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Abstract 
 
Physical rehabilitation therapies are mechanisms of physical recovery used to improve people's 

motor skills after an injury, an accident, or while suffering a motor disease. The rehabilitation 

process is carried out by a clinician and is well-established in health centres around the world. 

Despite its effectiveness, physical rehabilitation has several difficulties in engaging patients in 

the multiple therapeutic sessions required to obtain measurable results. The lack of timely 

feedback and an uninterrupted collection of variables that allows measuring therapeutical results 

are widely known problems in conventional rehabilitation. Researchers in the area conclude that 

motivation is the most influencing variable in the therapy progress with low rates ending up in 

the withdraw of the rehabilitation process. Novel technologies that use gamification strategies to 

encourage patients to “play” during the rehabilitation session have popularized in the last decade 

instead of count repetitions. The motivation provided by the goal-oriented nature of gaming 

applications, the visual and auditory cues that provide the narrative, rewards, and feedback related 

to progress, and the novelty of these interventions, attracted the attention of engineers and 

clinicians as a complementary approach to restore and maintain motor capabilities of people. 

Although investigations have been revealing positive benefits, there is a need for a greater 

understanding of the relationship between the different characteristics of these systems (influence 

of the virtual environment, measurement variables, rehabilitation protocol) and the impact with 

the physical therapy aided by gaming systems. 

Therefore, this thesis aims to propose a complementary rehabilitation therapy based on human-

computer interaction (HCI) paradigms that explore i) virtual rehabilitation techniques, integrating 

sophisticated and (nowadays) accessible virtual reality (VR) technologies, ii) low-cost 

physiological sensors, namely armband-like surface electromyography (sEMG) and iii) system 

intelligence through biocybernetic adaptation techniques, to provide a novel virtual rehabilitation 

technique. First, following medical advisory, we designed and developed a "serious" videogame 

for upper limbs rehabilitation of patients diagnosed with a motor disorder. Second, we integrated 

physiological muscle fatigue detection through collecting sEMG signals; thus, the gaming system 

changed the game's difficulty to maintain the player in a recommendable state of fatigue while 

performing muscle contractions. Two pilot studies were developed in order to prove the feasibility 

of using the physiological system as complementary rehabilitation therapy. The first aimed at 

investigating the effects of using the designed game with immersive VR systems (e.g., Head 

Mounted Displays) once compared with conventional flat screens in terms of system usability, 

game performance and perceive player's fatigue.  A second study was developed to prove the 

feasibility of using the designed videogame to complement a conventional physical therapy of 

people affected with monoparesis/hemiparesis (M/H). Finally, pattern recognition algorithms 

were used looking at classification techniques that allowed an accurate and quantitative 

measurement of the player's performance during the interaction with the videogame by using 

machine learning approaches.   

We proved the feasibility of using the fatigue-aware gaming system as a complementary tool to 

conventional motor therapies, as well as quantified the improvements in patient’s motivation, 

game user experience and game performance. We also revealed the differences in specific 

outcomes in physical therapy (e.g., perceived fatigue) and game experience between the 

immersive VR system and the game displayed in conventional flat screens. Furthermore, we 

found that the use of support vector machines as a classifier of a database of sEMG signals of 

impairment subjects combined with game variables may be the most suitable algorithm to be 

implemented as a measurement of the player’s performance.   

 

Keywords: Motor rehabilitation therapy, physiological computing, sEMG, serious videogames 

design, muscle fatigue, virtual environments. 
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1. Justification and State of the art 
 

1.1 Justification 
 

The muscles produce a distribution of electrical potential over the skin and the record of this 

signal is called surface electromyography (sEMG). During sustained or intermittent contractions, 

the sEMG signals undergo changes that are referred to as mechanical and myoelectric 

manifestations of muscle fatigue [1]. There are many definitions of muscle fatigue; 

physiologically, low intracellular muscle pH has traditionally been considered the dominant factor 

causing fatigue, and acidosis caused by the accumulation of lactic acid was thought to cause 

fatigue in active skeletal muscle [2], [3]. Nevertheless, myoelectric manifestations of muscle 

tiredness are defined as changes in features of the sEMG during sustained muscle activity [1]. 

Those changes can be measured through parameters and algorithms used to process the sEMG 

signal in both time and frequency domains [4]. In the time domain, it uses the RMS (Root Mean 

Square) value, which is the square root of the average energy of the signal. From the beginning 

of the study of the SEMG signal, a consistent increase in the amplitude of the EMG signal 

collected with surface electrodes was observed. Pioneers in this area have attributed this increase 

to the recruitment of additional motor units. They believe that as a contraction progresses, 

additional motor units are required to maintain a constant level of force [5]. sEMG signal 

amplitude itself is rarely used as an indicator of muscle fatigue. It is used in combination with 

other signs, often with parameters of the spectral analysis. In the other side, the frequency domain 

has two primary fatigue descriptors that have been widely used, the mean frequency (MNF) and 

medium frequency (MDF) of the power density spectrum [4], [6], [7]. During isometric 

contractions, the shape of the motor unit action potential (MUAP) is affected by the pH changes 

related to fatigue. Because of it, the velocity of conduction over the muscular fibers decreases. 

Therefore there is a decrease of the MNF and the MDF and a compression of the power density 

spectrum of the sEMG signal. 

 

Although fatigue is a well-known physiological phenomenon in physical rehabilitation [1], [6], 

[7] its measuring process to improve therapy’s personalization in regular routines possesses 

several challenges regarding real-time physiological signal processing and the associated 

hardware economic costs [4]. When the patient practices resisted training, the physician must be 

alert to signs of fatigue, which can lead to the change of exercised muscles or lead to injury. The 

dose of resisted exercise is often limited to the fatigue supported by the patient: the point at which 

a patient must interrupt the activity or sacrifice the way they execute it [8]. In general terms, to 

produce fatigue states, sustained contractions have durations of two minutes long that should be 

performed at certain intensity levels. The contraction's intensity can be measured as a percentage 

of the maximum voluntary contraction (MVC) [9]. For instance, specialists recommend exerting 

at rates higher than 30% of the MVC but lower than 70%, to stress the muscles and produce 

measurable results without leading to exhausting fatigue levels [8].  

 

Additionally, the 30% to 70% exertion range for isometric MVC should be performed in time 

intervals of 20-30 seconds. These levels are particularly recommended in the case of isometric 

contractions (both joint angle conservation and muscle length) that are sustained over time and 

do not alter the range of limb mobility. Isometric exercise is a valuable rehabilitation tool when 

joint movement is uncomfortable or contraindicated during immobilization or when there is a 

weakness of the underlying tissues to the injured area [8], [10]. However, due to many physical 

conditions and psychological factors present in conventional rehabilitation scenarios, the 

therapies typically failed in accomplishing active monitoring of muscle fatigue levels and 

providing adherence to treatment [10]. For that, novel human-computer interaction (HCI) 

paradigms that explored virtual rehabilitation techniques have been developed. The paradigms 

integrate sophisticated and (nowadays) accessible VR technologies, interactive sensors (e.g., 
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motion trackers, haptics, wearable sEMG) and multimodal physiological sensors for active 

monitoring of the therapeutic effects [11].  

 

Rojas and colleagues [12] point out three critical factors for virtual rehabilitation:   

i) Enjoyable repetition process employing integrated interactive technologies that 

improve the execution of motor skills; 

ii)  ii) Feedback to produce intense and massive stimuli of the interaction;  

iii)  iii) Motivation and/or presenting the therapy pleasantly and attractively. 

Also, virtual rehabilitation provides a very controlled way to deliver the therapy allowing high 

levels of content personalization. Virtual rehabilitation has become a significant area of research 

due to advances in game development and computer graphics [13]. Thanks to the advancement 

of physiological computing technologies, some virtual rehabilitation systems that use body 

signals have been developed in recent years [14]. These types of virtual activities integrated with 

physiological sensing provide players with feedback on their session performance as well as 

constitute a mechanism for quantifying significant physiological responses during the interaction. 

However, only a few research approaches have used physiological information as a dynamic 

adaptation strategy in the so-called biocybernetic loop construct [14].  

 

Mainly, sEMG signals have been widely used in biofeedback therapies [15], although examples 

of biocybernetic applications based on muscular electrical activity are scarce [14]. Thus, although 

pioneers in physiological computing have developed many physiologically adaptive games, they 

have not explored the combination with VR environments for rehabilitation therapy enhancement. 

While biofeedback uses physiological signals to mirror inner states and physiological self-

regulation, the biocybernetic loop technology proposes a more sophisticated use of this 

information via modulating the virtual therapy activities with detected human states, such as 

fatigue or workload [16]. In the next section, we provide a theoretical framework of relevant 

concepts related to this research and a literature review in the field of virtual protocol 

rehabilitation that uses sEMG parameters to either mirroring physical states (biofeedback). 

Furthermore, to extend HCI communication pathways or to enhance the therapy personalization 

employing biocybernetic adaptation [16]. 

 

1.2 Theoretical Background and State of the Art 
 

1.2.1 Human-computer interaction 

 

The concept of Human-Computer Interaction (HCI) involves the design, implementation, and 

evaluation of interactive systems in the context of a task and the user's work. By user refers to an 

individual user, a group of users working together, or a sequence of users dealing with a job. By 

computer refers to a technology in the range of an embedded system, as a personal or desktop 

computer. By interaction refers to the dialogue between the two previous agents that allows 

control and feedback through the development of the task. The purpose of interactive systems is 

to help the user achieve a goal within the domain of an application. The use of interaction models 

allows researchers to understand what is happening in the interaction and identify possible 

difficulties[17]. 

 

1.2.2 Physiological Computing Systems 

Computational physiology is a term used to describe a technological system that can monitor 

human physiology directly and transformed it into a control input for a computer system [18]. 

 

1.2.2.1 Biofeedback 

It is appropriate to say that biofeedback is the grandfather of computational physiology systems. 

Biofeedback is the technique of making unconscious processes of the body perceptible to the 

senses. In this process, the physiological signals of the users are measured by sensors and 
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processed in information about their body, and then they are returned to the user in different ways, 

auditory, visual, haptic, or multimodal [14].  

 

1.2.2.2 Biocybernetic Loops 

A category of computational physiological systems is concerned with the self-perception of 

dynamic processes that occur within the body and contribute to the awareness of the physiological 

state [14]. Within this category are adaptive systems, within these are biocybernetically adaptive 

systems, called biocybernetic loops, focused on monitoring brain and body states to improve 

performance for well-being or a specific task [16]. 

 

The biocybernetic control loop describes the closed curve system that receives 

psychophysiological data from the player, transforms it into an automated response, which then 

shapes the future of the player's response [16]. This system works in a closed control associated 

with an actual state; therefore the system has a specific goal and is designed to influence the user's 

psychophysiology to set that objective state. Not only serve as an adaptation tool for improving 

the levels of fun and attractiveness of a videogame, but also a tool for the exploitation of 

computer-assisted and mediated therapies through video games. Therefore has attracted the 

attention of multiple research centers in an area called Serious Video Games for Health.  

 

1.2.3 Muscle Interfaces 

 

Currently, many technologies in HCI are well established. Between the different phases of HCI, 

the researchers in brain-computer interaction (BCI) are the most popular; however, in recent 

years, a new HCI area is focused on muscle-computer interfaces (muCIs). A muCI is an interface 

where the user uses the electrical activity of the muscle as an input while is performing several 

tasks. In other words, in such interaction, people can control a device using its myoelectric signals 

recorded through surface electromyography (sEMG)[19]. 

 

Although the term muCI is relatively new, the use of myoelectric devices that use sEMG 

electrodes has a long history. The term muCI was first conceived by Saponas et al. [20] while 

they were demonstrating the feasibility of a muCI using forearm electromyography. According to 

them, muCI is an “interaction methodology that directly censuses and decodes human muscle 

activity beyond referring to the device’s performance." 

 

1.2.3.1 Surface Electromyography 

The myoelectric signal is the electrical manifestation of neuromuscular activation associated with 

a muscular contraction [6]. Electromyography is the recording and interpretation of muscle action 

potentials [7]. Nowadays, surface electromyography (sEMG) is a specialized field in using 

electronic devices to measure muscle energy, analyze data, and bring reliable results.  
 
The sEMG has many applications, including assisted treatment, evaluation of progress results, 

rehabilitation, ergonomic design, sports training and research [1].  The use of sEMG has many 

advantages. Data collection with sEMG provides safety, ease and a non-invasive method that 

allows objective quantification of muscle energy. It is not necessary to penetrate the skin and 

record the motor unit to obtain useful and meaningful information regarding muscle [7]. It is 

important to remember that sEMG is not a measure of strength, neither the amount of effort or 

the length of a muscle. It is merely a measure of the electrical activity understood as the 

intracellular action potential and its propagation. 

 

1.2.3.2 Muscular Fatigue Detection using sEMG 

It is known that during contractions at a constant force, the factors that affect the features of the 

signal can be reduced to fatigue indicators, such as the change in amplitude and frequency 

spectrum [6]. 
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The main component of fatigue analysis through the measurement of the muscular electrical 

signal is the identification of prominent features of the sEMG data. In the literature two main 

components are established and presented as biomarkers of fatigue in time and frequency the 

RMS (Root Mean Square) value, which is the square root of the average signal energy, and the 

average frequency (MNF) and the median frequency (MDF) values of the power density spectrum 

of the frequency curve [4], [6]. 

 

Generally, before doing the primary signal processing, a pre-processing step is always applied, 

consisting of the filtering of the signal. For the sEMG signal, the following filters have been 

established [1], [21]: 

• A reject-band Notch filter between 59Hz and 61Hz, as the rejection of the power line 

frequency 

• A Passband filter, usually Butterworth, of minimum second-order, between 10Hz and 

300Hz, where the highest signal energy is found. However, Depending on the sensor's 

sampling frequency, which can vary from 200Hz to 1000Hz, the amplitude of the 

passband may vary. 

