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Abstract
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Master’s Thesis

Implementation and testing of point cloud based grasping algorithms for object
picking

by Nataliya NECHYPORENKO

The purpose of this study is to investigate the most effective methodologies for the
grasping of items in an environment where success, robustness and time of the
algorithmic computation and its implementation are a key constraint. The study
originates from the Amazon Robotics Challenge 2017 (ARC’17) which addresses the
problem of automating the picking process in online shopping warehouses. In a real
warehouse environment the robot has to deal with restricted visibility and accessi-
bility. The proposed solution to grasping was to retrieve a final position and orienta-
tion of the end effector given only sensory information without mesh reconstruction.
Two grippers were used: a two finger gripper with a narrow opening width and a
vacuum gripper. Antipodal Grasp Identification and Learning (AGILE) and Height
Accumulated Features (HAF) methods were chosen for implementation on a two
finger gripper due to their ease of applicability, same type of input, and reportedly
high success rate. One major contribution of this work was the creation of the Cen-
troid Normals Approach (CNA) method for the vacuum gripper that chooses the
most central point cloud grasp location on the flattest part of the object. Since it does
not include calculation of orientation, its computation time is faster than the other
approaches. It was concluded that CNA should be used on as many objects as pos-
sible with both the vacuum gripper and the two finger gripper. A final scheme has
been devised to pick up the maximum number of items by combining algorithms
on the two different grippers, given the hardware restrictions, to cater to different
objects in the challenge.
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Chapter 1

Introduction

The following chapter presents the background of the ARC’17 competition and its
influence on the thesis as well as the approach taken by the UJI RobinLab team in
order to tackle the challenge. Many of the decisions to be taken later in the selec-
tion of robotic strategies are based on the background of the competition and the
restrictions posed by the solution of the team.

1.1 Amazon Robotics Challenge 2017

The Amazon Robotics aims to automate the task of customer order placement and
delivery of its products. Amazon’s automated warehouses successfully remove the
walking and searching for the object but automated picking still remains a difficult
challenge. The extraction of the product from a shelf and its packaging in an unstruc-
tured environment does not yet have a viable solution to Amazon’s taste. In order to
spur the advancement of these fundamental technologies, that in the end can be used
at warehouse all over the world, Amazon Robotics organizes the Amazon Robotics
Challenge. The first two challenges, formerly called the Amazon Picking Challenge,
were held at the International Conference on Robotics and Automation (ICRA) 2015
and Robot Soccer World Cup (RoboCup) 2016. Amazon opened the applications for
the competition in November 2016 asking for new and improved solutions from in-
dustries, universities, and private partnerships alike. The challenge tasks entrants to
build their own robot hardware and software that can attempt simplified versions
of the general task of picking and stowing items on shelves. The challenge combines
object recognition, pose recognition, grasp planning, compliant manipulation, mo-
tion planning, task planning, task execution, and error detection and recovery. The
challenge event will consist of three tasks; the pick task, the stow task, and the final
round task.[1] The robots will be scored based on how many items are picked and
stowed in a fixed amount of time. After the competition is complete, the teams share
and disseminate their approach to improve future challenge results and industrial
implementations.

1.1.1 Items

Figure 1.1 shows the items from the ARC’17 database. The items have been selected
not only because of their common occurrence in the Amazon warehouses but also
because of their varied form and composition. In terms of vision, the items that are
difficult to recognize are the items that have no features or the ones that have generic
features that can be applied to more than one object. The only direct features that
the Avery binder and the face cloth have are their white color, which can potentially
confuse the algorithm and mistake one object for the other. In terms of grasping,
the difficulty lies in item dimensions, texture, and point cloud representation. Some
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items, such as the bath sponge can easily slip through the fingers of the gripper
and others, like the mesh cup, lets through vacuum air pressure. Neither the point
cloud nor the vision system gives information about the orientation of the object
and the reality may not be what the algorithm perceives. These complications call of
algorithms that are robust to changes in object orientation and the variety of shapes
and textures that it takes on.

Reynolds Wrap 85 Sq. Ft. Bag of Balloons

The Bathery Delicate Bath 
Sponge

Mini Marbles Clear Lustre Avery 1" Binder - White Robots Everywhere

Buns Bees Baby Wipes Colgate Toothbrushes Crayola Crayons Speed Stick 2 Pack Mesh Pencil Cup Scotch Cloth Duct Tape

DVD Robots Dr. Teal's Epsom Salts Expo Eraser Windex Spray Bottle Flashlights Knit Gloves Black

Elmers Glue Sticks Neoprene Weight - Pink Sterilite Ice Cube Tray Spiral Index Cards
Laugh Out Loud
Jokes For Kids

Kleenex Cool
Touch Tissues

Target Brand Measuring 
Spoons TomCat Mousetraps Green Composition Book

Poland
Springs Water Bottle

Johnson
& Johnson Paper Tape Ticonderoga Pencils

Reynolds Pie Pans Fiskar Scissors Irish Spring Hanes White Socks Scotch Sponges Table Cover (In Bag)

Wilson Tennis Balls Plastic Wine Glasses Clorox Toilet Brush White Face Cloth

FIGURE 1.1: Known items in the ARC’17 dataset [1]
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1.1.2 Pick Task

The competition set for the pick task will consist of 32 items that fit in two totes.
The team members will stow by hand the competition set items into their storage
system. Stowing all the items must take no more than 8 minutes, and all items must
be stowed. After all the items are stowed, the judges may adjust the poses of some or
all of the items. The judges will create an item location file with the contents of bins
A through J, which they will provide to the team. Once the items are stowed, the
team will be provided an order file that specifies 10 target items and three orders: a
5 unit order, a 3 unit order, and a 2 unit order. The Robot will then have 15 minutes to
pick the three orders. Each order will have an associated cardboard box and target
items for the order should be packed into the correct box for the order. The robot
may also move non-target items between bins in the storage system if desired.

1.1.3 Stow task

The judges will provide one crowded tote, filled with 20 items in an unstructured
jumble, and will place that tote in the position indicated by the team. An example of
such tote can be seen in Figure 1.2. The judges will also provide the team an initial
item location file. The robot will have 15 minutes to move all the items into the
storage system. While the robot is allowed to move the tote, it must manipulate the
items to get them out of the tote or into the storage system and may not dump the
tote. At the end of the task, the robot will report the final location of each item (stow
tote or which bin in the storage system) in the item location file.

FIGURE 1.2: Example totes for stow task

1.1.4 Final round task

The final round task will start with two totes of 16 items each, both of which will
contain an even split of new and training items. The team members will stow the
first tote by hand in 4 minutes following the same procedure outlined in the pick
task. The judges will provide an item location file with the storage bin contents after
the manual stow and the contents of the remaining stow tote. The robot will then
have a total of 30 minutes for the remainder of the final round task, which can be
divided between stow and pick however the team chooses. The robotic stow phase
will involve putting away the remaining 16 items into the storage system. The robot
will report the final location of each item (stow tote or which bin in the storage
system) in the item location file; any errors may not be corrected. The team will then
be provided three cardboard boxes and an order file that specifies 10 target items
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from the 32 in the competition set and three orders: a 5 unit order, a 3 unit order,
and a 2 unit order. The robot will then pick the available target 8 of 11 items for each
order into the associated cardboard box. Points will be awarded and subtracted
using the same rubric as the pick and stow tasks.

1.2 UJI RobinLab enters the competition

The Robotic Intelligence Lab (RobinLab) located at Jaume I University (UJI) has been
selected as a finalist for the 2017 competition. UJI’s platform is based on Rethink
Robotics Baxter. As opposed to some traditional industrial arms, a low-cost dual-
arm robot is in line with ARC’s spirit about manipulation in a warehouse.

The shelving design is based on a reliable industrial solution. Bins can smoothly
slide on a system of free-rotating rollers that are actuated by an external mechanism
attached to the robot system. The bins can, in this way, move in and out like drawers,
and can be fully taken out of the storage system. Then, the mechanism also allows
movement of the bin up or down to the desired height. The robot or the mechanism
only has to slide the drawers without moving the shelf itself. The number of bins
is optimized so that their overall surface is maximized to avoid cluttering as much
as possible. The shelving system has been named Rrupert, and will be referred to
by this name. In order to complete the challenge specifications, the hardware and

FIGURE 1.3: Robot, shelving, and storage system of the UJI RobinLab
team

software components have been split among the members of the UJI RobinLab team.
The team has been split into several Work Packages (WP) with each one responsible
for a part of the competition, as shown in Table 1.1. Both the implementation and
evaluation have been deemed important to the design and development process.
Each team is essential to the functionality of the full system. The aim is to complete
the pick and stow tasks during the ARC’17 with the most success and hence with
the most accumulated points.

