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ABSTRACT 

In an era in which climatic change puts at risk the planet, the study and develop of alternative green 

chemistry which can help and improve our life can play an essential role. In this context, the use of 

artificial enzymes capable of substitute traditional industrial processes by environmental friendly 

routes is a challenge. Unfortunately, the complete understanding of the catalytic activity and 

selectivity of enzymes remains still elusive, thus hampering creation and development enzymatic 

proteins. In this paper, the molecular mechanism of the non-natural multistep retro-aldolase reaction 

catalysed by a de novo biocatalyst, the RA95.5-5, has been investigated by means of multiscale 

QM/MM methods. The design of a retro-aldolase presents the difficulty to create an enzyme being 

able to stabilize several transition states, maintaining low energy barriers along the overall reaction. 

The obtained QM/MM free energy landscape has allowed defining the rate determining step 

corresponding to the carbon – carbon bond scission of the substrate, which is in accordance with the 

experimental data. A deep analysis of the electrostatic interactions between the substrate and the 

different amino acid residues of the protein, as well as the estimation of the electrostatic potential 

generated on key atoms of the substrate, has been carried out for the key steps of the reaction. The 

results, compared with previous computational studies on the most efficient de novo retro-aldolase, 

the RA95.5-8F, explains the different activities achieved during the directed evolution process and 

provides insights for future developments of more efficient enzymes. 
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INTRODUCTION 

It was 1947 when Linus Pauling wrote that “no one succeeded in determining the structure of any 

enzyme nor in finding out how the enzyme does its job”.1 Some time later, James D. Watson stated 

that “proteins were daunting objectives, not only because of their size and irregularity but because 

the sequence of amino acids along their polypeptide chains was still unknown”.2  Since then, scientists 

have flirted with the idea of understanding the principles of biological catalysis, with the purpose to 

know how enzymes work and, ultimately, to design ‘new’ ones. After less than a century of Pauling 

and Watson’s assertions, all the research performed has allowed designing new enzymes with catalytic 

activities close to those exhibited by natural enzymes, accomplished after millions of years of 

evolution. This milestone was achieved by a revolutionary and robust method to design proteins with 

desirable functions, by minimizing natural evolution through generating random mutations in the 

gene of interest.3–12 The engineering of novel enzymes is a grand challenge, and the past decade has 

demonstrated that synthetic methods can be combined with computational tools to exploit together 

the generation of proteins with novel structural and chemical properties.13–15The use of theoretical 

simulations is becoming increasingly valuable due to their ability to provide an enormous quantity of 

information about chemical reactions in complex media,13 addressing fundamental questions and 

evaluating amino acid sequences in silico on a scale that is experimentally impossible to achieve. 

Computational assisted protein design methods can be categorized into three main categories: 

bioinformatics, or analysis of primary sequences;16,17� molecular modelling, or computer simulations 

of tertiary structures;18� and methods based on the knowledge of the transition state (TS) structure.19 

This last group of methods can be divided according to the employed protein scaffolds: (i) immune-

globulins, proteins that have been used to produce catalytic antibodies;20 (ii) promiscuous proteins 

showing catalytic activity for more than one reaction that can be re-designed to enhance the activity 

for the secondary reactions; and (iii) proteins without specific catalytic properties that can be used as 

scaffolds to support the design of an active site from scratch, or de novo design.21,22 Mayo and co-

workers23� described the power of an iterative approach combining de novo design, molecular 

modeling, and protein crystallography. De novo protein design is experiencing rapid development,24–

37 becoming mainstream, with a substantial amount of articles employing this approach to some extent, 

many of them highlighting the importance of flexibility and conformational dynamics based in 

computational simulations.27,36,37 These efforts have contributed to the protein de novo design 

becoming an accurate and reliable technique in this field,24 fueled by the development of powerful 

computational methods.38,39 For instance, the software SABER40 has been used to explore and locate 

proteins with particular 3D structures having active sites that might be redesigned to catalyze new 
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reactions.16 A different strategy is used by other programs such as ROSETTA,41 that try to match an 

ideal ‘theozyme’ as coined by Houk and co-workers, to define the set of amino acids placed at 

adequate positions around the substrate, to provide TS stabilization42 into an existing protein 

scaffold.25,26,43,44 In fact, the first computationally assisted designs of new enzymes were reported in 

2008 on retro-aldolases39� and Kemp eliminases,38 based on this strategy.  

