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Chemo-enzymatic production of omega-3 monoacylglycerides 
using sponge-like ionic liquids and supercritical carbon dioxide 

Rocio Villa,a Elena Alvarez,a Susana Nieto,a Antonio Donaire,b Eduardo Garcia-Verdugo,c Santiago V. 
Luis,c and Pedro Lozano*a 

A clean chemo-enzymatic synthesis of omega-3 monoacylglycerides was carried out by two consecutive catalytic steps, the 

enzymatic transesterification of raw fish or linseed oil with solketal for producing fatty acid solketyl esters, followed by the 

hydrolysis of these solketal moieties catalysed by solid acids (e.g. zeolites) in either supercritical carbon dioxide (scCO2) or 

sponge-like ionic liquids (SLILs). By using scCO2 as reaction/extraction medium, an excellent performance of both coupled 

catalytic steps was observed when t-butanol was used as a co-solvent, resulting in a 100% monoacylglyceride yield for seven 

days under continuous operation and without any loss in catalytic activity. For discontunuous operation, the process 

involved two separated steps in SLIL and water, respectively, leading to 100% product yield and IL-free monoacylglyceride 

product by following a cooling and centrifugation protocol, which allow for the full recovery of the enzyme / SLIL / zeolite 

components of the reaction system that could be reused for at least 6 cycles with unchanged catalytic performance.

Introduction 

Polyunsaturated fatty acids (PUFAs), like -linolenic acid (ALA), 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are 

essential bioactive molecules in human nutrition with recognized 

beneficial health effects (e.g. as cardioprotective agents) and disease 

prevention (e.g. anti-inflammatory effects by interfering with the 

production of leukotrienes, interleukin-1 and tumor necrosis 

factor).1 However, the bioavailability of PUFAs after their 

consumption as dietary triacylglycerides is limited affected under 

maldigestion and malabsorption conditions (e.g. chronic 

pancreatitis, Crohn’s disease, cystic fibrosis, Shwachman-Diamond 

syndrome, post-surgery effects, etc.).2 Thus, current strategies to 

combat lipid malabsorption include dietary supplements containing 

monoacylglycerides (MAGs) based on polyunsaturated fatty acids 

(see Fig. 1A), because they are better absorbed than those delivered 

as triacylglycerides.1,3 Furthermore, among the different types of 

lipid derivatives containing omega-3 fatty acids, MAGs have shown 

the best stability against oxidation.4 Besides, the synthesis of MAGs 

is also of great industrial interest because they are very useful non-

ionic emulsifiers for food and cosmetic industries products, as well 

as, as bioactive compounds of interest in medicinal chemistry (e.g. as 

antimicrobial, for prevention prostatic hyperplasia, as drug carriers, 

etc.).5  

Commercial MAGs are usually produced by chemical glycerolysis of 

fats/oils with glycerol at high temperatures (220-250 ºC) in a nitrogen 

atmosphere, using inorganic alkaline catalysts.6 The use of high 

temperature has some drawbacks as a result of uncontrolled side 

reactions (e.g. dark colour, burnt taste, oxidation, etc.), as well as 

those associated to high energy consumption. Furthermore, this 

chemical glycerolysis usually provides 35–60% MAGs, 35–50% 

diacylglycerides (DAGs), 1-20% triacylglycerides (TAGs) and 1–10% 

free fatty acids (FFAs) along the corresponding alkali metal salts. 

Thus, MAGs need to be isolated from the reaction mixture by 

molecular distillation,7 to achieve at least 70% purity, as requested 

by the World Health Organization and the EU directives.8  

The lipase-catalysed glycerolysis of fish (e.g. sardine, anchovy, 

tuna, etc.) or vegetable (e.g. linseed, etc.) oils is a classical approach 

for the production of omega-3 MAGs, because of the high selectivity 

of enzyme-catalysed reactions and the required mild conditions that 

avoid undesired side-reactions. However, the mutual non-miscibility 

of TAGs and glycerol leads to the formation of biphasic systems with 

low efficiency for the biocatalytic synthesis of MAGs.9 Several 

strategies based on reaction medium engineering, such as the use of 

organic cosolvents (e.g. t-pentanol, t-butanol, etc.),9b,10 

emulsification approaches,4a,11 or the previous adsorption of glycerol 

onto solid carriers like silica gel,12 have been assayed in order to 

provide efficient monophasic reaction media. Through these 

approaches, TAGs conversions reached up to 90 %, although with 

selectivity that provided the desired MAGs in up to 80% yield (e.g. 

the Novozym 435-catalysed sardine oil glycerolysis in 50% w/w t-

pentanol resulted in around 80% MAGs, after 3 h of reaction at 

50 °C).9b Nevertheless, it should be noted that all additives included 

into the reaction media to improve MAGs yield should be removed 
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Figure 1. A. Polyunsaturated fatty acids: 1), linoleic acid; 2) alpha-linolenic acid; 3) 

eicosapentaenoic acid; 4) docosahexaenoic acid. B. Two-step chemo-enzymatic 

synthesis of MAGs. Step 1: Lipase-catalysed transesterification of TAGs with solketal 

under anhydrous conditions; Step 2: Solid acid-catalysed the selective hydrolysis of 

solketyl moiety under aqueous conditions. 

