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Abstract University rankings are now relevant decision-making tools for both insti-
tutional and private purposes in the management of higher education and research.
However, they are often computed only for a small set of institutions using some
sophisticated parameters. In this paper we present a new and simple algorithm to cal-
culate an approximation of these indices using some standard bibliometric variables,
such as the number of citations from the scientific output of universities and the num-
ber of articles per quartile. To show our technique, some results for the ARWU index
are presented. From a technical point of view, our technique, which follows a standard
machine learning scheme, is based on the interpolation of two classical extrapolation
formulas for Lipschitz functions defined in metric spaces—the so-called McShane
and Whitney formulae—. In the model, the elements of the metric space are the uni-
versities, the distances are measured using some data that can be extracted from the
Incites database, and the Lipschitz function is the ARWU index.
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1 Introduction and basic definitions

University rankings are usually developed using some specific indexes that consider
relevant information in relation to different aspects of academic activity. The social
influence of these rankings has been deeply analysed in the last few years, and also
the main technical aspects of the comparison between them (Aguillo et al. 2010;
Chen and Liao 2012) which has become an interesting source of analysis on the
influence of the main cultural areas and scientific regions of the world (Saisana et
al. 2011). Furthermore, it is clear today that they play a central role in the design
of policies affecting issues as different as national scientific research programmes,
library policies, university funding and education policies, and many others (Lim and
Øerberg 2017; Margison 2014; Pagell 2014). However, indices that provide rankings
are often calculated for a selected group of institutions, for which all the values of
the specific variables are known. This makes the definition of the indices and their
use a “vicious cycle”: The “best” universities are taken to choose the variables that
determine the definition of the indexes, which show that these universities are, in
fact, the best. This makes it reasonable to ask for procedures to increase the set of
institutions for which the indices can be computed, allowing for comparisons and
redefinitions in some cases. We present in this paper a method for assessing larger
sets of institutions for which the indices would also make sense, under the restriction
of not knowing the value of the original set of variables selected for a (potentially
large) part of the new set.

Among others, the Academic Ranking of World Universities (known as ARWU
ranking or Shanghai ranking) is an important reference for the worldwide comparison
of institutions involved in higher education and scientific research. However, the score
in which it is based is not computed for a large set of institutions. In particular, in the
Incites database it can be obtained bibliometric information for a lot of universities
not appearing in the ARWU ranking, for which the related score is not known. It
must be taken into account that for the computation of combined indices there are
a lot of different sources of information that are considered, that sometimes simply
do not make sense for institutions of a different class. However, similarity among
universities —measured using for example a metric based in the number published
papers in different quartiles of the JCR and total number of citations—, can allow
to provide an expected value of the ARWU score for universities that are out of this
ranking. In order to get this, we need a metric space (a set D of universities together
with a metric d based in this kind of similarity relations), an index that is known for a
meaningful subset of D (in our case, the ARWU score for a subset of top universities),
and an extrapolation method.

Thus, the purpose of this paper is twofold. First, we are interested in presenting a
new method for extending specific indices to larger classes of entities, which is ob-
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tained by applying some classical results on the extrapolation of real Lipschitz func-
tions to perform a new machine learning procedure. The result is a typical reinforce-
ment learning algorithm based on classical extension theorems for real functions—
the McShane-Whitney Theorem—in a new mathematical environment. Second, we
apply this technique to provide a new tool to address the problem that actually mo-
tivated the mathematical part of our research: the use of prestige-based indices to
build university rankings that include institutions of different sizes and characteris-
tics. Although there are many studies on university classifications, there are not many
published tools that cover the objective of the algorithm provided here, which is the
extrapolation of university rankings from known to unknown situations. However,
some other authors have already analyzed this from this point of view, see for exam-
ple the remarkable contribution provided in Tabassum et al. 2017.