In this paper we are describing the results of a computational study of previously designed enzymes 

for the chemically demanding retro-aldol (RA) reaction. In particular, we are dealing with the 

fundamental carbon-carbon bond breaking in a non-natural substrate 4-hydroxy-4-(6-methoxy-2-

naphthyl)-2-butanone, methodol, to form acetone and 6-methoxy-2- naphthaldehyde (6-MNA).39 

Since this is a reaction that proceeds in more than one step, the active site had to be modeled in such 

way that could simultaneously accommodate and stabilize different intermediates and TSs. Indeed, 

according to the original work of Jiang et al. on de novo computational design of RA,39 four 

alternative composite active site motifs were modelled but all of them comprising a nucleophilic 

lysine and general acid/base groups capable of catalyzing various proton transfer steps involved in 

the reaction. Following further optimization and an assessment of the models, 72 of them with 8–20 

amino acid changes in 10 different scaffolds were experimentally tested. 23 had significant retro-

aldolase activity, with rate enhancements up to four orders of magnitude over the uncatalyzed 

reaction.39� 

To improve the designed retro-aldolase, successive studies22,45–48 have been proceeded, focusing on 

the design enzyme RA95.0 (kcat/kuncat =7.7 × 103)48, whose eightfold (βα)8 barrel structure belongs to 

the family involved in molecular or energy metabolism within the cell,49 and it is considered the most 

common and versatile fold among naturally occurring enzymes.50,51 The RA95.047 design was created 

in the (βα)8 scaffold by introducing 11 active site mutations,43 comprising a reactive lysine residue at 

position 210, a hydrophobic pocket for substrate binding between the L1 and L6 (β1α1 and β6α6 

respectively) and a glutamate at position 53 to orient the catalytic water molecule (for promoting 

proton transfers). Nevertheless, the activity of the enzyme was not perturbed after Glu53 was replaced 

by an alanine48 showing that this residue doesn’t contribute to the catalysis. After this artificial 

enzyme, the best variant, RA95.5,47 contained six mutations in the active site (V51Y, E53S, T83K, 

M180F, R182M, and D183N). The new tyrosine substituted at position 51 was proposed to act as 

acid/base species. On the other hand, the lysine at position 83, as in many class I aldolases, would 

adopt the catalytic role of Lys-210. Moreover, mutagenesis studies showed that Lys-83 is more 

effective than Lys-210.48 Just introducing the T83K mutation into the RA95.0 scaffold, the activity 

was increased by around five-folds47. In contrast, the replacement in RA95.5 of Lys-83 with 
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methionine leads to a reduction of the kcat and kcat/Km by factors of 3 and 14, respectively. The same 

mutation on the Lys-210 did not affect the kcat but increased the kcat/Km by two-folds.48 Some other 

mutations (M180F, R182M and D183N) create a deep hydrophobic binding pocket by conformational 

changes. The most active clone after RA95.5, containing six additional mutations, is the RA95.5-5 

(20-fold higher than RA95.5), in which three mutations are in or near the active site (E53T, S110N 

and G178S), while the rest of the mutations are on the surface of the protein (R23H, R43S and T95M). 

The asparagine at position 110 was proposed to assist the formation and breakdown of the 

carbinolamine intermediate through hydrogen-bonding interactions.48 The lysine at position 210 was 

mutated into a methionine without any effect on catalytic efficiency. Further mutations led to RA95.5-

8 with three additional active site mutations and two distal (K13N, S178V, G212D and S43R, F72Y, 

respectively) resulting in a new enzyme that is 60-fold more active. Recently, Hilvert and co-workers 

evolved RA95.5-8 into the highly active RA95.5-8F, whose activity is similar to that of natural class 

I aldolases.45 The best variant is 30-fold more active than the predecessor and contains 13 additional 

mutations. The mutations on RA95.5-5 (close and far from the active site) to get the RA95.5-8F 

design are shown in Figure 1.  