before their further use as nutraceutical. Similar results were 

obtained for the synthesis of MAGs rich in omega-3 PUFAs when 

using supercritical carbon dioxide (scCO2, 150-250 bar, 50 °C), as a 

green reaction medium to assist the enzymatic glycerolysis of sardine 

oil.4a As an alternative approach, the production of 2-MAGs by the 

sn-1,3 regiospecific lipase-catalysed ethanolysis of TAGs was also 

assayed, although the mutual non-miscibility between ethanol and 

TAGs once again provided a low efficient biphasic system.13 As an 

example of this approach, the time-course profile of Lipozyme435-

catalysed ethanolysis of tune oil (ethanol:oil 3:1 w/w) led to a 

continuous increase in ethyl ester products, while the 2-MAGs profile 

showed a bell-shaped curve having a 27 % maximum yield at 2 h of 

reaction and then decreasing. By stopping the reaction at this time, 

2-MAGs were separated by using volatile organic solvents (e.g. 

hexane) and then recovered by low temperature solvent 

crystallization and molecular distillation.13c Alternatively, scCO2 (100-

300 bar, 50-70 °C) has also been used as solvent for the 

Lipozyme435-catalysed ethanolysis of fish oil rich in omega-3 PUFAs, 

resulting in a bell-shape time-course profile for MAGs with up to 12-

15% yield after 90 min of reaction. The subsequent fractionation of 

reaction products by supercritical fluid extraction (SFE, 100-280 bar, 

25-60 °C) yielded an extract rich in fatty acid ethyl esters (FAEE) (up 

to 99.46% wt.), and a MAGs raffinate with up to 82.25% wt.14 

From the beginning of this century, ionic liquids (ILs) were pointed 

out as exceptional non-aqueous reaction media for carrying out both 

chemocatalytic,15 and biocatalytic processes.16 Because of their 

unique array of physical-chemical properties (e.g. low vapor 

pressure, non-flammability, high ionic conductivity, solvent power, 

high thermal and chemical stabilities, etc.),17 ILs have been shown as 

an exceptional enabling tool to integrate reaction and separation 

processes.18 Furthermore, when using ILs as supported phases (e.g. 

supported ionic liquid like phases, SILLPs) they provide an excellent 

microenvironment for (bio)catalysts leading to develop efficient 

chemo-enzymatic processes under supercritical conditions.19 With 

respect to the synthesis of MAGs, it was reported that the 

glycerolysis of sunflower oil led to 69 % yield when using alkaline ILs 

(e.g. 1-butyl-3-methylimidazolium imidazolate [Bmim][Im]) at 

200 °C,20 or up to 90% yield for the case of a lipase immobilized in 

the amphiphilic cocosalkylpentaethoximethylammonium 

methanosulfate IL at 60ºC.21 In both cases, strategies for the recovery 

of the MAGs product, and the reuse of the IL involved the use of 

organic solvents (e.g. toluene).  

The discovery of the sponge-like character of ILs (the so called 

Sponge-Like Ionic Liquids, SLILs), based on cations with long alkyl 

side-chains, (e.g. 1-octadecyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide, [C18mim][NTf2]), has opened new 

opportunities for developing clean biocatalytic processes.22 As 

temperature-switchable liquid/solid phases, these SLILs have 

successfully been used for producing nearly pure synthetic 

compounds of high added value (e.g. flavour esters, biodiesel, etc.) 

in two steps: a biocatalytic step that occurs in monophasic liquid 

systems, followed by a product separation step carried out by 

cooling/centrifugation/filtration of the solid reaction system.18,23 In 

this context, the biocatalytic synthesis of monoacylglycerides (MAGs) 

was reported by the direct esterification of fatty acids (e.g. lauric, 

palmitic, oleic, etc.) with glycerol in different SLILs, obtaining up to 

100% selectivity and 100% MAG yield. However, while monoolein 

was easily separated from the SLIL with water, it was necessary the 

use dodecane for separating monolaurin.24  

Solketal (1,2-isopropylideneglycerol) is a glycerol derivative 

obtained by an acid-catalysed ketalization under anhydrous 

conditions. This ketal has been reported as an useful nucleophile for 

the biocatalytic synthesis of oxygenated biofuels (fatty acid solketyl 

esters, FASEs) by transesterification of vegetable oils in SLILs (e.g. 

near to 100% yield in 6 h at 60 °C).25 Furthermore, it was also 

reported how solketal can be hydrolysed in aqueous medium by acid-

catalysts, providing glycerol and acetone.26  

In this context, this paper shows by the first time a straightforward 

and clean protocol for producing nearly pure omega-3 MAGs, based 

on a chemo-enzymatic process assisted by scCO2 or SLILs 

technologies under continuous or discontinuous operation, 

respectively. Thus, the enzymatic transesterification of linseed and 

fish oils containing omega-3 TAGs with solketal in SLILs was firstly 

carried out under anhydrous conditions, then the solketyl moiety of 

the obtained FASEs being then selectively hydrolysed by solid acids 

(e.g. zeolites) under aqueous conditions (see Fig. 1B). The excellent 

suitability of the proposed approach was demonstrated as a function 

of both the yield and purity of the obtained omega-3 MAGs, as well 

as by the recovery and further reuse of all the elements of the 

reaction system (biocatalyst, acid catalyst, SLIL, etc.). 
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Experimental 

Materials 

Immobilized Candida antarctica Lipase B (Novozym 435, EC 3.1.1.3) 

was from Novozymes S.A. (Spain). Crude fish oil from menhaden, 

linseed oil, solketal (99% purity), molecular sieves (MSX13; 270 mg 

H2O/g adsorption capacity), solvents and other chemicals were 

supplied from Sigma-Aldrich-Fluka (Madrid, Spain). 

