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LOWER BOUNDS FOR THE VOLUME WITH UPPER BOUNDS

FOR THE RICCI CURVATURE IN DIMENSION THREE

V. GIMENO

Abstract. In this note we provide several lower bounds for the volume of
a geodesic ball within the injectivity radius in a 3-dimensional Riemannian
manifold assuming only upper bounds for the Ricci curvature.

1. Introduction

One of the central topics in Riemannian geometry is the relation between the
curvature of a Riemannian metric defined on a manifold and the behavior of the
volume of geodesic balls. Curvature, geodesics and balls have an extremely rich
relationship. A celebrated and well known result states (see for instance [2]) that if
a n-dimensional Riemannian manifold (M, g) has the sectional curvatures secM (Π)
of any tangent plane Π bounded from above by a constant κ,

secM (Π) ≤ κ

then, for any point p ∈ M , the volume V(p, t) of the geodesic ball of radius t
centered at p is bounded from below by

(1) VM (p, t) ≥ VMn
κ
(t)

for any t ≤ min{inj(p), π/√κ}1, where VMn
κ
(t) is the volume of the geodesic ball of

radius t in the simply-connected real space form Mn
κ of dimension n and constant

sectional curvature κ. This inequality was obtained by Bishop and Günter and it
has associated a rigidity result: if equality is attained in inequality (1), the geodesic
ball of radius t in M centered at p ∈ M is isometric to the geodesic ball of radius t
in Mn

κ .
An other classical result authored by Bishop and Gromov, (see [2]) states that

whenever the Ricci curvatures are bounded from below by

Ric ≥ (n− 1)κ,

the volume of the geodesic ball of radius t is bounded by from above by

VM (p, t) ≤ VMn
κ
(t)

for any t > 0.
Furthermore, Calabi and Yau (see [11]) proved that for any complete and non-

compact Riemannian manifold with

Ric ≥ 0
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there exists a constant C such that the volume of the geodesic ball is bounded from
below by

VM (p, t) ≥ C t.

We would like to stress here that, in the above theorems, upper bounds are imposed
only on the sectional curvature, and for the Ricci curvature only lower bounds are
used. The goal of this paper is to obtain lower bounds for the volume of geodesics
balls when the Ricci curvature is bounded from above. This objective is achieved
in dimension 3. The results of this paper are detailed in the following section.

2. Main Results

Our first result is a Bishop-Günter type inequality but using bounds on the Ricci
curvature:

Theorem 2.1. Let (M, g) be a 3-dimensional Riemannian manifold. Suppose that

Ric ≤ 2κ.

Then, for any p ∈ M and for any t ≤ min{inj(p), π/√κ}, the volume VM (p, t) of

the geodesic ball of radius t centered at p is bounded from below by

(2) VM (p, t) ≥ VM3
κ
(t),

where VM3
κ
(t) is the volume of the geodesic ball of radius t in the simply-connected

real space form M3
κ of dimension 3 and constant sectional curvature κ.

The hypothesis of the above Theorem implies global upper bounds in the Ricci
curvature. In the following Theorem we are assuming that the positive upper bound
of the Ricci curvature has finite L1-norm in M . More precisely, for any point q ∈ M
let us denote by K+ : M → R the function

q 7→ K+(q) = max {0, {max {Ric(v, v) : v ∈ TqM with ‖v‖ = 1} }
Under the hypothesis of finite L1-norm of this K+ function we obtain the following
Theorem

Theorem 2.2. Let (M, g) be a 3-dimensional Riemannian manifold. Suppose that
∫

M

K+dVg = C < ∞.

Then, for any p ∈ M and for any t ≤ inj(p), the volume VM (p, t) of the geodesic

ball of radius t centered at p is bounded from below by

VM (p, t) ≥ 4

3
πt3 − Ct2.

An immediate consequence of the above Theorem is the following Corollary when
we restrict ourselves to manifolds with pole

Corollary 2.3. Let (M, g) be a 3-dimensional Riemannian manifold with a point

p ∈ M with empty cut locus Cut(p) = ∅, suppose that

sup
M

Ric < ∞.

Then M has infinite total volume, i.e.,

vol(M) = ∞.