 

Figure 1. Representation of mutations introduced by Hilvert and co-workers in the RA95.5-546 to arrive to the most 

evolved RA95.5-8F43 (yellow spheres). The two key active site residues, Tyr51 and Lys83, are indicated as red spheres. 

 

Since the catalytic activity of artificial enzymes are usually much lower than that of natural enzymes,9 

several studies have been recently conducted to understand the behavior of the designed RAs, thus 

supporting the timeliness of the present study.52,5354 In particular, we perform a multiscale QM/MM 

computational study on the reaction mechanism of the RA95.5 designed by Hilvert and co-
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workers,48,51 and compare the results with the more evolved RA95.5-8F design,48 previously studied 

in our laboratory.54 We chose a variant showing an activity clearly lower than RA95.5-8F (see Table 

S1 deposited in the Supporting Information), in order to confirm the mechanism but, more importantly, 

to compare a less evolved RA with the most efficient one. This way, key effects on catalysis can be 

more easily identified. Computational study of these two de novo enzymes with very different activity, 

and not so many different mutations, should render significantly different results to be analyzed. Thus, 

the goal is to identify the role of those amino acids that are not conserved between both designs, 

which allows defining their contribution to the activation free energy of the different steps along the 

full reaction process. The explored molecular mechanism was initiated on the one proposed in our 

previous QM/MM study of the RA catalyzed by the RA95.5-8F design, shown in Scheme 1.54 

Understanding the origin of the improvement between two designed retro-aldolases at atomistic level 

can be the bedrock to propose strategies to develop efficient new biocatalysts, especially in the case 

of multi-step reactions. 

 

Scheme 1. Schematic representation of the proposed reaction mechanism of the retro-aldol reaction on methodol, 

catalized by the de novo designs RA95.5-5 and RA95.5-8F.  
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COMPUTATIONAL METHODS 

The initial coordinates to generate the molecular model of the full enzyme were obtained from the X-

ray crystal structure of the de novo enzyme RA95.5-5 deposited in the PDB with the code 4A2R. The 

inhibitor present in the crystal structure, as well as part of the active site, was manually modified 

using the VMD program,55 until a favorable (reactive) conformation. This was achieved by, by just 

adding a hydroxyl group to the C13 carbon atom (see Figure 2). The rest of the setting up of the model 

was carried out as described in our previous study,54 Then, potential energy surfaces (PESs) were 

explored for every possible chemical step, using the fDYNAMO library.56 Free energy surfaces (FESs) 

were generated afterwards in terms of potentials of mean force (PMF) using the combination of the 

weighted histogram analysis (WHAM)57 and the umbrella sampling (US) methods,58,59 as imple-

mented in the fDYNAMO library.56 A description of the collective variables employed to explore 

every chemical step depicted in Scheme 1 is deposited in the Supporting Information. The estimated 

error associated to this technique for these kind of systems is usually accepted to be ca 1 kcal·mol-

1.60 As an example, a bootstrapping analysis 61 based on 50 samples for the 1D-PMF of the sixth step 

of the present study renders a rms value for the activation free energy of 0.7 kcal·mol-1. More infor-

mation on the PMF concept and its applications can be found in the literature.56,62–65 In addition, it is 

important to point out that several alternative mechanisms have been also explored, rendering activa-

tion energies much higher than the ones obtained for the mechanism reported in Scheme 1 (see Fig-

ures S8-S10 deposited in the Supporting Information). 

During the QM/MM calculations, the AM1 semiempirical Hamiltonian66 was used to treat the quan-

tum subset of atoms (see Scheme 1 and Figure 2). Once the first product was released (the 6-MNA 

molecule), the number of atoms treated quantum mechanically was reduced to the enamine, the side 

chains of Lys83 and Tyr51, and the generated water molecule. The rest of the protein−solvent system 

(43280 atoms) was represented classically by means of the OPLS-AA67–69 and the TIP3P70 water-

model force fields. The link atom approach71 was used for the QM-MM frontier treatment. Finally, 

an energy cubic spline function,79–84 was applied in order to correct the possible deficiencies of the 

AM1 semiempirical Hamiltonian when generating the FESs, with the hybrid M06-2X functional with 

the 6-31+G(d,p) basis set,78 using the Gaussian09 program.79 See Supporting Information for details. 
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Figure 2. Schematic representation of the active site of the RA95.5-5 de novo enzyme. The gray region contains the atoms 

treated quantum mechanically. Link atoms are represented as black dots. 