1.3 Thesis summary

The topic addressed in the following thesis will be the topic of grasping. The archi-
tectures of Figures 1.4 and 1.5 show where the task of grasping fits within the system.
The grasping algorithm receives as input from the vision team, the object that has
been identified and the location of the object through its approximate point cloud.
The algorithm has to output the position and orientation of one or several grasps
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TABLE 1.1: UJI RobinLab Work Packages

WP Responsibility
1 Task Planning Architecture Integration
2 Object Recognition
3 Grasping
4 Motion Planning
5 Hardware Design
6 Performance Evaluation
7 Logistics
8 Management

Compet. Set
Preview

Init
Stow

Judge give us 
ONE item

Put item in 
the storage 

system

Repeat 
32

End
Stow

8 min

Judges adjust 
items poses 

Judges create 
items location 

 file

Judges give 
us file with 

orders

Init 
Picking

Policy picking 
selection

Reach bin 
from shelf

Place bin in 
picking zone

Select object 
for grasping

Identify and 
locate object 

in bin

Select 
grasping 

policy

Move arm for 
grasping pose

Execute 
grasping

Grasping 
success

Move object 
to cardboard 

box

Place 

Repeat 
10

End
15 min → 1.5 min / item

Compet. Set
Preview

Judge give us 
ONE item

Policy picking 
selection

Grasping 
success

No

Yes

FIGURE 1.4: Pick task software architecture

that can be sent to the manipulation algorithm. The robot then has to move the arm
such that the end effector ends up in the desired location to grasp the object. Two
grippers have been mounted on the Baxter robot. The first gripper is a two finger
gripper with a limited opening width, for which it has been named the Pincher. The
second gripper is a vacuum gripper that uses air pressure to pick up objects. The
goal of the following work is to implement software in order to make the most use
of the grippers.

The first two contributions deal with algorithms. A two finger method, as will
be seen in the next chapter, has been widely researched and thus it remained to im-
plement current work on the robot. AGILE and HAF grasping have been chosen
since they both use a point cloud as an input and a grasp position and orientation
as output. One contribution was the implementation of Antipodal Grasp Identi-
fication and Learning (AGILE) and Height Accumulated Features (HAF) grasping
and quantitatively comparing their computation time and qualitatively comparing
their robustness and success. Through simulation and arm approach, it was shown
that AGILE was less robust and took on average 3s more than HAF grasping. HAF
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Init 
Stowing

20 objects 
in a tote

Place in the 
system

Policy 
stowing 

selection

Place Tote in 
Picking zone

Visual 
analysis

Select object 
for grasping

Select 
grasping 

policy

Move arm 
for grasping 

pose

Execute 
grasping

Grasping 
success

Reach bin 
from self

Place Bin in 
Picking zone

Place Bin in 
Picking zone

Recognize 
and identify 
the object

Move arm for 
object 

recognition

Object 
identified

Place object 
in bin

Move arm to 
amnesty tote

Place object

Bin 
ready

Tote
empty

End

20 items/15 min -→45 
seg/item

Save object 
in file

No

No

No

Yes

Yes
Yes

No

FIGURE 1.5: Stow task software architecture

grasping gave fewer grasp options with only vertical grasps but showed better ro-
bustness and computational speed. Table 1.2 shows the strengths and weaknesses
of the methods in comparison with each other. Given the results, AGILE was elimi-
nated from the system without full grasp testing. Once the HAF algorithm has been
more thoroughly tested with the robot, it was also shown that many grasp positions
and orientations are not feasible due to hardware restrictions of the robot arm and
the robot gripper.

TABLE 1.2: Comparing AGILE and HAF

Criteria AGILE HAF
Time - +
Robustness - +
Success + +

The second major contribution was the creation of the Centroid Normals Ap-
proach(CNA) algorithm. It uses the point cloud and the major graspable component
of the object in order to find the centroid and its normals in the flattest part of the
point cloud of the object. Then grasps are rotated around the vertical z-axis such
that the final grasp is most comfortable for the Baxter robot. This algorithm was
used with the vacuum gripper for items with a nonporous texture and with the two
finger gripper for soft items that can be "pinched."

The final contribution is to match the competition objects to the grasping tech-
niques and grippers to maximize the number of points for the team. Table 4.7 has
been put together after observation and quantitative analysis of successful trials of
pick and stow tasks. The tests have been done in a real environment where the
grasping algorithms have to perform from within the system integration in the fi-
nal warehouse-like setting. Various charts expose problems that grasping may en-
counter when being fully integrated, adding another level to analysis of grasping
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success. But this table also exposes the analysis that one universal algorithm for one
universal gripper has not been found and currently various algorithms for various
grippers was the best solution. Demonstration videos are available online. [2]

1.4 Thesis outline

Given the introduction for the motivation of the thesis and its background infor-
mation, the next chapter, Chapter 2, will present the most relevant research works
targeted at solving grasping problems similar to those presented by ARC’17. After
presenting the reader with the status of the current research, the justification for the
selected algorithm will be given. Chapter 3, then explores chosen algorithms more in
depth and presents the hardware that will be executing the algorithms. With the the-
oretical knowledge of the approaches, Chapter 4 leads into the experimental setup.
The tests are presented in a systematic manner such that the given procedures can be
replicated and confirmed. The experimentation aims to isolate the algorithms and
compare their strength and weaknesses such that the best approach to the grasping
problem of ARC’17 can be chosen. The results of such experimentation are pre-
sented concurrently with procedures. Chapter 5 leads the discussion of the results
and the proposed solution to optimize the success of the grasping problem of the
competition. Finally, Chapter 6 concludes the work and identifies further ideas to
complement or extend the work that has been documented in the thesis.
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Chapter 2

Robotic Grasping

The following chapter introduces the topic of robotic grasping. The first part de-
fines grasping and the categorization of methodologies. The definitions have been
included in order to establish a basis for the work presented in further chapters. The
second part introduces the state of the art. The papers will be perceived in light of
the restrictions posed by the competition. If the materials or the requirements of
the grasping strategy presented in the publication is seen as incompatible then the
strategy will not be considered for further exploration and implementation.

2.1 Terminology

The solution of grasping from a bin or a tote may seem specific however it has a
broad range of applications. The solution to this problem can help as much in a ware-
house as in agriculture picking fruit or in a hospital helping with medical equipment.
As of now, robots have been successfully integrated into computer-controlled elec-
tromechanical devices into a wide variety of industrial environments. Routinely in-
corporated for mundane tasks of welding and painting car bodies on assembly lines,
or stuffing printed circuit boards with IC components. But the future of robotics
lies in its versatility and the abilities to be able to perform tasks such as inspecting
and repairing structures in nuclear, undersea, and underground environments, and
even picking oranges and harvesting grapes in agriculture. In order to perform such
tasks, the robot needs to be able to adapt to any object in the environment or use the
given manipulator in many ways. The fascination with manipulator adaptability
has lead researchers to create anthropomorphic hands such as the Salisbury Hand
(also known as the Stanford/JPL hand), the Utah/MIT hand, the NYU hand, and
the research hand Styx.[17] However, the control of such hand, as well as the further
need to investigate lightweight actuators has led many researchers to simplify the
problem into a simple pinching system because," for most objects, there is typically
a small region that a human (using a two-fingered pinch grasp) would choose to
grasp it."[26]. So, as can be seen in Figure 2.1, the complexity of the robotic grasp can
often be avoided because in order to hold an object enough force can be provided on
either side of the object to constrain its motion. However, as will be explained later,
the two finger grasp will not always ensure stability of the object and its ability to
withstand external disturbances. The investigation of robotic grasping and robotic
manipulation gives a great appreciation of the incredible power and subtlety of our
own biological motor control systems.

A grasp is commonly defined as a set of contacts on the surface of the object,
which purpose is to constrain the potential movements of the object in the event of
external disturbances. Grasp synthesis refers to the problem of finding a grasp con-
figuration that satisfies a set of criteria relevant for the gasping task.[4] The set of
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FIGURE 2.1: Two finger grasp [29]

contacts defining each grasp can be analyzed in order to test the grasp’s ability to
resist disturbances and its dexterity properties. As it is presented afterwards, the
grasps that can be maintained for every possible disturbing load are known as clo-
sure grasps. A grasp on an object is a force closure grasp if and only if we can exert,
through the set of contacts, arbitrary force and moment on this object. Equivalently,
any motion of the object is resisted by a contact force, that is the object cannot break
contact with the finger tips without some non-zero external work. [21] Form closure
is related with the ability of constraining devices to prevent motions of the grasped
object, relying only on unilateral, frictionless contact constraints. Having a form clo-
sure grasp is a necessary and sufficient condition for a force closure grasp. During
a task execution, the grasping fingers must be controlled so that the grasp processes
dexterity, equilibrium, stability and dynamic behavior.[27] These characteristics are
an essential and baseline measurement of the grasp and need to be considered when
evaluating different kinds of grasps.

Recent analysis and surveys have divided the methodology for constructing grasp
synthesis into two categories: analytic and ddata-driven.[4] Analytic refers to meth-
ods that construct force- closure grasps with a multi fingered robotic hand that are
dexterous, in equilibrium, stable, and exhibit a certain dynamic behavior. This is a
mathematical and geometric approach that often requires a 3D model of the object.
Empirical or data-driven approaches rely on sampling grasp candidates for an ob-
ject and ranking them according to a specific metric. This process is usually based on
some existing grasp experience that can be a heuristic or is generated in simulation
or on a real robot.