Octadecyltrimethylammonium bis(trifluoromethylsulfonyl)imide 

([C18tma][NTf2]), 99% purity; mp 74 °C was obtained from IoLiTec 

GmbH (Germany). Zeolite H-Beta CP811E-150 (SiO2:Al2O3 ratio=300), 

zeolites H-Y CBV720 (SiO2:Al2O3 ratio=30), and HY CBV 400 

(SiO2:Al2O3 ratio=5.1), were obtained from Zeolysts International 

(PA, USA). 

Novozym 435-catalysed FASEs synthesis in [C18tma][NTf2] 

Into a 5 mL test tube with a vacuum septum, 1 mmol of fish or linseed 

oil, were mixed with 3.5 mmol of solketal, and the corresponding 

amount of the IL to reach 40% (w/w) final concentration with respect 

to the overall mass. The resulting reaction mixture was pre-

incubated at 60 ºC for 10 minutes, leading to a monophasic system 

after the IL melting, and then 150 mg of molecular sieves MSX13 

were also added. Finally, the reaction was started by adding 100 mg 

of Novozym 435, the mixture being shaken (300 rpm) under vacuum 

conditions for 6 h at 60 °C. To obtain time-course profiles, 20 µL 

aliquots were taken at regular intervals and suspended in 480 µL of 

octane/isopropanol (95:5, v/v) solution. The resulting solutions were 

strongly shaken for 3 minutes, and then centrifuged at 15,000 rpm 

for 15 minutes at 5 °C to precipitate the solid SLIL. The upper solution 

was analysed by GC.  

Zeolite-catalysed solketal hydrolysis 

The acid zeolite-catalysed selective hydrolysis of ketal ring of solketal 

in presence of an ester compound was tested, as follows: Into a 5 mL 

test tube with a vacuum septum, solketal (0.5 mmol), ethyl 

decanoate (0.5 mmol) and water (3 mmol) were dissolved in t-

butanol (1-mL final volume), and the resulting reaction mixture was 

pre-incubated at the selected temperature for 10 minutes. The 

reaction was started by adding 150 mg of acid zeolite (CBV400, 

CBV720 or CP811-C) under shaking (300 rpm) and controlled 

temperature. At different reaction times, samples (20 L) were taken 

and dissolved in 480 mL of t-butanol, then analysed by GC.  

Coating of Novozym 435 particles with [C18tma][NTf2] 

In a 10-mL capacity test tube, 0.5 g of [C18tma][NTf2] IL were 

dissolved in 5 mL of acetonitrile. Then, 2.5 g of Novozym 435 were 

added, and the mixture was gently stirred for 30 min at room 

temperature. Finally, the solvent was eliminated by continuous 

bubbling of N2 for 30 min at room temperature, and the resulting 

biocatalyst-IL particles were ready for their use. 

Continuous chemocatalytic synthesis of omega-3 MAGs in scCO2 

Both catalyst, the biocatalyst-IL (3 g) and the zeolite (3 g) were 

respectively packed into two different stainless steel tubular reactors 

(10 mL capacity), being then connected by 1/16” tubing and placed 

inside two different heater systems at controlled temperature. As 

depicted in Fig. 4, the enzymatic reactor was continuously feed by 

triglycerides (i.e. fish oil or linseed oil) (76 L/min; 8 mol/min) and 

solketal (36 L/min; 28.8 mol/min) by using two different HPLC 

pumps, while the scCO2 flow (1.5 mL/min, 180 bar) was provided by 

a supercritical pump (Model PU-2080 CO2, Jasco). At the exit of the 

enzymatic reactor, the reaction mixture flow was continuously mixed 

with a 1:1 (v/v) water:t-butanol solution (10 L/min; 278 mol 

H2O/min) by using a HPLC pump, and introduced to the catalytic 

reactor containing acid zeolite catalyst. The system was finally 

equipped by an automatic backpressure regulator (Model BP 2080, 

Jasco) able to continuously deliver the reaction products at room 

conditions by bubbling in a controlled amount of t-butanol placed on 

an ice-bath for 30 min intervals. Samples (20 L) were dissolved in 

480 L of t-butanol, then analysed by GC. In all cases, substrate and 

product mass-balances from the outlet were consistent with the 

substrate mass-flow inlet. 

Chemocatalytic synthesis of omega-3 MAGs in liquid medium. 