Potential applications of our algorithm are easy to find. The main one, as we
said above, is essentially to extend the definition of indexes to larger sets. For ex-
ample, it can be used for comparison among different indexes that are computed for
different sets of institutions, which could improve the results of the productive com-
parative analysis of rankings (Aguillo et al. 2010; Chen and Liao 2012; Cinzia and
Bonaccorsi 2017; Kehm 2014). It could also help to correct the negative effects on
the rankings of the native language of the countries in which the universities are lo-
cated and wrong citation counts motivated by non-anglosaxon names (Van Raan et
al. 2011), by extrapolating the associated scores using metrics which do not use these
variables. Finally, it can be used for getting specific estimates of prestigious scores for
almost all universities of the world –whenever some bibliometric date are known—,
which can help all the institutions to measure the comparison with bigger and more
powerful universities of other countries.

We will use Incites as main source of bibliometric indicators for a large set of
universities. We will center the definition of our metric in a metric completely based
in number of published papers and citations. The influence of these variables in
the university rankings has been analyzed since university rankings appeared, and
is nowadays well-known (see Luo et al. 2018 and the references therein; see also
Cancino et al. 2017). Some contributions have also been made on how rankings are
defined (multi-attribute rankings) and how universities can develop optimal strate-
gies for scaling them using only the mathematical properties of the underlying index
structure (Bougnol and Dulá 2013). Rankings are based on indices, and the indices
are supported by models with particular mathematical structures. (More examples of
rankings based on multivariable indices can be found in U-Multirank 2019.)

Let us briefly present our method. Consider a set of D from entities such as jour-
nals, authors, libraries, or universities for which you want to have an index-based
evaluation model. Assume that there is a metric d that measures the similarity of
every two elements in D. Suppose that a “quality” index I is defined over a subset
D0 ⊆ D, and is coherent with the metric d, that is, if the distance among two ele-
ments a and b is small, then the values of I(a) and I(b) are similar. Using a machine
learning scheme based on extrapolation techniques for Lipschitz functions, we can
extend the index I to the whole set D. This gives a class of explicit formulas for cal-
culating the index I for entities in the complementary set D1 = D\D0, where it was
not originally defined. In a second step, we use a reinforcement learning method for
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choosing the best formula in the class with the aim of computing an approximation
to I in D1. Since the formula for computing such an extension depends on I—that is
defined only in D0—and on the metric d, we call to such extended function a self-
defined quality index.

We designed this method to face the problem of how to define in a fair and correct
way a ranking of universities in a group that contains for example small institutions
that cannot be measured with the same standards as the big ones. The idea is to
try to avoid that strong requirements—such as, for example, having Nobel Prizes—
immediately exclude some good (but small) centers from having good positions in
the ranking, by creating a similar but more inclusive method for computing it.

Our ideas will be presented in four sections. After the some preliminaries, we will
explain in Section ?? the mathematics concerning the procedure and the algorithm
itself. Section ?? will show the concrete application for defining a self-defined index.
Finally, in Section ?? we will show how to apply the model to the problem explained
above.

Let us introduce now some basic definitions that will be used throughout the
paper. Let R+ be the set of non-negative real numbers. A distance in a set D is a
function d : D×D→ R+ such that for a,b ∈ D,

(i) Separation: d(a,b) = 0 if and only if a = b,
(ii) Symmetry: d(a,b) = d(b,a), and

(iii) Triangle inequality: if c ∈ D, then d(a,b)≤ d(a,c)+d(c,b).

Such a function is also called a metric on D. Although we restrict our attention in the
present paper to weighted Euclidean distances, there are a lot of different metrics that
can be used to model the problem that we face here (see for example Deza and Deza
2009.)