 

In the post-processing, it is found temporary, time-frequency,  frequency and non-linear analysis 

techniques. In the time domain, the main changes in the single-channel sEMG signal are the 

modulation of the standard deviation of the signal (RMS) and spectral changes due to muscle 

strain or fatigue. As the muscular effort increases, the amplitude of the signal grows. However, 

the RMS value is rarely used alone as an indicator of muscle fatigue. Generally, its extraction is 

done through sliding windows, characterized by having overlap between each iteration of the 

window. The windowing of a signal in the time domain results in smoothing it [1]. 

 

If the contraction of a muscle is sustained strongly enough for an extended period, the conduction 

velocities of the action potentials along the muscle fibers are reduced and the muscle potential 

begins to discharge less frequently. During the first part of the contraction, the median frequency 

of the spectrum can be slightly above 100 Hz, while during muscle fatigue, the power density 

spectrum suffers a downward shift in its shape, and this frequency can be found at approximately 

55 Hz [7]. 

 
The power density spectrum (PDS) of the sEMG is used in the frequency domain. The PDS shows 

the curve's height at any given frequency and indicates how predominant is the energy of the 

muscle in that frequency. For instance, when a muscle gets contracted, a filter between 20 Hz and 

300 Hz will represent almost all the energy in the muscle spectrum, if a filter between 100 Hz and 

200 Hz is used, only a portion would be represented [7]. 

 

The measurement of this frequency contraction can be done with different methods. The method 

based on the Fast Fourier Transform (FFT) is the most used. Finally, it was decided to use the 

medium frequency of the PDS as the main feature of the spectrum since it is less sensitive to 

noise, to aliasing (phantom signals), and in most cases, it is more susceptible to biomechanical 

and physiological factors that occur in the muscle [6]. 

 

1.2.3.3 Pattern recognition of sEMG signals 

The non-stationary and stochastic nature of sEMG signals is especially considered in the 

classification task. Nevertheless, in isometric contractions, it has been shown that in short 

intervals of the signal, this can be assumed quasi-stationary [4], [6], [7]. Therefore, the temporal 

and frequential features are used to describe the behavior of this signal, and features that can better 

characterize patterns of muscular activity play a key role in classification tasks. Feature selection 

and extraction can be used to speed up the learning process, incentive the classification accuracy, 

improve model generalization capability [22]. The extraction of these relevant features can be 

developed through different methods. The Principal Component Analysis PCA is one of the most 

used, which seeks a space of lower dimensionality, known as the principal subspace [22]. The 
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goal is to represent data in a space that best describes the variation in a sum-squared error sense 

[23]. 

On the other hand, RELIEFF (a Relief-based feature selection algorithm) is considered one of the 

most successful algorithms for assessing the quality of features due to its simplicity and 

effectiveness. It is a classical supervised feature selection algorithm in the filter model [24]. The 

main goal is to accomplish the attributes estimation according to how the values distinguish 

among instances that are near each other. For that purpose, RELIEFF for a given instance searches 

for its two nearest neighbors: one from the same class (called nearest hit) and the other from a 

different class (called nearest miss) [24]. The evaluation of the classifiers is often used to find the 

best one. This evaluation is made using the accuracy, defined as how many times the classification 

method was right with the prediction of the classes [22], [25]. 

 

On the other hand, the use of classifiers of the signal sEMG has been widely used to study patterns 

of neuromuscular disorders [26], as well as for the diagnosis of fatigue states in combination with 

other optimization methods, and the creation of human-computer intuitive interfaces[27]. The tool 

most used by researchers is the support vector machines (SVMs), which have demonstrated high 

precision in the classification of this type of signal for differentiation of hand and arm gestures 

[28]. Although the classifiers for sEMG signal had been worldwide studied, there is no evidence 

of which type of classifier could be the best for sEMG muscle fatigue descriptors in together with 

videogame variables taken under protocols of virtual rehabilitation. 

 

 

1.2.4 Virtual Rehabilitation and Serious Games for Health 

 

1.2.4.1 Serious Games  

Serious games is a term that has been used to describe video games that have been designed 

specifically for training and education [29]. Since early years for this century, the serious games 

for health area has been in development, where initial research proved the efficacy of games to 

change essential health behaviors, suggesting that the strengths of these tools should be seriously 

considered when designing interventions in health care [29]. 

 

Within the serious video games for rehabilitation, two large groups can be found: for cognitive 

rehabilitation and physical rehabilitation. The latter includes rehabilitation of upper and lower 

limbs, spatial and perceptual training, balance, wheelchair mobility, functional activities and 

daily. The latest reviews developed by [30], [31], specify the design and therapeutic 

recommendations to create this kind of videogames, highlighting the importance of taking into 

account for whom is being developed the system and the final goal of therapy. 

 

Thanks to the advance of computational physiology, in recent years, some serious video games 

that use body signals have been developed. Such videogames provide users with feedback on their 

activities and provide a mechanism for quantifying physiological performance during the 

interaction [32]. Some of these systems are used in controlled environments, such as clinics or 

rehabilitation centers; however, new systems seek to enable their use outside these environments. 

 

1.2.4.2 Virtual Reality (VR) 
In simple terms, VR can be defined as a virtual or synthetic environment that gives a person a 

sense of reality. This definition can include any artificial environment that provides a person with 

the feeling of "being there." VR generally refers to computationally generated environments. 

 

The recent success of the integration of VR with the field of medicine and rehabilitation shows 

the technological potential to allow patients to face challenging, safe and ecologically accepted 

environments [12]. Although VR systems depend on hardware and software, its use in the context 

of rehabilitation requires clinicians to make decisions about appropriate interventions for the 
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patient, the implementation of the treatment parameters, and the progression through different 

levels of tasks or games. 

 

1.2.4.3 Virtual Rehabilitation and Motor Disorders 

Hemiparesis and monoparesis are the main sequelae of different neuromuscular disorders, such 

as stroke, cerebral palsy and muscular dystrophy; as they also derive from brain trauma and heroin 

addiction. These motor disorders are caused by damage to the upper motor neurons and are known 

as the superior motor neuron syndrome (MNS)[33]. The motor impairment derived from these 

disorders is caused by a characteristic known as muscle spasticity, which refers to "a motor 

disorder characterized by a speed-dependent increase in the tonic stretch reflex (muscle tone) 

with exaggerated tendon pulls, as a result of hyper-excitation of the stretch reflex" [34]. There is 

a causal relationship between spasticity and people's independence and activity limitations; it is 

also claimed that spasticity leads to contractures, pain and weakness. 

 

Given the increase in low-cost systems that use VR technology for the rehabilitation of major 

diseases from which spasticity derives, such as stroke, the treatment with virtual rehabilitation 

has been explored in the last decade. In [35] used VR combined with transcranial stimulation to 

treat spasticity in children with cerebral palsy and improve motor control in gait. In [36] used 

gestural therapy with simple games in VR to improve neuronal reorganization in motor 

rehabilitation in people with stroke, proving that this type of treatment generates functional 

changes associated with the recovery of motor skills. Furthermore, it is relevant to mention the 

work done by Da Silva Ribeiro et al. [37], where using the Wii console and its traditional games, 

the authors performed motor rehabilitation activities in patients with hemiparesis after suffering 

stroke. Moreover, they compare the improvement resulting from these activities against the 

improvement with conventional therapy activities. Using a randomized blind protocol with 30 

patients, the authors assessed sensorimotor function and improved quality of life, finding that both 

therapies are effective for the treatment of people with hemiparesis. Finally, it is worth mentioning 

initial works such as those by Juarez et al. [38], where they evaluated the effectiveness of 

electromyographic biofeedback in reducing spastic hypertonia in a hemiplegic patient. They 

showed a significant reduction in the degree of spastic hypertonia due to learning obtained 

through exposure to the electromyographic signal. 

 

Similar to what it is proposed to develop in this thesis, in recent years, different investigations 

have explored VR therapy together with physiological sensors as a successful alternative for 

motor rehabilitation. Like in [39] the authors developed a systematic review of VR therapy aimed 

at physical rehabilitation of older adults, where it is found that most of them are based on balance 

and flexibility exergames. Those games use motion capture data delivered by sensors such as the 

Wii, Kinect and pressure platforms to evaluate the improvement of functions such as postural 

control and gait. 

 

The review and analysis performed by Levac et al [40] of the use of VR as a therapy tool reveal 

the components of this technologies that support and improve the rehabilitation process, for 

instance the motivation, repetition and feedback, components that also can be found in works as 

[12], [41]. Furthermore, those researchers in VR environments point to three critical factors for 

its application in rehabilitation: 1) Repetition to improve the execution of motor skills. 2) 

Feedback to produce intense and massive interaction stimuli. 3) Motivation, presenting the 

therapy pleasantly and attractively. The applications of the sEMG signal in virtual environments 

have not been left behind. Thus, in [42], the authors design a system based on MoCap, sEMG and 

VR, where they develop a VR videogame that uses the myoelectric signal as the control of objects 

within it. In [43], they study a videogame developed to perform basic tasks and the authors 

analyzed their effect on the subsequent use of a prosthesis in activities of daily living. The tasks 

were oriented to caught objects of different sizes and fragilities. They concluded that all subjects 

undergoing training with the video game performed better in the use of the prosthesis than those 
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who did not perform the training. This study demonstrates the effects of the transfer of a serious 

videogame to activities of daily living. 
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2. Research Problem and Research Questions. 
 
This project is proposed as a solution to the effectiveness problem of physical therapy in patients 

with muscle disorders in the upper limbs, particularly the adherence of patients to rehabilitation 

programs. The lack of timely feedback and an uninterrupted collection of variables that allow 

quantification of the results of therapy are widely known problems in conventional rehabilitation 

[44]. Based on the above, this research seeks to evaluate the effectiveness of an intervention that 

combines traditional rehabilitation with assisted rehabilitation with the called Force Defense (FD) 

videogame and the adaptative system created with it (currently version uses conventional TV-

LED and VR-Glasses). On the other hand, to our research is also essential to find variables 

searching for objective quantification of the therapy progress.  Therefore, the following research 

questions are established:  

 

1) What are the methodological aspects that should be considered to design a serious 

videogame for motor rehabilitation in upper limbs? 

2) How do the virtual environment features, as immersion and visualization mode, influence 

player’s game perception and their performance?  

3) How does the player’s interaction with the serious videogame FD, influence rehabilitation 

therapy in terms of game experience and perceive muscle fatigue? 

4) What is the effect over measured and perceived fatigue on users with (M/H) by a motor 

rehabilitation program based on the FD videogame? 

5) Is there any measurable change in upper limbs mobility in patients with M/H after a 

rehabilitation program based on the FD videogame? 

6) Is there a pattern recognition classifier that can be used to quantify therapy improvement 

by using sEMG and game variables? 

Hypothesis 

1) A mixed methodology, which combined well know videogame design guiding, the 

therapeutic requirements for motor disorders, and physiological adaptation, contain the 

appropriated aspects to create a serious videogame for motor rehabilitation of upper 

limbs. 

2) The immersive feature and the virtual scenario in which the videogame FD is played can 

improve the player’s game experience, as well as directly influence their muscle fatigue 

perception.  

3) The variables, within the videogame, can affect the positive or negative user experience 

when interacting with the videogame. 

4) The fatigue perceived by users, both healthy and impairment, will be reduced when 

interacting with the game, thanks to the characteristics of motivation and immersion of 

it. 

5) The rehabilitation therapy supported by the interaction with the videogame will make 

impairment subjects diagnosed with M/H improve their degree of spasticity according to 

the Ashworth scale and will achieve an improvement of 5% in their range of motion 

according to the mobility test. 

6) The literature review suggests that the Support Vector Machines (SVMs) are the 

appropriate pattern recognition algorithms to be used in classifications task for sEMG 

signals and should work appropriately combined with game variables. 

 

This project is approached by a research that aims to improve the classic virtual rehabilitation 

games by using advanced physiological computing techniques. Firstly, we described the 

methodology used to design a serious videogame for upper limbs motor rehabilitation. Secondly, 

are presented two pilot studies where we proved the feasibility of using the created system as a 

complementary tool for motor rehabilitation. Finally, it is described a classifier based on pattern 

recognition to establish a metric to quantify users’ performance to understand the effects of the 

therapy better. 
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The designed system allows the collection and evaluation of the sEMG signal in order to know 

the levels of muscle fatigue of players within the VR system in order to customize and improve 

the patient's motivation in physical rehabilitation sessions. Moreover, the system allows to assist 

the clinician in the evaluation of the recovery process and eventually may be used for 

telerehabilitation therapies. 

 

2.1 Contributions 
The contributions of the thesis in the fields of HCI, virtual rehabilitation, serious games and 

physiological computing are described as follows: 

 

• We presented a designed methodology used for the creation of a serious videogame for 

motor rehabilitation of upper limbs that used sEMG as the human-computer interface to 

control the game, to monitor and react accordingly, the players’ fatigue levels 

• We reveal significant insights for engineers, physical therapists, and game designers to 

create more personalized and adaptive solutions for motor rehabilitation using low-cost 

wearable sensors and physiological computing techniques (e.g., biocybernetic 

adaptation). 

• Using the principles of physiological adaptation, we created a biocybernetic loop that 
was integrated into the videogame and used sEMG signals to adapt the game difficulty 

and influence directly the muscle perceived fatigue of players.  

• We revealed new perspectives about the effects of VR and highly immersive 

environments on perceived and measured muscle fatigue, and how these technologies 

might enhance immersion, engagement, and flow in virtual rehabilitation therapies. 

• We prove the high usability of virtual environment setups, thus demonstrating the 

feasibility of the low-cost solution provided, which can be further explored by clinicians 

in motor rehabilitation therapies. 

• Together with physical therapists, we designed a combined therapy that integrated the 

biocybernetically adaptive game into conventional therapies, proving its potential of 

being used in upper-limb rehabilitation of people with M/H.  

