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Abstract 

Six new 6-styryl-2,4-diarylpyrylium salts have been synthesized and fully characterized by 

means of 1H / 13C NMR, HRMS, UV-vis and Steady-State / Time-Resolved Fluorescence 

spectroscopies. This set of molecules is comprised by a core pyrylium fluorophore an amino acid 

(valine or phenylalanine) and an alkylic chain of variable length. The emissive properties 

(fluorescence quantum yields and lifetimes) in dichloromethane, acetonitrile and PBS have been 

recorded. The interaction of these pyrylium salts with aminoacids in their N-protected forms has 

been studied by means of fluorescence quenching, using the Stern-Volmer methodology. It has 

been found that dynamic (collisional) quenching is the most prevalent process for all the 

fluorescent molecules, irrespective of the amino acid building block or the length of the alkyl 

chain. The emission of the pyrylium molecules is strongly quenched by Z-Trp-OH and to a lesser 

extent by Z-Tyr-OH and Z-Met-OH and no quenching was measured with Z-Ala-OH, Z-Val-OH 

and Z-Phe-OH. A small degree of ground-state complexation was observed for receptor 8a and 

by Z-Trp-OH (upward curvature in the Stern-Volmer plot). Complementary 1H-NMR titrations 

demonstrated the existence of such weak ground state complex. 
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Introduction 

The association of molecular recognition principles with the presence of an optical signal has led 

to the emergence of the area coined by E. V. Anslyn ‘Supramolecular Analytical Chemistry’.1,2 Rapid 

expansion of the field in recent years has led to a huge variety of chemical synthetic receptors with an 

optical readout, frequently fluorescence emission. Hence, analytical techniques using fluorescence are 

particularly important in the development of supramolecular chemosensors with practical applications 

in fields such as imaging of biomolecules for diagnostics, or environmental monitoring for detection of 

pollutants, to mention only two examples. Sensitivity of fluorescence is unsurpassed by other traditional 

analytical tools and this is one of the reasons for the massive use of this technique in recent years. 3–11 

Changes in the fluorescence intensity or in the fluorescence lifetimes report changes in the environment 

of the fluorophore that can be associated to the recognition event. Simple methodologies like the Stern-

Volmer analysis have contributed to elucidate various processes, from the mechanisms involved in 

pollutant degradation13 and photo-redox catalysis14 to the complexities of amino acid recognition.11,15–17  

In this last regard, recently it has been proved that amino acids with electron-rich side chains, such as 

tryptophan, cause fluorescence quenching on dyes widely used in Molecular Biology, which can be 

relevant in biological studies.18–20 

A large variety of molecular architectures has been used so far for the construction of 

chemosensing systems showing fluorescence features. The group of M. Levine has recently reviewed 

the field and has collected the fluorophores typically used for the synthesis of supramolecular sensors: 

bodipys, squaraines, cyanines, xanthenes, acridines, isoquinolines, coumarins, perylene diimides, etc.21 

Pyrylium dyes are not commonly used to construct supramolecular receptors, despite this class of dyes 

have particular easy synthesis and straightforward purification. This fact is in great contrast with the 

increasing use of pyrylium salts in other areas of research, like, for instance photocatalysis,22–26 dye 

sensitized solar cells,27 liquid crystals,28 carbon nanotube chemistry,29 and photodynamic therapy.30 In 

the analytical context molecules with a pyrylium fluorophore have been employed as chemodosimeters 

for nitric oxide sensing,31 semiconductor quantum dots characterization,32 polarity probes,33 protein 
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analysis,34 determination of metabolites in food35 and quantification of anionic species like cyanide36 

and sulfide.37 From the physical chemistry viewpoint, pyrylium salts have also attracted recently the 

attention since they can show important cation-pi interactions.38,39 

Herein, we present the synthesis and chemical and photophysical characterization of six new 

fluorescent pyrylium salts, carrying an aminoacid moiety and a chain of different length in the structure, 

Also the supramolecular studies (Stern-Volmer analysis) on the interaction with a series of N-protected 

amino acids are presented. As it will be shown, all the pyryilum salts synthesized display 

absorptions in 400-500 nm, single emission bands in 500-650 nm, and N-protected amino acids 

(Z-Met, Z-Tyr and Z-Trp) induce mainly dynamic (collisional) quenching of the fluorescence. 