A real valued function acting in a metric space (D,d) is said to be Lipschitz
if it satisfies the inequality

∣∣ f (a)− f (b)
∣∣ ≤ K d(a,b) for a certain constant K > 0

and for all a,b ∈D. The Lipschitz constant of f is the infimum of all the constants K
above. Often we will use the same symbol K for this optimal constant. The McShane-
Whitney Theorem states that for every subspace B of a metric space (D,d), and every
Lipschitz function f : B→ R with Lipschitz constant K, there exists an extension f̂
of f to D such that f̂ is also a Lipschitz function with the same Lipschitz constant K
(see for example Th.4.1.1 in Cobzaş et al. 2019; see also Section 5.2 in this book).

Two of all possible extensions are in a certain sense canonical, and are given by
the following formulas,

f M(b) := sup
a∈B
{ f (a)−K d(b,a)}, and f W (x) := inf

a∈B
{ f (a)+K d(b,a)},

that are defined for all b ∈ D and equal to f if b ∈ B. They are called the McShane
extension and the Whitney extension, respectively. It is easy to see that convex com-
binations of these formulas are also extensions of f to D. We will use such type of
extensions in the present paper.
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2 The model: distances versus indices

Based on some recent developments in reinforcement learning, we present in this
chapter a new mathematical framework for producing automatically corrected gen-
eral indices from their definition in a given subset in which the index is clear and
correctly defined. An iterative procedure is proposed, taking into account the original
subset, as well as the corrections obtained by contrasting with other data from new
sets of information. The general framework, that has been originally developed for
financial time series, has been presented recently in the paper Falciani et al. 2020, to
which the interested reader is referred; see also the references therein for an update of
the required mathematical tools for this reinforcement learning method of artificial
intelligence. More information on the use of Lipschitz functions for reinforcement
learning algorithms—often based on metric graphs—, can be found in Asadi et al.
2018; von Luxburg and Bousquet 2004; Rao 2015. A similar research purpose, al-
though based on different mathematical tools, can be found in Tabasumm et al. 2017;
see also Çakır et al. 2015; Dobrota et al. 2016; Rosa et al. 2012, for other analytical
procedures.

In general, it seems difficult to define the properties of a set of entities in Informa-
tion Science —journals, scientists, institutions, editorials,...— that make it possible
to characterize the role in the entities in an analytical model. This is the first step for
a rigurous analysis, and must be carefully done. For example, suppose that we are
interested in analysing an impact-based system for research production evaluation of
research institutions that uses the distribution by quartiles of the index SNIP from
Scopus. For such a model, a 4-coordinates vector is enough for indentifying a given
institute, writing in each coordinate the number of papers published in journals in
each quartile of the list of a previously fixed year.

However, to define the relevant variables to characterize an entity in the model is
not the aim of the present paper, in which we assume that the Information Scientist
has already developed a method for determining variables that must be taken into
account. In any case, our modelling of the problem starts by the definition of the
metric space to which all the entities that are considered as elements of our analysis
belong to. In Figure ?? the reader can find a representation of the distances from a
given university (Imperial College, London) to the whole set of universities (left), and
also of the topological neighbourhood of the Harvard university in the model (right),
made using the graph-database platform Neo4j.
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Fig. 1 Graph-based representation of distances and neigbourhoods in the model: distances among univer-
sities (left) and a topological neighbourhood (right).

The main object of our model is a metric space (D,d) together with an index I,
which will define a triplet (D,d, I) that we call a metric-index model. Sometimes, the
index I is only defined for a subset of elements of D —say, D0—; in this case, an
extension of such a function preserving the relation between d and I can be obtained,
and we say in this case that the extended I is a self-defined index. This is exactly the
situation that we are interested in studying in the present paper. The procedure to ex-
tend the values of I to the whole metric space have to preserve some basic properties
of I. The main one is the Lipschitz constant, that represents the relation among I and
the metric d, that is, how far a strong proximity relation among elements a,b ∈ D—
that is, a small value of d(a,b)—, implies that the corresponding values I(a) and
I(b) have to be similar too—that is, the difference |I(a)− I(b)| has to be small—. To
control this is the reason why we introduce below the notion of coherence.