• This research includes the use of pattern recognition algorithms as a method to quantify 

the therapy progress and the patient’s performance, finding the SVM as the appropriate 

technique to classify information of sEMG signals combined with videogame variables. 
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3. Game Design for Motor Rehabilitation  
 
This chapter exposes a design methodology used for the creation of a serious videogame for motor 

rehabilitation of upper limbs using surface electromyography (sEMG) as the human-computer 

interface to control the game and monitor the players' fatigue levels. By utilizing an adaptation 

mechanism from the physiological computing field, called biocybernetic adaptation, the 

videogame can adapt the game difficulty based on measured fatigue levels. The game design was 

also informed with therapeutic recommendations and followed an iterative design process. 

 

3.1 Designing a fatigue-aware videogame for upper-limb rehabilitation 
Due to the complexity of the pathologies, the recovery is not performed by a single therapist. In 

order to have a holistic approach to a particular patient, a team of clinicians is needed to provide 

different points of view of an individual pathology [11]. The development of serious games 

requires a similar healthcare team, often a physiotherapist or a clinical expert (e.g., physiatrist, 

Kinesiologist), complemented with game designers, software developers, and biomedical 

engineers. The clinical expert and exercise therapists provide the information related to the 

clinical aspects to consider while the game design team carried out the gamification of the medical 

intervention. Our process was developed with the primary goal of defining how the mechanics, 

technology, story, and aesthetics of a game work together to create a player experience capable 

of entertaining patients while providing an effective rehabilitation process [45]. In this section, 

we present our design process from the elicitation of therapeutic requirements to the final design 

of the balancing layer for physiological adaptation.  

 

3.1.1 Therapeutic requirements 

 

The main control signal to interact with the videogame was chosen to be the sEMG signals since 

the therapeutic goal was based on the stimulation of muscle contractions [7]. A physiatrist medical 

expert and two exercise therapists were included in early stages to define the system requirements 

in terms of therapeutic benefits clearly; they are listed as follows: 

 

3.1.1.1 Complementary instead of alternative  

The proposed system was thought of as a complementary intervention to conventional physical 

therapies [44]. Due to the complexity of the therapeutic intervention, the rehabilitation videogame 

is developed to be used at the start of conventional therapy. The patients can interact with it for 

10 minutes for each arm, which is the typical time used to constantly exercise a single muscle, in 

our case, the biceps [10]. 

 

3.1.1.2 The relevance of fatigue in rehabilitation processes 

Healthcare professionals were very persistent in highlighting the importance of muscular fatigue 

in motor rehabilitation processes. Although physicians should be alert to signs of fatigue, this is 

not always possible since conventional sEMG sensors are very cumbersome for clinical settings. 

Fatigue can lead to damages of exercised muscles or lead to an injury. The rehabilitation process 

should be aware of fatigue levels [10]. 

 

3.1.1.3 Isometric instead of isotonic contractions 

Isometric exercise is a valuable rehabilitation method when joint movement is uncomfortable or 

contraindicated after an injury or a surgery. These isometric contractions are exerted at 

sub-maximum levels between 30% and 70% of the maximum voluntary contraction 

(MVC) with a duration between 20 to 30 seconds, and the same time to rest, following 

the recommendation for first stages of physical rehabilitation [10]. According to the 

therapist advisory, for patients with a motor disorder, the proper range of MCV is 40%, 

a maximum 70%, and the periods of muscle work should be equal to the periods of rest. 

That is why we choose to design an exercise of 15s of contraction and 15s of rest, starting 
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at 40% of the patient MVC. Nevertheless, due to the game could also be used for healthy 

people, we also establish an exercise for this requirement, with a contraction time of 15s 

and a rest period of 10s, starting at 60% of the MVC. Moreover, the quality of the sEMG 

signal collected on isometric contractions allows performing the signal processing 

searching for the muscle fatigue index that will be used as a physiological state for a 

feedback mechanism in the videogame [6], [7]. 

 

3.1.1.4 Therapy quantification and calibration stage 

A quantitative evaluation of the therapy progress is needed. Both subjective and objective metrics 

should be considered to quantify the possible benefits of the serious game designed accurately. 

Finally, a calibration stage should be defined where individual capacities can be considered before 

the game starts. Moreover, the game should implement mechanics and strategies that ensure a 

player performance quantification. 

 

3.1.2 Iterative Game Design 

 

3.1.2.1 State of the art. 

An extensive revision of the literature was performed searching for previous work related to 

sEMG controlled videogames, videogames for motor rehabilitation, and exercise type of task to 

control videogames. The main common feature found was the simplicity of the proposed 

interaction to control the game elements [42], [46]–[48]. Although daily life activities have been 

widely used, we believe transporting players to magical words and monster-like enemies can be 

beneficial to improve patient’s engagement and motivation. All in all, we wanted to design a game 

more than a simulation. Moreover, the simplicity of activity is need due to in early stages of 

physical therapy the contractions required to gain muscle force are isometric ones, and those 

contractions do not require much joint movement. 

3.1.2.2 Brain Storming sessions 

Working together with a senior researcher in videogames for health, a physiatrist medical expert 

and two exercise therapists, we concluded that the interaction in the virtual environments should 

be based on simple actions such as throw, catch, defend, hit, or shoot [43]. The chief game 

mechanic proposed was a power-up that will reward users' desired muscular physical intensities 

 

3.1.2.3 Elemental tetrad. 

Proposed by Schell [49] is a game design methodology that suggests synergies between four game 

elements called game mechanics, aesthetics, story and technology. Our game design process was 

strongly influenced by a clear definition of those elements and their interconnected interactions 

inside the game. The tetrad elements are defined as follows:  

 

Game Mechanics. Establish the goal of the game, and what happened if the player achieves it. 

In our case, the mechanics are defined based on the therapeutic requirements and the use of power-

ups. In this element of the tetrad, we defined:  

 

• Space: where the actions will take place, in our case, an abstract circular space with two 

small circles that represented the spaces for the main player and his enemy was 

envisioned. 

• Time: A dimension to define the duration of game scenes and states, for instance, how 

many times will the enemies attack, how much time will take the character to die. In our 

case, the muscle contraction duration and the rest duration were the key factors to have 

in mind.  

• Objects: the elements which will mediate the interaction, in our game, the characters, the 

powers of the characters and the control signal were the main objects to consider. 
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• Actions: the verbs that defined the game mechanics, for instance, to attack, to defend, to 

win, to die. 

• Rules: the rules establish the consequences of game actions. The rules in our case were 

chosen following Parlett’s rule analysis [49]. This model (Figure 3.1) considers 

fundamental rules; for instance, the game can only be played if a calibration stage has 

been made. In figure 3.1 can also be seen the operational rules, such as the constant 

muscle contractions required to users, and behavioral rules, for instance, reduce the user's 

life if the muscle contractions are not performed.  

 

 
Figure 3.1. Rules according to the Parlett’s model: Fundamental rules, operational rules, 

behavioral rules, written and officials. The rules are accomplished through the hardware and 

software that allows data collection and audiovisual feedback. VR is optional. 

 

Aesthetics: This feature refers to how the game sounds, feels and looks, and has had the closest 

relationship with the player’s experience. We decided to check the freely available scenarios, 

modeling tools, and graphical assets in the game engine stores, due to the time limitation to model 

the virtual environments. An extra-planetary environment with mountains and lakes was chosen 

to recreate our virtual environment and characters. 

 

Story: Initially, the game was defined in a fictional world where the main role character is trapped 

in the middle of a lake. The character must defend himself/herself of a monster who is constantly 

attacking, and the way to do it is through creating a force shield that will allow counterattacks. 

The player is introduced to the fictional world and is encourages to defeat the monster to save 

himself and scape the world. 

 

Technology: It is related to the materials and interactions that make the game possible, is the 

medium in which the aesthetics take place[shell]. After analyzing different game platforms and 



 

17 
 

wearable sensors for interfacing the EMG signals, the Myo Armband was chosen as a 

physiological sensor and Unity3D as the game engine. The Myo Armband [21], [22], is a wearable 

bracelet that includes eight dry electrodes to record sEMG signals at 200 Hz sampling frequency. 

Moreover, Unity3D is free, has a very active developer community, has a plugin for the Myo 

connection and allows the use of C# as a programming language. The game was designed to be 

run and visualized on a personal computer and also in the HTC Vive VR system. 

 

 

 

3.1.2.4 Storyboarding. 

It is a pre-planning of the storytelling made by sketches [50]. A sequence of sketches was built 

considering the different scenes where the user should interact with the game objects. According 

to the concept found in [20], the storyboard for the muscular controlled videogame was developed 

following a sequence that can be seen in figure 3.2. 

 

 
Figure 3.2. Storyboard of the videogame. A)First Scene. B) Calibration Scene. C) Arm Choosing. D) The 

monster is shooting the main character. E) Elements in the screen: points, life, power. F) First-person 

view. G) The monster receiving an attack. 

 

3.1.3 Dual flow model  

 
Several studies suggest that repetitions while giving feedback and motivating the patients during 

the training process, while providing feedback and motivating the patients during the training 

process, can have a significant effect on the patients' skills recovery [51]. Research has shown 

that a psychological status called flow reflects the enjoyment that game playing produces and it 

has a positive influence on motivation and learning [3]. By following the classic flow theory, 

Sinclar et al.  [52] developed an extended model for Exergaming Exergames that encompasses an 

additional flow dimension called effectiveness, which balances player's fitness levels with the 

Exergame intensity. We used this dual flow model in the game design process as a mechanism to 
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control the challenge through the biocybernetic adaptation technique [16], as used before, through 

cardiovascular sensing in Exergames for older adults [53]. 

 

3.1.3.1 Physiological Adaptation 

By using physiological computing principles, the biocybernetic loop construct allows the 

integration of an artificial software intelligence layer: physiological awareness. In our case, we 

are interested in detecting fatigue levels of players unobtrusively to, therefore, adapt game 

variables to maximize physical performance. Thus, the purpose of the biocybernetic loop is two-

fold: i) control the users’ contraction levels by influencing players to exert at the recommended 

levels and ii) react to the users’ fatigue states to minimize its impact on the game performance. 

The creation of the biocybernetic loop to provide physiological intelligence was developed 

following the stages proposed by Fairclough and colleagues [16] and are described below 

and resume in figure 3.3. 

 

 
Figure 3.3 Model of the biocybernetic loop created for the physiological adaptative videogame. MVC: 

maximum voluntary contraction. RMS: Root Mean Square value. FFT: Fast Fourier Transform. MDF: 

Median frequency of the power spectrum. 

 

Therefore, the biocybernetic adaptation was designed to control the intensity of the muscle 

exercise according to the clinical recommendations; this is exerting at the desired levels of MVC 

(healthy people 30%-70%, patients 20%-70%). Figure 3.3 describes the biocybernetic loop design 

for the physiological adaptation designed for the videogame. The initial configuration stage 

considers the calibration scene where the player exerts an MVC and with these levels, the initial 

values of the difficulty are established. The signal acquisition stage is aware of the muscle 



 

19 
 

contractions received through 2 channels from the Myo sensor, where the contractions for healthy 

people configuration are of 15 seconds with 10 seconds of rest. For people with motor disabilities, 

the setting is 15 seconds of work out and 15 seconds of resting. During this time a signal 

processing is developed, looking at the fatigue index, which, depending on the value, will 

modulate the game difficulty, persuading players to exert in the desired targeted zones.  

 

1) Conceptual Model 

The psychophysiological state to detect is muscle fatigue. Following the clinical requirements, it 

is desired to maintain the player’s fatigue at a level that will stress the muscles without over-

exercising them. This may be achieved by requesting healthy users to perform contractions 

between 30% and 70% of the MVC, and impairment users between 20% and 70% of the MVC,   

for 15 seconds [8]. The biocybernetic loop uses 60%  or 40% as a threshold to define whether the 

fatigue exists or not (defined by experimentation). The calibration process will allow the 

definition of each individual’s MVC values, thus guaranteeing that the adaptation will consider 

both inter and intra subject variability. 

 

2) Psychophysiological inference 

The physiological measure to represent the state of the user is the sEMG signal collected by the 

Myo Armband sensor. This signal will be processed looking for two specific fatigue biomarkers, 

the RMS value and the MDF [6], [54]. Previous research revealed the feasibility of the Myo 

Armband to measure fatigue biomarkers under strict protocols of isometric contractions in biceps 

brachii [55], [56]. 
 

3) A quantified model of the user state 

The fatigue state is defined as the values of sEMG biomarkers equal to or higher than 60% of its 

calibration levels. The non-fatigue state is defined as the values of sEMG biomarkers less than 

60% of its calibration level. 

 

4) A real-time model of the user state 

During the game interaction, signal features looking for muscle fatigue will be computed after 

each repetition. The sEMG signal processing is done by following standardized methods [1], [7]. 

Once the biocybernetic software is calibrated and the thresholds defined, the adaptive system will 

decide whether to reduce or not the game difficulty level to create the force field. If the variables 

are above the threshold the game difficulty level will be reduced by 10%, if the variables are over 

the limit the difficulty level will increase by 10%, being careful to always keep players in the 

range of 30% -70% or 20%-70% of MVC, if it is a  healthy player or an impairment player, 

respectively.  

 

5) Design of the adaptive interface 

The biocybernetic loop adaptation will dynamically modify the game difficulty via tuning the 

force needed to activate the shield. The modification will be shown with bars that give visual 

feedback about the real-time force levels. 

 

3.2 Force Defense (FD) Videogame: Final Implementation 
 

FD is a rehabilitation videogame created to provide interactive sessions of physical rehabilitation 

in upper limbs. The game uses a wearable bracelet as an interface to encourage players to perform 

multiple controlled isometric contractions while detecting the player's fatigue levels and adapting 

accordingly. The goal of the game is to survive the attacks of an enemy monster that is constantly 

shooting acid balls. While creating a protection field through controlled isometric contractions, 

players can reject their enemy attacks and attack back as a response.  

 

The videogame starts with a short animation that visualizes the scene details such as mountains, 

the lake, the platform where the monster is stood, and the platform where players are positioned 
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(Figure 3.4A). Here the player has to choose the game mode, healthy player, or impairment player, 

due to the difficulty and the interaction is different for each mode. A calibration stage (Figure 

3.4B) is used to define initial parameters that will determine the thresholds of the biocybernetic 

system. Mainly, the game requires players to hold a biceps' contraction for 15 seconds (Figure 

3.4C). The maximum contraction level reached in this stage will moderate the contraction level 

in the main scene. 