The synthesis of omega-3 MAGs was carried out by following two 

consecutive catalytic steps. The first step consisted in the enzymatic 

transformation of the omega-3 triglycerides to produce omega-3 

FASEs in [C18tma][NTf2], as described above. At the end of this 

biocatalytic step, the immobilized enzyme was separated by 

centrifugation, washed with 0.2 mL of t-butanol, and stored for 

further reuse. On the other side, the liquid reaction medium was 

collected into a 2-mL centrifugal vial, mixed with hot water (0.7 mL, 

60 ºC), then vigorously shaken for 3 min, and finally centrifuged twice 

(15 000 rpm, 15 minutes, 15 °C; 15 000 rpm, 15 min, 5 °C), resulting 

in a three-phase system. The upper phase contains the free- IL 

omega-3 FASEs, the middle aqueous phase contains the unreacted 

solketal, whereas the IL (solid phase) was at the bottom of the vial, 

as a result of the sponge-like behaviour of the IL..22,23 The upper 

phase product was carefully collected, and used for the next catalytic 

step. For the determination of the residual IL content in this upper 

phase product, an aliquot of 15 L of the top liquid phase was 

dissolved in 0.485 L of acetone-6 containing 5 L of TFA (internal 

standard), then analysed by 282 MHz 19F NMR in Bruker AC 300E 

spectrometer (see ESI). The second catalytic step consisted in the 

hydrolytic opening of the solketyl-ring moiety in omega-3 FASEs to 

produce omega-3 MAGs in water medium. Into a 1.5 mL vial, 250 µL 

(0.6 mmol) of omega-3 FASEs were mixed with 81 µL (4.5 mmol) of 

water, and pre-incubated for 10 min at 50 ºC. The reaction was 

started by adding the CBV720 acid zeolite (40 mg), and the resulting 

mixture was maintained under shaking for 3 h at 50 °C. To obtain 

time-course profiles, 15 µL aliquots were taken and suspended in 485 

µL of t-butanol:isopropanol (1:1 v:v), and the resulting mixture was 

shaken and centrifuged (5 min, 15.000 rpm, RT) to separate the solid 

zeolite, then the liquid phase was analysed by GC. For zeolite 

recovery and reuse experiments, the catalyst was separated by 

centrifugation of the reaction mixture, collected, and washed with t-

butanol for several times, and finally oven dried for 8 h at 70 °C. 

Gas Chromatography Analysis.  

GC analysis was performed with a GC-2010-Plus apparatus 

(Shimadzu Europe, Germany) equipped with a flame ionization 

detector (FID). Fatty Acid Solketal Esters samples were analysed on a 

TRB-BIODIESEL column (10 m x 0.32 mm x 0.1 µm, Teknokroma, 

Spain) under the following conditions: carrier gas (He) at 129.9 

mL/min; split ratio 80:1; temperature program: 170 °C, 2 min; 
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3 °C/min,  230 °C; 15 °C /min, 350 °C, 5 min. Peak retention times 

(min) were as follows: Palmitic acid solketyl ester, 22.1; 

Polyunsaturated C-18 acid solketyl esters, 23.8, Stearic acid solketyl 

ester, 24.0; Eicosapentaenoic acid solketyl ester, 25.1; 

Docosahexaenoic acid solketyl ester, 26.4. For GC analysis of 

monoacylglycerides, a TRB-1 column (30 x 0.15 mm x 0.53 µm, 

Teknokroma, Spain) was used under the following conditions: carrier 

gas (He) at 129.9 mL/min; split ratio 80:1; temperature program: 

50 °C, 2 min; 10 °C /min; 350 °C, 7 min. Peak retention times (min) 

were as follows: glyceryl palmitate, 22.4; glyceryl polyunsaturated 

C18 acids, 26.5 and 26.6; glyceryl eicosapentaenate, 32.1; glyceryl 

docosahexaenate, 33.9. 

Identification of monoglycerides by GC-MS. GC-MS analyses were 

carried out by using a GC-6890 apparatus (Agilent, USA) coupled to a 

MS-5973 (Agilent, USA) system. The GC was equipped with a HP-5MS 

column (30 x 0.25 µm x 0.25 µm, Agilent, USA) used under the 

following conditions: carrier gas (He) at 103 mL/min; inlet split ratio: 

100:1; temperature program: 8 °C /min, 150 °C, 5 min; 3 °C /min, 

280 °C, 2 min; MS source ionization energy 70 eV. The scan time was 

0.5 s, covering a mass range 400-800 amu mass range. Glyceryl 

palmitate, retention time (rt, min): 38.4, positive ion (m/z): 43.1, 

71.1, 101.1, 129.1, 149.1, 171.1, 191.2, 213.2, 239.3, 269.1, 312.3, 

334.3. Glyceryl monooleate, Glyceryl monolinoleate, Glyceryl 

monolinolenate, rt: 44.2, positive ion (m/z): 55.0, 79.1, 108.2, 135.2, 

173.2, 204.2, 232.3, 264.3, 296.1, 321.3, 352.3. Glyceryl 

eicosapentaenate, rt: 46.4, positive ion (m/z): 55.1, 79.1, 117.1, 

147.1, 171.1, 207.1, 249.1, 281.1, 313.3, 339.3. Glyceryl 

docosahexaenate, rt: 52.8, positive ion (m/z): 55.1, 81.7, 117.1, 145.2, 

207.1, 231.2, 255.2, 281.1, 301.3, 327.1, 353.3, 386.4. 

Results and discussion 

In an attempt to develop simple and sustainable protocols for the 

production of omega-3 monoacylglycerides from natural resources 

(fish or linseed oil), the reported synergic advantages resulting from 

the combination of immobilized enzymes with SLILs/scCO2 have been 

tested.18 By this technology, integrated processes for (bio)catalytic 

transformations and pure product separation can be easily designed 

either in continuous or in discontinuous approaches with full recovery 

of the catalytic systems (catalysts, IL, etc.) for further reuse.19,22 The 

proposed (bio)catalytic approach for the synthesis of omega-3 MAGs 

(see Fig. 1) involves two key steps. The synthesis of FASEs by 

Novozym 435-catalyses transesterification reaction of omega-3 

triglycerides using solketal as the nucleophile in a SLIL was firstly 

tested. Then, the suitability of the acid zeolite-catalyses selective 

hydrolysis of the ketal ring with preservation of the ester linkage in 

aqueous medium was studied. Both catalytic steps were incorporated 

in a continuous or discontinuous process, properly designed to directly 

provide the omega-3 MAGs products. For the case of the continuous 

process, the reaction system was operated under a scCO2 flow for 

mass transport through the consecutively connected catalytic reactors. 