Definition 1 Let K > 0. An index I : (D,d)→ R+ is K-coherent if it satisfies the
Lipschitz inequality for the constant K. That is,∣∣I(a)− I(b)

∣∣≤ K d(a,b) for all a,b ∈ D.

We will say that K is the coherence constant of I if the infimum of all constants K′

satisfying this property is equal to K, that is, K is the Lipschitz constant of I.

In the case of the analysis of the ARWU university ranking that we will present
further in the paper, we will use this notion to measure how appropriate a metric is
to model a given previously defined index, that will be in our case the ARWU score.
Both the McShane and the Whitney formulae—that will be used in the extrapolation
formula that provides the self-defined index—, preserve the coherence (that is, the
Lipschitz constant).

3 Extending an information index from a field D0 to a field D1

As we have explained, a metric-index model (D,d, I) is good if the relationship be-
tween the values of I and the distance d that describes the affinity of the elements
of D is also good. Therefore, in the model, two elements a and b of D are “similar”
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if d(a,b) is small, and in this case the values of the index I —which is supposed to
summarily describe a “rating” of these elements—, have to be similar as well. In this
case, I is K-coherent —for a value K that is intended to be small— with respect to
the control distance d.

Let D0 and D1 be a partition of D. Let us describe the formal way of analyzing
the following problem: we want to know if a suitable extension of an index I, that is
K-coherent with respect to d for a given field D0 and with small constant K, can also
be considered as K-coherent with the same constant K in D1 to which I is extended.
Remember that the basic assumption is that D0 ∪D1 = D is a metric space with a
(common) distance d defined in it. It is asumed that d describes in both D0 and D1
the similarity of two elements.

In formal terms, the above problem can be described as follows. Suppose that
some expected values of the index I are known only for a subset S1 of elements of
D1, although I is fully known in D0. Thus, given an index that is defined in D0 and
is K-coherent with small K, can I be defined in D1 as a Lipschitz extension of I to
D with the same constant K? Several methods can be used to solve this problem. In
this paper we propose a new one, based on the similarity with a particular class of
Lipschitz extensions, provided in this case by the family of convex combinations of
the McShane and the Whitney extensions of I in D0.

The method follows the next steps.

(1) Fix an index I : D0 → R. The Lipschitz constant of I in D0 is K. Consider the
family

Lext :=
{

IM,W
α = αIM +(1−α)IW : 0≤ α ≤ 1

}
,

where IM and IW are the McShane and Whitney extensions of I, respectively.
(2) Assume that the index I is known for all the elements of D0, in which —due to

the hypothesis of the method— I is defined, and it is understood to be a good
model for the property it reflects.

(3) In principle, the function I is not supposed to be known in D1, although it is
assumed that it could be defined and Lipschitz. However, its Lipschitz constant is
not known. Some information on the expected value of I in D1 is supposed to be
known. Concretely, the expected value of I is known for the elements of a sample
S1 ⊆ D1.

(4) Now, we can calculate the best α using a least squares procedure that will give
the best extension of I in the set Lext . That is, we compute a value of α1 for which

min
0≤α≤1

∑
x∈S1

∣∣I(x)− IM,W
α (x)

∣∣2 = ∑
x∈S1

∣∣I(x)− IM,W
α1 (x)

∣∣2.
This expression has the meaning of an error, an therefore also gives an idea of
the extent to which IM,W

α1 is a canonical extension of I belonging to the family of
convex combinations Lext .

(5) The function IM,W
α1 is a best extension of I0 to D1, preserving the K-coherence of

the original index I when extended to D1.

Note that the best extension computed depends on the sample, so it could change
when the size of S1 increases. The larger the S1, the better the approximation IM,W

α1 .
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When implementing an iterative process by increasing the size of S1 at each step, we
have a typical machine learning/reinforcement learning scheme for improving the fit
of the extension of I to D.