The work on data-driven grasp synthesis has been reviewed and the methodolo-
gies for sampling and ranking candidate grasps.The approaches have been divided
into three groups based on whether they synthesize grasps for known, familiar, or
unknown objects.[4] In the case of known objects, the approaches are based on ob-
ject recognition and pose estimation. In the case of familiar objects, the techniques
uses some form of a similarity matching to a set of previously encountered objects.
Finally, for the approaches dealing with unknown objects, the core part is the extrac-
tion of specific features that are indicative of good grasps.

Figure 2.2 exemplifies a physical interpretation of a geometric grasp. The left-
hand side shows the grasping as a combination of points p1, p2, p3 and the right-
hand side shows its relation to the center of mass. Knowing the configuration, it’s
possible to determine the quality and feasibility of the grasp. On the other hand,
Figure 2.3 shows the data-driven approach with an analysis of the image as a set
of features. Given these features, the output is a rectangle that gives the proper
location of the grasp after a set of network training. In order to better understand the
candidate algorithms that use either analytic or data-driven approach, it is important
to perform a literature review which is the focus of the next section.
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FIGURE 2.2: Analytic approach to grasp synthesis computation [24]

FIGURE 2.3: Data-driven approach to grasp synthesis computation[15]

2.2 State of the art

Robot autonomy requires adaptation to scenarios that have not been hard coded into
behavioral decisions. In terms of grasping, this means that the robot needs to be able
to synthesize a grasp of an object that has not been specifically added into its grasp-
ing database. When the programmer deals with information received from sensors
and generates a set of grasps for consideration has been termed a data-driven ap-
proach.[4] The generation, evaluation, and selection of grasps can be done in various
ways but the following review will explore research on the topic of robotic grasping
such that the work is applicable to object picking from a tote or a bin in.

While navigating through the environment, a robot encounters different objects
which the robot need not identify in order to perform a grasp in the same way that
a human need not know what brand is the aluminum can in order to pick it up, all
the human needs to know is how to pick up a can. Therefore handling object data
for object identification purposes must be different from handling data for grasp-
ing purposes, especially since objects that are in the same category and perform
the same task can be grasped similarly thus simplifying the problem and generaliz-
ing robot behavior that is suitable for autonomy. Strict category analysis had been
performed using data analysis.[9] Furthermore, the may need to know the task for
which the object will be used for example a mug can be used for pouring, which
requires dexterity and stability hence forcing the final selected grasp to naturally be
the one with the highest rank. Task-based grasping has been separately studied in
context of Bayesian networks for encoding the probabilistic relations among various
task-relevant variables.[28] The synthesis of category and task has been performed
based on 2D and 3D data from low-level features.[18] [14] Instead of relying on sen-
sor data points the proposition is to synthesize grasps based on semantics, which
are stable grasps that are functionally suitable for specific object manipulation tasks
that use overall object features.[8] Most recently, The role of robustness and adapt-
ability inside semantic grasping has been addressed by noting that shape variations
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inside the category and transferring semantic grasps between objects needs to be
addressed by adding probabilistic framework to use online sensory information for
grasp planning, which allows to refine object’s pose based on tactile feedback and
modifying the grasp accordingly.[22]

A simple object analysis based on shape has been proposed in order to pick
an object no matter the orientation. One study uses shape primitives like spheres,
cones and boxes to approximate object shape and used the simulation environment
GraspIt but not on a real life robot application.[20] Saxena et al. proposed super-
vised learning with local patch-based image and depth features for grasping novel
objects in cluttered environments.[26] This path led towards exploring the idea of
grasping as a method for finding graspable features in the incoming data. Using
the heights of objects as features has in particular been a topic of theoretical study
[25] [11] and complete implementation on various robots.[12] [30] Features of ge-
ometry have been explored by ten Pas et al. and shows a unique combination of
analytical understanding and data-driven applications.[23] It has been inspired by
the autonomous checkout robot but is supplemented with an SVM learning mecha-
nism.[16] Another approach also uses features but rather than those of the 3D sensor,
relies on supervised deep learning of 2D RGB images.[15] This method requires a
large dataset and large amount fo training hours. The greater the network the better
the result however the slower the timing during online execution.

2.3 Methodologies for implementation

Given the previously demonstrated literature review, it is then necessary to select
the given research material for application. The object categorization idea and task
analysis uses information that is not required for the challenge as the robot will not
need to use the object but rather only lift and place. The methodologies focusing on
specialized picking such as tool use were discarded.

The next main topic was grasping based on calculation of grasp points on a 3D
mesh object. It was an inspiring concept since these methodologies use directly the
sensor data either from RGB-D images or a point cloud and then fit the viewed ob-
ject with a real model. In the Amazon Fulfillment Center, the objects vary greatly in
orientation, size and shape. Loading a whole database full of these objects would be
a grand task plus does not grantee success in a clutter. Implementations focusing on
neural networks and 3D object matching were also discarded.

Given this analysis, it is natural to move in a direction of a paper that was able to
demonstrate results in the scenario of many object placed in unpredictable locations
as it happens in a dense clutter. The work presented by Saxena et al. focused on
a collection of local visual features. The author later supplemented the idea of ob-
ject features to grasps with machine learning. Then Fischinger and Vincze develop
another idea of features through height-maps where they report indicates a 92% sin-
gle object grasp success rate while taking only 2-3s of time.[30] The application to
Baxter shows especially successful results, which is important given that Baxter is a
platform with a simple gripper and only 1cm precision. The research done on the
method shows robustness, repeatability, speed, and ease of access since the work
is an open source code on Github. If this project can be implemented, tuned, and
improved then the success rate would be high enough for presentation during the
competition. Thus HAF grasping as presented by Fischinger et al. has been chosen
for implantation and demonstration. One of the disadvantages of the work is that it
has been mainly tested with vertical only grasps. This approach does not often work
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if the object is inside the tote with multiple orientations. Hence it would be useful
to supplement and compare the algorithm with another one that can provide a wide
range of grasp orientations.

The approach that needs to be provided with the same input information but
possibly hundreds of combinations of grasps is one that uses geometry represen-
tative features.[13] The output of the function is also geared towards a two finger
gripper and outputs a position and orientation of the gripper. So, the second chosen
algorithm for testing will be the AGILE grasping algorithm presented by ten Pas et
al.[23]

Finally, the mechanism for a vacuum gripper in combination with vision has
been previously tested in warehouse and competition environments. The results of
this approach have appeared in previous ARC competitions and have been briefly
described or presented with complete practical and theoretical analysis.[7] [10] [31]
However, the algorithm will be prepared from scratch in order to match it the cur-
rent system and gripper requirements. The three algorithms will be thoroughly ex-
plained in the upcoming chapter of the report. These algorithms will be used to
maximize the picking and stowing ability of the Baxter robot for the competition.
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Chapter 3

Methodology

3.1 Software

The following section provides theoretical knowledge for the algorithms that have
been chosen for implementation. From a bird’s eye perspective, the separate algo-
rithms have their individual environments in which each one can exhibit its strength.
HAF grasping takes into account the height of the objects and is used with a top
grasp thereby reducing the dimensionality of the object. AGILE grasping explores
the geometry of the whole object in order to find handle-like sections to exploit for
grasping and thus it’s often aiming at side grasps. The suction algorithm is computa-
tionally less heavy and thus faster and more capable of grasping very flat objects like
books for which a two-finger gripper with limited opening width cannot be used.

3.1.1 HAF

As the name suggests, the HAF algorithm utilizes the heights of surface points, gath-
ered from the point cloud data, relative to their neighbors in order to learn how to
grasp the objects. The authors stress three important advantages of the algorithm;
segmentation independent, integrated path planning, and use of known depth regions.[11]
[30] The first point stresses the fact that the objects do not need to be separate from
each other in order to be picked. The height of the features supersedes the need to
know where and on what objects these features are located. Once the features are
located then the second point stresses the idea that the heights take into account the
surfaces near them so the final grasp will naturally be collision free. The final point
takes into account previously explored methods and states that object reconstruc-
tion in cluttered scenes is unreliable and the HAF grasping method avoid this by
only using given data from the sensors without estimation.

First, it’s important to address the idea behind the method. Let’s assume that
there is a pile of objects inside a box that is standing in front of the robot. The robot
sees this pile of objects with a Kinect 2.0 camera and has the mission to unstack the
items. If the robot has the HAF grasping algorithm installed then the pile of objects
that a human would see would transform into a grid of heights. This method ex-
ploits the idea that the highest protruding part of a scene is the most graspable part
of a protruding object. The peak height that has much lower heights surrounding it
allows the gripper to go down without collisions until the next highest region. By
picking out peaks from a mountain range and grasping, the robot is able to recur-
sively unload the box item by item.