 

The user interface elements are over-imposed in a first-person view of the game including i) a life 

bar that will decrease every time players receive a shoot (Figure 3.4C), ii) a power bar that will 

increase or decrease proportionally to the strength of the contraction, iii) a point-coin counter that 

will increase every time players can activate the power-up (Figure 3.4D), and iv) a countdown of 

15 seconds that indicates the periods where the players have to perform contractions or rest. 

During the resting period, the monster will not attack (Figure 3.4E), and players are allowed to 

relax their muscles while is waiting for the next attacks. 

 

The game ends if the player is killed by the monster, or when players manage to defeat the 

monster. Finally, the points awarded and the received attacks are shown to the player as can be 

seen in figure 3.4F. Data logging features were added to record game events and sEMG signals. 

These signals are kept into an array to be used in diverse statistical states for monitoring the 

subject´s perseverance into the intervention with serious videogames. The final demo of the 

videogame can be seen here. 

 

 
Figure 3.4 Force Defense designed in Unity 3D. A) introducing scene, game mode. B) calibration scene. 

C) the first-person view of the screen elements: points, life bar, and power bar. D) creation of the force 

field.E) Monster. F) Information about the interaction. 

 

 

 

B A 

C D 

E F 

https://www.youtube.com/watch?v=y3TG-7rum9U&t=119s
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4. Effects of Immersive and non-immersive virtual 

environments over rehabilitation  
 

The previous game was evaluated to establish how the virtual environment influences users and 

find the best scenario to generate adherence and motivation to rehabilitation therapies. The 

experimental protocol considered two different visualization modalities: the non-immersive, 

which uses conventional screens to display the game and the immersive condition, which utilizes 

novel VR headsets as an interaction medium. The comparison between the modalities was made 

in terms of game variables, muscle fatigue perceived, system usability and game experience. We 

hypothesized that the immersive condition could produce lower levels of players’ perceived 

fatigue and a better game user experience compared with the non-immersive version.  

 

4.1 Methods 
 

4.1.1 Subjects 

 

Twenty-four subjects (12 females and 12 males, Ages 28 ± 5) volunteered for the experiment. 

Two groups of 12 subjects were created, each group was exposed just to one of the conditions. 

All subjects were right-handed, and 10 of them had past experiences with body-based interaction 

videogames. None of the subjects claimed any motor disorder or disability, and everyone was 

previously informed about the experimental procedure and its associated risks, signing informed 

consent. The experiment was carried out in two different research facilities, one group of 12 

subjects in Portugal, and the other group of 12 subjects in Colombia, under controlled situations. 

Both groups are homogeneous in terms of age and mental workload, due to all the subjects are 

university students or university researchers. 

 

4.1.2 Instrumentation 

 

The Myo Armband wearable bracelet that includes eight dry electrodes to record sEMG signals 

at 200 Hz sampling frequency was used as a physiological interface. The Myo Armband was used 

due to its portability and non-invasiveness. The signals collected by this sensor were previously 

compared with the signal of a sensor of standard features in a muscular fatigue protocol and 

showed comparable accuracies [55]. Depending on the experimental condition (immersive or non-

immersive), the videogame was displayed either in a flat-screen or a VR headset (Figure 4.1): 

 

1) The Non-immersive condition: It used an LCD screen of 21.6 inches with wireless 

headphones.  

2) The Immersive condition: It used the HTC Vive VR headset with headphones. 
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Figure 4.1 A) Figure depicting the non-immersive condition that uses an LCD screen (14 inches), a 

laptop, the player wearing headphones and the Myo Armband. B) Figure showing the immersive 

condition setup that uses a desktop computer, the HTC Vive headset that included headphones and the 

player with the Myo Armband. 

 

4.1.3 Questionnaires and performance metrics 

 

The following questionnaires were applied to the subjects of both groups just after they finished 

the exposition to the videogame, to ensure the direct correlation between what they experienced 

with the videogame and the questionnaires responses. 

 

4.1.3.1 Muscle Fatigue Perception 

A 0-10 Borg’s scale was used to quantify the player´s perceived fatigue levels [57]. The numbers 

are related to expressions as follows: 0-Nothing at all, 0.5-Extremely weak, 1-Very weak, 2-

Weak, 3-Moderate, 5-Strong, 7-Very Strong,10-Extremely strong. This scale was previously used 

in muscular fatigue protocols [58].  
 

4.1.3.2 Game Experience 

The core and post-game modules from the Game Experience Questionnaire (GEQ) [59] were used 

to investigate players' impressions and opinions about the game experience. The GEQ core 

module measures seven categories: immersion, flow, competence, positive and negative affect, 

tension, and challenge. The GEQ  post-game module focuses on how the gamer feels after playing 

the game and measures four aspects: positive and negative experience, tiredness and returning to 

reality. The last item assesses how hard it is to come back to the real world after having 

experienced high levels of flow and immersion.   

 

4.1.3.3 System Usability 

The System Usability Scale (SUS) is a scale of 10 items for which it was used to evaluate whether 

the users consider that the system serves the purpose for which it was designed or not [60].  
  

4.1.3.4 Players’ performance 

The FD videogame was programmed to store in-game data considering a set of variables that 

reflected users' performance, such as the awarded points, received shots and successful attacks. 

Overall, players' performance is defined as the ratio between the points awarded and the sum of 

the points awarded with the received attacks as shown in (1).  

 

 

𝑃𝑙𝑎𝑦𝑒𝑟𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑃𝑜𝑖𝑛𝑡𝑠 𝐴𝑤𝑎𝑟𝑑𝑒𝑑

𝑃𝑜𝑖𝑛𝑡𝑠 𝐴𝑤𝑎𝑟𝑑𝑒𝑑+𝐴𝑡𝑡𝑎𝑐𝑘𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑
∗ 100%,  (1) 
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4.1.4 Physiological Fatigue 

 

The sEMG signal processing was carried out following the suggestions found in the literature [1], 
[6], [55], [56]. There is a pre-processing stage covering a normalization phase and a filtering phase 

using a Butterworth passband filter of fourth-order between 10 Hz and 90 Hz. The main 

processing is performed using the Discrete Fourier Transform (DFT) to find the fatigue index 

suggested by the literature, the MDF, which is supposed to decrease with fatigue conditions. 

Moreover, an amplitude analysis is developed to find the RMS values, also used as a fatigue 

index. 

 

The signal was stored and analyzed online during the calibration stage, looking for the RMS and 

MDF values corresponding to the 100 % of MVC. This stage ensures a sEMG signal baseline for 

each subject; hence the next stages will depend on it. The biocybernetic loop that was created in 

the previous chapter (section 3.1.3) was used as the difficulty adaptation. Thus, a threshold was 

established with the healthy people configuration, as 60% of the MDF measured in the calibration 

stage. Therefore: 

1) Under the threshold: fatigue is not detected, then the difficulty of creating the force field 

will increase in one unit, meaning that the player will have to exert 10% stronger in the 

next interaction period to be able to create the force shield. 

2) Above the threshold: fatigue is detected, then the difficulty in creating the force field will 

decrease one unit, meaning that the player will be able to exert 10% less intense in the 

next interaction period to generate the force field. 

 

4.1.5 Experimental Procedure 

 

The study was carried out under controlled conditions. The interaction scenarios were established 

using the non-immersive or the immersive setups (Figure 4.1). Seated players used the Myo 

Armband sensor on his/her dominant arm, specifically over the biceps brachii. Guided by the 

researcher, participants performed a five-minute stretching session focused on the upper limbs. 

The goal of the FD videogame was explained together with the game mechanics. During the 

calibration stage, players were asked to relax their arms for 10 seconds before performing a biceps 

MVC at 90° of elbow flexion for 15 seconds. After the calibration, players were free to interact 

with the game objects in the main scene. Besides guiding users through the calibration process 

after every set of 5 contractions, the researcher requested players to rate the subjective fatigue 

level by using the Borg's scale. 

 

The game experience ended when a) the player won, b) the player lost or c) the player manifested 

a fatigue level over nine on the Borg’s scale. After finishing, responses for the game user 

experience modules as well as the SUS were collected. 

 

4.2 Results 
 

4.2.1 Perceive Muscle Fatigue 

 

Data from the perceived muscle fatigue reported with the Borg scale was averaged over each set 

of 5 contractions as can be seen in figure 4.2B. Generally, the immersive condition reported lower 

values for perceived muscle fatigue. Nevertheless, both groups tend to report higher values as 

time progresses. Significantly higher scores were reported in the non-Immersive condition 

(M=3.3, SD=0.87) compared with the immersive condition (M=2.2, SD=0.72), using an 

independent T-test analysis, t(22)=0.004, p<0.05 (see figure 4.2A). 
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Figure 4.2 A) Averaged values of the Borg’s fatigue scale reported during the immersive and non-

immersive conditions. (*significance p<0.05). B) Averaged scores of the Borg's fatigue scale reported 

every 5 contractions during the entire interaction for the immersive and non-immersive conditions. 

 

4.2.2 Game experience Questionnaire 

 

The core module of the GEQ questionnaire was analyzed and compared between conditions (see 

figure 4.3). As expected, significantly higher values of immersion were found for the immersive 

(M=2.7, SD=0.51) condition compared with the non-immersive (M=2.0, SD=0.83), t(22)=0.019 

p<0.05.  

 

Moreover, positive affect was also significantly higher during the immersive condition (M=3.2, 

SD=0.46) compared to the non-immersive (M=2.7, SD=0.54), t(22)=0.025 p<0.05. Similarly, 

negative affect was much lower during the immersive condition (M=0.21, SD=0.29) compared 

with the non-immersive (M=0.62, SD=0.58), t(22)=0.033 p<0.05. Interestingly, higher values of 

competence (M=1.9, SD=0.71) and flow (M=3.0, SD=0.76), and lower values of tension  

(M=0.28, SD=0.34) and challenge (M=1.5, SD=0.59) were reported in the immersive condition 

compared with the non-immersive counterparts (competence: M=1.6, SD=0.66, flow: M=2.7, 

SD=0.91, tension: M=0.59, SD=0.64, challenge: M=1.8, SD=0.66), although non-significant 

effects were found in these domains.  

 

 

 
Figure 4.3. The core module of the GEQ that evaluates the competence, immersion, flow, tensions, 

challenge negative and positive affect comparing the immersive and non-immersive conditions. 

(*significance p<0.05). 
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Figure 4.4. Independent T-test GEQ Post-Game Module that evaluated the positive experience, negative 

experience, tiredness and return to reality in both conditions, non-immersive and immersive. 

(*significance p<0.05) 

 

Results for the GEQ Post-Game module are presented in figure 4.4. Statistical analysis showed 

overall better values for the immersive condition than the non-immersive. Similar results to the 

previous questionnaire were obtained, showing that positive experience in the immersive 

condition (M=2.3, SD=0.79), t(22)=0.016 p<0.05 was significantly higher compared to the non-

immersive condition (M=1.5, SD=0.59) as well as the return to reality domain in the immersive 

(M=1.1, SD=0.71), t(22)=0.0041 p<0.05 compared to the non-immersive (M=0.33, SD=0.35). 

Moreover, Negative Experience was significantly lower in the immersive condition (M=0.83, 

SD=0.13), t(22)=0.024 p<0.05 compared with the non-immersive experience. (M=0.35, 

SD=0.35). 

 

4.2.3 SUS Questionnaire and player’s performance 

 

The SUS questionnaire showed higher scores in the immersive condition (M=87, SD=9.1) 

compared with the non-immersive (M=85, SD=10) although the difference was not significantly 

different, t(22)=0.55 p>0.05 (see figure 4.5A). Moreover, the non-immersive group showed lower 

values of the performance index (M=40%, SD=16%) than the Immersive group (M=54%, SD 

17.2%) (Figure 4.5B), although again non-significant. 

 

 

 
Figure 4.5 Evaluation of non-immersive and immersive conditions. A) the SUS. B) The Performance 

Index. 

 

4.3 Discussion 
 

In this paper, we presented a feasibility study to evaluate a biocybernetic system designed as an 

intelligent adaptation layer in a virtual training game created for upper-limb rehabilitation. The 

novelty of the system resides in its awareness with muscle fatigue levels measured through sEMG 

signals using a low-cost, non-invasive wearable sensor. From our initial hypothesis, we 
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demonstrated how immersive experiences could significantly modify the player’s perceptions of 

game experience and physiological factors. 

 

Firstly, perceived fatigue levels were lower during the immersive condition compared with the 

non-immersive reflecting how novel immersive VR technologies can produce meaningful and 

measurable changes in real physical factors during virtual rehabilitation processes. This can 

potentially aid technology adoption and therapy adherence, two critical points for widely 

spreading the use of these technologies in real healthcare scenarios [61]. This experience 

enhancement was supported by the GEQ results which showed how significant factors such as 

competence, flow, and positive affect were higher in the immersive experience compared with 

the conventional non-immersive media. Moreover, the negative affect was also lower during the 

immersive experience compared with the non-immersive, again reinforcing the idea of a more 

pleasant and engage-able experience. These results were expected due to past research findings 

that pointed out that, via immersive and interactive activities, participants might partially ignore 

negative feelings such as pain or fatigue [62] 
 

The GEQ Post-Game module aimed at measuring how people felt after they have stopped playing. 

In our experimental design, the categories Positive and Negative experience showed significantly 

better scores for the immersive condition. The SUS showed no significance between the setups. 

The system evidenced close means SUS values for both conditions, proving that the system's 

usability is not significantly affected by the setups.  On the other hand, the performance index 

suggested that an immersive environment could encourage players to achieve better in-game 

performance, thus boosting the benefits of virtual rehabilitation through self-competitive 

strategies. This can be an exciting phenomenon to investigate where players being in a flow state 

can push themselves to continually improve their game performance producing a very desirable 

reinforcement strategy for virtual rehabilitation [32]. 