Remark 1 Note that the coherence constant K is preserved in our extension. Indeed, it
is well known that the McShane and the Lipschitz extensions preserves the Lipschitz
constant K. Then, for any α ∈ (0,1) we have that∣∣∣IM,W

α (a)− IM,W
α (b)

∣∣∣= ∣∣∣αIM(a)+(1−α)IW (a)−αIM(b)− (1−α)IW (b)
∣∣∣

≤ α
∣∣IM(a)− IM(b)

∣∣+(1−α)
∣∣IW (a)− IW (b)

∣∣≤ K d(a,b).

In general, we can choose the convex combination of IM and IW depending on the
problem, and the analyst can use her/his own experience to give a reasonable value
to α. However, in the case we consider we have a supervised algorithm —that is,
we complete our algorithm with the minimization of the error of the extension for a
given sample set—, and so an explicit formula for α can be obtained, which is given
below.

Remark 2 The value 0≤ α1 ≤ 1 that attains the minimun

min
0≤α≤1

∑
x∈S1

∣∣I(x)− IM,W
α (x)

∣∣2 = ∑
x∈S1

∣∣I(x)− IM,W
α1 (x)

∣∣2
is given by

α1 =
∑x∈S1

(
IW
0 (x)− IM

0 (x)
)(

IW
0 (x)− I(x)

)
∑x∈S1

(
IW
0 (x)− IM

0 (x)
)2 ,

in the case that 0≤ α1 ≤ 1.

Proof This is given by a direct computation of the derivative. Let us write

ψ(α) = ∑
x∈S1

(
I(x)−αIM

0 (x)− (1−α)IW
0 (x)

)2
,

and note that

ψ(α) = ∑
x∈S1

(
I(x)− IW

0 (x)+α(IW
0 (x)− IM

0 (x))
)2
.

Then

∂ ψ(α)

∂α
:= ∑

x∈S1

2
(
IW
0 (x)− IM

0 (x)
)(

I(x)− IW
0 (x)+α

(
IW
0 (x)− IM

0 (x)
)

= 2 ∑
x∈S1

(
IW
0 (x)− IM

0 (x)
)(

I(x)− IW
0 (x)

)
+2α ∑

x∈S1

(
IW
0 (x)− IM

0 (x)
)(

IW
0 (x)− IM

0 (x)
)
.

The solution of the equation ∂ψ(α)/∂α = 0 gives the result.



Self-defined information indices: application to the case of university rankings 9

4 A real case analysis: exporting the ARWU index from a subset of the best
universities to a larger set

In this section we address the problem that we introduced in the first section of the
document. We worked with some records of ARWU scores that we chose from the
top 100 universities along with the records of Incites to test our method. We will
explain the procedure step by step.

4.1 Material and methods

After checking several relevant university rankings and databases, we set the problem
by using Incites (year 2018) as a source for the variables appearing in the computa-
tion of the distance between universities, which provide the similarity relationship.
We decided to use the variables “Times Cited” (Total amount of citations of all the
papers published by the university in the corresponding year), and the (four) variables
given by the number of published papers by quartile (“Articles Q1”, “Articles Q2”,
“Articles Q3”, “Articles Q4”). Complementarily, we used the popular Shanghai rank-
ing structure (ARWU ranking, based on the ARWU score) to define the index that we
want to check. Specifically, we followed the next steps.

1) We first made an investigation about which records for high level universities
could be used for our purpose. The first problem is to identify a set of institu-
tions for which both information sources cited above are clearly presented; it
must be taken into account that sometimes classifications are not the same in both
databasis. For example, University of California is not univocally defined, since
for some databasis different centers belonging to this institution are presented as
separated entities. After comparing, we got a maximal set of 84 universities to
work with. For them, we were able to obtain the variables that were needed in
Incites and the records of the ARWU score.