No quenching was measured with Z-Ala-OH, Z-Val-OH and Z-Phe-OH. It is worth to mention 

that collisional quenching could be of practical utility, as exemplified by the indicators for 

chloride developed by the group of A. S. Verkman,40 employed to understand cystic fibrosis.41 

Provided the lack of examples of pyrylium salts in Supramolecular Analytical Chemistry, this 

contribution could open the door to the synthesis of other receptors based on the pyrylium fluorophore. 

 

Experimental section 

Materials and instruments 

All commercially available reagents and solvents were used as received. Deionized water was 

produced by a Milli-Q water purification system. Compound 1c was purchased from Aldrich. 

Fourier Transform Infrared (FT-IR) spectra were acquired using a FT-IR-6200 type A JASCO 

spectrometer, with 4 cm-1 resolution and 50 scans accumulation. 1H and 13C NMR spectra were 

recorded on a Varian INOVA 500 MHz spectrometer (500 MHz for 1H and 125 MHz for 13C). 

A Q-TOF Premier mass spectrometer with an electrospray source (Waters, Manchester, UK) has 

been used. UV–Vis absorption spectra were recorded in a Hewlett–Packard 8453 apparatus. 

Steady-state fluorescence spectra were recorded in a Spex Fluorog 3-11 equipped with a 450 W 
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xenon lamp. Time-resolved fluorescence experiments were performed using an IBH-5000U 

apparatus using a 464 nm (fwhm 1.4 ns) nanoLED as excitation source. 

 

Synthetic procedure and chemical characterization.    

 

General procedure for the synthesis of compounds 1a-c and 2a-c. 10 g of N-protected valine or 

phenylalanine were weighted into a 250 mL round bottom flask and were dissolved in 80 mL of THF in 

an ice bath with stirring under a N2 atmosphere. 1.1 equivalents of Et3N were added and stirred for 5 

minutes. Then, 1 equivalent of ClCOOEt was added dropwise from an addition funnel. The obtained 

reaction mixture was stirred for 30 minutes in an ice bath (temperature 5-10 °C). After this time, 1 

equivalent of the corresponding amine was added dropwise and stirred during 1 hour at 0°C. The reaction 

mixture was further stirred at room temperature overnight. After that, the resulting mixture was filtered, 

the filtrate was collected, and the solvent was vacuum evaporated. The resulting solid was dissolved in 

chloroform and washed with distilled water, with a saturated solution of NaHCO3 and finally with brine. 

The organic phases were collected and dried with Na2SO4. The solvent was vacuum evaporated, and the 

resulting white solid was dried under vacuum.  

 

Compound 1a. IR(ATR)(cm-1) 3300, 2966, 1684, 1641, 1529, 1455, 1349, 1294, 1238, 1040; 

1H NMR (500 MHz, CDCl3) δ(ppm) 7.24 (m, 5H), 5.86 (s, 1H), 5.30 (s, 1H), 5.03 (d, J = 13.2 

Hz, 2H), 3.83 (dd, J = 8.8, 6.4 Hz, 1H), 3.12 (m, 2H), 2.04 (m, 1H), 1.43 (dd, J = 14.2, 7.1 Hz, 

2H), 1.01 – 0.65 (m, 8H).; 13C NMR (125 MHz, CDCl3) δ(ppm) 171.3, 156.5, 136.3, 128.5, 

128.1, 127.9, 66.8, 60.7, 41.2, 31.1, 22.7, 19.2, 18.0, 11.3; HRMS (ESI-TOF)+ calculated for 

C16H24N2O3
+ (M+H)+(m/z): 293.1865; experimental (M+H)+ (m/z): 293.1862; [α]D= -13.06 (25 

°C, c= 0.0127 g/mL in CHCl3). 
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Compound 1b. IR(ATR)(cm-1) 3288, 2923, 2854, 1684, 1641, 1535, 1461, 1349, 1294, 1244, 

1040; 1H NMR (500 MHz, CDCl3) δ(ppm) 7.30 (m, 5H), 6.53 (s, 1H), 5.75 (d, J = 9.0 Hz, 1H), 

5.07 (m, 12.1 Hz, 2H), 3.99 (m, 1H), 3.27 (dd, J = 12.8, 6.2 Hz, 1H), 3.14 (td, J = 12.8, 6.9 Hz, 