LOWER BOUNDS FOR THE VOLUME 3

Remark 2.4. Observe that in the above Corollary, and in the main results of this
paper, the assumption that M contains a point with empty cut locus can not be
removed. Indeed, Lohkamp proved in [8] that each manifold Mn, n ≥ 3 admits a
complete metric with negative Ricci curvature and finite volume, vol(M) < ∞.

Remark 2.5. The Hypothesis of dimension 3 is used in the proof of Theorem 2.1 (see
Section §3) because in such a case the integral of the (intrinsic) scalar curvature of
the 2-dimensional geodesic spheres is a topological invariant via the Gauss-Bonnet
Theorem. We would like to remark here that the assumption that M has dimension
3 can not be removed. For n > 3, upper bounds on the Ricci curvature are not
enough to state the result. See for instance [6] where the “

√
Ric” curvature is used

to obtain Gnter type inequalities for any dimension. The Bishop-Gromov Theorem
can not be reversed: the statement that if Ric ≤ (n− 1)κ then V(p, t) ≥ VMn

κ
(t) is

not true for n > 3. Consider, for example, the complex hyperbolic space (CHN
b , gb)

of dimension 2N endowed with the metric gb of constant holomorphic sectional
curvature −4b. The Ricci tensor and the volume of a geodesic ball of radius t are
given by (see [5] for instance)

(3) Ric = −2b(N + 1)gb, V(t) =
1

N !

(π

b

)N (

sinh(t
√
b)
)2N

.

Then there exists a constant B(N) such that

V(t) ≤ B(N)e2N
√
bt.

But observe that (3) is compatible with the bound

Ric ≤ (n− 1)κ, κ =
−2b(N + 1)

2N − 1
,

and

VM2N
κ

(t) =
Cn√−κ

∫ t

0

sinh2N−1(
√
−κs)ds.

Hence, there exists an other constant C(N) such that

VM2N
κ

(t) ≥ C(N)e
√

2(N+1)
√
2N−1

√
bt, for t ≥ 1.

Since
√

2(N + 1)
√
2N − 1 > 2N for N > 1 (dimension 2N > 3), then there exists

t large enough such that
V(t) < VM2N

κ
(t).

Remark 2.6. In some cases the use of upper bounds for the Ricci curvature is more
appropriate than the use of upper bounds for the sectional curvature. There are
several examples where the bounds obtained in Theorem 2.1 are better than the
bounds obtained when the classical Bishop-Günter inequality is used. Every Berger
sphere is one of these examples. Let SU(2) be the special unitary group of 2 × 2
matrices,

SU(2) :=
{

A ∈ M2×2(C) : det(A) = 1, A† = A−1
}

=

{(

z1 z2
−z2 z1

)

: |z1|2 + |z2|2 = 1

}

=S
3(1).

The Lie algebra su(2) is given by

su(2) = span
R
{X1, X2, X3}
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with

X1 :=

(

i 0
0 −i

)

, X2 :=

(

0 1
−1 0

)

, X3 :=

(

0 i
i 0

)

·

For 0 < ǫ < 1, Let gǫ be the metric such that
{

X1

ǫ
,X2, X3

}

is an orthonormal basis, then (see [10]), the sectional curvatures of any tangent
plane π are bounded therefore by secM (π) ≤ 4− 3ǫ2 and Ric ≤ 4− 2ǫ2.

Since 0 < ǫ < 1, we have 2− ǫ2 ≤ 4− 3ǫ2 and the bound given by Theorem 2.1,

(4) VM (p, t) ≥ VM
3

2−ǫ2
(t), for t ≤ min

{

inj(p),
π√

2− ǫ2

}

,

is better than the bound given by the classical inequality obtained by using the
Bishop-Günter inequality, i.e.,

(5) VM (p, t) ≥ VM
3

4−3ǫ2
(t), for t ≤ min

{

inj(p),
π√

4− 3ǫ2

}

.

Remark 2.7. Croke in [4] proved that for any complete n-dimensional manifold
(M, g) the volume of the geodesic ball of radius t centered at p ∈ M is bounded
from below by

V(p, t) ≥ 2n−1ωn
n−1

ωn−1
n nn

tn, for t ≤ 1

2
inj(M)

with ωn the volume of the unit n-sphere in Rn+1. In the particular case of dimension
3,

V(p, t) ≥
(

4

3

)3
1

π
t3, for t ≤ 1

2
inj(M).