Lipase-catalysed FASEs synthesis in the [C18tma][NTf2] IL. 

The suitability of immobilized Candida antarctica lipase B to carry out 

the biocatalytic synthesis of omega-3 FASEs was first studied by a 

transesterification approach in the [C18tma][NTf2] IL as reaction 

medium at 60 °C. Two different omega-3 enriched oils (i.e.,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Yields obtained for the Novozym-435-catalysed synthesis of FASEs 

by the transesterification of triacylglycerides from linseed () or fish oil () 
with solketal in 40% w/w [C18tma][NTf2] at 60 °C. 

menhaden crude fish and linseed oils) were tested as acyl donors, 

while solketal was the nucleophile acceptor for both cases. As a 

representative example, Fig. 2 depicts the time course for the 

Novozym 435-catalysed omega-3 FASEs synthesis by 

transesterification at a 1:3.5 oil:solketal molar ratio at 60 ºC. As can 

be seen, the biocatalytic system was able to produce up to 99% FASEs 

yield in 6 h from these enriched omega-3 oils, a profile similar to the 

one previously reported for cottonseed oil.25 This excellent suitability 

of immobilized lipases to carry out the transesterification reaction on 

oils can be related to the ability of the hydrophobic ionic liquids 

based on cations with long alkyl side chains, like [C18tma][NTf2], to 

simultaneously dissolve both the omega-3 oil and the alcohols, 

resulting monophasic reaction media, enhancing transport rate of 

substrates/products towards and from the enzyme 

microenvironment, which was independent of the nature of the oil 

source.22 Furthermore, it was observed how the assayed omega-3 

oil:solketal molar ratio was an important parameter to achieve the 

 

Table 1. Influence of the linseed oil:solketal molar ratio on the Novozym-

435-catalysed FASEs synthesis in 40% (v/v) [C18tma][NTf2] IL at 60 °C. 

Entry Linseed oil :solketal ratio 
ratio (mol/mol) 

FASEs Yield 
( % ) 

1 1:2 66.9 

2 1:2.5 73.0 

3 1:3 92.2 

4 1:3.5 99.0 

5 1:6 100 
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Figure 3. (A) Time-course profile of both the solketal () and ethyl decanoate 

() concentration in a water/t-butanol medium with the presence of CBV720 
acid zeolite at 50 °C. Ethyl decanoate (dark) and solketal (clear) concentration 
in a water/t-butanol medium after 2 h in the presence of an acid zeolite (i.e. 

CBV400, CBV720 or CP811-C) at 80 °C (B), or 50 °C (C) . 

full conversion of TAGs in FASEs, which was only observed when the 

solketal concentration was at least 3.5-times higher than that for 

TAGs concentration (see Table 1,entries 3 and 4). The obtained 

product yield for a 1:2 (mol:mol) omega-3 oil:solketal ratio (see entry 

1) could also be considered as a good result, because the final 

reaction media just contained a mixture of FASEs and MAGs. 

However, taking into account the differences in hydrophilicity 

between both the FASE and the MAG products, a 1:3.5 (mol:mol) 

TAGs:solketal ratio was selected as the optimal ratio for further 

biocatalytic procedures, because of the favoured mass-transport 

processes of the hydrophobic FASEs, with respect to MAGs, by the 

scCO2 flow.19d In the same context, the extraction of hydrophobic 

compounds from SLILs by using the sponge-like technology involves 

the use of water for separation of all the hydrophilic compounds into 

a middle aqueous phase, remaining the pure hydrophobic 

compounds in the top phase.23 By a full transformation of TAGs in 

FASEs, the separation of pure products is clearly improved.22d,25 

Acid zeolites-catalysed hydrolysis of the solketal ring. 

The opening of the solketal ring to produce the corresponding glycol 

can be carried out by a controlled acid-catalytic hydrolysis.26 For the 

case of FASEs, it is necessary to take into account that a proper 

selection of the acidic strength of the catalyst is key to provide the 

desired omega-3 MAGs products by a selective hydrolysis of the ketal 

ring moiety, without affecting the ester linkage (see Fig. 1).  In this 

context, the suitability of three different acid zeolites (CBV400, 

CBV720 and CP811-C) for catalysing the hydrolysis of solketal and 

ethyl decanoate, as a model ester, was tested in water/t-butanol 

reaction medium at 50 and 80 °C, respectively. Figure 3A depicts the 

time-course profile of ethyl decanoate and solketal concentrations in 

the presence of the zeolite CBV 720 at 50 °C. The concentration of 

the ester compound remained constant for 2 h of reaction, while the 

ketal concentration was rapidly decreased. Figure 3B shows the 

remaining solketal and ethyl decanoate concentrations in the 

reaction media after 2 h reaction for each of the zeolite tested at 80 

°C. As can be seen, all zeolites were able to fully hydrolyse the offered 

solketal after 2 h (remaining concentration < 5%), while some 

decrease in the concentration of the ester was also observed when 

increasing the acidic strength of the zeolite (CBV400 < CBV720 < 

CP811-C), according to their Si/Al ratio (see Experimental Section). 