Now for a more in-depth analysis of the algorithm, the acronym will be ex-
plained in terms of the letters it contains. In order to facilitate understanding, the
order will be H, F, and then A.
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FIGURE 3.1: Height processing [11]

The term height refers to the measure of the perpendicular distance from the ta-
ble plane to the points on the top surface of the object. The input point cloud is first
discretized and the height grid H now contains a 1x1cm2 cell that saves the highest
z-valued points with corresponding x and y values. [11]

In computer vision and image processing, a feature is a piece of information
which is relevant for solving the computational task related to a certain application.
It is equivalent to the feature used in machine learning and pattern recognition,
though image processing has a very sophisticated collection of features. Features
may be specific structures in the image such as points, edges or objects. Features
may also be the result of a general neighborhood operation or feature detection ap-
plied to the image. A specific image feature, defined in terms of a specific structure
in the image data, can often be represented in different ways. HAF features are de-
fined similarly to Haar Basis functions. Figure 3.2 shows example HAF features with
2 overlapping, 3 disjunct, and 4 overlapping regions. The first defines two overlap-
ping rectangular regions. R1 contains all the cells of red assuming to interpolate
underneath green as well as the red cells. R2 contains solely the green. All height

FIGURE 3.2: HAF feature examples [11]

grid values of each region Ri, on a height grid H , are summed up. The sums ri
are individually weighted by wi and then summed up. The regions and weights
are dependent on the HAF feature that are defined by an SVM classification. A fea-
ture value fi is defined as the weighted sum of all regions. The jth HAF value fi is
calculated as:

fj =

nrRegionsj∑
i=1

wi,j · ri,j (3.1)

ri,j =
∑

k,l∈N:H(k,l)∈Ri,j

H(k, l) (3.2)
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The HAF vector f contains the sequence of HAF values.

f = (f1, f2, ..., fnrFeatures) (3.3)

The paper claims to have tested 71,000 features (70,000 of which are automatically
generated) and finally selected 300 to 325 with an F-score selection. [30]

The height grid is modified for computational efficiency. In each location (x,y)
of AH contains above and to the left of (x,y) in the grid. Using height accumulated
rectangular regions, each region sum can be computed with four or fewer array
references.

FIGURE 3.3: Accumulation grid [11]

AH(x, y) =
∑

x′≤x,y′≤y
H(x′, y′) (3.4)

To calculate the accumulated heights of regionA a singleAH reference is needed:
AH = AH(x, y), AreaD requires four: AH(D) = AH(x2, y2)−AH(x2, y)−AH(x, y2)+
AH(x, y)

AH(x, y) =
∑

x′≤x,y′≤y
H(x′, y′) (3.5)

After implementation, the visualization on Figure 3.4 shows the calculations in pro-
cess. Bigger gray rectangle: indicates the area where heights can be used for grasp

FIGURE 3.4: (left) HAF visualization on tennis ball container. view
from the Kinect 2.0. (right) view from Baxter.

calculation. Inner gray rectangle: defines the area which is searched for potential
grasps (grasp centers). Long red line: indicates the closing direction (for a two finger
gripper) Red/green spots: indicate the positions where grasps are really tested for
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the current gripper roll (ignoring points where no calculation is needed, e.g. no data
there) Green bars: indicate identified potential grasps available. The height of the
bars indicates the grasp evaluation score (the higher the better). Finally, the green,
red and blue frame represent the final grasp hypothesis chosen by the algorithm and
indicates the final position as to where the end effector should go.

3.1.2 AGILE

AGILE grasping is an algorithm that uses a point cloud to predict the presence of
geometric conditions that are indicative of good grasps on an object.[23] First, ge-
ometry is used to reduce the size of the sample space by applying the condition that
for a grasp to exist the hand must be collision free and part of the object surface
must be contained between two fingers. Then, the remaining grasps are classified
using machine learning for which geometry is used in order to automatically label
the training set. Specifically, the antipodal condition is used in order to in order to
label a set of grasp hypothesis in arbitrary point clouds of ordinary objects. A pair
of point contacts with friction is antipodal if and only if the line connecting the con-
tact points lies inside both friction cones.[21] This is a sufficient condition because if
an antipodal grasp exists then the robot can hold the object by applying sufficiently
large forces along the line connecting the two contact points. A friction cone describes
the space of normal and frictional forces that a point contact with friction can apply
to the contacted surface. Grasp geometry is quantified by certain parameters. The
reason that this algorithm is easy to implement is that these parameters are easy to
tune depending on the dimensions of the two finger gripper. The gripper is speci-
fied by the parameters θ = (θl, θw, θd, θt) which respectively stand for gripper length,
width, the distance between two fingers, and the thickness of fingers, Fig. 3.5a. The
closing region is the volumetric region swept out by the fingers when they close. The
hand h ∈ H is a parallel jaw gripper comprised of two parallel fingers each modeled
as a rectangular prism that moves parallel to a common plane. â(h) is a unit vector
orthogonal to this plane. And if r(h) ∈ R(h) is an arbitrary reference point inside the
closing region then the closing plane, C(h), is the subset of the plane that intersects
r(h) and is orthogonal to â(h) and is contained within R(h):

C(h) = p ∈ R(h)|(p− r(h))T â(h) = 0 (3.6)

The cutting plane, Fig. 3.5b, will be the plane orthogonal to the minimum principal
curvature at a point on the surface of the object, and passing through p which is
a point where the calculations have determined to have a frame aligned with the
surface normal on the object. It is important to find many points p heuristically
after fitting the maximum number of points to a quadratic surface for which the
author uses Taubin’s method. Having the previously setup definitions it is possible
to define the first set of sampling of hands that the author collects given a point
cloud.

1. The body of the hand is not in collision with the point cloud.

2. The hand closing plane contains p.

3. The closing plane of the hand is parallel to the cutting plane at p.

The method, as mentioned before relies on features. The second part of AGILE
grasping, classification of hand hypothesis does just this with a feature descriptor
of a hand hypothesis as seen on Figure 3.6. A feature descriptor is a representation
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FIGURE 3.5: (a) hand geometry. (b) cutting plane geometry. [23]

of an image or an image patch that simplifies the image by extracting useful infor-
mation and throwing away extraneous information. In the Histogram of Gradients
(HOG) feature descriptor, the distribution (histograms) of directions of gradients
(oriented gradients) are used as features. Gradients (x and y derivatives) of an im-
age are useful because the magnitude of gradients is large around edges and corners
(regions of abrupt intensity changes) and edges and corners pack in a lot more infor-
mation about object shape than flat regions. [19] Given an example point cloud, once
the three constraints mentioned above are satisfied, feature descriptors are extracted
and included in the training dataset. In this case, the labeled dataset is created with
many samples and is much faster than creating a hand labeled dataset.

The results of the implementation can be seen on Figure 4.3c,d.

FIGURE 3.6: HOG feature representation of a hand hypothesis[23]

3.1.3 CNA

The idea behind Centroid Normals Approach (CNA) comes from the observation
that most objects in the ARC’17 dataset are symmetric and have a large central sur-
face that is most suitable for creating an air sealed grasp. The logic flow is presented
on Figure 3.7. The main idea is to receive a point cloud and downsample it using
a voxel grid. Then extract a cylinder or a plane, depending on the most prominent
object shape. Finally, using the extracted shape, find grasps located in the center of it
using surface normals and euler to quaternion rotations. The VoxelGrid class creates
a 3D voxel grid. A voxel represents a value on a regular grid in three-dimensional
space and a voxel grid is a division of 3D space into voxels to fully represent the
given space. In this case, the given space is covered by the input point cloud data.
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FIGURE 3.7: CNA logic flow

Then, in each voxel (i.e., 3D box), all the points present will be approximated (i.e.,
downsampled) with their centroid. This approach is a bit slower than approximat-
ing them with the center of the voxel, but it represents the underlying surface more
accurately.

The PCL library contains the following options:

• SAC_RANSAC - RANdom SAmple Consensus

• SAC_LMEDS - Least Median of Squares

• SAC_MSAC - M-Estimator SAmple Consensus

• SAC_RRANSAC - Randomized RANSAC

• SAC_RMSAC - Randomized MSAC

• SAC_MLESAC - Maximum LikeLihood Estimation SAmple Consensus

• SAC_PROSAC - PROgressive SAmple Consensus

The abbreviation of “RANdom SAmple Consensus” is RANSAC, and it is an itera-
tive method that is used to estimate parameters of a mathematical model from a set
of data containing outliers. The RANSAC algorithm assumes that all of the data we
are looking at is comprised of both inliers and outliers. Inliers can be explained by a
model with a particular set of parameter values, while outliers do not fit that model
in any circumstance. Another necessary assumption is that a procedure which can
optimally estimate the parameters of the chosen model from the data is available.
MSAC is an extension of RANSAC. It adopts the same sampling strategy to gen-
erate putative solutions but chooses the solution to maximize the likelihood rather
than just the number of inliers. The randomized methods achieve computational
efficiency by evaluating only a fraction of data points for models contaminated with
outliers. The PROSAC algorithm exploits the ordering structure of the set of tenta-
tive correspondences, assuming that the ordering by similarity computed on local
descriptors is better than random. A thorough comparison based on accuracy, com-
puting, time and robustness has been done between RANSAC and its descendants
as well as other consensus models by Choi et al. and Chum et al. [5] [6] The chal-
lenge places an important role in robustness because the incoming point cloud is
often saturated with noise and other elements as well as speed since the team gets
bonus points for completing the test on time. The results presented by the authors
show that for good time and robustness PROSAC performs best, hence it was chosen
in the methodology.