2) The aim was to use a subset of top universities as a reference for training the
model. The way of choosing such a group was to divide the total set of institu-
tions by the ARWU score, taking as training set the upper one. Under the idea
of making a 50% division —that is, half for training and half for checking—, we
center the corresponding cut-off value of the ARWU score around 30. However,
this parameter has been changed for checking the model in the interval [25,35],
what provides a systematic way of changing the size of the training set.

3) Thus, the idea was to use the rest of the universities (the bottom of the ARWU
score list) to check the model. As we explained in the previous section, the final
extension of the ARWU score for the top set is made by means of a convex combi-
nation of the McShane and the Whitney formulae, which gives the corresponding
self-defined index. Figure ?? provides a representation for two different training
sets, together with the original ARWU score for the best value of α given below
(0.69). In the axis OX we represent our 84 universities by their order numbers,
which are related to their total size. The labels SDIndex31 and SDIndex33 mean
that the training sets are defined for all the universities with an ARWU Score big-
ger than 31 and 33, respectively. The errors made for the training sets defined in



10 A. Ferrer-Sapena1 et al.

this way for the values of the ARWU Score 29, 31 and 33 are shown in Figure ??.
Note that we are representing the extended functions, and so the approximations
coincide with the original index when the universities belong to the training sets.
We follow this criterion in all the figures presented below.

Fig. 2 Representation of the self-defined index training with three different sets, together with the original
values of the ARWU score (α = 0.69).

Fig. 3 Representation of the error for three different training sets.

The best parameter α is obtained by means of an optimization method using the
error defined in Remark ??. Taking into account the relative weights that could be
given to define the metric in the model, we finally decided to fix it as a weighted
Euclidean norm, trying to get a right balance among all variables. The formula is

d(u1,u2) =
(10−4

64
·
(
Times Cited(u1)−Times Cited(u2)

)2
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+
4

∑
i=1

2i−1 ·10−4(Articles Qi(u1)−Articles Qi(u2)
)2
)1/2

,

where u1,u2 belong to the fixed set D of 84 universities. Of course, the deci-
sion maker can change these weights according to her/his preferences, or using
complementary information that she/he could obtain. Figure ?? provides a repre-
sentation for three different values of α , together with the original ARWU score.
The errors commited are represented in Figure ??.

Fig. 4 Representation of different solutions for different values of the interpolation parameter α = a to-
gether with the original values of the ARWU score.

Fig. 5 Representation of the error commited by three different values of α = a.

(4) Then we train the algorithm. With the set of universities having ARWU score
bigger than 31, we got a Lipschitz constant for the function —we called it the
coherence constant Q for the index in the previous sections— equal to 5.826876.
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Table 1 Some predicted values of the ARWU Score, together with the error.

TimesCited Articles Q1 Articles Q2 Articles Q3 Articles Q4 ARWU Score IM,W
α Error

35562 3849 1581 598 229 29.2 27.1 2.1
32825 3427 1167 526 185 27.9 23.6 4.3
31486 3351 1473 666 266 29.8 28.6 1.2
31128 2982 1219 444 166 27.7 24.5 3.2
30560 3832 1338 647 263 30.8 23 7.8
30302 2988 1265 538 189 29.5 23.1 6.4
30164 3740 1375 530 157 27.5 23.1 4.4
28679 2888 1017 498 164 27.2 32.7 5.5
28178 2959 1228 665 264 26.5 20.7 5.8
25950 2954 1426 510 195 27.9 25.5 2.4

At this point, the algorithm is ready for computing both the McShane and the
Whitney extensions. This algorithm can be found in the complementary material.

(5) Finally, the parameter α that optimizes the error —that is, the addition of the
squares of the differences among the values of the ARWU score and our self-
defined index IM,W

α for the universities with ARWU score lower than 31— is
obtained. There are 52 universities in the training set (for ARWU Score≥ 31), and
32 in the complementary test set. This allows to check the model, by comparing
the ARWU score and our extension IM,W

α . We show the results in the next section.

The interested reader can find the ready-to-use R algorithm in the Supplementary
Material (McShaneWhitneyExt.R).

