neurodevelopmental experiments). Besides, by constraining the multiview
model the dynamic analysis of brain volumes becomes more accurate. Thus, mean-
ingful relations between brain shapes are established as part of the neurodevelop-
mental.

5.2 Future Work

Some interesting paths for future work involve approaches to solving current limitations
of the presented methods and further extensions of the developed methodologies. In
particular, a common limitation of the unsupervised shape correspondence methods is
difficulty in scaling them up. This is a key research line because of the dimensionalities
of the 3D shapes are a challenging topic.

The main ideas for the probabilistic correspondence problem are summarized

NL-UCLM: Concerning the nonlinear unsupervised clustering matching, some possible
future research lines could be defined as

1. We can relax the assumption that the observations are linear with respect
to their latent vectors by using nonlinear matrix factorization techniques
(see Lawrence and Urtasun (2009)). From this work, we point out that by
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marginalizing out the mapping matrix W, we can set our model as a Bayesian
multi-output regression model.
Our model can be formalized as

p (xvn|Z, W, θ) =
∞∑

j=1
θj

Md∏
m=1
N
(
xdnm|fdm (zj) , α−1

)
, (5.1)

where fdm can handled from two perspectives

(a) Set the same kernel matrix for all views

fdm ∼ GP
(
µdm (zj) , k

(
zj, z′

j

))
(5.2)

(b) One covariance matrix for each domain

fdm ∼ GP
(
µdm (zj) , kd

(
zj, z′

j

))
(5.3)

2. As in the in the linear model of coregionalization (LMC), the outputs are
expressed as linear combinations of independent random functions (Álvarez
et al., 2012). Consider a set of D outputs {fd(zj)}D

d=1 with fd(zj) ∈ RMd . By
adopting this framework, our model can be formulated as

p (xvn|Z, W, θ) =
∞∑

j=1
θjN

(
xvn|fd(zj), α−1I

)
, (5.4)

where each component can be expressed as:

(a) By using the linear model of coregionalization

fd(zj) ∼ GP
0,

Q∑
q=1

Bqkd

(
zj, z′

j

) , (5.5)

where Bq = L⊤
q Lq ∈ RMd×Md is the coregionalization matrix (computed

from the Cholesky decomposition)
(b) By using simplified version of the LMC, known as the intrinsic core-

gionalization model (ICM) (see Álvarez et al. (2012)), assumes that the
elements of the coregionalization matrix Bq can be written as a scaled
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version of the elements bq, which do not depend on the particular output
functions fd(zj).

fd(zj) ∼ GP
(
0, Bk

(
zj, z′

j

))
, (5.6)

MV-WMM: Concerning the multiview warped mixture model, some possible future
research lines could be defined as

• First, by analyzing other prior on the latent densities, our mode can ex-
ploit underlying complex representations of geometric shapes (i.e., structure
modeling in medical image analysis when a considerable part of the view is
missing). Hence, we can adopt hierarchical clustering to efficiently model
parts of the shape within a hierarchical framework (Johnson et al., 2016).

• Finally, to exploit the model uncertainty, one final future line would be based
on building a Deep Gaussian Process that can handle unaligned multiview
data to establish robust shape correspondences (Damianou and Lawrence,
2013).



Appendix A

Performance metrics

A.1 Rand Index

The Rand index is a measure of the similarity between two data clusterings (Hubert
and Arabie, 1985). Given a set of n elements S = {o1, . . . , on} and two partitions of S

to compare, X = {X1, . . . , Xr}, a partition of S into r subsets, and Y = {Y1, . . . , Ys}, a
partition of S into s subsets, define the following:

• a, the number of pairs of elements in S that are in the same subset in X and in
the same subset in Y .

• b, the number of pairs of elements in S that are in different subsets in X and in
different subsets in Y .

• c, the number of pairs of elements in S that are in the same subset in X and in
different subsets in Y . d, the number of pairs of elements in S that are in different
subsets in X and in the same subset in Y .