Once the relevant shape has been extracted which would be planar for a book
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and cylindrical for the tennis ball container, the algorithm finds the centroid or the
3D average of all the points fed into it. Then it calculates the surface normals closest
to the centroid and stores. The closeness is achieved by the L2 norm. This gives the
ordinary distance from the origin to the point x, a consequence of the Pythagorean
theorem.

‖x‖2 :=
√
x21 + ...+ x2n. (3.7)

The distance is thresholded by the maximum possible distance from the centroid.
Which means the distance dL2 of vector xi, yi, zi from the centroid xc, yc, zc is:

‖dL2‖ :=
√
|xi − xc|2 + |yi − yc|2 + |zi − zc|2 (3.8)

Then position of the normals is directly put in as the desired resulting positions of
the end effector. The Euler orientations of the normals are converted to quaternions
according to the following strategy. Any rotation matrix can be given as a composi-
tion of rotations about three axes,Rx, Ry, Rz with a rotation angle θ, and thus can be
represent a 3× 3 matrix operating on a vector.

Rx(θ) =

 1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (3.9)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (3.10)

Rz(θ) =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.11)

For the pick task the idea is to have the robot appraoch as vertical as possible.
However, the stow task is different since the objects might be tightly pressed against
the wall. For the stow task the bin has been divided into South (W1), North (W2),
East (W3), West (W4) and Planar grasp orientations which originate from the sections
of the tote as seen on Figure 3.8. The idea behind this classifications comes from the
results of the normals. The normals provide a vector that has the z axis normal to
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FIGURE 3.8: Labeling of the tote

the surface however the x and y axis are random based on the computation and
reconstruction of the surface. The orientation of the original Baxter gripper and
most other arms does not matter however it does matter in the case of the relocated
gripper that the RobinLab team constructed. (These difficulties will be addressed
more closely in the Hardware section)The gripper cannot rotate 360 degrees and the
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position of the grasp influences heavily the position of the gripper. Four basis frames
have been established, going out about 45◦ from the surface of each wall. And from
the basis frames the robot has an option of +/- 30◦. In this case the IK always has
an option of the arm orientation and can discard certain grasps solely because the
gripper will have an unfeasible compatibility with the Baxter arm. This is especially
useful, as seen on Figure 3.8, when Book2 is very close to the wall. The way to find
out which wall is being addressed has been done through statistical analysis of the
components of the quaternion, q = qw + qxi + qyj + qzk. Knowing the location and
threshold C of how tilted the grasp needs to be to transfer from Planar to a Wall
position, the following will classification roughly estimates the orientation of the
normal within the bin:

W1 : = qw, qz > C

W2 : = qw, qz < −C
W3 : = qw > C, qz ≈ 0

W4 : = qw < −C, qz ≈ 0

The quaternion rotation about the z axis has been performed according to the
following principle: Let −→u be a unit vector (the rotation axis),α the angular rotation,
then q = cosα2 +−→u sinα2 . It can be shown that:

−→
v′ = q−→v q−1 = (cos

α

2
+−→u sinα

2
)−→v (cosα

2
−−→u sinα

2
) (3.12)

Two rotation quaternions can be combined into one equivalent quaternion by the
relation:

q′ = q2q1 (3.13)

In which q′ corresponds to the rotation q1 followed by the rotation q2. Another role is
the location within the tote. The tilted grasp would be sent to the gripper only if it’s
tilt is not too close to the walls. This appears in the algorithm as a simple threshold.

Finally, a scoring algorithm has been devised in order to sort the grasps with the
first one in the list being the one that IK will try to solve and have the Baxter reach
and the last one being the last option to reach. The object is most likely located at the
center of the point cloud and the surface to be grasped which is most likely to avoid
all other collisions will be the top one. The grasp score Si is calculated as follows.
Knowing the pose of all the grasps, first find the average of all the x and y points,
then subtract the xi and yi values of the current grasp from the averages, xav and
yavto find how far away it is from the center. xdist = |xav − xi| and consequently
ydist = |yav − yi|. The further the distance, the more of an outlier the grasp is so the
score will be higher and the grasp will less likely to be selected first. The next in
consideration is the z which will be subtracted from the previous score. The higher
the z, the more of a subtraction and hence the lower the score and the more likely
it is that the grasp will be selected first. The w values are scalars that can adjust
how much each score should matter. In the case applied for the ARC’17 system,
wx = wy = .7 and wz = .3.

Si = (wx, wy) · (xdist, ydist)− (wz) · (zi) (3.14)

The right-hand side of Figure 3.9 shows the input point cloud of the mesh cup.
Note that the top is the part of the cup that is most likely to be grasped hence the
algorithm is assigned to extract the planar part of the object. The right-hand side
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shows the same point cloud but with the violet dots showing the post-processed
point cloud, the yellow lines showing the surface normals, the green circle shows
the x and y position of the centroid of the point cloud, and the purple central surface
normals around the centroid are the CNA vectors which have the relevant z-axis
that will be used for processing of the outputted grasps. The frame on the right-
hand side shows one of the final grasp frames for the end effector to reach in order
to grasp the object.

FIGURE 3.9: CNA algorithm visualization

3.2 Hardware

3.2.1 Grippers

The two finger gripper is nothing but two straight plastic fingers that open to a cer-
tain low distance. The two-finger gripper is called the Pincher. Figure 3.10 show the
suction gripper used during the competition and Table 3.1 defines the dimensions.

TABLE 3.1: Two finger grippper dimensions

Property Dimension (cm)
Finger length 35
Finger depth 2.5
Finger thickness 1
Max inside opening width 3.5
Min inside opening width 0

Figure 3.10 show the vacuum gripper used during the competition and Table 3.2
defines the dimensions. Vacuum grippers use a suction cup, also known as a sucker,
to create a negative fluid pressure of air to adhere to nonporous surfaces, creating a
partial vacuum. Suction cups are peripheral traits of some animals such as octopuses
and squids and have been reproduced artificially for numerous purposes. This type
of grippers will provide good handling if the objects are smooth, flat, and clean. It
has only one surface for gripping the objects. Most importantly, it is not best suitable
for handling the objects with holes.

3.2.2 Hardware restrictions

Figure 3.11 shows the names with which the joints of the Baxter robot are associated.
Each joint has a separate range of motion whether bent or twist. Joints S1, E1, and W1
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FIGURE 3.10: (left) Pincher gripper. (right) vacuum gripper.

TABLE 3.2: Vacuum grippper dimensions

Property Dimension (cm)
Length 30
Inner diameter of hole 2
Outer diameter of cup 3.5

FIGURE 3.11: Baxter joint description

are considered to have bend motion and are restricted by the width of the robot arm.
They can move the robot arm larger distances across the workspace but do not have a
wide range of twist around its axis. Joints S0, E0, W0, and W2 and considered twist
joints and have a much wider range of motion around the axis even though they
cannot move an object far along the workspace. When the grippers were mounted
onto the Baxter robot such that they are perpendicular with respect to the wrist, the
twist of the gripper was moved from joint W2 to joint W1. The restriction of twist
means that the angular roll along the z-axis of the gripper is also restricted. Table
3.3 summarizes the angular range in each joint. Note that the angular motion has
been reduced by 140.5 degrees. Within those degrees, the robot will not be able to
move and the IK will not find a solution. On Figure 3.13 the R0 represents the zero
degrees of roll of the W0 joint, Ri represents the current roll, and finally Rlim1 and
Rlim2 represent the two limits of the W1 motion. Between these two limits the W1
joint will never find an IK solution. Note the difference between the limit differences
between Figure 3.13 and Figure 3.12. Although this decision was made in order to
increase the number of possible vertical grasps where the z-axis is pointing directly
downwards, the sacrifice was the limitation on the gripper.
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TABLE 3.3: Joint range comparison

Joint lim1 lim2 Range
W1 120◦ 270◦ 210◦

W2 175.25◦ 184.75◦ 350.5◦
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FIGURE 3.12: Baxter W2 limits
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FIGURE 3.13: Baxter W1 limits

The position of the gripper on the robot arm poses two great challenges with
regards to grasping:

1. If the orientation of the object to be grasped requires the roll of the arm to be
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within the impossible limits of the W1 joint then the object cannot be grasped
although the grasp vector can be deemed to be successful.

2. The final position and orientation of the grasp determines greatly the position
of the arm and its configuration. If the grasp is feasible but the x-axis of the
robot arm points away from the robot then the IK will struggle to find a suitable
solution because there could be a collision with the arm. Since IK does not
try to find the proper motion to avoid collisions, the grasps must be carefully
selected in order to maximize as much as possible a suitable solution. The
grasps should try to put the robot arms similar to that when it is int he "tuck-
arms" position.