 

 

 

RESULTS 

The first part of this study was devoted to defining and exploring the whole reaction mechanism 

catalyzed by the de novo enzyme RA95.5-5, computing the corresponding FES for each of the pro-

posed chemical steps (see Figure S8, S9 and S10 in Supporting Information for other alternative 

explored reaction mechanism paths studied). As for the RA95.5-8F design,80 an acid−base reaction 

initiates the overall process. The 2D-PMF of the first step computed at M06-2X:AM1/MM level is 

presented in Figure 3, together with representative snapshots of reactants (R), the transition state (TS1) 

and the intermediate (I1). According to the free-energy surface shown in Figure 3a, the reaction occurs 

as a concerted process, with an activation free energy for this step of 11.9 kcal mol−1. Based on the 

average key distances of the located structures of the involved states (see Figure 3 and Table S2 on 

Supporting Information), the reaction is confirmed to take place with the formation of the NK83−C 

bond and the simultaneous protonation of the carbonyl group of the substrate by Tyr-51.  
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(a)                                                                  (b) 

   

 (c)                                                                  (d) 

   

Figure 3. (a) M06-2X:AM1/MM FES for the first step of the reaction computed at 300 K. Representative snapshots of 

the (b) R, (c) TS1, and (d) I1. Values of energies are given in kcal mol−1 and distances in Å. 

 

In the second step of the reaction,  the Tyr-51 deprotonates the positively charged Lys-83. According 

to the free energy surface shown in Figure 4a, this exergonic reaction proceeds with an activation free 

energy of 1.6 kcal mol-1. The second intermediate, I2, is 1.7 kcal mol-1 more stable than I1. The com-

parison of these results with the corresponding second step in RA95.5-8F,54 shows that the mecha-

nism is conserved, albeit a slighter higher energy barrier is obtained in the present system. An expla-

nation can be due to the mutation done at position 180, where a phenylalanine presents in the RA95.5-

5 is substituted by tyrosine in the RA95.5-8F variant.45 The Tyr-180 creates a well-defined hydrogen-

bond network with Tyr-51, Asn-110 and Lys-83, thus facilitating the formation of the I2. A list of key 

averaged inter-atomic distances is deposited in Table S3 of Supporting Information. 
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(a)                                         (b)                                             (c)  

 

Figure 4. (a) M06-2X:AM1/MM FES obtained as a 1D-PMF at 300 K for the second step of the reaction. Representative 

snapshots of the (b) TS2 and (c) I2. Values of energies are given in kcal mol−1 and distances in Å. 

 

The third step leads to the formation of an enamine and the elimination of a water molecule, yielding 

the first product of the reaction, 6-MNA. As described by the free energy surface shown in Figure 5a 

and confirmed by the analysis of the key inter-atomic distances (see Figure 5b, 5c and Table S4 of 

Supporting Information), the step occurs in a very asynchronous way. The water molecule has already 

largely been formed before the transition state takes place. The structure in the TS3 shows how the 

cleavage of the O-C bond is in a very advanced stage (O-C = 3.50 ± 0.23 Å) and the scissile carbon-

carbon bond already broken (C-C = 3.58 ± 0.17 Å). The reaction is strongly endergonic, with a reac-

tion free-energy value of 16.0 kcal mol-1 and an activation energy of 29.1 kcal mol-1.  

(a)                                       (b)                                             (c)    

                 
Figure 5. (a) M06-2X:AM1/MM FES obtained as a 2D-PMF for the third step of the reaction at 300 K. Representative 

snapshots of (b) TS3 and (c) I3. All values of energies are given in units of kcal mol−1, and distances are given in units of 

Å. 
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The fourth step involves the formation of a Schiff base. The free-energy surface is shown in Figure 

6a as a mono-dimensional PMF. The activation free energy for this step is 9.6 kcal mol-1, while the 

reaction free energy is -3.1 kcal mol-1. This step consists in a proton transfer from Tyr-51 to the C12 

atom of the substrate (see Figure 6b and 6c). According to experimental data81 and our previous 

QM/MM theoretical results,54 this is the rate-determining step in the equivalent reaction catalyzed by 

the RA95.5-8F. The water molecule in the active site, generated during the previous step, remains 

well-positioned to participate in the following step (see average key distances in Table S5 of Sup-

porting Information). 