The Rand index is defined as:

RI = a + b

a + b + c + d
(A.1)

Intuitively, a + b can be considered as the number of agreements between X and Y

and c + d as the number of disagreements between X and Y .
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A.2 Adjusted Rand Index

For the evaluation of the unsupervised clustering task, we used the adjusted Rand index
(Hubert and Arabie, 1985), which quantifies the similarity between inferred clusters and
true clusters. It takes a value from −1.0 to 1.0 represents random clustering. A higher
value indicates better clustering performance. The adjusted Rand index becomes high
when object pairs that belong to one true cluster are assigned to one inferred cluster
simultaneously, and when object pairs that belong to different true clusters are assigned
to different inferred clusters.

The adjusted Rand index is the corrected-for-chance version of the Rand index de-
fined as

AdjustedIndex = Index-ExpectedIndex
MaxIndex-Expected Index . (A.2)

A.3 Normalized geodesic error

The evaluation of the correspondence quality was based on the normalized geodesic
error of the given matching process from the ground-truth sub-vertex correspondence
(i.e., partial to the whole shape).

In general, the following performance indices were considered accordingly to the
Princeton correspondence benchmark (Kim et al., 2011):

• Total percentage of matched points within a variable amount of normalized geodesic
error is computed for a given pair of 3D shapes.

• Mean geodesic error over all the intra and inter pair of 3D shapes (i.e., objects that
change between views and those who are similar but comes from different sources).

A.3.1 Error measure

For the evaluation of the correspondence quality, we refer to the Princeton benchmark
protocol (Kim et al., 2011) for point-wise maps. Let be the full model shape in a
canonical pose SN (i.e., reference shape to compare with) and one of its corresponding
partial version. Assume that a correspondence algorithm produces a pair of points
(x, y) ∈ SN × SM observations, whereas the ground-truth correspondence is (x, y∗).
Then, the inaccuracy of the correspondence is measured as
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ϵ(x) = dSM(y,y∗)

area(SM)1/2 (A.3)

and has units of normalized length on SM (ideally, zero). Here dSM is the geodesic
distance on SM.



Appendix B

Nonlinear Probabilistic Latent
Variable Models

This appendix concerns the Nonlinear Unsupervised Clustering Matching framework
developed in Chapter 3 and which is used as a backbone for the methodology developed
in the rest of the chapters. The details of this appendix aim at providing a useful
reference for the complete derivation of the method.

B.1 Likelihood for the nonlinear model

The joint probability of the feature set Φ, and the cluster assignments S =
{
{svn}NV

n=1

}V

v=1
are given by

p (Φ, S|W , a, b, r, γ) = p (S|γ) p (Φ|S, W , a, b, r) . (B.1)

By marginalizing out latent vectors Z and the precision parameter α, the second
factor of (B.1) is computed by
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p (Φ|S, W , a, b, r) =
∫ ∫ V∏

v=1

Nv∏
n=1
N
(
φ (xvn) |Bvζsvn , α−1I

)
G (α|a, b)×

J∏
j=1
N
(
ζj|0, (αr)−1 I

)
dZdα

=
∫ ∫ V∏

v=1

Nv∏
n=1

(
α

2π

)Lv/2
exp

(
−α

2 ||φ (xvn)−Bvζsvn||2
) J∏

j=1

(
αr

2π

)K/2

× exp
(
−αr

2 ||ζj||2
)

baαa−1

Γ (a) exp (−bα) dZdα

= ba

Γ (a)

∫ ∫ (
α

2π

)∑
v

LvNv/2
exp

(
−α

2

V∑
v=1

Nv∑
n=1
||φ (xvn)−Bvζsvn||2

)

×
(

αr

2π

)KJ/2
exp

−αr

2

J∑
j=1
||ζj||2

 exp (−bα) αa−1dZdα (B.2)

Solving for the first exponential term

exp
(
−α

2

V∑
v=1

Nv∑
n=1
||φ (xvn)−Bvζsvn||2

)
= exp

(
− α

2

V∑
v=1

Nv∑
n=1

[φ (xvn)⊤ φ (xvn)

− 2ζ⊤
svn

B⊤
v φ (xvn) + ζ⊤

svn
B⊤

v Bvζsvn ]
)

(B.3)

The equation in (B.2) becomes

p (Φ|S, W , a, b, r) = ba

Γ (a)

∫ ∫ (
α

2π

)∑
v

LvNv/2
exp

(
− α

2

V∑
v=1

Nv∑
n=1

[φ (xvn)⊤ φ (xvn)