Both CBV720 and CP811-C zeolites could be considered as 

unappropriated to carry out the production of MAGs from FASES at 

80 °C, because of the undesired hydrolysis of the ester linkage that 

occurs simultaneously with solketal hydrolysis. Alternatively, when 

the same reaction systems were assayed at 50 °C (see Fig. 3C), only 

the middle acidic zeolite (CBV720) was able to provide full solketal 

hydrolysis maintaining unchanged the ethyl decanoate 

concentration. Although this result was similar to the obtained by the 

lowest acidic zeolite (CBV400) at 80 ºC (Fig. 3B), the use of CBV720 

zeolite at 50 °C was selected as the catalytic system for further 

studies, because of the better suitability of low temperatures for the 

industrial processing of omega-3 oils.27 Other strong acidic catalysts 

based on sulfonic groups (e.g. Amberlyst-15) led to worse results, 

because of the full hydrolysis of ketal and ester, even at room 

temperature (data not shown).  

Continuous chemocatalytic synthesis of omega-3 MAGs in scCO2 

flow 

The excellent suitability of biphasic systems, based on a 

combination of ILs and scCO2 with enzymes, has been reported as an 

important “arsenal” of green tools to develop clean chemical 

processes of industrial interest,16,19,28 even with multi-catalytic 

steps.29 In this context, a two reactors system connected in series 

was developed to carry out the synthesis of omega-3 MAGs from 

omega-3 TAGs and solketal in scCO2 (see Fig. 4). As can be seen, the 

first reactor contained the Novozym 435 particles coated with 

[C18tma][NTf2], because of the protective effect of this IL against the 

denaturation effect of scCO2.18b,28,29 The second reactor was based in 

a catalytic packed bed system, containing the CBV720 acid zeolite. 

The system operated with a continuous feed of both the omega-3 oil 

and solketal substrates at the entry of the first reactor, being directly 

transported by the scCO2 phase to the biocatalyst-IL 

microenvironment. The resulting FASEs products were subsequently 

transported by the supercritical fluid to the exit of this biocatalytic 

module. Then, the FASEs-scCO2 flow was continuously mixed with a 

water/t-butanol mixture by a pump, being fed to the second reactor 

containing the acid zeolite catalysts to carry out the selective 

hydrolysis of the solketal moiety of FASEs, and to produce the final 

omega-3 MAGs under continuous operation. 

For this supercritical bi-catalytic flow system, it is necessary to 

underline that the hydrophobic character of scCO2 does not permit 

the extraction or the transport of hydrophilic compounds, like 

glycerol or water, being necessary the presence of an hydrophilic co-

solvent like ethanol or t-butanol for improving this operation.30 In 

this context, it should be pointed out that the feeding of the second 

reactor with pure water led to its direct adsorption on the zeolite, 

resulting in an inactive wet catalyst and the clogging of the system 

after several hours of operation. In order avoid this drawback and to 

maintain the necessary mass-transport of FASEs to the zeolite, and 

the return of the synthesized MAGs to the scCO2 flow, water was 

introduced as a mixture at 50 % (v/v) in t-butanol, as a solvent 

suitable to dissolve acylglycerides.19d,31 
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Figure 4. Experimental set-up for the continuous scCO2 bi-reactor system 

system, containing Novozym 435 coated with [C18tma][NTf2] (Reactor 1), and 
the CBV720 acid zeolite (Reactor 2), for the transformation in two-steps of 
TAGs to omega-3 MAGs. See experimental section for further details. 

Figure 5 A shows the time course profile of the omega-3 MAG yield 

obtained by the bi-reactor system when using fish oil as substrate. As 

can be seen, the system reached a 100% yield after 2 h operation. 

This was maintained for a short time before a continuous decay was 

observed up ca. 45 % yield, which could be related to the 

deactivation of the biocatalyst.16a However, washing the Novozym  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A. Time-course profile of the continuous omega-3 MAGs synthesis 

catalysed by two consecutive reactors, containing Novozym-435 coated with 
[C18tma][NTf2], and the CBV720 acid zeolite, respectively, under a scCO2 flow 

(1.5 mL/min, 18 MPa) at 60 °C. The biocatalytic reactor was fed with fish oil 
(0.076 L/min; 8 mol/min) and solketal (36 L/min; 28.8 mol/min). 
Operational stability of the proposed Novozym 435-IL/CBV720 zeolite bi-

reactor system at the conditions reported above, being fed by fish (B) or 
linseed (C) oils, respectively, containing 10% (v/v) t-butanol. Each point 
corresponds to the average value of all samples obtained during each 6 h 

cycle. See experimental section for further details 

435/[C18tma][NTf2] catalytic system with t-butanol after 14 h 

operation and re-coating again the biocatalyst with the IL, led to the 

full recovery of the catalytic activity, resulting again a 100% omega-

3 MAGs yield. As previously reported,19d this activity decay could be 

attributed to the low efficiency of the hydrophobic scCO2 phase to 

transport the hydrophilic by-product glycerol out of the biocatalysts 

particles, being retained in the IL layer coating the support. This fact 

leads to a continuous biocatalyst poisoning, hindering the entry of 

fresh TAGs to the biocatalyst active sites.  