(a)                                         (b)                                             (c) 

                  
Figure 6. (a) M06-2X:AM1/MM FES obtained as a 1D-PMF for the fourth step of the reaction at 300 K. Representative 

snapshots of (b) TS4 and (c) I4, respectively. All values of energies are given kcal mol−1 and distances in Å. 

The PMF of the fifth step is shown in  Figure 7a. An oxygen atom, from a water molecule, attacks 

the sp2 carbon atom of the Schiff base, and simultaneously, the Tyr-51 deprotonates the water mole-

cule. The product obtained is the intermediate carbinolamine, I5, shown in Figure 7c (the average key 

distances are reported in Table S6 of Supporting Information). The activation free-energy is 12.9 kcal 

mol-1, while the I5 turns out to be 7.8 kcal mol-1 more stable than the I4. The obtained picture of this 

step is comparable to the one obtained for the reaction catalyzed by RA95.5-8F54, in which the acti-

vation and reaction free-energy were 7.6 kcal mol-1 and -6.1 kcal mol-1, respectively. 
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(a)                                       (b)                                               (c) 

 
Figure 7. (a) M06-2X:AM1/MM FES obtained as a 2D-PMF for the fifth step of the reaction at 300 K. Representative 

snapshots of (b) TS5 and (c) I5. All values of energies are given in kcal mol−1 and distances in Å. 

 

The reaction of the sixth step consists in the deprotonation of the Tyr-51 by the nitrogen of carbino-

lamine. According to the FES depicted in Figure 8a, the production of a charged species is not a 

favorable process. The activation free-energy, determined by a TS in a very advanced stage, requires 

14.7 kcal mol-1 while the reaction free-energy is 14.3 kcal mol-1. Similar behavior was already ob-

tained for this step in the reaction catalyzed by RA95.5-8F.54 

 

(a)                                           (b)                                               (c) 

 
Figure 8. (a) M06-2X:AM1/MM FES obtained as a 1D-PMF for the sixth step of the reaction at 300 K. Representative 

snapshots of (b) TS6 and (c) I6. All values of energies are given in kcal mol−1 and distances in Å. 
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The formation of the acetone and the restoration of the enzyme take place in the seventh step. 

According to the FES shown in Figure 9a, the product is only 0.2 kcal mol-1 more stable than the I6, 

while the activation free-energy is 6.9 kcal mol-1. The geometries in the TS7 and the corresponding 

products state, acetone plus the enzyme, clearly show how the deprotonation of the hydroxyl by Tyr-

51 reestablishes the neutral character of the species involved in the reaction (see key inter-atomic 

distances in Figure 9b and 9c, and in Table S8 of Supporting Information). As in the previous step, 

the proton transfer and the N-C breaking bond are in a very advanced stage of the process in the TS7.  

(a)                                           (b)                                               (c) 

 

Figure 9. (a) M06-2X:AM1/MM FES obtained as a 1D-PMF at 300 K for the seventh step of the reaction. Representative 

snapshots of the (b) TS7 and (c) acetone + Enzyme. All values of energies are given in kcal mol−1 and distances in Å. 

 

 

DISCUSSION 

The information derived from each of the FESs generated along the 7 consecutive steps provides the 

full energy landscape of the retro aldol reaction catalyzed by the RA95.5-5 de novo enzyme (see 

Figure 10). Our simulations suggest that the third step, corresponding to the C-C bond cleavage of 

methodol and the release of 6-MNA, is the rate-determining step of the full process, which is in 

agreement with experimental data.81 The detailed study of the individual steps (see Figures 3-9), and 

the comparison with the corresponding steps of the previously studied reaction mechanism of 