− 2ζ⊤
svn

B⊤
v φ (xvn) + ζ⊤

svn
B⊤

v Bvζsvn ]
)(αr

2π

)KJ/2

× exp
−αr

2

J∑
j=1

ζ⊤
j ζj

 exp (−bα) αa−1dZdα. (B.4)

The exponential terms in (B.4) becomes
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exp
(
− α

2

V∑
v=1

Nv∑
n=1

[φ (xvn)⊤ φ (xvn)− 2ζ⊤
svn

B⊤
v φ (xvn) + ζ⊤

svn
B⊤

v Bvζsvn ]

− αr

2

J∑
j=1

ζ⊤
j ζj − bα

)
= exp

(
− α

2

V∑
v=1

Nv∑
n=1

[φ (xvn)⊤ φ (xvn)− bα]
)
×

exp
(
− α

2

V∑
v=1

Nv∑
n=1

[− 2ζ⊤
svn

B⊤
v φ (xvn) + ζ⊤

svn
B⊤

v Bvζsvn ]− αr

2

J∑
j=1

ζ⊤
j ζj

)
(B.5)

By analyzing the nth objects that has the cluster assignment j (n : svn = j), the
second factor in (B.5) becomes

exp
(
− α

2

V∑
v=1

Nv∑
n=1

[− 2ζ⊤
svn

B⊤
v φ (xvn) + ζ⊤

svn
B⊤

v Bvζsvn ]− αr

2

J∑
j=1

ζ⊤
j ζj

)
=

exp
(
− α

2

V∑
v=1

∑
n:svn ̸=j

[− 2ζ⊤
svn

B⊤
v φ (xvn) + ζ⊤

svn
B⊤

v Bvζsvn ]
)

× exp
(
− α

2

V∑
v=1

∑
n:svn=j

[− 2ζ⊤
svn

B⊤
v φ (xvn) + ζ⊤

svn
B⊤

v Bvζsvn ]− αr

2

J∑
j=1

ζ⊤
j ζj

)
︸ ︷︷ ︸

C

= exp
(
− α

2

V∑
v=1

J∑
j=1

Nvj[− 2ζ⊤
j B⊤

v φ (xvn) + ζ⊤
j B⊤

v Bvζj]−
αr

2

J∑
j=1

ζ⊤
j ζj

)

= exp
(
− α

2

V∑
v=1

J∑
j=1

[− 2ζ⊤
j B⊤

v

∑
n:svn=j

φ (xvn) + ζ⊤
j NvjB

⊤
v Bvζj]−

αr

2

J∑
j=1

ζ⊤
j ζj

)

= exp
(
− α

2

J∑
j=1

[− 2ζ⊤
j

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn) + ζ⊤
j

V∑
v=1

NvjB
⊤
v Bvζj]−

αr

2

J∑
j=1

ζ⊤
j ζj

)

= exp
(
− α

2

J∑
j=1

[− 2ζ⊤
j

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn) + ζ⊤
j

V∑
v=1

NvjB
⊤
v Bvζj + rζ⊤

j ζj]
)

= exp
(
− α

2

J∑
j=1

[− 2ζ⊤
j

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn) + ζ⊤
j

(
V∑

v=1
NvjB

⊤
v Bv + rI

)
ζj]
)

. (B.6)

By using the quadratic property

−1
2 (z− µ)⊤ C−1 (z− µ) = −1

2
[
z⊤C−1z− 2z⊤C−1µ + µ⊤C−1µ

]
, (B.7)
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where

Λ−1
j =

V∑
v=1

NvjB
⊤
v Bv + rI, (B.8)

and

−2z⊤Λ−1
j µ = −2ζ⊤

j

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn)

µj = Λj

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn) . (B.9)

By completing the square as: arg = arg + 1
2µ⊤C−1µ − 1

2µ⊤C−1µ, the argument
in (B.6) becomes

exp
(
− α

2

J∑
j=1

[− 2ζ⊤
j

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn) + ζ⊤
j

(
V∑

v=1
NvjB

⊤
v Bv + rI

)
ζj]
)

= exp
(
− α

2
[ J∑

j=1
(ζj − µj)⊤ Λ−1

j (ζj − µj)
])

exp
(
− α

2

J∑
j=1

µ⊤
j Λ−1

j µj

)
(B.10)