 

The lack of a baseline condition in this experiment is a clear limitation that prevents reaching 

more conclusive insights. Although efforts to homogenize both groups were carried out for this 

experiment in order to reduce possible physiological effects from demographic factors, the 

inclusion of a control or baseline condition in a future experiment would aid a better quantification 

of the biocybernetic adaptation benefits. Therefore, some of the post-gaming differences cannot 

be uniquely attributed to the immersivity provided by the condition but other factors should be 

also considered (e.g., previous mood, initial perceived fatigue, etc.). Since the main goal of this 

paper was to prove the hypothesis suggesting that changes on player’s performance were due to 

the display modality (e.g., immersive vs. non-immersive), any control or sham condition was 

discarded. Due to no control condition was used to quantify the muscular and game user 

experience responses of players after gameplay without physiological adaptation, more research 

is needed to disentangle the isolated role of biocybernetic systems in improving not only the 

gaming experience but also the rehabilitation effectiveness through immersive technologies. 

However, as the non-immersive condition is commonly used to play videogames, this group can 

be considered as a “control” or conventional group. 

 

Our findings bring new perspectives about the effects of VR and highly immersive environments 

on perceived and measured muscle fatigue, and how these technologies might enhance 

immersion, engagement, and flow in virtual rehabilitation therapies. Moreover, we presented a 

methodology to integrate biocybernetic adaptation into muscle-based interaction paradigms, 

enabling the detection of fatigue levels and real-time adaptations to maximize muscular 

performance. This novel tool can be used for clinicians to compare measured versus perceived 

levels of fatigue during exercises with isometrics contractions, usually used for physical 

rehabilitation (e.g., rehabilitation after injuries). The physiotherapists can compare the fatigue 

levels found by the loop with the fatigue levels perceived by the users, and then make the decision 

whether to continue or stop the exercise using the quantitative information provided by the 

adaptive system. Additionally, fatigue patterns and profiles can be obtained from each 

rehabilitation session, thus aiding the process of patient progress reporting. 
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4.4 Conclusions 
The physiologically adapted FD videogame was evaluated with 24 healthy subjects to establish 

the feasibility of immersive VR and biocybernetic adaptation for upper-limb rehabilitation. In a 

comparison of immersive against non-immersive conditions, the first showed reduced levels of 

perceived fatigue and better game user experience compared with the non-immersive condition. 

These outcomes confirm the hypothesis that immersive VR technologies can produce better 

experiences, having an impact on important human factors as perceived fatigue and motivation. 

Results also confirmed that the usability of both the immersive and non-immersive setups was 

consistently high, thus demonstrating the feasibility of the low-cost solution provided, which can 

be further explored by clinicians in motor rehabilitation therapies. The physiological adaptation 

modulated by measured muscle fatigue levels proved to be an important characteristic of the 

system, supporting its feasibility since the measured fatigue levels compared favorably with the 

fatigue levels reported by the users. Based on our findings, we encourage more extensive use of 

novel physiologically adaptive systems in immersive virtual rehabilitation as a strategy to deliver 

a more personalized therapy and as an objective tool to customize difficulty levels based on 

physiological performance. 
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5. Pilot Study of the FD physiological system with Patients 

suffering from pyramidal syndrome 
 

The main goal of this thesis is to test the feasibility of using the interactive system (videogame + 

computer physiology system) as a complement to a physical rehabilitation program. The pilot 

study aims to evaluate the impact of the combined rehabilitation program using the FD videogame 

on patients with M/H in the upper limb according to: 

• The game experience (e.g., positive versus negative feelings, game performance) 

• The perceived fatigue levels during the interaction with the videogame  

• The functionality of the elbow and shoulder joint.  

 

A rehabilitation program combining normal exercise routines (swimming routines in this case) 

with training using the FD videogame was designed for this pilot study. 

 

5.1 Methods 
 

5.1.1 Subjects 

 

Seven subjects from a local rehabilitation centre volunteered for the intervention. The subjects 

were diagnosed with M/H in upper limbs derived from stroke, heroin addiction, cerebral palsy or 

muscular dystrophy (Table 5.1). Two subjects withdraw the study due to health issues. The 

university ethics committee previously approved the study; the general overview of the 

intervention and the experimental procedure was explained to each participant before they signed 

informed consent. Rehabilitation sessions were carried out in two different places of the 

rehabilitation centre: i) a small room prepared for connecting the videogame and preparing the 

participant for the training session and ii) an adapted pool where the conventional therapies were 

performed.  

 

Table 5.1. Subjects diagnosis of motor disorder. 

Subject Diagnosis 

1 Upper left limb Monoparesis derived from a Heroin overdose 

2 Left Hemiparesis derived from a Heroin overdose 

3 Right Hemiparesis derived from Cerebellar Ataxia 

4 Upper left limb Monoparesis derived from Stroke 

5 Left Hemiparesis derived from Muscular Dystrophy 

 

5.1.2 Training Program 

 

An exercise program of 4 sessions carried out along one month (1 session per week) lasting 60 

minutes was used as a training program. The sessions consisted of combined training using 20 

minutes of virtual rehabilitation (using the FD game) and 40 minutes of conventional therapy 

using a swimming pool. During the traditional therapy, participants performed an exercise 

routine, including walking and basic swimming exercises involving movements of the upper 

limbs. In all sessions, subjects started with some movements of upper limbs warming up for 5 

minutes and subsequently played with the videogame.  

 

5.1.3 System Setup 
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Interactive system: the FD videogame was used to provide exercise training sessions as a 

complementary routine for the rehabilitation therapies. Although the videogame has been adapted 

to be used with novel immersive VR systems, due to the in-situ characteristic of the pilot study, 

a conventional PC screen (15'' screen, ADM A10 Radeon processor, 16GB RAM, Windows 

operative system) was used. Additionally, participants were wearing the Myo Armband to collect 

the sEMG signals, whereas headphones were used to hear game events such as attacks, 

background music, and rewards (Figure 5.1).  

 

 
Figure 5.1. Facility condition to the interaction with the videogame: The subject sitting in front of a 

personal computer using the Myo Armband and headphones. 

 

5.1.4 Outcome measurements  

5.1.4.1 Game experience and Performance Evaluation 

The following two questionnaires were administered to the participants at the end of the first 

session. Due to in previous chapters were explained, this section will only be mentioned. 

• Game Experience Questionnaire (GEQ): Core module and Post-Game module [59].  

• The performance index:  the index proposed to evaluate the game performance of the 

subjects with the game variables. 

 

𝑃𝑙𝑎𝑦𝑒𝑟𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑃𝑜𝑖𝑛𝑡𝑠 𝐴𝑤𝑎𝑟𝑑𝑒𝑑

𝑃𝑜𝑖𝑛𝑡𝑠 𝐴𝑤𝑎𝑟𝑑𝑒𝑑+𝐴𝑡𝑡𝑎𝑐𝑘𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑
∗ 100%,  (1) 

 

5.1.4.2 Usability and acceptability: 

• The System Usability Scale (SUS) [60] The SUS assesses three main usability domains: 

effectiveness (users achieving their objectives), efficiency (users' efforts and resources 

are spent in achieving those objectives) and satisfaction (users' experience is satisfactory). 

 

5.1.4.3 Fatigue Measurement and Evaluation 

• Muscle Fatigue Perception: The Borg’s scale was used to quantify the player´s perceived 

fatigue levels [57]. 

• Superficial electromyography: During all the interaction with the videogame the user 

worn the Myo Armband sensor. The signal delivered by this sensor allowed to establish 

the muscular fatigue evidenced by the users during the interaction with the game. The 

signals from all sessions were saved to the post-process. The signals and the markers of 

muscle fatigue extracted were compared with those evidenced in the video game. 
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5.1.4.4 Clinical Evaluation 

The following tests were conducted one session before the first intervention and one session after 

the last intervention. 

Range of Motion test (ROM): This is the measurement of movement around a specific 

joint [63]. With the help of a goniometer, a voluntary ROM of the elbow and shoulder 

joints will be performed. This test consists in measuring the angle at which the person 

can voluntarily flex and extend the elbow and the shoulder (Figure 5.2). 

 
Figure 5.2. ROM of elbow flexion and shoulder flexion. 

 

• Modified Ashworth Spasticity Test: It is a widely used scale where the contraction and 

personal muscle tone is measured [64]. The participant is asked to make a voluntary 

contraction of the brachial biceps and the physiotherapist evaluates according to a 0 to 5 

scale as follows: 0 – no increase in muscle tone, 1 – slight increase in muscle tone, 

manifested by a catch and release, 2 – slight increase in muscle tone, manifested by a 

catch, followed by minimal resistance, 3 – more marked increase in muscle tone, but 

affected part (s) can easily be moved, 4 – considerable increase in muscle tone, passive 

movement difficult, 5 – affected part (s) rigid in flexion or extension. 

 

 

5.1.4 Experimental Procedure 

 

Before the first training session, the physiotherapist evaluated the motor function of each subject 

using the Ashworth test [64] and the mobility range test. The interaction was developed as can be 

seen in Figure 5.1;The subjects were wearing the Myo Armband over the biceps as well as the 

headphones. The researcher started the game and guided the subject during the entire experience 

asking and registering the Borg's scale at the end of every five contractions. Each subject played 

the videogame with both arms, approximately 10 minutes for each arm, for a total time of 20 

minutes of playing. When the interaction with the videogame was finished, each subject continued 

immediately with the conventional therapy for 40 minutes more, guided by the physiotherapist. 

The GEQ and SUS were used at the end of the first training session. 

 

5.1.4 Data Processing 

The personal information of the participants was collected in a demographic registration 

document. The video game evaluation information was collected through the questionnaires 

proposed in the last section. The data delivered by the videogame was automatically saved in a 

.csv file after each interaction session. Using the SPSS software, a dependent T-test was 

developed between the game sessions of each subject. On the other hand, it is desired to find a 

correlation between the variables of the videogame with the Ashworth spasticity test and the 

mobility test, for which an ANOVA unilateral correlation test was applied. 
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5.2 Results 
 
The four weeks of intervention was carried out with the subjects without any trouble. Although 

in previous chapters we proved that VR environments show better results on immersiveness, due 

to the displacement troubles of patients and to the rehabilitation center facilities, the environment 

condition was outdoors, as can be seen in figure 5.3, but conserving the setting proposed in figure 

5.1. 

  

 
Figure 5.3. Final facility condition to the interaction with the videogame. 

 

5.2.1 Game Experience and System Usability 

 

The core module and the post-game module from the GEQ were applied to the subjects after the 

first session. As can be seen in figures 5.4, the higher scores of the core module were obtained in 

the Competence (M=3.00, SD=0.46), Immersion (M=2.73, SD=0.65) Flow (M=3.04, SD=0.38) 

and Positive Affect (M=3.72, SD=0.62) categories. The categories Tensión (M=0.4, SD=0.72), 

Challenge (M=1.24, SD=0.53) and Negative Affect (M=0.30, SD=0.41) obtained lower scores. 

 

 
Figure 5.4. The core module of GEQ evaluates the competence, immersion, flow, tension, challenge, 

negative and positive affect. 
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Figure 5.5. The post-game module of GEQ evaluates the negative and positive experience, tiredness and 

return to reality. 

 

Figure 5.5 shows the results for the post-game module. Negative Experience (M=0.37, SD=0.73) 

and Tiredness (M=0.90, SD=0.82) scored lower than Positive experience (M=3.07, SD=1.09) and 

Return to Reality (M=1.27, SD=1.09). 

 

Finally, the system usability was assessed with the SUS. The SUS scale had a final score of M: 

78.33, SD: 14.11. As shown in figure 5.6, regarding confidence using the system (M=4.8, 

SD=0.45) expectations for using the system again (M=5, SD=0) obtained the highest scores. 

   

 
Figure 5.6. The SUS scores for each question from the scale. Final score M: 78.33, SD: 14.11. 

 

5.2.2 Game Performance and Perceived Fatigue 

The performance indexes for each session are shown in figures 5.7 and 5.8. Four of the five 

subjects (X-axis) improved their final right arm's index with respect to the first session. On the 

other hand, three of the five subjects grew their final left arm's index concerning the first session. 
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Figure 5.7. Left arm’s performance index for each subject. S1: first session, S2: Second session, S3: third 

session, S4: fourth session 

 

 
Figure 5.8. Right arm’s performance index for each subject. S1: first session, S2: Second session, S3: 

third session, S4: fourth session. 

5.2.3 Perceived Fatigue 

 

Figures 5.9 and 5.10 shows the mean perceived fatigue for both the left and right arms of each 

subject for each session. In all the subjects, the perceived fatigue of the left arm measured in the 

last session was lower than the perceived fatigue measured in the first session. Similar results 

were found for the right hand, where four subjects manifested lower perceived muscle fatigue in 

the last session once compared with the first one.  

 

 
Figure 5.9. Left arm’s Perceived Fatigue of each subject for each session. S1: first session, S2: Second 

session, S3: third session, S4: fourth session 
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Figure 5.10. Perceived Fatigue of each subject for each session. S1: first session, S2: Second session, S3: 

third session, S4: fourth session 

 

 

5.2.4 Functional Mobility in Upper Arms 

 

 
Figure 5.11 Mobility range test using an analogical goniometer. 

 

The Ashworth test and the ROM were developed before the first session and after the last session. 

(Figure 5.11). Table 5.2 resumes the results of the measured differences in both the mobility range 

test and the Ashworth test for each subject, considering the Pre and Post evaluations. The most 

noticeable improvements in average were the left shoulder (M: 24°, SD: 33°) and right shoulder 

(M: 9°, SD: 8°) in the mobility range test after the training program. It is worth noticing that 

subject number 5 had the greatest improvement in mobility range. On the other hand, the spasticity 

improvement was notable for the right arm (M: -0.8, SD: 0.4), the negative values mean that the 

subjects reduce the level of spasticity, where the participant two reported the greatest 

improvement in the Ashworth scale.   