By using Theorem 2.1, if Ric ≤ 2κ in the geodesic ball of radius t centered at p, we
can provide the following improvement:

V(p, t) ≥ VM3
κ
(t) >

(

4

3

)3
1

π
t3, for t ≤ min{inj(p), π/√κ}.

In [1] Berger proved that for a compact n-dimensional manifold (M, g),

vol(M) ≥ ωn

πn
inj(M)n.

When n = 3, this equation can be rewritten as

(6) vol(M) ≥ 2

π
inj(M)3.

Since M is compact there exists a constant κ such that Ric(v, v) ≤ κg(v, v) for any
v ∈ TpM and any p ∈ M . Then by using Theorem 2.1,

vol(M) ≥ VM3
κ
(R), R = min{inj(M), π/

√
κ}

hence, when κ ≤ 0 we can provide the following improvement of (6)

vol(M) ≥ 4π

3
inj(M)3.
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3. Proof of the Main Results

The proof of the main results follows from Proposition 3.3 which is an adaptation
of the area variation formula for geodesic balls in dimension 3 taking into account
that the total integral of the scalar curvature in a geodesic sphere is a topological
invariant (for 2-dimensional spheres).

Let (M, g) be a n-dimensional Riemannian manifold, let p ∈ M be a point of M ,
and let inj(p) denote the injectivity radius of p. Let Binj(p)(0) be the ball of radius
inj(p) centered at 0 in TpM , let Binj(p)(p) = expp(Binj(p)(0)) the geodesic ball of
radius inj(p) centered at p, then the exponential map

expp : Binj(p)(0) −→ Binj(p)(p),

is a diffeomorphism. The radial vector field ∂r is globally defined on Binj(p)(p)\{p}
and is given by

∂r : Binj(p)(p) \ {p} → TM \ {p}, q 7→ ∂r(q) =
d

dt
expp (r(q)θ(q)t)

∣

∣

t=1
.

Namely, ∂r(q) is the tangent vector to the arc-length parametrized geodesic curve
from p to q.

Let us denote by dVg the Riemannian volume form associated to g. The volume
VM (p, t) of the geodesic ball Bt(p) of radius t centered at p is given by

VM (p, t) =

∫

Bt(p)

dVg

The vector field ∂r coincides with the gradient ∇r of the polar radius function r
on Binj(p)(p) \ {p}, i.e., ∂r = ∇r, and furthermore ‖∇r‖ = ‖∂r‖ = 1. Moreover
since the geodesic sphere St(p) of radius t centered at p is a level set of r, i.e.,
St(p) = r−1(t) then the vector field ∇r is a unit vector field normal and pointed
outward to St(p).

The volume AM (p, t) of the geodesic sphere St(p) of radius t centered at p, is
given therefore by

AM (p, t) =

∫

St(p)

∇rydVg

where ∇rydVg is the contraction of the Riemannian volume form dVg with the
vector field ∇r. In order to simplify the notation we will make use of

dAg := ∇rydVg

Note that for 0 < t < inj(p), the function

t 7→ VM (p, t)

is smooth and with derivative AM (p, t). The second fundamental form α of the
inclusion map from St(p) to M is given in terms of the Hessian HessMr of the
geodesic distance function r to the pole p because for any two vector fields X,Y ∈
X(St(p))

α(X,Y ) = 〈∇XY,∇r〉∇r = (X(〈Y,∇r〉)− 〈Y,∇X∇r〉)∇r
= −〈Y,∇X∇r〉∇r = −HessMr(X,Y )∇r.
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The mean curvature vector field ~H of St(p) is given therefore in terms of the Lapla-
cian ∆Mr of the distance function to p because for any q ∈ St(p) and any orthonorl-
mal basis {Ei}n−1

i=1 of TqSt(p)

~H =

n−1
∑

i=1

α(Ei, Ei) = −
n−1
∑

i=1

HessMr(Ei, Ei)∇r = −∆Mr∇r

The following Proposition states the first and second variation formula for the area
function t 7→ AM (t),

Proposition 3.1 (See pages 4 and 8 of [7]). Let (M, g) be a Riemannian manifold,

suppose that p ∈ M and t < inj(p). Then,

(1) The first derivative A′
M (p, t) with respect to t of the volume AM (p, t) of the

geodesic sphere St(p) of radius t centered at p is given by

A′
M (p, t) =

∫

St(p)

∆MrdAg =

∫

St(p)

HdAg.