Substituting (B.10) in (B.4) give us

p (Φ|S, W , a, b, r) = ba

Γ (a)

∫∫ (
α

2π

)∑
v

LvNv/2 (αr

2π

)KJ/2
×

exp
(
− α

2
[ J∑

j=1
(ζj − µj)⊤ Λ−1

j (ζj − µj)
])

dZ

exp
(
− α

[
1
2

V∑
v=1

Nv∑
n=1

φ (xvn)⊤ φ (xvn)− 1
2

J∑
j=1

µ⊤
j Λ−1

j µj + b

])
αa−1dα

(B.11)

In equation (B.11), factors related to Z are grouped together. We integrated out Z
using
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∫
exp

(
−1

2 (ζj − µj)⊤
[
α−1Λj

]−1
(ζj − µj)

)
dζj = (2π)K/2 |α−1Λj|1/2

= (2π)K/2 α−K/2|Λj|1/2, (B.12)

which is the normalization constant of P -dimensional Gaussian distribution. Since
we have the sum over the number of correspondences (latent vectors), K, the above
equation ranges for all of these clusters. The equation (B.11), becomes

p (Φ|S, W , a, b, r) = ba

Γ (a)

∫ (
α

2π

)∑
v

LvNv/2 (αr

2π

)KJ/2 J∏
j=1

[
(2π)K/2 α−K/2|Λj|1/2

]

exp
(
− α

[
1
2

V∑
v=1

Nv∑
n=1

φ (xvn)⊤ φ (xvn)− 1
2

J∑
j=1

µ⊤
j Λ−1

j µj + b

])
αa−1dα

(B.13)

= ba

Γ (a)

∫ (
α

2π

)∑
v

LvNv/2 (αr

2π

)KJ/2
(2π)KJ/2 α−KJ/2

J∏
j=1
|Λj|1/2

exp
(
− α

[
1
2

V∑
v=1

Nv∑
n=1

φ (xvn)⊤ φ (xvn)− 1
2

J∑
j=1

µ⊤
j Λ−1

j µj + b

])
αa−1dα

(B.14)

The α parameter is integrated out by using the following normalization constant of
a Gamma distribution

∫
αa′−1 exp (−bα) dα = Γ (a′)

b′a′ . (B.15)

Finally the likelihood is given by

p (Φ|S, W , a, b, r) = (2π)−
∑

v
LvNv

2 r
KJ

2
ba

b′a′
Γ (a′)
Γ (a)

J∏
j=1
|Λj|1/2, (B.16)

Here,

a′ = a +
∑

v LvNv

2 , b′ = b + 1
2

V∑
v=1

Nv∑
n=1

φ (xvn)⊤ φ (xvn)− 1
2

J∑
j=1

µ⊤
j Λ−1

j µj, (B.17)
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µj = Λj

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn), Λ−1
j =

V∑
v=1

NvjB
⊤
v Bv + rI, (B.18)

where Nvj is the number of descriptors assigned to cluster j in the shape v (view).

B.2 Posterior

The posterior for the precision parameter α is given by

p (α|Φ, S, W , a, b) = G (α|a′, b′) , (B.19)

and the posterior for the latent vector ζj is given by

p (ζj|α, Φ, S, W , r) = N
(
ζj|µj, α−1Λj

)
(B.20)

The derivation for these posteriors is given by

p (α|Φ, S, W , a, b)
J∏

j=1
p (ζj|α, Φ, S, W , r) ∝ p (Φ|α, Z, S, W , a, b, r) p (α|a, b)×

J∏
j=1

p (ζj|α, r) =
V∏

v=1

Nv∏
n=1
N
(
φ (xvn) |Bvζsvn , α−1I

)
G (α|a, b)×

J∏
j=1
N
(
ζj|0, (αr)−1 I

)

=
V∏

v=1

Nv∏
n=1

(
α

2π

)Ld/2
exp

(
−α

2 ||φ (xvn)−Bvζsvn||2
) J∏

j=1

(
αr

2π

)K/2

× exp
(
−αr

2 ||ζj||2
)

baαa−1

Γ (a) exp (−bα)