3.2.3 Software compensation

In order to compensate for the limited angle roll of the wrist, the software for the
output of the final position and orientation of the robot has been transformed for
HAF grasping such that the roll angle around the z-axis places the wrist in a suitable
orientation. For this, first, a rolls is extracted from the quaternion then it is modified.
The following methodology converts a quaternion, q = qw + qxi + qyj + qzk ,into
axis-angle representation.

(az, ay, az) =
qx, qy, qz√
q2x + q2y + q2z

(3.15)

θ = a tan 2(
√
q2x + q2y + q2z , qw) (3.16)

Algorithm 1: Robot wrist roll compensation
Result: Roll is always within workspace of robot
if |π2 − θ| <

π
9 then

θ = θ − π
2

else if θ < π
2 then

θ = θ + π
2

else
θ = θ − π

2

Once the roll of θ is performed using the following algorithm, it’s possible to
convert it back to quaternion using the R equations specified in Section 3.1.3. This
does not guarantee that the IK will be found via the computer, this only guarantees
that the position exists for the Baxter robot. A human guided motion to such position
will be possible. In future testing, it will be shown whether this holds true within the
computational system as well. For AGILE grasping since the options on the object
are numerous and usually surround the object itself, the impossible grasps will be
filtered out naturally when doing the IK for motion planning.
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Chapter 4

Experimentation Procedures &
Results

4.1 Experimentation procedures

The following section presents the experimental setup for testing the grasping algo-
rithms as well as the results. During the pick and stow tasks, the grasping algorithms
receive a single point cloud of an object to be manipulated. There is no need to test
objects in a dense clutter because the input will be the isolated object that has been
identified by the vision pipeline in the preceding step of the system architecture.
The algorithm for grasping has to be able to receive a point cloud of a single object
and propose a suitable grasp vector. During the stow task, the tote contains 20 ob-
jects in the mixed jumble. The vision pipeline, in this case, does not guarantee the
segmentation of a single object and can include parts of other objects. This noisy
data requires the algorithms to be robust. The grasp must also be calculated quickly
and successfully which will increase the chances of victory for the team. Knowing
which algorithm performs best under which circumstance is key to devising a final
structure that can pick up the maximum amount of objects.

4.1.1 Preliminary object to gripper matching

Before applying the testing of algorithms it is important to know which gripper
works well with which object. In a perfect scenario, the best grasp algorithm will
output a similar result to what a human would choose. Hence, it is important to
first do a controlled test with a human guiding the gripper to know that grasping a
given object with a given gripper is feasible. If this object shows low success in the
future with a certain algorithm then the experimenters will know that the flaw is in
the algorithm not in the gripper. The item can be considered to be graspable by the
two-finger gripper if at least one of its dimensions can fit within the gripper given
the gripper’s minimum and maximum opening width.

The procedure for finding out whether the object can be grasped by the vacuum
consists of:

1. Turn on the suction pump

2. Place your hand on the wrist of the Baxter robot and approach the item with
the vacuum pump

3. Attempt to lift the vacuum gripper along with the item

4. If the item can be lifted along most locations on the flat part of the item then
the item is graspable by suction



28 Chapter 4. Experimentation Procedures & Results

5. If the object falls down then the object cannot be grasped by the suction gripper

FIGURE 4.1: Preliminary classification demonstration

The procedure for finding out if the object can be grasped by the Baxter gripper
consists of:

1. Open the fingers of the Baxter gripper using a ROS command

2. Place your hand on the wrist of the Baxter robot and approach the item with
the fingers of the gripper attempting to envelop the object as best as possible.
This is a gross assumption of the perfection of the algorithm but it is only to
prove that the dimensions of the object are feasible given the dimensions of the
gripper.

3. Close the fingers of the Baxter gripper using a ROS command

4. Attempt to lift the two-finger gripper along with the item

5. If the item can be lifted along most locations on the flat part of the item then
the item is graspable by the gripper

6. If the object falls down then the object cannot be grasped by the two-finger
gripper

The matching procedure allows the task planning team to know which arm to use
for object manipulation. If the object can be lifted using vacuum pressure on most
sides of the object then the right arm will be used with suction. If the object is best
grasped with the gripper then left arm will be used to manipulate the object.

Table 4.1 shows the results of the above specified procedures with official names
of the items.

4.1.2 Preliminary implementation of algorithms

For object manipulation the algorithm options are either AGILE, HAF, or CNA. The
AGILE and HAF grasping are used with the same gripper and produce similar re-
sults. In order to understand the potential of the grasping algorithms, it is first im-
portant to implement them and obtain results to see whether the algorithm is capable
in dealing with the point cloud presented by the vision pipeline. The goal of this test-
ing is to see how the algorithm behaves and fits once it is integrated into the whole
system. The work for this requires understanding the topics, messages, parameters,
and the inputs and outputs. Then rewriting all of the code into a library format as
required by the system and in this way, the integration work package needs only to
call a single function within a service call in order to launch the whole algorithm.
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TABLE 4.1: ARC’17 items and classification

# Name Official Name Pincher Vacuum
1 Avery 1" Binder - White avery_binder x
2 Bag of Balloons balloons x
3 Buns Bees Baby Wipes burts_bees_baby_wipes x
4 Clorox Toilet Brush toilet_brush x
5 Colgate Toothbrushes colgate_toothbrush_4pk x
6 Crayola Crayons crayons x
7 Dr. Teal’s Epsom Salts epsom_salts
8 DVD Robots robots_dvd x
9 Elmers Glue Sticks glue_sticks x
10 Expo Eraser expo_eraser x x
11 Fiskar Scissors fiskars_scissors
12 Green Composition Book composition_book x
13 Hanes White Socks hanes_socks
14 Irish Spring irish_spring_soap x
15 Johnson & Johnson Paper Tape band_aid_tape
16 Kleenex Cool Touch Tissues tissue_box x
17 Knit Gloves Black black_fashion_gloves x
18 Laugh Out Loud Jokes For Kids laugh_out_loud_jokes x
19 Mesh Pencil Cup mesh_cup
20 Mini Marbles Clear Lustre marbles x
21 Neoprene Weight - Pink hand_weight x
22 Plastic Wine Glasses plastic_wine_glass x
23 Poland Springs Water Bottle poland_spring_water
24 Reynolds Pie Pans pie_plates x
25 Reynolds Wrap 85 Sq. Ft. reynolds_wrap x
26 Robots Everywhere robots_everywhere x
27 Scotch Cloth Duct Tape duct_tape x x
28 Scotch Sponges scotch_sponges x
29 Speed Stick 2 Pack speed_stick x
30 Spiral Index Cards hinged_ruled_index_cards x
31 Sterilite Ice Cube Tray ice_cube_tray
32 Table Cover (In Bag) table_cloth x
33 Target Brand Measuring Spoons measuring_spoons x
34 The Bathery Delicate Bath Sponge bath_sponge x
35 Ticonderoga Pencils ticonderoga_pencils x
36 TomCat Mousetraps mouse_traps x
37 White Face Cloth white_facecloth x
38 Wilson Tennis Balls tennis_ball_container x
39 Windex Spray Bottle windex x
40 Flashlights flashlight x

11/40 25/40

It is important to see the output of the final obtained approach vector as well as
the time taken to perform the calculation of the given vector or vectors. By seeing
how each algorithm behaves, it is possible to not only classify the objects as was
described in the previous section, but also add on as to which algorithm to use for



30 Chapter 4. Experimentation Procedures & Results

which object. Using the Open Multi-Processing library (OMP) the time before and
after each the function call has been calculated using the simple commands start =
omp_get_wtime() and end = omp_get_wtime(). Then compared the differences between
the algorithms. The calls were recorded 10 times for 10 different objects. Below, on
Table 4.2 are the ,main function calls that have been timed for each algorithm: Figure

TABLE 4.2: Main function calls

Algorithm Function call
AGILE getAGILEgrasps()
HAF getHAFgrasps()
CMA getGraspsWRot()

4.2 shows the distribution of time for each algorithm after integrating it into the sys-
tem, given that the input point cloud presented to each algorithm is approximately
the same. With this information further steps have been taken to simplify the grasp-
ing optimization. Figure 4.3 shows the qualitative analysis of robustness.

FIGURE 4.2: Time each algorithm takes to calculate a set of grasps

a

dc

b

FIGURE 4.3: Robustness comparison of AGILE and HAF
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4.1.3 Testing objects in isolation

Testing objects in isolation is relevant for the ARC’17 challenge since the point cloud
given from the vision pipeline is a point cloud of a single object. The point cloud will
be fed to the algorithms with the main function calls seen on Table 4.2. The set of
tunable parameters and code modifications in each algorithm can be read inside the
libraries/grasp folder of the RobinLab-ARC2017 SourceForge repository.[3] The evalua-
tion is done based on 10 grasping attempts, each of which will be scored on a binary
0/1 system to mark whether the object has been grasped and lifted or not. The set-
ting of grasping is exactly as would be during the competition and in the warehouse.
If the point cloud or hardware is not perfect then the algorithm has to be able to deal
with this. The scenario is not fully controlled but rather as real life as possible The
successful grasps will be added and the success

num.attempt × 100% will be calculated. For
demonstration videos, please visit the references website. [2] The experiment ran
according to the following rules:

1. All objects, originating from the ARC’17 competition, can be grasped by the
gripper in their respective category. The data for this is provided by Table 4.1.