(2) The second derivative A′′
M (p, t) with respect to t of the volume AM (p, t) of

the geodesic sphere St(p) of radius t centered at p is given by

A′′
M (p, t) =

∫

St(p)

(

−Ric(∇r,∇r) − ‖HessMr‖2 + (∆Mr)
2
)

dAg

Let us choose now an orthonormal basis {E1, · · · , En−1,∇r} of TqM which di-
agonalizes HessMr, i.e.,

HessMr(Ei, Ej) =

{

λi if i = j
0 if i 6= j

Then,

−‖HessMr‖2 + (∆Mr)
2

= −
n−1
∑

i=1

λ2
i +

(

n−1
∑

i=1

λi

)2

= −
n−1
∑

i=1

λ2
i +

(

n−1
∑

i=1

λi

)





n−1
∑

j=1

λj





= −
n−1
∑

i=1

λ2
i +

n−1
∑

i,j=1

λiλj =
n−1
∑

i6=j

λiλj

Taking into account that α(Ei, Ej) = −HessMr(Ei, Ej)∇r and using the Gauss
formula (see [9] for instance)

−‖HessMr‖2 + (∆Mr)2 =
n−1
∑

i6=j

(

secSt(p)(Ei, Ej)− secM (Ei, Ej)
)

Finally, it is easy to check that

−Ric(∇r,∇r) − ‖HessMr‖2 + (∆Mr)
2
= scalSt(p) +Ric(∇r,∇r) − scalM ,

where scalM is the scalar curvature function of M , Ric(∇r,∇r) is the Ricci tensor
evaluated in ∇r, and scalSt(p) is the intrinsic scalar curvature of the sphere St(p).
Then

(7) A′′
M (p, t) =

∫

St(p)

(

scalSt(p) +Ric(∇r,∇r) − scalM
)

dAg
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When the dimension of M is 3, the geodesic sphere St(p) of radius t centered
at p has dimension 2 and the scalar curvature is given in terms of the Gaussian
curvature KG,

scalSt(p) = 2KG

and by the Gauss-bonnet Theorem
∫

St(p)

scalSt(p)dAg = 2

∫

St(p)

KGdAg = 4πχ(St(p)) = 8π

therefore we can state the following Corollary to Proposition 3.1

Corollary 3.2. Let (M, g) be a 3-dimensional Riemannian manifold, let p ∈ M
be a point of M . Then for any 0 < t < inj(p), the second derivative A′′

M (p, t) with

respect to t of the volume AM (p, t) of the geodesic sphere St(p) of radius t centered
at p is given by

A′′
M (p, t) = 8π −

∫

St(p)

(scalM − Ric(∇r,∇r)) dAg.

where scalM is the scalar curvature function of M , and Ric(∇r,∇r) is the Ricci

tensor evaluated in ∇r.

Since V′
M (p, t) = AM (p, t),

V′′
M (p, s)|s=t −V′′

M (p, t0) =

∫ t

t0

A′′
M (p, s)ds

Therefore using the above Corollary,

(8)

V′′
M (p, t)−

∫

St0
(p)

HdAg =8π(t− t0)

−
∫ t

t0

∫

Ss(p)

(scalM − Ric(∇r,∇r)) dAgds

Taking the limit t0 → 0 we obtain the following

Proposition 3.3. Let (M, g) be a 3-dimensional Riemannian manifold, let p ∈ M
be a point of M . Then for any 0 < t < inj(p)

∫

Bt(p)

(scalM − Ric(∇r,∇r)) dVg +V′′
M (p, t) = 8πt

Proof. The Proposition follows taking the limit t0 → 0 in equation (8) because in
dimension 3

lim
t0→0

∫

St0
(p)

HdAg = lim
t0→0

∫

St0
(p)

∆MrdAg = 0.