∝ αa′−1 exp (−b′α)
J∏

j=1
|Λj|−1/2exp

(
−α

2 (ζj − µj)⊤ Λ−1
j (ζj − µj)

)

∝ G (α|a′, b′)
J∏

j=1
N
(
ζj|µj, α−1Λj

)
. (B.21)
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B.3 Inference for the nonlinear Model

E-Step

Let us recall the equation (3.7) that represents the marginalized (latent vectors, Z, are
integrated out) likelihood probability of the objects

p (Φ|S, W , a, b, r) = (2π)−
∑

v
LvNv

2 r
KJ

2
ba

b′a′
Γ (a′)
Γ (a)

J∏
j=1
|Λj|1/2. (B.22)

with

a′ = a +
∑

v LvNv

2 (B.23)

b′ = b + 1
2

V∑
v=1

Nv∑
n=1

φ (xvn)⊤ φ (xvn)− 1
2

J∑
j=1

µ⊤
j Λ−1

j µj, (B.24)

µj = Λj

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn),

|Λ−1
j | =

V∑
v=1

NvjB
⊤
v Bv + rI. (B.25)

Now, let us take a look at the E-step, specifically to equation (3.13), which is given by

p
(
Φ|svn = j, S\vn, W , a, b, r

)
p
(
Φ\vn|S\vn, W , a, b, r

) = (2π)− Dv
2 r

1
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)
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1
2

b
′a′

svn=j

svn=j Γ
(
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\vn

) ∣∣∣Λj\vn

∣∣∣ 1
2
, (B.26)

The above equation represents the ratio between the probability of changing the assign-
ment of object φ (xvn) to cluster j, wrt the likelihood obtained by removing the same
object. Note that the denominator value is always the same across the reassignments
of φ (xvn) to the different clusters. Additionally, if we remove or re-assign any object,
then we require to recalculate all b′, µj and Λ−1

j . Considering the above mentioned, let
us take a look at the full form of the denominator and the numerator,

p(Φ|svn = j, S\vn, W , a, b, r) = (2π)−
∑

v
MvNv

2 γ
KJ

2
ba

b′a′

svn=j

Γ(a′)
Γ(a)

J∏
i=1,i ̸=j

|Λi,\vn|
1
2 |Λj,svn=j|

1
2 .

(B.27)
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p(Φ\vn|S\vn, W , a, b, r) = (2π)−

∑
k ̸=v

DkNk

2 − Dv(Nv−1)
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2
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(B.28)
For completeness, the following expressions are given

a′
\vn = a +

∑V
k ̸=v DkNk

2 + Dv(Nv − 1)
2 ,

b′
\vn = b + 1

2

V∑
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φ (xvm)⊤ φ (xvm)− 1
2
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j\vnµj\vn,
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∑
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NkjB
⊤
k Bk + (Nvj − 1)B⊤

v Bv + rI.

It is clear how we get the relation given in (B.26) using (B.27) and (B.28). But, what
do we do when j = J + 1? We start by calculating (B.27) when j = J + 1, which is
given in (B.29).

p(Φ|svn = J+1, S\vn, W , a, b, r) = (2π)−
∑

v
MvNv

2 γ
KJ

2
ba
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2 |Λsvn=J+1|

1
2 .

(B.29)
with

b′
svn=J+1 = b′

\vn + φ (xvn)⊤ φ (xvn)− µsvn=J+1Λ−1
svn=J+1µsvn=J+1

µsvn=J+1 = Λsvn=J+1B
⊤
v φ (xvn)

Λ−1
svn=J+1 = B⊤

v Bv + rI.

Next, using (B.28) and (B.29), we are able to calculate (B.26) for j = J + 1 as

p(Φ|svn = J + 1, S\vn, W , a, b, r)
p(Φ\vn|S\vn, W , a, b, r) = (2π)− Dv

2 γ
1
2 b′a

′
\vn

\vn

b′a′

svn=J+1

Γ(a′)
Γ(a′\vn) |Λsvn=J+1|

1
2 . (B.30)

Another case to consider is when the j-th cluster (between 1 and J) has one object,
i.e. N·j = 1. Clearly, if this object is moved to another cluster or removed, then the
number of clusters is decreased by one.