In this context, the suitability of this supercritical bi-catalytic flow 

system was improved under continuous conditions by adding 10 % 

(v/v) t-butanol into the fish (Fig. 5B) and linseed (Fig. 5C) oils used as 

substrate. As can be seen, the catalytic activity shown by the enzyme 

was practically unchanged for all the assayed operation cycles, whith 

the omega-3 MAGs yield being over 95% in all cycles. It is worth 

mentioning that the presence of t-butanol reduced the viscosity of 

the oil substrate, facilitating the work of the HPLC pump. These 

results point out the importance of mass-transfer limitations for 

continuous multi-reactor systems under scCO2 to achieve long-term 

productivities when processing triglycerides.18 

The excellent suitability of the proposed supercritical bi-catalytic 

system is tarnished by the presence of the glycerol by-product and 

the t-butanol co-solvent in the omega-3 MAGs flow, being necessary 

a further separation step to obtain pure product (e.g. molecular 

distillation).32 Although ILs are non-miscible with scCO2, it should be 

noted that a residual IL content (< 0.2 %, as determined by 19F NMR) 

was also present, because of the ability of both solketal and t-butanol 

to dissolve a minor amount of the IL adsorbed onto the immobilized 

enzyme particles under operational conditions. In this context, the 

use of immobilized lipases onto supported ionic liquid-like phases 

(SILLPs), based on the covalently binding IL-like fragments on the 

surface of the solid supports, has been reported as a useful 

alternative to avoid the loss of the IL-coating enzyme under the 

operation flow.16b,19 

Chemocatalytic synthesis of omega-3 MAGs in liquid medium. 

In an attempt to directly obtain a pure omega-3 MAG product 

through the above reported catalytic step, avoiding the use of co-

solvents like t-butanol, an alternative discontinuous experimental 

set-up was developed. This approach was based on the excellent 

suitability of the sponge-like ionic liquids technology to carry out 

both the biocatalytic transformations of hydrophobic substrates, and 

the subsequent separation between the pure products and the IL by 

a straightforward protocol, affording the reuse of all the elements of 

the reaction system (i.e. catalysts and IL).23 In this context, the 

assayed experimental set-up for the production of nearly pure 

omega-3 MAGs from omega-3 TAGs by using the SLIL technology was 

based in three main steps (see Fig. 6).  

The first step concerns the Novozym 435-catalysed 

transesterification of TAGs with solketal to produce FASEs using the 

[C18tma][NTf2] IL as reaction medium at 60 °C. After 6 h of reaction, 

the immobilized enzyme particles were separated by simple 

centrifugation, then washed with t-butanol to eliminate glycerol 

hydrophilic shell that poisons the biocatalyst,22b and finally stored for 

12 h in a desiccator for further reuse. Figure 7 shows the residual 

activity of these recovered immobilized enzymes in the synthesis of  
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Figure 6. Scheme of the cyclic protocol for the production of omega-3 MAGs 
in three steps. Step 1. Novozym-435-catalysed FASEs synthesis by 
transesterification of omega-3 oils with solketal in 40% (w/w) [C18tma][NTf2] 
at 60 °C. Step 2. Separation of FASEs/[C18tma][NTf2] reaction mixtures by 
adding hot water (60 °C), shaking and centrifuging twice (15 000 rpm, 15 
minutes, 15 °C; 15 000 rpm, 15 min, 5 °C). Step 3. CBV720 acid zeolite-
catalysed omega-3 MAGs synthesis by hydrolysis of omega-3 FASEs with 
water (24% v/v final concentration) at 50 °C. Experimental Section for further 
details. 

omega-3 FASEs by the transesterification of fish and linseed oils with 

solketal for seven consecutive catalytic cycles of enzyme reuse. As 

can be seen, the enzyme showed a constant level in activity, with just 

a slight decrease for the last two cycles, probably due to the 

uncontrolled loss in enzyme particles during the washing steps. Once 

again, the excellent suitability of a hydrophobic ionic liquid, based on 

cations with large ILs, based on large alkyl chains in the cation and 

the [NTf2] anion, provided an excellent microenvironment for the 

catalytic activity of lipase B from Candida antarctica.22,23 

The second step consisted in the fractionated separation of the 

components of the reaction media: FASEs, SLIL, glycerol by-product 

and residual solketal. As shown in Fig. 6, the addition of hot water 

into the fully clear and monophasic reaction medium obtained from 

the biocatalytic step, led to a heterogeneous mixture, because of the 

precipitation of the solid SLIL, which improved upon cooling to room 

temperature. The semisolid heterogeneous mixture obtained was 

then separated by following an iterative cooling / centrifugation 

protocol (15 000 rpm, 15 minutes, 15 °C; 15 000 rpm, 15 min, 5 °C), 

resulting in three phases: an upper IL-free omega-3 FASEs phase, a 

middle IL-free liquid aqueous phase containing glycerol and the 

excess of solketal, and a bottom solid containing the SLIL. The  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Operational stability of the Novozyme 435/[C18tma][NTf2] (40% 
w/w) system for producing FASEs by the transesterification of linseed (white) 
or fish (black) oils with solketal for 6 h of reaction at 60 °C  

washing with water, as a green molecular solvent immiscible with the 

omega-3 FASEs and the SLIL, favoured the clean separation of all the 

components,18,25 providing an easy and sustainable way to separate 

nearly pure FASEs, that could be collected and directly used for the 

final catalytic step. The solid IL was recovered, dried, and stored into 

a desiccator for further reuse.  

Additional features to be considered regarding the suitability of SLILs 

for this proposed separation approach concern the excellent stability 

(e.g. thermal,33 electrochemical,34 and even against gamma 

irradiation,35 etc.) of ILs based on the [NTf2] anion, being not affected 

by the presence of water.36 Indeed, the insolubility in water of the 

SLILs, as well as the melting points higher than room temperature 

displayed by these ILs, allow their immediate precipitation as solids 

and their easy full recovery, even after a possible accident during 

handling.23 Outside a possible optimization of the washing-by-water 

step (e.g. water volume, type of mixing, etc.), these features also 

involve that the middle aqueous phase may be considered as being 

an IL-free glycerol solution in water that could be recovered, rather 

than being defined as wastewater. 