 

 

Table 5.2. Angle improvement in the subject’s range of mobility and spasticity improvement of 

the subject’s in the Ashworth scale.  

The angle of mobility improvement of each 

joint (°) 
Spasticity improvement of each joint 

Subject 
Left 

Elbow 

Right 

Elbow 

Left 

Shoulder 

Right 

Shoulder 

Left 

Elbow 

Right 

Elbow 

Left 

Shoulder 

Right 

Shoulder 

1 5 0 10 0 -1 -1 -1 -1 

2 3 0 10 0 -1 -1 -1 -1 

3 0 0 10 15 0 0 -1 -1 

4 0 0 0 10 0 -1 0 -1 

5 5 0 90 20 0 0 0 0 
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5.2.5 sEMG and Muscle Fatigue 

 

A signal processing of muscle contractions recorded from the interaction with the videogame was 

computed for each subject.  Figure 5.12 shows an example of the pre-processing stage: 

normalization-rectification-detrend- filtering. A passband third-order Butterworth filter between 

10Hz and 95 Hz and a Notch filter in 60Hz were applied to the signals, following previously 

found literature [55], [56]. It is essential to consider that the signal amplitude provided by the 

Myo Armband sensor is codified in a numeric value in a range of [-127,127] [65]. 

 

 
Figure 5.12. Pre-processing of the sEMG signals collecting during the videogame. Black line: raw signal; 

grey line: processed signal. 

 

The core of the signal processing was to find the fatigue indexes.; namely, the RMS tendency 

value and the MDF tendency value in a single electrode channel (the one over the biceps) for each 

contraction, considered in an entire interaction with the videogame. In order to find the RMS 

tendency value, a moving average window with a length of 200 samples and an overlap of 50 

samples was applied to the signal. On the other hand, the FFT was applied to find the MDF.   

 

 

 
Figure 5.13. Processing of the sEMG signals collecting during the videogame. RMS index for each 

contraction of an individual interaction of a subject. C1: contraction number 1; C2 contraction number 2, 

and so on. 

 

In order to illustrate what can be found after using this processing pipeline, we applied it to one 

of the datasets we have (one user, one game session). For instance, figures 5.13 and 5.14 shows 

the indexes for each muscle contraction of the left arm extracted from one session of the subject 

5. The data shows the participant who improved the most in terms of ROM after the therapies.  
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Figure 5.14. Processing of the sEMG signals collecting during the videogame. MDF index for each 

contraction of an individual interaction of a subject. C1: contraction number 1; C2 contraction number 2, 

and so on. 

 

Finally, figure 5.15  shows time series of the fatigue indexes and the difficulty threshold. This 

figure is analyzed to understand how the game difficulty changes can influence the fatigue 

indexes. For instance, it is noticeable that in the middle of the interaction, a difficulty adaptation 

took place (discontinuous black line), producing lower values for the RMS (grey line) and a few 

higher values of the MDF (continuous black line), indicating a negative fatigue state. On other 

hand, at the end of the game, the threshold sustained in the higher value produced a higher score 

for the RMS and lower score for the MDF, indicating a positive state of fatigue. 

 
Figure 5.15. Influence of difficulty changing over the fatigue indexes. Grey line: RMS tendency value. 

Black line: MDF tendency value. Discontinuous black line: difficulty threshold.  

 

5.3 Discussion and Conclusions 
 
The ultimate goal of the feasibility study was to evaluate the impact of the proposed combined 

rehabilitation therapy in patients diagnosed with monoparesis or hemiparesis. The conventional 

motor therapy combined with the adaptative system designed was expected to positively influence 

the rehabilitation processes in terms of motor functionality and users’ perception of the exercise. 

Due to the growing evidence showing that videogames and VR/VE applications can successfully 

be employed for early detection and monitoring of physical and cognitive impairment [31], [40], 

[66], we expected to find positive results towards confirming the evidence. Firstly, the GEQ 

showed a subject's positive perception of the videogame. The categories Positive Affect in the 

core module and Positive Experience in the post-game module were the highest in both tests, as 

well as the Negative Affect and the Negative Experience were the lowest in the respective 

questionnaires. The categories Competence and flow highlighted in the core module GEQ, 

evidencing a high motivational component in the videogame. 

Moreover, the Immersion category was high despite the outdoor facility. On the other hand, the 

SUS score proves that the system is highly usable, and their functions are well integrated for the 
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purposed that was made. The subject’s responses suggest that they would like to use the system 

frequently and they felt very confident using it (Figure 5.6) 

 

Secondly, the goal of using the performance index as a metric to quantify the improvement of the 

therapy could not be well established. Indeed, in most of the cases, the final performance index 

improved concerning the initial, being the performance index of the right arm the most stable. 

Nevertheless, it had a non-linear improvement in every session, and the reason for it could not be 

established due to limitations such as i) non-controlled environmental variables in the 

development of the therapy and ii) the small sample size. 

 

Thirdly, despite that the perceived fatigue in both arms did not seem to have an identifiable 

pattern, three of the five subjects manifested overall lower levels of perceived fatigue in the right 

arm and all the subjects manifested lower fatigue in the last session for the left arm. These results 

might suggest that the biocybernetic loop for fatigue adaptability in the game is working properly 

and the subjects are reacting to it. Likewise, the decrease in perceived fatigue could be an indicator 

of mobility improvement.   

   

Finally, the results of the clinical evaluation, before the protocol and after the protocol, evidence 

a motor functionality improvement of all the subjects. Although a notable improvement was only 

found in the right shoulder’s clinical evaluation, all the joints with motor deficits presented 

improvements in the Ashworth spasticity test and in the range of mobility test (Table 5.2). 

Although our sample size is very small, these preliminary results show the potential of combining 

physiological adaptation with games empowered with sEMG signals to complement physical 

rehabilitation therapies. Thus, the biocybernetic loop acted as a mechanism to boost game 

effectiveness in delivering customized experiences for individuals with motor impairments. 

Moreover, the post-processing developed as an example of the information that can be found in 

the collected sEMG signals, suggests that the difficulty adaptation performed by the biocybernetic 

loop influences the fatigue indexes, and the analysis of the signals from all subjects needs to be 

developed.   

 

Based on the results of this pilot study can be concluded that the combined therapy proposed has 

the potential of been frequently used in patients with monoparesis/hemiparesis for the 

improvement of their motor capabilities. Furthermore, the positive perception of the subjects for 

the combined therapy highlights the motivational component that was aimed to imply in the 

rehabilitation process. On the other hand, the study did not present a control group condition, due 

to the different difficulties of patients, as time, displacement and rehabilitation center facilities. 

Therefore, the effect's quantification of the proposed combined therapy against conventional 

therapies is out of the scope of the paper. Moreover, the easy and low-cost access to the system 

proposed, together with the partnership with the rehabilitation center and the positive preliminary 

results encourage us to create a more controlled and extensive study soon. 
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6. Therapy quantification through Pattern Recognition 

Methods 
 

Although the classifiers for sEMG signal had been worldwide studied, there is no evidence of 

which type of classifier could be the best for sEMG muscle fatigue descriptors in together with 

videogame variables taken under protocols of virtual rehabilitation. That is why we want to find 

the best classifier for our databases, the database collected with healthy people in chapter 4, and 

the database collected with impairment subjects in chapter 5. Thus, this chapter is divided into 

two principal sections. The first one presents the cross-validation of a classifier for the database 

from the 12 subjects under the non-immersive condition in chapter 4.  The second one shows the 

proof of the best classifier found in section one using the database collected in chapter 5. In both 

sections, the classification task is related to classifying the subjects as “good player” or “bad 

player”, due the videogame was designed to motor rehabilitation and the performance of each 

subject should be monitored. 

 

6.1 Cross-validation of a classifier method for sEMG signals and game 

variables collected from healthy people playing a body interaction 

videogame. 
 

6.1.2 Methods  

A super-matrix was created with the data of each subject collected in the muscle fatigue 

experimental protocol already described. The information available for the study was the sEMG 

signal pre-processed, the muscle fatigue index, and the game variables, such as the point awarded, 

the attacks receive, the difficulty changes, and the subject’s life lost (Figure 6.1). This information 

was divided into contractions. The samples of every subject were added to the previous one until 

completing the entire super-matrix. Using Matlab as processing software, data matrix X was 

created, where every row, related to the features, was integrated as follow: 

 

𝑋𝑛 =  FatigeIndex(1: 1001) + points(1002: 2001) + Life(2002: 3001),    (1) 

 

From row number 1 to row 1001, the fatigue index, from row number 1002 to row 2001 the points 

awarded by each subject during one contraction, and from row number 2002 to row number 3001 

the life lost by each subject during one contraction. 

 

The samples 𝑋𝑛 were separated in every work period (contraction- rest), of all the signal of each 

subject. Having in mind that each subject had a different number of samples due to each one had 

different times of interaction with the game, for instance, some subjects lost the game faster than 

others, the total number of samples was 198. Finally, the matrix had a dimension of 198x3001, as 

can be seen in Eq. 2:  

 

[
 
 
 
 
 
 
𝑥𝑛0,1 … 𝑥𝑛0,1001 … 𝑥𝑛0,2001 … 𝑥𝑛0,3001

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛1,1 … 𝑥𝑛1,1001 … 𝑥𝑛1,2001 … 𝑥𝑛1,3001

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛2,1 … 𝑥𝑛2,1001 … 𝑥𝑛2,2001 … 𝑥𝑛2,3001

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛𝑡𝑜𝑡,1 … 𝑥𝑛𝑡𝑜𝑡,1001 … 𝑥𝑛𝑡𝑜𝑡,2001 … 𝑥𝑛𝑡𝑜𝑡,3001]
 
 
 
 
 
 

,  (2) 
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Where n1 is the number of samples of subject 1, n2 the number of samples of subject 2, and so on 

until ntot is the number of total samples, 198 for our case. For instance, subject 1 had 24 samples, 

so n0=1 and n1=24, then subject 2 had 6 samples, so n2=30, and so on until 198 total samples.  

 

A label vector was created using the performance index extracted in every contraction of each 

user as the ratio between the points awarded and the sum between the points awarded and the life 

lost (Eq. 3). The mean value of this vector was extracted, and the values above this mean were 

labeled as 2 "good player" and the values below the mean were labeled as 1 "bad player", and that 

is how the T label vector had a size of 198x1 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 =
𝑃𝑜𝑖𝑛𝑡𝑠𝐴𝑤𝑎𝑟𝑑𝑒𝑑

 𝑃𝑜𝑖𝑛𝑡𝑠𝐴𝑤𝑎𝑟𝑑𝑒𝑑+𝐿𝑖𝑓𝑒𝐿𝑜𝑠𝑡
,              (3) 

 

Using the software Matlab, the four classifications tasks previously named were carried out with 

the respective evaluation. The training set was the 70% of the data, and an analysis of selection 

and extraction of features was previously develop using PCA and Relieff. The cross-validation 

was made with 10 iterations and an analysis of the average of the set of iterations was perform 

with box diagrams. Moreover, nested cross-validation with 10 iterations was computed in the last 

two classifiers, in order to find the optimal parameters for our database. The KNN parameter that 

was changed was the number of k-neighbours using 1, 2,3,5,7,9,11 neighbours. In the SVM a 

RBF kernel was used, and the parameters that were changed were the kernel regularization 

parameter using 20, 40, 60, 70, 80, 90, 100, 120; and the misclassification error parameter using 

1, 10, 100, 200, 400, 600, 800, 1000. To reduce the computational cost, the SVM was trained with 

the number of characteristics with better performance obtained using the KNN classifier. The 

named classifiers were evaluated using the minimum distance of the accuracy to a target accuracy 

of 100% and 0% of standard deviation. 

 

6.1.3 Results  

 
Figure 6.1. A) Correlation matrix of the features of the videogame database. The color bar represents the 

values of the correlation index. B) Euclidean distance matrix of the features of the videogame database. 

The color bar represents the distance values between features. 

 
A first approach to the selection and extraction of features was developed using correlation 

analysis and a distance analysis. These two matrices can be seen in figure 6.1. The correlation 

matrix shows a low correlation between the characteristics, and this could mean that a low number 

of it could be ignored two reduce the dimensionality of our database. The Euclidean distance 

matrix shows a high similarity between most of the features; therefore the variance is low. 

 

A B 
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Figure 6.2. Projected space using the PCA method for the features of the videogame database. Z1, Z2 and 

Z3 are the coordinates in the projected space. 
 

 
Figure 6.3. A) PCA relevance of features for the videogame database. B) The Relieff significance of 

features for the videogame database .  
 

A PCA and Relieff analysis were computed to notice the relevance of features and avoid 

redundancy. As the variance of this matrix is low, the PCA method could be better than the 

Relieff. In figure 6.2 the projected space with PCA can be seen. In this region, the classes seem 

to be separable. The PCA relevance for each feature shown in figure 6.3A evidence that the 

awarded points and the lost life have higher weights than the fatigue index. 

 

 
Figure 6.4. A) Box diagram of the percentage of accuracy of the classifiers using cross-validation with 

the extraction of features using PCA. Black line: Linear classifier, black dot: best accuracy. B) Box 

diagram of the percentage of accuracy of the classifiers using a cross-validation with the selection of 

features using Relieff. Black line: Linear classifier, black dot: best accuracy. Dark grey line: Quadratic 

classifier, dark grey dot: best accuracy. Light grey line: KNN Classifier, light grey dot: best accuracy. 

 

 

The relevance shown in figure 6.3B was extracted using the Relieff method. According to this, 

some fatigue index features and the points awarded features are the ones with higher weights. The 

cross-validation of the Linear, Quadratic and KNN classifiers can be seen in figure 6.4, where 

they evidence a better performance with a higher number of characteristics. In both cases, the 

A B 

A B 
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worst classifier was the Linear and the best was the KNN. The results are summarized in Table 

1. 

 

Table 1. Best accuracy using cross-validation of the Linear, Quadratic and KNN Classifiers. 