84 Nonlinear Probabilistic Latent Variable Models

M-Step

In the M-step, the projection matrices W are estimated by maximizing the logarithm
of the joint likelihood (B.1). The gradient of the joint likelihood is computed by

∂ log p (Φ, S|W , a, b, r, γ)
∂Bv

= ∂ log p (S|γ)
∂Bv

+ ∂ log p (Φ|S, W , a, b, r)
∂Bv

, (B.31)

Since the derivative of the first term in the above expression is zero, the expression
becomes
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(B.32)

where
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Here the second factor of the argument is the only which depends on Bv.
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by applying trace properties (transpose elements)
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(B.35)

First, for the B part we have:



86 Nonlinear Probabilistic Latent Variable Models
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By using derivatives properties for trace forms as

∂ tr [F (X)]
∂X

= f (X)⊤ , (B.37)

where f (·) is the scalar derivative of F (·), the equation (B.36) becomes
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Besides, for the A part we have:

−
J∑

j=1
tr
(
µ⊤

j Λ−1
j ∂µj

)
→ ∂µj

∂Bv

= ∂

∂Bv

Λj

V∑
v=1

B⊤
v

∑
n:svn=j

φ (xvn)
 . (B.39)

The derivative for µj is given by
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For the C part, we have
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The v part is computed as
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Then the A part becomes,
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 . (B.43)

By using the derivatives properties for trace forms described above, we have
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Finally
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For the part B,
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Finally the derivative of the log-likelihood is computed as
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We can obtain the projection matrices that maximize the joint likelihood analytically
as follows,
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Appendix C

Multiview Warped Mixture Models

This appendix concerns the Multiview Warped Mixture Model framework developed in
Chapter 4 and which is used as a backbone for the methodology developed in the rest
of the chapter. The details of this appendix aim at providing a useful reference for the
complete derivation of the method.

C.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) method that
uses the derivatives of the density function being sampled to generate efficient transitions
spanning the posterior (MacKay, 2002).

The goal of sampling is to draw from a density p(θ) for parameters θ. This is typically
a Bayesian posterior p(θ|x) given data x.

C.1.1 Auxiliary Momentum Variable

HMC introduces auxiliary momentum variables ρ and draws from a joint density

p(ρ, θ) = p(ρ|θ)p(θ). (C.1)

Commonly, the auxiliary density is a multivariate normal that does not depend on
the model parameters θ,
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ρ ∼ N (0, Σ), (C.2)

where the covariance matrix Σ acts as an Euclidean metric to rotate and scale the target
distribution.

C.1.2 The Hamiltonian

The joint density p(ρ, θ) defines a Hamiltonian

H(ρ, θ) = − log p(ρ, θ), (C.3)
= − log p(ρ|θ)− log p(θ), (C.4)
= T (ρ|θ) + V (θ), (C.5)

where the term T (ρ|θ) = − log p(ρ|θ), is called the kinetic energy and the term
V (θ) = − log p(θ), is called the potential energy.

C.1.3 Transitions for the HMC

Starting from the current value of the parameters θ, a transition to a new state of the
model parameters is generated in two stages before being subjected to a Metropolis
accept step. Hence, the joint system (θ, ρ) made up of the current parameter values θ

and new momentum ρ is evolved via Hamilton’s equations,

dθ

dt
= +∂T

∂ρ
, (C.6)

dρ

dt
= −∂V

∂θ
. (C.7)

The Hamiltonian Monte Carlo algorithm starts at a specified initial set of parameters
θ. Then, for a given number of iterations, a new momentum vector is sampled and
the current value of the parameter θ is updated using the leapfrog integrator1 with
discretization time ϵ and number of steps L according to the Hamiltonian dynamics

1Leapfrog integrator is a numerical integration algorithm specifically adapted to provide stable results
for Hamiltonian systems of equations.
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(MacKay, 2002). Then a Metropolis acceptance step is applied, and a decision is made
whether to update to the new state (θ∗, ρ∗) or keep the existing state.