RA95.5-8F (see Figure 10), allows explaining the consequences on the energetics of each step after 

mutations. Thus, two general conclusions can be derived by comparing the two energy profiles (see 

solid and dashed profiles in Figure 10). First, our QM/MM results show how the mutations introduced 

on the less evolved RA95.5-5 to get the more efficient RA95.5-8F provokes an evident diminution 

on the overall activation free energy from 29.1 to 20.1 kcal·mol-1. This trend is in very good 

agreement with the kinetic data of Hilvert and coworkers.81 And second, the comparison between the 
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full energy profile of the two variants shows how the successful efforts carried out by Hilvert and co-

workers to decrease the barrier of the rate-limiting step in the RA95.5-5, the third step, have two 

noticeable side effect: the increase in the barrier of step 1 and, more noticeable, the rate-determining 

step is no longer the third step but the fourth one in RA95.5-8F. These two unfavorable effects cannot 

be considered, nevertheless, as unexpected, since we are dealing with a multi-step reaction and 

stabilization of the TS of one step can destabilize other TSs. 

 

Figure 10. M062X/6-31+G(dp):AM1/MM free-energy profile for the reaction mechanism of the Retro-Aldol reaction of 

the (R)-methodol enantiomer catalyzed by de novo enzyme RA95.5-5 (solid line), compared with our previously QM/MM 

energy profile obtained for the same reaction catalyzed by the more evolved RA95.5-8F (dashed line).54 

 

In order to analyze in detail why the energy profile of the reaction is modified after mutations, an 

analysis of how the different amino acids of the protein affect the efficiency of the enzyme was carried 

out. In particular, the catalytic role of the different residues was measured by computing the activation 

interaction energy by residue, in the TS and the preceding minimum of each step, i.e. the difference 

in the electrostatic (QM) and Lennard-Jones (MM) interaction energies between the substrate and the 

protein. The calculations were done in the two de novo designed proteins, and the efforts were focused 

on the key chemical steps, as deduced from the discussion in Figure 10: steps 1, 3 and 4. The decom-

position of the averaged activation interaction energy by residue in the three steps of RA95.5 and 

RA95.5-8F are shown in Figure 11. Substrate-protein interaction energies decomposed by residue for 

different states along the reaction path are shown in Figures S2-S4 of Supporting Information. The 

conclusions that can be derived from this comparative analysis on each step are as follows: 



15 

 

First step: The results of step 1 for both enzymes are shown in Figure 11A. The reaction appears to 

be mainly favored in the RA95.5-5 (left panel of the figure) by the presence of Lys-210, Asp-111 and 

Glu-85, being greater the interaction with the transition state than with the reagent. Asp-111 and Glu-

85 are also present in RA95.5-8F (see right panel of Figure 11A) with similar interaction values, but 

the favorable interaction between the substrate and Lys-210 in RA95.5-5 is completely absent in 

RA95.5-8F, where a new Leu is located at this position. RA95.5-8F shows a new significant favorable 

interaction with Asn-110, but also an increase of the number of non-favorable interactions with resi-

dues such as Arg-19, Leu-53, Ser-58, Gly-59, Glu-188 and Asp-212. These different patterns of in-

teractions can explain the increase in the energy barrier in the first step after mutations.  

Third step: The analysis of the third step, shown in the two panels of Figure 11B, highlights the 

absence of a proper residue to promote this step in RA95.5-5, apart from Lys-55 (and Tyr-53 and 

Glu185 at less extent), and the non-favorable effects of Lys-210 and, at less extent, Phe-180. Lys-210 

disfavor the reaction by stabilizing the intermediate I2 with respect to TS3. Right panel of Figure 11B, 

corresponding to RA95.5-8F, shows that while the catalytic effect of Lys-55 is lost, residue at position 

210 is no longer destabilizing the TS3 and, in addition, there is an increasing number of stabilizing 

interactions by different residues. It is remarkable how the Phe180Tyr mutation provokes a series of 

conformational changes in the surroundings of this position that favor the establishment of new fa-

vorable effects of residues such as Ser-81, Asp-111, Glu-135, Glu-188, Met-231 and Ser-233. As a 

consequence of all of these new favorable interactions, the free energy barrier of the third step in the 

reaction catalyzed by RA95.5-8F is reduced by 11.6 kcal mol-1 with respect to RA95.5-5. This step 

becomes an exergonic reaction (-2.2 kcal mol-1).54  

Fourth step: Finally, the comparison of the pattern of activation interaction energies of the two de 

novo enzymes in the step 4, depicted in the two panels of Figure 11C, shows a noticeable number of 

favorable interactions in the less evolved RA95.5-5 enzyme (Tyr-52, Thr-53, Asp-61, Glu-85, Asp-