Number of features with the best performance, the percentage of accuracy and the respective 

standard deviation.  
CLASSIFIER RELIEFF PCA 

 

Number 

of 

Features 

Accuracy 

(%) 

Standard 

Deviation (%) 

Number 

of 

Features 

Accuracy 

(%) 

Standard. 

Deviation (%) 

Linear 2827 69,33 9,244 2948 69,33 6,806 

Quadratic 2633 61,00 5,273 1740 63,99 7,944 

KNN 2196 67,66 6,452 1804 69,00 4,116 

 

As the best performance for KNN was found with 1804 features with PCA, these parameters were 

used to train an SVM. The result can be seen in the boxplot in figure 6.5, where the median was 

81,66% with a standard deviation of 6.33%. The misclassification error parameter, chosen as the 

mode in the nested cross-validation, was 400. The kernel regularization parameter, selected as the 

mode, was 60.  

 

 
Figure 6.5. Cross-validation for SVM classifier using PCA with the same number of relevant features 

than the best performance for KNN. The median was 82,66%, with a standard deviation of 6.33%. 

 

6.2 Classification of sEMG signals of patients with muscle disorders. 
 

Due to the results in the previous section suggested that the best classifier for the sEMG signals 

combined with game variables was the proposed SVM, we decided to prove that classifier with 

the data collected from the experimental protocol in chapter 5. In order to implement a heuristic 

threshold into the adaptation of the videogame, it is important to establish if the same classifier 

used with the information of healthy people can also work properly with data from patients with 

motor disorders. On the other hand, the classifier can provide information about the performance 

of the players and complement the information about the rehabilitation improvement, since the 

classification task is related to distinguish between a good player and a bad player.   

 

6.2.1 Methods 

Similar to the methodology developed in chapter 5, a matrix of data was created for each subject. 

The matrixes contained the information of the four sessions of the subjects arranged in rows by 

samples. A sample is created with the information of every period of contraction-rest (30s). This 

means that the samples of each session of a single subject were added to the previous one until 
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completing the four sessions. Using Matlab as processing software, data matrix X for each subject 

was created, where every row, related to the features, was integrated as follow (Eq. 4), taking into 

account that the  frequency test was 60hz: 

 

 

𝑋𝑛 =  FatigeIndex(1: 2001) + points(2002: 4001) + Life(4002: 6001),    (4) 

 

From row number 1 to row 2001, the fatigue index, from row number 2002 to row 4001 the points 

awarded by each subject during one contraction, and from row number 4002 to row number 4001 

the life lost by each subject during one contraction. 

 

The samples 𝑋𝑛 were separated in every work period from the signals of a single subject in the 

four sessions. Each session had a different number of samples due to every time the subjects had 

different times of interaction with the game. For instance, subject number 1 lost the game in the 

first sessions, but in the four session won the game and completed all the work periods. Thus, the 

total number of samples was different for each matrix created for the subjects. Finally, the matrix 

had a dimension of ntotx6001, as can be seen in Eq. 5: 

 

[
 
 
 
 
 
 
𝑥𝑛0,1 … 𝑥𝑛0,2001 … 𝑥𝑛0,4001 … 𝑥𝑛0,6001

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛1,1 … 𝑥𝑛1,2001 … 𝑥𝑛1,4001 … 𝑥𝑛1,6001

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛2,1 … 𝑥𝑛2,2001 … 𝑥𝑛2,4001 … 𝑥𝑛2,6001

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑛𝑡𝑜𝑡,1 … 𝑥𝑛𝑡𝑜𝑡,2001 … 𝑥𝑛𝑡𝑜𝑡,4001 … 𝑥𝑛𝑡𝑜𝑡,6001]
 
 
 
 
 
 

,  (5) 

 
Where n1 is the number of samples of the first session of subject 1, n2 the number of samples of 

the second session of subject 1, and so on until ntot is the number of total samples of all the sessions 

of subject 1. 

 

The label vector was created as in section 5.1, (Eq. 3) the performance index was extracted in 

every work period of all the sessions of each subject. The mean value of this vector was extracted, 

and the values above this mean were labeled as 2 “good player” and the values below the mean 

were labeled as 1 “bad player”, and that is how the T label vector was created. 

 

Using the software Matlab, the classification task previously named was carried out with the 

respective evaluation. The training set was the 70% of the data, and an analysis feature selection 

was previously developed using PCA, due to the results found in chapter 5. The cross-validation 

was made with 10 iterations and an analysis of the average of the set of iterations was perform 

with box diagrams. The SMV was computed using a RBF kernel, and using a nested validation 

with 10 iterations the parameters of the kernel where changed in order to find a higher accuracy. 

The kernel regularization parameter was changed using 20, 40, 60, 70, 80, 90, 100, 120; and the 

misclassification error parameter using 1, 10, 100, 200, 400, 600, 800, 1000. 

 

 

6.2.2 Results 

The feature selection of each database was developed using PCA as can be seen in figure 6.6 and 

6.7. Figure 6.7 shown the difficulty of the classification task of this database in the PCA space, 

due to both classes had a difficult separation in all the subjects’ databases. 
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Figure 6.6.  PCA relevance of features for each subject’s database 

 

 
Figure 6.7. Projected space using the PCA method for the features of each subject’s database. Z1, Z2 and 

Z3 are the coordinates in the projected space. 
 

Due to the classifier was proved with the data of each subject, figure 6.8 resume the results found. 

The classifier’s accuracy was higher for the data of subject 1(M=81,94%, SD=11.8%), subject 2 

(M=79.31%, SD=9.05%), and subject 4 (M=74.9%, SD=6.01%); with similar results the data of 

subject 3 (M=70%, SD=9.98%), and subject 5 (M=72.92%, SD=11.54%) obtain the lower scores. 

Finally, the classifier accuracy for the data of the 5 subjects had a mean of  M=75.81% and a 

standard deviation of SD=4.31%. 
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Figure 6.8. Classifier’s accuracy for each subject´s data 

 

 

6.3 Conclusions 
 

The classification task in pattern recognition is one of the most used techniques to analyze 

databases. In our case, the task to develop is to classify the users of a videogame as "good player" 

or "bad player" knowing their muscle index fatigue and their game variables. To have a better 

understanding of our database, in the first section of this chapter was developed a correlation 

analysis and distance analysis. The analysis found that the features had a low correlation and the 

dimensionally of the database will not be reduced too much, and that a PCA extraction of features 

could be more convenient due to the low variance and that the projected space show separable 

classes. Based on the results, this was confirmed, due to the three classifiers showed a better 

percentage of accuracy with PCA than with Relieff, and that the number of features using PCA 

was lower than using Relieff (table 1). Even though the Linear classifier with PCA had better 

accuracy than the KNN with PCA, this last one was chosen as the best due to the number of 

features used was lower at least for 1000 characteristics. 

 

The SVM using the same number of features than KNN with PCA evidenced a higher percentage 

of accuracy, almost 10% more than the KNN. The KNN is sensitive to lousy feature selection 

because of the variance of the data; as was explained before, our database has low variance, so it 

was expected that the SVM had a better performance. On the other hand, the SVM method is 

known for being more robust than the others, is better with high dimensional data, since it will 

only use the most relevant points to find a linear separation. 

 

The higher accuracy of the SVM for sEMG contractions is accorded with the literature [67], [68], 
where SVMs were used for classification tasks of muscle fatigue sEMG signal. Based on the 

results, the SVMs also showed to be the appropriate pattern recognition method to classify 

information of sEMG signals combined with videogame variables.  

 

This classifier seems to be the best to be implemented on the videogame to provide information 

about the performance of each player during the interaction, and to record the progress therapy 

through the game's sessions. That is why in the second section of this chapter was decided to 

prove this classifier with the database collected in chapter 6, which contains the sEMG signal 

features and the game variables from subjects with motor impairments. 

  

The classifier was cross-validated with 10 iterations and a nested validation for the kernels 

parameters of the SVM was also computed. The results of the accuracy of the classifier for the 

database of every subject were found to be acceptable with a score higher of  70% for every 
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subject. The mean for the accuracy was M=75.81% and a standard deviation of SD=4.31%, lower 

than the one found for the database of healthy subjects that scored M=82,66% with a standard 

deviation of SD=6.33% (section 5.1.2). This lack of accuracy percentage can be related to the 

different building of the data matrix, due to the databased for healthy subjects contained all the 

subjects, and the database used for impaired subjects was built for each one. The matrix's building 

was decided due to the classifier was thought to be used in the subject's individual interaction, not 

in the interaction of the subjects as a group. On the other hand, as can be seen in figure 6.7, the 

classification task is difficult due to the separation of both classes is not evident; nevertheless, the 

SVM obtained good accuracy. 

 

Further research is needed to improve the SVM working with the database collected from the 

interaction with the videogame. Figure 6.6 evidenced that the features from the Fatigue index 

extracted from the sEMG signal had the lower weights in the PCA feature selection, while the 

game variables always had higher scores. Other features from the signal, as the RMS, could have 

higher weights and improve the accuracy of the classifier. 

 

Finally, although in the literature was not found evidence of robust pattern recognition methods, 

as neural networks (NN), working better than the SVM for sEMG signals, it could be interesting 

to prove if the NN could have higher performance for the combined videogame database. 
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7. Discussion, Limitations and Future Work 

7.1 Discussion 

7.1.1 Methodology for serious game design 

The first stage developed in this research was to create an appropriate serious videogame for 

motor rehabilitation of upper limbs.  Even though the literature provides the key factors to 

consider when designing videogames for healthcare, particular game mechanics to be used are 

still missing in the literature.  Specific examples of using exergames in physical rehabilitation 

[29], [39], explain the factors related to i) the compatibility between game and motor disability, 

ii) the advice of how often (dose) it should be used [31], and iii) why videogames are effective 

for rehabilitation [30]. By using game design literature [49], and mixing it with the experience of 

experts in healthcare for physical rehabilitation, the FD videogame is presented as an interactive 

solution that uniquely balances attractiveness and effectiveness for motor rehabilitation. 

The FD videogame was created using specific game mechanics designed to provide a natural 

interaction between the players and the game, while following the therapeutic recommendations 

appropriate for motor rehabilitation. The technology and the user interface (sEMG signal) were 

chosen to recreate the isometric muscle contractions that are often used in therapy, and more 

importantly, to be aware of the muscle fatigue states of players. Thus, a biocybernetic loop was 

integrated into the game's normal functioning with the ultimate goal of adapting the game's 

difficulty based on the muscle fatigue measured through the sEMG signal. Moreover, the final 

goal of the entire system was to generate an effective low-cost complementary activity to 

conventional therapy. 

 

7.1.2 Impact of virtual environments on user’s muscle fatigue perception 

Despite the fact that we felt very confident about our game design methodology, in chapter 4, we 

presented an experimental procedure designed to prove the player's perception of the game. The 

results of the GEQ and the SUS confirmed our initial hypothesis, revealing a high acceptance of 

the system and a positive perceived experience when players interacted with the videogame. 

Moreover, the experimental procedure also considered a research question that has been 

previously explored in the Exergaming literature: How virtual environments influence 

rehabilitation therapy? [40], [69]–[72]. With the purpose of bringing some insights into this issue, 

we developed a protocol where the videogame was played using two different display modalities: 

a non-immersive (conventional flat screens) and an immersive one that used state-of-the-art VR 

systems. The fatigue perception of the players assessed by the Borg's scale during the interaction 

resulted that it was directly influenced by the virtual environment and the display mode. The 

muscle fatigue perceived in the immersive scenario was lower than the perceived in the non-

immersive, suggesting that players with a higher sensation of being immersed in the virtual world 

were less sensitive to feel muscle fatigue, facilitating the rehabilitation process. Similar results 

have been found by researchers in the application of VR for pain management [62], [73], [74].   

 

7.1.3 Therapy follow up through sEMG and game metrics. 

The game mechanics designed in chapter 3 allowed to follow up upon the subject’s performance 

since variables such as points or attacks completed have a direct relation with the quality of the 

muscle contractions. Using those variables, we created a game metric called the performance 

index, which was computed in the data analysis proposed in chapter 4 and was extracted during 

the rehabilitation protocol presented in chapter 5. Firstly, the performance index showed to be 

sensitive to the virtual environment differences, due to the mean score for subjects in the 

immersive condition was higher than those in the non-immersive condition. Secondly, in the study 

with patients with M/H, although the performance index was not consistent through the sessions, 

it showed an improvement while comparing the first session with the last session. Based on these 

results, we confirmed the feasibility of using game variables as a quantification of the 

rehabilitation progress. 
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On the other hand, the sEMG signal used for interfacing the game, demonstrated to be a powerful 

mechanism for balancing attractiveness and effectiveness since it acted as an adaptation medium 

to maintain subjects in a proper muscle fatigue state. These signals are rich in information; for 

instance, the close analysis of the amplitude for the muscle contractions (RMS value) could reveal 

the maintenance of the muscle's contractions quality. Moreover, as the RMS tendency value and 

the MDF tendency value, used as fatigue index, revealed the behavior of the muscle fatigue and 

how the biocybernetic loop was affecting it. Nevertheless, more clinically-friendly analysis is 

needed to facilitate the adoption of fatigue biomarkers in clinical settings. 

  

7.1.4 Therapy quantification thought pattern recognition methods 
The recorded information in the protocols developed in chapters 4 and 5 was used to test different 

pattern recognition methods looking for a confident variable to inform the subject's performance 

during the rehabilitation therapy, and also searching for an alternative way to adapt the game 

difficulty. The cross-validation of four classification methods: Linear, quadratic, KNN and SVM, 

reveal the SVM with a RBF kernel as the algorithm with higher accuracy to perform the 

classification task related to choosing between “good player” or “bad player” based on the MDF 

valued and game variables. Classifying players as good or bad is a direct indicator of their 

performance, and an easy way that clinicians might have of being aware of patients’ improvement. 

On the other hand, if we classify the subject's performance on every contraction period, the 

belonging class could work as a marker of the game difficulty, for example, if the player is 

classified as “good” after a contraction, the level of difficulty will increase to perform the next 

muscle contraction as well as if the player is classified as “bad” after a contraction, the level of 

difficulty will decrease to perform the next muscle contraction. In this manner, we could create 

an automatic threshold, different to the threshold provided by the clinician’s appreciations, which 

so far has worked very well.   