Indeed, in [3] for example, it is proved that

H(p) =
n− 1

t
+O(t), AM (p, t) = Cn−1t

n−1 +O(tn+1), as t → 0.

�

Corollary 3.4. Let M3
κ be the 3-dimensional simply-connected real space form of

constant sectional curvature κ, then

4κVM3
κ
(t) + V′′

M3
κ

(t) = 8πt

From Proposition 3.3 we can prove the main results of the paper
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3.1. Proof of Theorem 2.1. The statement and proof of Theorem 2.1 is as follows

Theorem. Let (M, g) be a 3-dimensional Riemannian manifold. Suppose that

Ric ≤ 2κ.

Then, for any p ∈ M and for any t ≤ min{inj(p), π/√κ}, the volume VM (p, t) of

the geodesic ball of radius t centered at p is bounded from below by

(9) VM (p, t) ≥ VM3
κ
(t),

where VM3
κ
(t) is the volume of the geodesic ball of radius t in the simply-connected

real space form M
3
κ of dimension 3 and constant sectional curvature κ.

Proof. Let {∇r, E1, E2} be an orthonormal basis of TqM . Since Ric ≤ 2κ,

scalM − Ric(∇r,∇r) = Ric(E1, E1) + Ric(E2, E2) ≤ 4κ

By using Proposition 3.3 and Corollary 3.4

(10)
4κVM (p, t) + V′′

M (p, t) ≥
∫

Bt(p)

(scalM − Ric(∇r,∇r)) dVg +V′′
M (p, t)

=8πt = 4κVM3
κ
(t) + V′′

M3
κ

(t)

Let us denote by Z(t) := VM (p, t)−VM3
κ
(t), and by

snκ(t) :=







sinh(
√−κt) if κ < 0

t if κ = 0
sin(

√
κt) if κ > 0

inequality (10) can be rewritten as

Z ′′(t) ≥ −4κZ(t) =
sn′′4κ(t)

sn4κ(t)
Z(t)

which implies

d

dt
(Z ′(t)sn4k(t)− Z(t)sn′4k(t)) ≥ 0

Since Z ′(t)sn4k(t)− Z(t)sn′4k(t) is a non-decreasing function

Z ′(t)sn4k(t)− Z(t)sn′4k(t) ≥ lim
t→0

(Z ′(t)sn4k(t)− Z(t)sn′4k(t)) = 0

Therefore
d

dt

(

Z(t)

sn4k(t)

)

≥ 0

then, taking into account that VM3
κ
(t) ∼ Ct3 +O(t4), VM (p, t) ∼ Ct3 +O(t4), and

sn4k(t) ∼ t+O(t3) when t tend to zero,

Z(t)

sn4k(t)
≥ lim

t→0

(

Z(t)

sn4k(t)

)

= lim
t→0

(

VM (p, t)

sn4k(t)
− VM3

κ
(t)

sn4k(t)

)

= 0.

Therefore

Z(t) ≥ 0 =⇒ VM (p, t) ≥ VM3
κ
(t).

�
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3.2. Proof of Theorem 2.2. The statement and proof of Theorem 2.2 is as follows

Theorem. Let (M, g) be a 3-dimensional Riemannian manifold. Suppose that
∫

M

K+dVg = C < ∞.

Then, for any p ∈ M and for any t ≤ inj(p), the volume VM (p, t) of the geodesic

ball of radius t centered at p is bounded from below by

VM (p, t) ≥ 4

3
πt3 − Ct2.

Proof. Let {∇r, E1, E2} be an orthonormal basis of TqM . Since Ric ≤ K+,

scalM − Ric(∇r,∇r) = Ric(E1, E1) + Ric(E2, E2) ≤ 2K+(q)

By using Proposition 3.3

V ′′
M (p, t) =8πt−

∫

Bt(p)

(scalM − Ric(∇r,∇r)) dVg

≥8πt− 2

∫

M

K+dVg = 8πt− 2C

and the Theorem follows integrating twice and taking into account that VM (p, 0) =
V′

M (p, 0) = 0,

VM (p, t) ≥ 4

3
πt3 − Ct2.

�
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