111, Leu-231, Met-237 and, above all, Lys210) as well as some unfavorable interactions (Trp-8, Lys-

135, Ile-232 and, above all, Lys55). The more evolved designed enzyme does not present the most 

intense stabilizing interaction with residue 210, due to the mutation of the Lys into a Leu in this 

position, despite the destabilizing interaction with residue 55 (Lys-55 in RA95.5-5) is not present. As 

could be expected, the pattern of stabilizing and destabilizing interactions is significantly different 

between both enzymes. Grosso modo, less stabilizing and more destabilizing interactions are detected 

in step 4 of RA95.5-8F than in RA95.5-5, which agrees with an increase of ca. 9 kcal mol-1 in the free 

energy barrier of this step.  
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A) First step 

 
B) Third step 

 
C) Fourth step 

 
Figure 11. Averaged activation interaction energy of RA95.5-5 (left panels) and RA95.5-8F (right panels), for the (A) 

first (B) third and (C) fourth steps of retro-aldol reaction. Only residues showing interaction energies higher than 1 kcal 

mol-1, in absolute value, are labelled in the panels. Standard deviation of the activation interaction energy per residue is 

indicated as circles for the most relevant interactions. 
 

In summary, the changes in the activation energies of steps 1, 3 and 4, when comparing RA95.5-5 

and RA95.5-8F, are in agreement with the analysis of the pattern of interactions. Thus, it is evident 
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that RA95.5-5 has more stabilizing interactions than in RA95.5-8F in steps 1 and 4 while, in contrast, 

RA95.5-8F shows a much clear stabilizing pattern of interactions than RA95.5-5 in step 3. It is 

interesting to note the role of Lys-210 in stabilizing the TS1 and TS4 in the RA95.5-5 (left panels of 

Figure 11A and 11C), but not the TS3. The reason can lie in the interaction of the positive Lys-210 

with the Tyr-51. This latter, indeed, develop a negative charge in steps 1 and 4, while ends up with a 

neutral charge in the rate-limiting step, the third step. This behavior of the interaction energies is 

mirrored when analyzing the electrostatic potential generated by residue on the oxygen atom of Tyr-

51 (see Figure S5, S6 and S7 of the Supporting Information). Lys-210 creates a more positive 

potential on the oxygen atom of Tyr-51 in the TS1 than in the reactants (ca. 44 vs. 39 kcal mol-1), 

which means that Lys-210 stabilizes the negative charge that is being developed in the oxygen atom 

of Tyr-51 in RA95.5-5 (see Figure S5). In contrast, the electrostatic potential generated by Leu-210, 

in RA95.5-8F, is dramatically smaller and does not change along this step (ca. 2 kcal mol-1). The 

same behavior is obtained when analyzing the electrostatic role of Lys-210 in step 4 in RA95.5-5 (see 

Figure S7). In the third step of the RA95.5-5, the electrostatic potential generated by Lys-210 on Tyr-

51 decreases (from ca. 49 to 38 kcal mol-1), which could be considered conforming to a higher energy 

barrier in this step (see Figure S6). In RA95.5-8F, the positive electrostatic potential, generated by 

Asn-110 on Tyr-51, is observed in all the initial steps (ca. 12 kcal mol-1); in the fourth, moving from 

I3 to TS4, the electrostatic potential disappears. This trend is in agreement with the increase in the 

energy barrier of this step. The geometries analysis shows that the water molecule formed in the active 

site interacts with Tyr-51, and dramatically modifies the relative orientation of this residue from I3 to 

TS4.  