 

This stage of the research was valuable since, in the literature review, we did not find automatic 

algorithms to solve classifications tasks with information related to physiological signals and 

game variables. Nevertheless, the accuracy of the SVM was lower when it was tested with 

individual information of impairments subjects, suggesting that more research is needed to 

confirm the usefulness of machine learning techniques in this field. 

 

7.2 Limitations 
Some of the identified limitations of this research are related to the factors listed below: 

• The perceived muscle fatigue results of chapter 4 could not be attributable to the 

biocybernetic loop due to the lack of a control group, where subjects belonging to it 

played the videogame without difficulty adaptation. Then, a holistic influence of 

physiological adaptation could not be proved. 

• The rehabilitation intervention proposed in chapter 5 was first thought to be implemented 

with the VR system, due to the results suggested in chapter 4. However, limitations in 

participant’s displacement to the research laboratory, limited the use of the immersive 

setup.   

• The intervention time of the rehabilitation protocol proposed in chapter 5 was shorter than 

what was initially suggested by clinicians. A longer intervention over more subjects 

exposed to the system in a longer period of time could provide a better understanding of 

the effects of using the FD adaptive videogame in realistic scenarios. 

 

7.3 Future Work 
The combined rehabilitation therapy proposed and developed by this research work is now part 

of the rehabilitation process that can be used the patients who come to the rehabilitation centre in 

which we carried out this investigation. From September of the present year, we provided 

rehabilitation support using our gaming system, allowing patients to experience the videogame 

and become more aware of these rehabilitation technologies (figure 7.1). Despite the good 
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acceptance of our system, we need to develop a more extended evaluation of it, one that can cover 

the limitations listed before. For this, it is decisive to continue with the well-established 

partnership between researchers, physiotherapists and clinicians to find better mechanisms for 

collaboration to carry out the interventions and to be able to extend the use of these technologies 

to more people in the city.   

On the other hand, we want to develop a few videogames more with the design methodology used 

for FD creating more diversified options to complement the motor rehabilitation. Moreover, the 

integration of the algorithms of the biocybernetic loop on those games can be easily carried out, 

since the FD videogame was programmed in a modular and integrative manner. 

 
Figure 7.1. FD system carried out as part of rehabilitation therapy at the rehabilitation centre. 
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Appendices 

Appendix A: Publications 
 
Chapter 3 

Ongoing publication: 

“Design of an Upper Limbs Rehabilitation Videogame with sEMG and Biocybernetic 

Adaptation” 

REHAB 2019, September 11–13, 2019, Popayan, Colombia 

© 2019 Association for Computing Machinery. 

ACM ISBN 978-1-4503-7151-3/19/08...$15.00 

https://doi.org/10.1145/3364138.3364170 

 

Contribution: The programming of the videogame was entirely developed by the author. The 

established methodology to design a serious videogame for upper arms rehabilitation was 

proposed by all the authors and the clinician’s advisors.  

 

Chapter 4 

Accepted in IEEE Transactions on Neural Systems and Rehabilitation Engineering:  

“Enhancing Virtual Rehabilitation in Upper Limbs with Biocybernetic Adaptation: The Effects 

of Virtual Reality on Perceived Muscle Fatigue, Game Performance and User Experience.” 

 

Contribution: The data collecting and processing was developed by the author, as well as the VR 

environments. All the authors contributed to the design of the experimental protocol and paper 

revision.  

 

 

Chapter 5 

Vega, M. M., & Henao, O. A. (2019, June). Cross-validation of a classification method applied 

in a database of sEMG contractions collected in a body interaction videogame. In Journal of 

Physics: Conference Series (Vol. 1247, No. 1, p. 012049). IOP Publishing. 

 

Contribution: The data signal processing and the algorithms were by the author in Matlab. All the 

authors contributed to the paper revision.  

 

 

Chapter 6 

Under review in Sensors: 

“Designing a fatigue-aware videogame using biocybernetic adaptation. A pilot study for upper-

limb rehabilitation with sEMG” 

 

Contribution:  The experimental protocol was planned jointly with the supervisors. The data 

collecting, processing and analysis was developed by the author. The established methodology to 

design a serious videogame for upper arms rehabilitation was proposed by all the authors and the 

clinician’s advisors. All the authors contributed to the revision of the paper 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1145/3364138.3364170
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Appendix B:Questionnaires and measurement scales  
 

System Usability Scale 

 

 

 

 

 1 2 3 4 5 

I think that I would like to use this system frequently      

I thought the system was easy to use. 
     

I found the system unnecessarily complex. 
     

I think that I would need the support of a technical person to be able to use 

this system. 

     

I found the various functions in this system were well integrated. 
     

I thought there was too much inconsistency in this system. 
     

I would imagine that most people would learn to use this system very 

quickly. 

     

I found the system very cumbersome to use.  
     

I felt very confident using the system.  
     

I needed to learn a lot of things before I could get going with this system.  
     

 

Game experience Questionaire 

Core Module 

Please indicate how you felt while playing the game for each of the items, 

on the following scale: 

 

not at all slightly moderately fairly extremely 

0 1 2 3 4 

 

1 I felt content 

2 I felt skillful 

3 I was interested in the game's story 

4 I thought it was fun 

5 I was fully occupied with the game 

6 I felt happy 

7 It gave me a bad mood 

8 I thought about other things 

Strongly 

disagree 
Strongly 

agree 
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9 I found it tiresome 

10 I felt competent 

11 I thought it was hard 

12 It was aesthetically pleasing 

13 I forgot everything around me 

14 I felt good 

15 I was good at it 

16 I felt bored 

17 I felt successful 

18 I felt imaginative 

19 I felt that I could explore things 

20 I enjoyed it 

21 I was fast at reaching the game's targets 

22 I felt annoyed 

23 I felt pressured 

24 I felt irritable 

25 I lost track of time 

26 I felt challenged 

27 I found it impressive 

28 I was deeply concentrated in the game 

29 I felt frustrated 

30 It felt like a rich experience 

31 I lost connection with the outside world 

32 I felt time pressure 

33 I had to put a lot of effort into it 

 

Post Game Module 

Please indicate how you felt after you finished playing the game for each of the items, 

on the following scale: 

not at all slightly moderately fairly extremely 

0 1 2 3 4 

 

1 I felt revived 

2 I felt bad 

3 I found it hard to get back to reality 

4 I felt guilty 

5 It felt like a victory 

6 I found it a waste of time 

7 I felt energized 

8 I felt satisfied 

9 I felt disoriented 

10 I felt exhausted 

11 I felt that I could have done more useful things 

12 I felt powerful 

13 I felt weary 

14 I felt regret 

15 I felt ashamed 

16 I felt proud 

17 I had a sense that I had returned from a journey 
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Borg’s Scale 

 

0 Nothing at all 

0.5 5 Very, very slight (just noticeable) 

1 Very slight 

2 Slight 

3 Moderate 

4 Somewhat severe 

5 Severe 

6 
 

7 Very severe 

8 
 

9 Very, very severe 

10 maximal 

 

Modified Ashworth Scale 

0 No increase in muscle tone 

1 Slight increase in muscle tone, manifested by a catch and release or by minimal 

resistance at the end of the range of motion when the affected part(s) is moved in 

flexion or extension 

1+ Slight increase in muscle tone, manifested by a catch, followed by minimal resistance 

throughout the remainder (less than half) of the ROM 

2 More marked increase in muscle tone through most of the ROM, but affected part(s) 

easily moved 

 

3 Considerable increase in muscle tone, passive movement difficult 

4 Affected part(s) rigid in flexion or extension 
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Appendix C: Informed Consent 
 

Research Group in Physiology 

Research Group in Automatic 

Human Computer Interaction Group 

Universidad Tecnólogica de Pereira  (UTP) 

Informed Consent 

 

Pilot study for the evaluation of the Force Defense videogame as a virtual rehabilitation 

system for motor therapy 

 

We are asking for your permission to participate in the validation of the Force Defense video 

game as a virtual rehabilitation system that responds to muscular fatigue in the biceps brachii 

(arm). This research is directed by PhD Oscar Henao, researcher and professor at UTP and PhD 

John Edison Muñoz, Postdoctoral researcher at the University of Waterloo, Canada. Likewise, 

there is the advice and follow-up of the Physiatrist and teacher of the UTP Dr, José Fernando 

López and the Physiotherapist and teacher of the UTP Felipe Gómez. 

 

Research Objective: 

Establish the viability in the use of the Force Defense videogame as a complementary therapy for 

rehabilitation processes in upper limbs. The system uses physiological adaptation features in order 

to adjust to the specific needs of the population (patients with Monoparesis / Upper Hemiparesis) 

 

Research Justification: 

Establish the viability of this rehabilitation system to be a complementary therapy to conventional 

rehabilitation therapy. This system is designed to create motivation in users, create adherence for 

physical therapy, at a very low cost, so that technology can be easily acquired by rehabilitation 

centers. 

 

Procedures:  

You will undergo a physical rehabilitation therapy that combines interaction with a video game 

and the physical therapy that you perform regularly. You will undergo this therapy once a week, 

for 8 weeks, where you will play in front of a computer using a sensor that allows interaction with 

the videogame. You will be accompanied and guided all the time by the principal investigator and 

by the physiotherapist. 

 

Benefits:  

This therapy is designed to improve muscle spasticity, with a motivating component for 

interaction with a videogame. You will be exposed to an innovative therapy with technology 

designed to improve your physical well-being. At the end of this study, an improvement in your 

joint mobility of the elbow and shoulder is estimated, as same as a positive perception of you 

towards this type of alternative therapy. 

 

Factors and risks:  

This is a minimum risk investigation. It is an intervention or intentional modification of 

physiological variables of people participating in the study, this physiological variable is muscle 

spasticity derived from the pathologies Monoparesis and hemiparesis. On the other hand, this 

study does not imply any physical or psychological risk for you, nor consequences for your 

financial situation, your employment or reputation. You have been selected for your condition 

and fitness. The only risks that could occur at the end of the process would be that you feel low 

satisfaction regarding the interaction with the videogame or some levels of muscle fatigue. 

 

Response to concerns guarantee:  

We will not disclose any information about you, or provided by you during the investigation. 

When the results of the research are published or discussed in conferences, information that may 
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reveal your identity will not be included. Your participation in this investigation is voluntary. At 

the time you request information related to the project, the researchers will give it. 

 

Freedom guarantee:  

Participation in the study is free and voluntary. Participants may withdraw from the research at 

any time they wish, without any consequence. 

 

Information guarantee:  

The electronic data collected, such as the information acquired in the surveys, will be managed 

and stored by the researchers. Only researchers will have access to them, with the only purpose 

of answering the research questions raised.No information will be disclosed that revealed your 

identity or affected your reputation. Participants will receive all significant information that is 

obtained during the study. At the conclusion of the study, the researcher along with the 

physiotherapist will make an informative presentation with the results of the study, in addition, 

each participant will be cited individually to reveal personal results and resolve concerns 

regarding their performance. 

 

Confidentiality:  

The names of the people and all information provided, will be treated privately and with strict 

confidentiality, these will be consolidated in a database as part of the research work. Only the 

overall information of the investigation will be disclosed, in a report in which the proper names 

of the people from whom information is obtained will be omitted. In addition, each participant 

will be left with a copy of this informed consent document. 

 

Economic resources:  

In case there are expenses during the development of the research, they will be paid with the 

research budget. 

 

Contact: 

Principal researcher: 

Maria Fernanda Montoya Vega, mf.mv@utp.edu.co, +573157020072 

 

I certify that I have read the above information, that I understand its content and that I agree to 

participate in the investigation. It is signed in the city of _____________ on ____ days, of the 

month _______________ of the year 2019 

 

___________________________________  ________________________________ 

Informed Name Signature /     Informed Footprint 

ID number: 

 

 

___________________________________  ________________________________ 

First Witness name       First Witness  signature  

ID number: 

 

 

___________________________________  ________________________________ 

Second Witness  name      Second Witness signature 

ID number: 

 

___________________________________  ________________________________ 

Informant Name      Informant Signature 

ID number: 
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Appendix D: Bioethics Committe approval  

 

 

NOTICE OF APPROVAL OF RISK PROJECT 

 

Pereira, June 10, 2019 

Mr. Principal Researcher 

Reference: project “Classifier of sEMG signals with muscle fatigue characteristics collected 

online for the control of a physical interaction video game for physical rehabilitation” 

 

The Bioethics Committee of the Universidad Tecnológica de Pereira , located in building 1, 

office 1-404 in race 27 # 10-02 of the Los Alamos neighborhood of Pereira, with telephone (6) 

3137114, in ordinary meeting held on the day of today, according to act No. 10, point 4.1, 

paragraph 4.1.1, has approved the project “Classifier of sEMG signals with muscle fatigue 



 

56 
 

characteristics collected online for the control of a physical interaction video game for physical 

rehabilitation” classified as research with MINIMUM RISK. The CBE-UTP records the 

following: 

• The authors of the project are qualified to execute it. 

• The project has the appropriate bioethical and scientific conditions and justifies the 

relationship between the risks and the predictable benefits for the participants. 

• Written informed consent contains the required information and the authors clearly state 

how they will deliver the information to the participants. 

• The process of selecting and including participants is clearly established. 

• The authors are committed that any substantial change in the original project or the 

occurrence of a serious adverse event should be reported to the CBE-UTP as soon as 

possible by the principal investigator, for relevant considerations and pronouncements 

 

The CBE-UTP adheres to the current ethical, legal and legal norms and standards for research in 

human beings (resolution 8430 of 1993, resolution 2378 of 2008 and Declaration of Helsinki). 

The CBE-UTP has 12 active members and considers quorum to the presence of half plus one of 

its members. 

 

Sincerely, 

Carlos Alberto Isaza Mejia 

Chairman Bioethics Committee 

Universidad Tecnológica de Pereira 
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