As depicted in Fig. 6, the third step consisted in the hydrolysis of the 

ketal ring in omega-3 FASEs catalysed by the CBV720 acid zeolite at 

50 °C. Taking into account the limited solubility of water in FASEs, as 

well as the hygroscopic character of zeolites, a 1:7.5 (mol:mol) 

FASEs:water ratio was assayed. This ratio provided enough water 

molecules for the catalytic reaction, and still afforded a fully clear and 

monophasic reaction medium prior to the addition of the zeolite. 

Figure 8 shows how the omega-3 MAGs yield resulting from this 

catalytic reaction was close to 100 % for the linseed FASEs and 

remained unchanged for six operational cycles of reuse of the zeolite. 

The decay in the product yield observed for the last operation cycles 

could be due to the uncontrolled loss in zeolite particles during the 

washing steps (see Experimental section). This behaviour was also 

observed for the case of FASEs obtained from fish oil, although the 

maximum omega-3 MAGs yield observed was limited to ca. 70%. It 

should be noted that the fish oil used as the initial substrate is a raw 

material from a natural source, containing unknown compounds 

other than TAGs that could be adsorbed onto the zeolite reducing 

the hydrolytic activity. Indeed, a continuous browning of the zeolite 

with reuse during operational cycles was observed, even after  
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Figure 8. Operational activity of the CBV720 acid zeolite as catalyst for the 
synthesis of omega-3 MAGs by hydrolysis of the FASEs, obtained from linseed 
(black) and fish (white) oils (1:7.5 water:FASEs molar ratio) at 50 °C. 

washing, while no changes in colour was detected in the case of 

linseed oil. 

To assess the practical suitability of the (chemo)enzymatic 

process for producing omega-3 MAGs from fish or linseed raw edible 

oils, its scale up, by a factor of 20, was carried out by using 50-mL 

Falcon tubes. As can be seen in Fig. 9, the fully clear reaction media 

obtained after the biocatalytic reaction (Step 1) became cloudy after 

addition of a similar volume of hot water (60 ºC) and shaking at room 

temperature. This step was key for the extraction of both the glycerol 

by-product and the excess of solketal, as hydrophilic molecules, to 

the aqueous phase, (Fig. 9B). By following the corresponding cooling 

and centrifugation protocol (Step 2), the efficient separation 

between all components of the system (i.e. the solid SLIL at the 

bottom, the glycerol and solketal at the middle aqueous phase, and 

the pure omega-3 FASEs at the top phase) was easily carried out (Fig. 

9C).  

 

 

 

 

 

 

 

 

 

 

 

Figure 9. A. Reaction media obtained after the biocatalytic synthesis of 
omega-3 FASEs from linseed (L.O.) and fish (F.O.) oils in [C18tma][NTf2]. B. 
Heterogenous mixtures resulting by the addition of hot water into the 
reaction media. C. Separation between both the omega-3 FASEs (upper 
phase) and the [C18tma][NTf2] IL (bottom phase) by following the 
cooling/centrifugation protocol. (see Experimental Section for further 
details). 

The synthetic product yields of this biocatalytic step were ca. 99 

% for both oils. After the careful collection of the FASEs product, the 

acid hydrolysis of the solketyl moieties was carried out by the zeolite 

catalyst in separate tubes (Step 3), resulting in fully clear reaction 

media containing the nearly pure omega-3 MAGs (98 % and 70 % 

w/w yields for the linseed and fish oil, respectively). The suitability of 

the proposed protocol can be attributed not only on the high yield of 

nearly pure omega-3 MAG products, but also on the excellent 

recovery yield of the solid SLIL (ca. 99 % w/w), pushing directly to its 

straightforward implementation over any scaling up process.  

Conclusions 

The chemo-enzymatic approach for the synthesis of omega-3 

MAGs from raw fish and linseed oils was successfully carried out in IL 

and IL/scCO2 reaction media. The strategy was based in two 

consecutive catalytic steps, involving the selective transformation of 

TAGs in FASEs by Novozym 435, followed by the hydrolysis of the 

ketal moieties of FASEs carried out by an acid zeolite. The SLIL 

[C18tma][NTf2] was shown to be an excellent reaction medium for the 

lipase-catalysed transesterification reaction of omega-3 TAGs with 

solketal, even in continuous operation under supercritical 

conditions. In the same way, the appropriate selection of the acid 

catalyst and the reaction temperature has been shown as key 

parameters to achieve the selective hydrolysis of the ketal moiety 

without affecting the ester linkage inside the MAGs molecules.  

Although both the continuous and the discontinuous approaches 

provided excellent results for omega-3 MAGs production, the need 

for the use of t-butanol, as a polar co-solvent enabling the mass-

transport phenomena of hydrophilic compounds, tarnish the 

continuous approach under supercritical conditions. The 

discontinuous strategy based on the SLIL technology permitted the 

selective transformation and separation of the intermediate FASEs 

product, with full recovery of the IL for further reuse. Thus, the 

extracted omega-3 FASEs may selectively be transformed to omega-

3 MAGs by an acid zeolite-catalysed hydrolytic reaction under mild 

conditions. Using this approach, almost pure omega-3 MAG products 

were obtained, while the recovery and reuse of the elements of the 

catalytic system (biocatalyst and acid catalyst), led to maintenance in 

activity for many operation cycles.  

These results clearly represent a sustainable approach to 

produce omega-3 MAGs by using raw sources of omega-3 TAGs, 

pushing on the development of green chemical multi-catalytic 

processes at an industrial level.  
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