 

CONCLUSIONS 

The molecular mechanism of the non-natural multistep retro-aldolase reaction catalyzed by a de novo 

enzyme, the RA95.5-5 designed by Hilvert and co-workers,46 has been investigated by means of 

multiscale QM/MM methods using methodol as substrate. The results have been compared to our 

previous computational study on the more evolved RA95.5-8F retro-aldolase,52 designed also by 

Hilvert and co-workers.43 The obtained free energy landscape has allowed to confirm how the 

RA95.5-5 presents a higher overall activation free energy barrier than the RA95.5-8F (29.1 vs. 20.1 

kcal mol-1), as well as to define the details of every of the 7 steps of the full reaction mechanism. 

According to our results, both designed enzymes catalyze the reaction by means of the same 

molecular mechanism. Nevertheless, while the rate-limiting step on the RA95.5-5 corresponds to the 

substrate carbon-carbon bond breaking that generates the first product 6-MNA (3rd step in scheme 1), 
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the rate-limiting step on the RA95.5-8F appeared to be the decomposition of an enamine intermediate 

into a Schiff base (4th step in Scheme 1). This is in accordance with pre-steady-state kinetic methods 

and isotope exchange experiments carried out by Hilvert and co-workers.43,46  

Our results confirm the difficulties of improving the efficiency of an enzyme that has to be able to 

maintain low energy barriers along a multi-step chemical reaction, such as the retro-aldolases. The 

mutation of residues in specific positions (17 amino-acids when evolving from RA95.5-5 to RA95.5-

8F, as shown in Figure 1) reduces the barrier of the targeting rate-limiting step, but it brings anti-

catalytic effects in other steps. Indeed, our simulations show how the activation free energy barrier 

of step 3 is reduced from 29 to 10 kcal mol-1 after introducing these 17 mutations, but the 

corresponding free energy barrier of step 4 is increased from 9.5 to 20.0 kcal mol-1. In addition, the 

activation free energy of step 1 is also perturbed during the directed evolution, increasing in ca. 5 kcal 

mol-1 (see Figure 10). The analysis of the electrostatic interaction energy between the substrate and 

the different amino acid residues of the protein shows how the number of favourable interactions 

(stabilizing further the TS than the preceding intermediate) in the step 3 is larger in the RA95.5-8F 

than in the RA95.5-5, and the opposite trend is detected in step 1 and 4. This is in perfect agreement 

with the corresponding activation energies. Some of the substitutions appear to be exceptionally well 

connected with the energetics of these steps, such as the mutation Lys210Leu. Thus, Lys-210 appears 

to have an unfavourable effect in step 3, and a favourable effect in steps 1 and 4 in RA95.5-5. When 

this residue is mutated to Leu to get RA95.5-8F, the unfavourable effect in step 3 disappears, which 

is associated to a decrease in the energy barrier, but the catalytic effect that it was producing in steps 

1 and 4 also disappears, provoking an increase in their corresponding energy barriers.  

The results of the protein-substrate interaction energies are mirrored in the analysis of electrostatic 

potential generated by residue in one of the key atoms of the system: the oxygen atom of Tyr-51. Our 

results show how Lys-210 generates a positive potential that is increased in the TS1 and TS4, thus 

stabilizing the accumulation of negative charge on Tyr-51 that takes place in step 1 and 4 of the full 

retro-aldol reaction. The corresponding Leu-210 in RA95.5-8F does not produce any favorable 

electrostatic effect on these steps, which is translated into an increase of the activation free energies. 

Thus, the relevant role plaid by residue 210 in RA95.5-5, which disappears entirely in the more 

evolved RA95.5-8F, could be reconsidered in future mutants. It is also remarkable that new residues 

can provoke changes in the role of conserved residues. This is the case of residues such as Ser-81, 

Asp-111, Glu-188 or Ser-233, which contribute to lowering the free-energy barrier of step 3 in 

RA95.5-8F, but they have not clear effect in the RA95.5-5 design. 
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In all, the analysis of the interaction energies decomposed by residues for each step of an enzyme 

catalyzed reaction, together with the evaluation of key electrostatic properties, provide a very useful 

insight on how each amino-acid interacts and participates in the catalysis. This information can be 

used not only to understand the behavior of every design generated by directed evolution, but also to 

suggest mutations that can further improve the overall energetic profile.   
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