2. The point cloud is as provided by the vision pipeline. No changes to make the
object clearer than what vision sees it. The testing is done with full integration
of the whole system architecture.

3. The environment is exactly as the system would predict to be in a real-world
setting. A failure of gripper arm orientation or positioning is considered a
failure for grasping.

Tables 4.3, 4.4 and 4.5 show the testing results as a measure of percentile of grasping
success. Figures 4.6, 4.7, 4.8 shows the reasons behind failure, to give an idea as to
what are the scenarios where the algorithms are weak. Table 4.6 shows which object
have been blacklisted from the grasping scenario. The reasons are mostly due to
hardware restrictions for example lack of actuator power or vacuum pressure. Tables
4.4 and 4.5 show the number of items included in each strategy and the success per
strategy. The success rate can be analyzed in terms of the success of the algorithm as
well as the percent chance of being able to pick up the object if it is assigned for the
pick and stow tasks.

4.1.4 Object to algorithm classification

Next, given a set of repeated testing and analysis of success, a Table 4.7 has been
created to show which algorithm will be used for which object. This table maximizes
the success of the object picking. Number 1 stands for the fact that the first try will be
attempted with the algorithm in that column, and number 2 stands for the second try
and this algorithm has the second priority. This has been done because an object like
the duct tape can be picked up with different grippers depending on its orientation.
Unfortunately, the object orientation is not included in the scheme of the algorithms
and hence the side is unknown. The solution to this is to blindly try picking it up
more than once.
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TABLE 4.3: Objects in Isolation: CNA with Vacuum

Object % Success
1. colgate_toothbrush_4pk 60
2. composition_book 100
3. crayons 100
4. expo_eraser 100
5. glue_sticks 70
6. hinged_ruled_index_cards 100
7. irish_spring_soap 100
8. laugh_out_loud_jokes 100
9. reynolds_wrap 100
10. robots_dvd 100
11. robots_everywhere 100
12. scotch_sponges 100
13. speed_stick 100
14. tennis_ball_container 100
15. ticonderoga_pencils 70
16. tissue_box 100
17. flashlight 100
18. windex 100
19. mouse_traps 90
20. ice_cube_tray 100
21. burts_bees_baby_wipes 100
22. pie_plates 50
23. plastic_wine_glass 70
24. avery_binder 100
Average Success 92.08

TABLE 4.4: Objects in Isolation: CNA with Pincher

Object % Success
1. balloons 100
2. black_fashion_gloves 90
3. table_cloth 70
4. white_facecloth 100
5. marbles 10
6. bath_sponge 80
Average Success 75.00

TABLE 4.5: Objects in Isolation: HAF with Pincher

Object % Success
1. hand_weight 10
2. measuring_spoons 10
3. toilet_brush 30
4. duct_tape 50
Average Success 25.00
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FIGURE 4.4: Number of items per grasping strategy

FIGURE 4.5: Percent success per grasping strategy

TABLE 4.6: Objects with no grasping scenario

Object Reason
1. band_aid_tape Unavailable item
2. epsom_salts Too heavy
3. mesh_cup Too large for Pincher, unfeasible texture for vacuum
4. poland_spring_water Too large for Pincher, unfeasible texture for vacuum
5. fiskars_scissors Small and flat, too small for vacuum
6. hanes_socks Too heavy
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FIGURE 4.6: Reasons for failure of CNA with vacuum

FIGURE 4.7: Reasons for failure of CNA with Pincher

FIGURE 4.8: Reasons for failure of HAF with Pincher
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FIGURE 4.9: CNA with vacuum successful grasp of the reynold’s
wrap, tennis ball container and irish spring soap
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FIGURE 4.10: CNA with Pincher successful grasp of balloons, face
cloth, and table cloth

FIGURE 4.11: HAF with Pincher successful grasp of the toilet brush
and false positive of heights with hand weight
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TABLE 4.7: Optimization table for ARC’17 items

# Official Name CNA with vacuum CNA with Pincher HAF with Pincher
1 avery_binder 1
2 balloons 1
3 burts_bees_baby_wipes 1
4 toilet_brush 2 1
5 colgate_toothbrush_4pk 1
6 crayons 1
7 epsom_salts
8 robots_dvd 1
9 glue_sticks 1
10 expo_eraser 1
11 fiskars_scissors 1
12 composition_book 1
13 hanes_socks
14 irish_spring_soap 1
15 band_aid_tape
16 tissue_box 1
17 black_fashion_gloves 1
18 laugh_out_loud_jokes 1
19 mesh_cup
20 marbles 2 1
21 hand_weight 2 1
22 plastic_wine_glass 1
23 poland_spring_water 1
24 pie_plates 1 2
25 reynolds_wrap 1
26 robots_everywhere 1
27 duct_tape 2 1
28 scotch_sponges 1
29 speed_stick 1
30 hinged_ruled_index_cards 1
31 ice_cube_tray 1
32 table_cloth 1
33 measuring_spoons 2 1
34 bath_sponge 1
35 ticonderoga_pencils 1
36 mouse_traps 1
37 white_facecloth 1
38 tennis_ball_container 1
39 windex 1
40 flashlight 1

29/40 8/40 5/40
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Chapter 5

Discussions

The following section explains the tabular and graphical results presented in Chap-
ter named Experimental Procedures & Results.

5.1 Elimianting AGILE

On Figure 4.2 it can be seen that the AGILE grasping algorithm takes up to 14 sec-
onds to calculate, HAF takes up to 11 while Suction Normals takes up to 2 seconds.
This is a huge drawback to computing height and geometrical features since the
time-per-object increases greatly. This time increase is not desired during the com-
petition since the pick and the stow tasks have a time limit. In order to minimize
time and thus maximize the points, it has been decided to limit the number of ob-
jects that will be used with the HAF or AGILE grasping algorithms. If an object has
an option of being picked with CNA then this algorithm has the priority.

After a few preliminary testings with time, it has been determined that having
both AGILE and HAF grasping to be applied to the same gripper increases complex-
ity and adds a redundancy. These algorithms both should be able to accomplish the
same task and it is unnecessary to keep both of them in the system. From the first
step, it is known that AGILE takes more time. The second important step is deter-
mining the robustness and success of the algorithms. With the point cloud of the
crayons box,4.3a, HAF grasping computed a downward facing grasp vector as seen
on Figure 4.3b. The grasp is unique with limited variations of twist around any other
axis but it is stable and the result is repeatable. By choosing the vertical approach
rather than the one at an angle, the robot is less likely to collide with the bin and with
the tote. HAF grasping does not present the final list with many grasp possibilities
but the one that is presented is the highest scored grasp that has been selected by the
algorithm. In this case, the grasps with low scores will not appear in the output and
hence will not be executed. This saves time for not executing grasps that are likely
to fail, shows robustness since the grasps with low scores often result in a polluted
point cloud and are eliminated, and shows safety since the arm is unlikely to do do
a large angle tilt away from the axis as this is controlled.

AGILE grasping, as can be seen on Figure 4.3c, presents the result with many
possibilities. The possibilities are often at an angle away from the vertical z-axis
since the search looks for handle-like part of the object. Unfortunately, the gripper
often cannot pick up an object from the sideways position since there are no feasible
non-friction fingers to be able to do so. AGILE grasping also takes into considera-
tions the many parts of the point cloud that are not relevant, as can be seen on Figure
4.3d. Although initially, the sorting algorithm will take the best grasps into account,
the scenario can be such that all of the good grasps are impossible and the robot will
resort to the bad ones in the list. These grasps, although unlikely, still exist and can
potentially cost the team time and points if executed and can cause a collision and
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if executed improperly because the Baxter arm orientation behaves unpredictably.
Hence it was concluded for further testing to eliminate the AGILE grasping from
the system architecture as the lack of robustness reduces success and increases the
possibility of whole system failure.

5.2 Maximizing use of CNA

From Table 4.1 it can be seen that 25 out of 40 items can be lifted by the vacuum
gripper. In this case, we already know that if they have easy symmetry and a large
part to be used with suction, then maximizing the use of CNA algorithm and hence
reducing time will be an easy task. As can be seen, there was a maximization of the
use of the CNA algorithm, first of all, because it is successful, second of all, because
it is fast, and third of all because it is not restricted by the workspace of the robot
arm.