1H), 2.07 (dd, J = 12.7, 6.2 Hz, 1H), 1.45 (m, 2H), 1.25 (d, J = 6.0 Hz, 10H), 1.05 – 0.73 (m, 

9H); 13C NMR (125 MHz, CDCl3) δ(ppm) 171.3, 156.5, 136.3, 128.5, 128.1, 127.8, 66.9, 60.6, 

39.5, 31.8, 31.1, 29.5, 29.2, 29.2, 26.9, 22.6, 19.2, 18.1, 14.0.; HRMS (ESI-TOF)+ calculated for 

C21H34N2O3
+ (M+H)+ (m/z): 363.2648; experimental (M+H)+ (m/z): 363.2648; [α]D= -9.91 (25 

°C, c= 0.0113 g/mL in CHCl3). 

 

Compound 1c. IR(ATR)(cm-1) 3294, 2916, 2854, 1690, 1646, 1535, 1467, 1349, 1294, 1244, 

1040; 1H NMR (500 MHz, CDCl3) δ(ppm) 7.30 (m, 5H), 6.29 (s, 1H), 5.60 (d, J = 7.7 Hz, 1H), 

5.08 (m, 12.0 Hz, 2H), 3.96 (m, 1H), 3.27 (s, 1H), 3.17 (dt, J = 12.9, 6.3 Hz, 1H), 2.09 (d, J = 

5.8 Hz, 1H), 1.47 (s, 2H), 1.25 (s, 18H), 1.01 – 0.84 (m, 9H); 13C NNMR (125 MHz, CDCl3) 

δ(ppm) 171.1, 156.5, 136.3, 128.5, 128.1, 127.9, 66.9, 60.6, 39.5, 31.9, 31.1, 29.6, 29.6, 29.5, 

29.3, 29.3, 26.9, 22.7, 19.2, 18.0, 14.1; HRMS (ESI-TOF)+ calculated for C25H42N2O3
+ (M+H)+ 

(m/z): 419.3274; experimental (M+H)+ (m/z): 419.3275; [α]D= -8.91 (25 °C, c= 0.0114 g/mL in 

CHCl3). 

 

Compound 2a. IR(ATR)(cm-1) 3294, 2923, 2854, 1684, 1644, 1535, 1455, 1387, 1287, 1238, 

1040; 1H NMR (500 MHz, CDCl3) δ(ppm) 7.45 – 7.10 (m, 10H), 5.63 (s, 1H), 5.45 (m, 1H), 

5.11 (d, J = 14.2 Hz, 2H), 4.34 (dd, J = 14.2, 7.6 Hz, 1H), 3.11 (m, 3H), 3.02(m, 1H), 1.36 (m, 

2H), 0.79 (dd, J = 9.7, 5.2 Hz, 3H).; 13C NMR (125 MHz, CDCl3) δ(ppm) 170.9, 156.0, 136.7, 

136.2, 129.3, 128.5, 128.1, 127.9, 126.9, 66.9, 56.5, 41.2, 39.0, 22.5, 11.3; HRMS (ESI-TOF)+ 

calculated for C20H24N2O3
+ (M+H)+ (m/z): 341.1865; experimental (M+H)+ (m/z): 341.1864; 

[α]D= +3.60 (25 °C, c= 0.0111 g/mL in CHCl3). 
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Compound 2b. IR(ATR)(cm-1) 3295, 2921, 2853, 1687, 1647, 1532, 1456, 1384, 1289, 1233, 

1038, 1H NMR (500 MHz, CDCl3) δ(ppm); 7.42 – 7.13 (m, 5H), 6.04 (s, 1H), 5.72 (d, J = 5.9 

Hz, 1H), 5.06 (m, 2H), 4.40 (d, J = 7.0 Hz, 1H), 3.16 (dt, J = 20.2, 6.8 Hz, 1H), 3.06 (m, 3H), 

1.48 – 1.05 (m, 12H), 0.90 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 170.6, 156.0, 

141.1, 136.7, 136.2, 129.3, 128.5, 128.1, 127.9, 126.9, 66.9, 65.1, 56.5, 39.5, 39.0, 31.8, 29.2, 

29.2, 26.8, 22.6, 14.1.; HRMS (ESI-TOF)+ calculated for C25H34N2O3
+ (M+Na)+(m/z): 

433.2467; experimental (M+ Na)+(m/z): 433.2460; [α]D= +1.24 (25 °C, c= 0.0113 g/mL in 

CHCl3). 