4.2 Results and discussion

Let us present the results of our experiment for the situation explained above. After
trying different training sets, all of them given by the top part of the list and defined
using the criterion ARWU Score ≥ me for a given value me ∈ [0,100], we obtained
the best result for me = 31.

As we said above, the best value of the interpolation parameter α obtained by
minimizing the error was α = 0.69, that is, the final formula for the self defined
index is given by

IM,W
α (u) = 0.69 IM(u)+0.31 IW (u), u ∈ D.

In Table ??, some predicted values for universities with values of the ARWU
scores below 31 are presented, together with the original ARWU Score and the error.

Figures ?? and ?? provide a graphical representation of the best solution for the
training set defined by the top universities of our list which have an ARWU Score
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bigger to 31, —composed by 52 universities—-, and the error (Figure ??). As the
reader can see, the relative errors commited are reasonable in most of the cases, taking
into account that the variables used for defining the metric are not explicitly appearing
in the definition of the ARWU Score. Also, it can be seen in Figure ?? that the errors
around the last part of the list of universities (that correspond to low values of the
ARWU Score) are meaningfully bigger, although they still present an acceptable rate.
The total relative error—that is, the addition of the squares of the differences divided
by the addition of the square of the values—, is ε2 = 0.0233.

Fig. 6 Representation of the best solution together with the original values of the ARWU score (α = 0.69).

Fig. 7 Representation of the error commited by the best choice of convex combination α = 0.69.

Note that only the values of the distances between all the elements of the set
of universities are needed, together with the value of the Lipschitz constant (coher-
ence constant of the model), and the original index for the elements of the training
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sets. Adding more variables to the selected set for the definition of the metric could
improve the results in a meaningful way, even if they are not apparently connected
with the definition of the index. Moreover, the way the distance matrix is defined —
symmetric matrix composed by all the distances among elements of the underlying
metric space—, allows to increase the training set in an easy way when more infor-
mation is included. In order to do this, it is enough to compute a new column for the
matrix, given by all the distance of the new element introduced the other elements of
the set. So, the proposed method can be used for defining an iterative self-improving
tool, that is, a dynamic system that can be improved continuously under a typical
reinforcement learning scheme.

4.3 Conclusions

We have presented a new mathematical structure for extrapolating values of indexes
associated to the scientific and educational activity. It is based on the construction of a
metric space which represents the similarity relation among items, and the optimiza-
tion of the convex combination of two extremal extensions of a Lipschitz functions
—that represent the index in the model—, that are the McShane and Whitney exten-
sions of Lipschitz functions.

Using our method, we have trained the model to predict some values of the
ARWU Score for a subset of top universities using other set of top universities. The
trained model could now be used for predicting the values of other universities for
which the ARWU Score is not computed, but for which we can find bibliometric val-
ues in Incites. To show our technique, we have used the variables TimesCited (num-
ber of citations in 2018 to documents published by the university), and the number of
published papers in Q1, Q2, Q3 and Q4 the same year.

Although aparently these variables are not directly connected with the ARWU
Score, the results fit well, as can be seen in the figures and the data provided in the
section of results. Two main conclusions can be stated. First: there is a clear direct
conection among successful scientific production and the position in the ARWU list;
and second: maybe that the use of sophisticated variables –that are sometimes diffi-
cult to measure, or highly restrictive, as having Nobel Prizes— for the definition of
university rankings are not really needed.

However, the main conclusion of the paper is the method itself, that provides an
easy reinforcement procedure for the extrapolation of indices to sets for which they
are not known and cannot be directly computed. For example, it allows to make a
prediction of the values of such index for the universities of countries that are not ap-
pearing in the ARWU list, but for which Incites (a very big database) has bibliometric
records.
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3. Bougnol, M.L., & Dulá, J.H. (2013). A mathematical model to optimize decisions to impact multi-
attribute rankings. Scientometrics, 95(2), 785-796.
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