After an extensive amount of testing, the final optimized table has been created
in order to maximize success for grasping with various algorithms and two grip-
pers. Table 4.7 shows which objects will be grasped with what algorithm and with
what grippers. Table 4.6 lists the objects for which the grasping does not work even
in a perfect scenario and hence will be excluded from further analysis of success.
Note that the CNA approach has been used with the Pincher gripper as well. The
CNA algorithm works because it takes the center of the object given the point cloud
and exploits consistent texture quality of objects like the gloves. These deformable
objects can be grasped in the same way that a book is grasped. There is no differ-
ence in computation and the hardware of the Pincher adapts well to the object. Note
that some objects can be picked up with both grippers depending on which way
the orientation is or which part of the object is visible. In this case, the robot can
be programmed to try twice with different algorithms. With this exploitation, it can
be seen on Figure 4.4 that over 75% of the objects will be picked up using the CNA
algorithm, whether with vacuum or with Pincher.

5.3 Failure analysis

Table 4.3 shows that not only is CNA with vacuum is most used but it is also the
most reliable approach. So if it is deemed that a vacuum is most useful for the certain
object then there is over 90% chance that is will be successfully picked up. The set
of pie charts gives important information as to what happened during testing with
the unsuccessful grasps. The pie charts document the reasons for failure. The most
notable reasons, relevant to grasping, that were seen during testing are listed below.

• Grasp not found: The algorithm does not output a grasp based on the input
point cloud.

• Grasp not feasible: The grasp can be executed but is not successful because it
does not allow the robot to lift the object.

• Robot imprecision: The grasp is feasible, and can be executed however the
robot misses the location of grasp due to calibration error or actuation error.

• Object slip/drop: Object is grasped but then slips between the fingers or es-
capes from the vacuum pressure.
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• Texture of object not consistent: The gasp from the point cloud looks poten-
tially successful however a label or a bump in the object gets in the way of
lifting the object.

• Grasp not reachable: The restrictions to robot’s wrist motion deem the grasp
not executable because the robot cannot reach the potential grasp as it is out-
side of the workspace or leads to a collision with itself.

In the case of CNA with vacuum, the main reason, as seen on Figure 4.6 is the incon-
sistency of object texture. For example, the pie plates item has the back side that is
perfectly flat and has 100% chance of being picked up however testing was done on
all sides and the other side is curved and air pressure slips between the holes. On
the other side, the pie plates item has been picked up 0/5 times hence the total suc-
cess can only be 50%. Figure 4.7 shows the reason behind the failure of CNA with
Pincher. The biggest reason is that the object slips. The material in an object like
the table cloth is very thin hence drops unexpectedly. Another major reason is that
the texture is inconsistent. An object like the black fashion gloves has a label and
if one of the fingers touches this label then it glides across the label without grab-
bing any of the material. Without the grasp of the material, there can be no grasp of
the object. Note that in the above case the CNA algorithm is successful despite the
hardware restrictions. This is due to the preassigned angular rolls around the z-axis
of the robot wrist. This technique in CNA allows for the configuration to always be
comfortable for Baxter and the IK to always find a solution. Hence the strength of
this algorithm is its independence of the orientation of the wrist. Figure 4.8 shows
the reasons for the failure of the HAF algorithm with Pincher. This combination
shows a low success rate of 25%. This reason behind the low success rate can be
attributed to the hardware restriction specified in the Methodology chapter. A grasp
can always be calculated, even if it is not the best, but it is rarely executed. As can
be seen on Figure 5.1 the fully vertical grasp which would allow the robot the most
strength and collision avoidance, is not feasible in the further half of the bin. Even
this configuration would not be allowed as this forces the arm to go into a singular
configuration. Furthermore, certain orientations restrict the motion, on the leftmost
image of Figure 5.2 the hand weight has an orientation that is not reachable from the
comfortable position of Baxter. The corresponding right image shows the opposite
arm motion with an 180-degree roll around the z-axis. Although this is technically
reachable by Baxter, the motion of the arm first moves the shoulder and hence forces
the robot into collision. This motion is then not executed either.

FIGURE 5.1: The distance to the bin results in many unreachable con-
figurations

Another reason, especially relevant for the hand weight item, is robot impreci-
sion. The Pincher opening allows about a millimeter of clearance with the center
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FIGURE 5.2: (left) Maximum angle restriction. (right) Constitutes a
collision due to shoulder motion.

of the hand weight and the robot has 1cm accuracy. Hence robot simply misses the
correct grasp location.

Note that some of the failure reasons mentioned above do not deal directly with
grasping. Some deal with the problem that the robot may have while attempting to
execute the grasp. The grasp itself may look good in a simulation, but may fail in
real life. That’s why the conditions for testing have been as realistic as possible. It is
very important to evaluate a grasp in this perspective because grasping criteria of-
ten only give the success with regards to the object not to the scene. Here, the whole
scene is provided because it is believed that this grasping aids in robot autonomy
and a given grasp needs to allow the robot to be autonomous. If the robot autonomy
fails due to grasping then the grasp fails as well.

Despite the setback described above, the total success rate as shown on Figure
4.5 shows a complete 64% success of object grasping.
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Chapter 6

Conclusions

The following section summarizes the achievements of the presented work and in-
vestigates possibilities for improvements.

6.1 Summary

The UJI RobinLab team took on the ARC’17 in order to automate the warehouse
environment. One of the necessary accomplishments for the robot is to be able to
grasp an object, which requires a software algorithm. The thesis proposes a solution
for the object grasping and using two algorithms that take a point cloud as an input
outputs a position and orientation of the gripper given the hardware specifications
and restrictions. Two algorithms for the two finger gripper have been compared
and the most suitable one has been selected for further testing due to the analysis
of time, robustness, and success. The chosen algorithm uses height features of point
cloud in order to find a final grasping position and orientation. A vacuum gripper
approach has been created based on the normals estimated based on the surfaces
of the point cloud of an object. This approach has been used for objects that are
generally symmetric and have a surface that can be extracted from the point cloud in
order to be used for picking them up using vacuum pressure. This algorithm proved
to be fast and hence has also been implemented with the gripper on deformable
objects such as a towel for which the orientation of the gripper’s x-axis does not play
a role. Finally, an optimized table has been devised to maximize the manipulation
of an object by customizing the algorithms to each specific object.

6.2 Future Work

The limitations of the work posed by the limitation of the gripper led to insufficient
analysis on the differences between AGILE and HAF grasping. A gripper with at
least 15cm of opening width would be a hardware component that would allow
testing based on the success of lift rather than qualitative analysis in a simulation.
With this gripper it would be useful to implement and test not only AGILE, HAF, but
also other grasping algorithms for the purpose of testing current applications. An-
other testing to be done is object picking from a dense clutter. The input would be a
large cluttered scene, and the output would be a list of grasp vectors. The purpose
would be to have the robot take out objects from a bin one by one without having to
rely on vision to segment the point cloud. This would allow for a strong quantitative
comparison of the algorithms such as AGILE and HAF since they were created for
the purposes of a dense clutter. More testing would be done with a different robot
as well, one that has the ability to perform any kind of rotation of the wrist. This
would allow variety of approaches to be tested.
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Another limitation lies in autonomy. Industries aim to create robots that act
without supervision in home and work environments. In this case, the success of
an algorithm lies in the recognition of its use and then successful results in each
demonstration. Once a robot approaches a scene with multiple objects, the scene
itself should give certain features with which a robot understands what algorithm
would be most useful. For the competition, the results of this top-level analysis have
been simulated with a simple excel sheet. Each object has its personal attributes, like
a passport. It gives details of the object shape, the algorithm with which the object
should be picked, and the parameters associated with the algorithm. To make such
an excel sheet with all the objects in the totality of the Amazon task would prove to
be an arduous task. Making the excel sheet an autonomous part would be more a
logical next step. The proposed work includes the design of an algorithm that takes
in already available image data used for vision processing and Point Cloud data in
order to define which of the three algorithms, mainly HAF, AGILE, or CNA, would
be used for a particular object either in the cluttered or single object scene. In the first
stages of the creation of the algorithm, the output would create a dataset similar to
the excel sheet with a success or failure associated with it. The second step of the cre-
ation of the algorithm would be to have the robot autonomously learn to improve
its choices in the future. After a set of trials, the success rate would be similar to
the one demonstrated without human analysis. Given the readily available machine
learning classification methods, such an output would be implemented through a
set of supervised learning. The algorithm would lead to more robot autonomy in
terms of grasping and manipulation.

6.3 Conclusion

An important lesson from the given report is that given a problem, one can put to-
gether a solution given current advances in technology. Often research focuses on
select few specifications but the real world scenario is full of unexpected encounters.
There is often no guarantee as to how the environment will look in front of a robot
and most likely that it will not resemble a perfect laboratory scenario. With this is
mind, it has been quite important to learn what solutions are available and how can
they complement each other given a scenario such as the ARC’17. In this case the
solution consisted of applications of software to different hardware and the reuse of
innovative applications of code. Perhaps the robotics community cannot yet repli-
cate the intricacy of the human brain however through various modes of application
the solution can be brought to the best possible outcome. It is also important to un-
derstand the advantages and disadvantages of previous work and carry on the work
for the advancement of the knowledge of robotics and science as a whole.
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