 

Compound 2c. IR(ATR)(cm-1) 3295, 2921, 2849, 1697, 1647, 1537, 1452, 1388, 1285, 1233, 

1042; 1H NMR (500 MHz, CDCl3) δ(ppm) 7.48 – 7.08 (m, 10H), 5.53 (s, 1H), 5.39 (s, 1H), 5.10 

(s, 2H), 4.33 (d, J = 6.8 Hz, 1H), 3.12 (dd, J = 12.7, 6.4 Hz, 3H), 3.00 (dd, J = 13.6, 7.9 Hz, 1H), 

1.43 – 1.03 (m, 18H), 0.89 (m, 3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 170.4, 155.8 136.6, 

136.2, 129.3, 128.7, 128.5, 128.2, 128.0, 127.0, 77.2, 77.0, 76.7, 67.0, 56.5, 39.5, 38.9, 31.9, 

29.6, 29.6, 29.6, 29.5, 29.3, 29.3, 29.2, 26.7, 22.7, 14.1.; HRMS (ESI-TOF)+ calculated for 

C29H42N2O3
+ (M+H)+ (m/z): 467.3274; experimental (M+H)+ (m/z): 467.3270; [α]D= -4.37 (25 

°C, c= 0.0116 g/mL in CHCl3). 

 

General procedure for the synthesis of compounds 3a-c and 4a-c. In a 100 mL Erlenmeyer flask 

was added the corresponding amount of 1a-c or 2a-c over 20 mL of HBr/HAc under a N2 atmosphere. 

The mixture was stirred until CO2 formation ceased (1 hour). The content of the Erlenmeyer was poured 

into 100 mL of diethyl ether. The obtained solution was extracted with water (3x60 mL). The aqueous 

phase was washed with chloroform (3x20 mL). The aqueous phase was basified using NaOH till pH 12. 

The compound of interest was extracted with chloroform from this aqueous phase (3x80 mL). The 

organic phase was dried with MgSO4, then filtered and the solvent was vacuum evaporated, the residue 

being dried under vacuum. A clear oil was obtained.  
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Compound 3a. IR(ATR)(cm-1) 3295, 2965, 2921, 1647, 1539, 1452, 1380, 1345; 1H NMR (500 

MHz, CDCl3) δ(ppm) 3.22 (m, 3H), 2.27 (m, 1H), 1.51 (m, 2H), 1.26 (m, 2H), 1.97 (m, 3H), 

0.91 (m, 3H), 0.79(m, 3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 174.2, 60.2, 40.6, 30.8, 22.9, 

19.7, 16.0, 11.4; HRMS (ESI-TOF)+ calculated for C8H18N2O
+ (M+H)+ (m/z): 159.1497; 

experimental (M+H)+ (m/z): 159.1494; [α]D= -51.21 (25 °C, c= 0.0119 g/mL in CHCl3). 

 

Compound 3b. IR(ATR)(cm-1) 3299, 2961, 2921, 2853, 1647, 1536, 1464, 1372, 1345; 1H NMR 

(500 MHz, CDCl3) δ(ppm) 3.24 (m, 3H), 2.29 (m, J = 6.9, J = 3.8 Hz, 1H), 1.46 (m, 2H), 1.39 – 

1.17 (m, 12H), 0.96 (t, J = 7.0 Hz, 3H), 0.92 – 0.77 (m, 6H); 13C NMR (125 MHz, CDCl3) δ(ppm) 

174.1, 60.2, 39.0, 31.8, 30.8, 29.7, 29.2, 29.2, 27.0, 22.6, 19.7, 16.0, 14.0; HRMS (ESI-TOF)+ 

calculated for C13H28N2O
+ (M+H)+ (m/z): 229.2280; experimental (M+H)+ (m/z): 229.2279; 

[α]D= -38.61 (25 °C, c= 0.0127 g/mL in CHCl3). 