C.1.4 Approximation of p (Zv|Yv)

We approximate p(z∗
v|Zv, Yv) by sampling points from the latent mixture and warping

them, using the following procedure

1. Draw latent assignment

s⋆
v ∼ Mult

(
Nv1

Nv + η
, · · · , NvC

Nv + η
,

η

Nv + η

)
(C.8)

2. Draw precision matrix

R⋆ ∼ W
(
Λ−1

s⋆
v

, νs⋆
v

)
(C.9)

3. Draw mean

µ⋆ ∼ N
(

us⋆
v
,
(
rs⋆

v
R⋆
)−1

)
(C.10)

4. Draw latent coordinates

z⋆
v ∼ N

(
µ⋆, R⋆−1

)
(C.11)

C.2 Gradients for Hamiltonian Monte Carlo

To sample latent vectors Zv from the posterior distribution p (Zv|Sv, Xv, θv, Λ, ν, u, r)
we need to compute the gradient of the log-unnormalized-posterior w.r.t. Zv as

∂

∂Zv

[log p(Xv|Zv, θv) + log p(Zv|Sv, Λ, ν, u, r)], (C.12)

where the first term of the gradient in (C.12) is computed as
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∂ log p(Xv|Zv, θ)
∂Zv

→ ∂ log p(Xv|Zv, θ)
∂Kv

= −1
2DvK−1

v + 1
2K−1

v XvXv
T K−1

v , (C.13)

where we used the chain rule to compute the kernel derivatives as,

∂k (xnv, xmv)
∂xnv

= −
σ2

vf

ℓ2
v

exp
(
− 1

2ℓ2
v

(xnv − xmv)⊤ (xnv − xmv)
)

(xnv − xmv) . (C.14)

Finally te second term of the equation (4.14) is set as

∂ log p(Xv|Zv, Sv, ν, u, r)
∂xnv

= −νzmS−1
zmv

(xnv − uzn) . (C.15)

We also infer kernel parameters θv via HMC, using the gradient of the log unnor-
malized posterior with respect to the kernel parameters.

C.3 Common clustering ML datasets

We define here the real-world and synthetic datasets used as input data to asses de
model performance. None of these datasets can be appropriately clustered by a Gaussian
mixture model (GMM) (i.e., computing the cluster assignments in the input space). We
use wine, and vowel datasets obtained from the LIBSVM multi-class data (Chang and
Lin, 2011). In addition, we use four synthetic datasets: 2-curveC.1(a), 3-semi C.1(b),
2-circle C.1(c), and pinwheel C.1(d). 2-curve and 3-semi are synthetic datasets having
2 and 3 curved lines in which a classical GMM with many components could separate
the two lines only by breaking each line into many clusters. 2-circle is an interesting
manifold learning dataset consisting of two concentric circles. Finally, Pinwheel is a
five-armed variant of the pinwheel dataset of Adams and Ghahramani (2009) generated
by warping a mixture of Gaussians into a spiral. Figure C.1, shows an example of the
four synthetic datasets.
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Figure C.1: Examples of the real-world and synthetic datasets used as input data to
asses de model performance.

C.4 Additional Results for the MVWMM

We show additional experiments for the non-rigid 3D objects. Results show that our
approach can efficiently match different shape structures, even with shape exhibiting
partial information.

C.4.1 Non-rigid shape correspondence

Figures C.2 to C.4 show the correspondence results for additional shapes exhibiting
different poses. The results also shows that our model can efficiently establish meaningful
correspondences for different shape structures (average Rand indexes of 0.81, 0.77, and
0.72 respectively).
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Figure C.2: Experimental results for the TOSCA dataset. Current mixture parameters,
along with the latent positions for two shapes exhibiting different poses. Average Rand
Index 0.8073. Same colors in related regions are considered candidate matches. Gray
and white markers relate a specific view (left and right object), so similar markers are
candidate matches in the latent space.

Figure C.3: Experimental results for the TOSCA dataset. Current mixture parameters,
along with the latent positions for two shapes exhibiting different poses. Average Rand
Index 0.7675. Orange arrows describe candidate matches between shapes. Same colors
in related regions are considered candidate matches. Gray and white markers relate a
specific view (left and right object), so similar markers are candidate matches in the
latent space.
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Figure C.4: Experimental results for the TOSCA dataset. Current mixture parameters,
along with the latent positions for two shapes exhibiting different poses. Average Rand
Index 0.7238. Same colors in related regions are considered candidate matches. Gray
and white markers relate a specific view (left and right object), so similar markers are
candidate matches in the latent space.
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