 

Compound 3c. IR(ATR)(cm-1) 3295, 2961, 2917, 2849, 1639, 1552, 1460, 1368; 1H NMR (500 

MHz, CDCl3) δ(ppm) 3.23 (m, 3H), 2.29 (m, J = 6.9, J = 3.8 Hz, 1H), 1.50 (m, J = 7.1 Hz, 2H), 

1.44 – 1.18 (m, 18H), 0.98 (d, J = 7.0 Hz, 3H), 0.93 – 0.71 (m, 6H); 13C NMR (125 MHz, CDCl3) 

δ(ppm) 174.1, 60.2, 39.0, 31.9, 30.8, 29.7, 29.6, 29.5, 29.3, 27.0, 22.6, 19.7, 16.0, 14.1; HRMS 

(ESI-TOF)+ calculated for C17H36N2O
+ (M+H)+ (m/z): 285.2906; experimental (M+H)+ (m/z): 

285.2908; [α]D= -23.17 (25 °C, c= 0.0111 g/mL in CHCl3). 

 

Compound 4a. IR(ATR)(cm-1) 3291, 2965, 2929, 1647, 1524, 1456, 1380; 1H NMR (500 MHz, 

CDCl3) δ(ppm) 7.31 – 7.16 (m, 5H), 3.55 (dd, J = 8.9, 4.1 Hz, 1H), 3.26 – 3.08 (m, 3H), 2.67 

(dd, J = 13.7, 9.1 Hz, 1H), 1.70 (s, 2H), 1.46 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H); 13C NMR (125 

MHz, CDCl3) δ(ppm) 174.2, 137.9, 129.3, 128.6, 126.7, 56.4, 41.1, 40.8, 22.7, 11.3; HRMS 
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(ESI-TOF)+ calculated for C12H18N2O
+ (M+H)+ (m/z): 207.1497; experimental (M+H)+ (m/z): 

207.1499; [α]D= -15.28 (25 °C, c= 0.0127 g/mL in CHCl3). 

 

Compound 4b. IR(ATR)(cm-1) 3295, 2957, 2921, 1647, 1524, 1456, 1380; 1H NMR (500 MHz, 

CDCl3) δ(ppm) 7.41 – 7.12 (m, 5H), 3.59 (m, J = 10.4, J = 2.2 Hz, 1H), 3.32 – 3.16 (m, 3H), 

2.70 (m, 1H), 1.46 (dd, J = 13.3, 6.7 Hz, 2H), 1.29 (s, 12H), 0.96 – 0.79 (m, 3H); 13C NMR (125 

MHz, CDCl3) δ(ppm) 173.8, 137.9, 129.3, 128.7, 126.8, 56.4, 41.0, 39.1, 31.8, 29.5, 29.2, 29.2, 

26.9, 22.6, 14.1; HRMS (ESI-TOF)+ calculated for C17H28N2O
+ (M+H)+(m/z): 277.2280; 

experimental (M+H)+(m/z): 277.2274; [α]D= -26.88 (25 °C, c= 0.0127 g/mL in CHCl3). 

 

Compound 4c. IR(ATR)(cm-1) 3287, 2953, 2917, 2853, 1631, 1552, 1520, 1468, 1364; 1H NMR 

(500 MHz, CDCl3) δ(ppm) 7.35 – 7.21 (m, 5H), 3.60 (dd, J = 9.3, J = 4.1 Hz, 1H), 3.36 – 3.17 

(m, 3H), 2.70 (dd, J = 13.7, J = 9.3 Hz, 1H), 1.48 (m, 2H), 1.43 – 1.10 (m, 18H), 0.89 (dd, J = 

7.1, J = 6.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 174.0, 138.0, 129.3, 128.6, 126.7, 

56.5, 41.1, 39.1, 31.9, 29.6, 29.6, 29.6, 29.5, 29.3, 29.28, 27.0, 22.7, 14.1; HRMS (ESI-TOF)+ 

calculated for C21H36N2O
+ (M+H)+ (m/z): 333.2906; experimental (M+H)+ (m/z): 333.2905; 

[α]D= -49.57 (25 °C, c= 0.0127 g/mL in CHCl3). 

 

General procedure for the synthesis of compounds 5a-c and 6a-c. 4-carboxybenzaldehyde was 

dissolved in 50 mL of dichloromethane into a two-necked round bottom flask. The round bottom flask 

was connected to a reflux condenser and the setup was placed in an ice bath under a N2 atmosphere. 2.5 

equivalents of SOCl2 were added dropwise and the resulting mixture stirred for 10 minutes. Then, 1 

equivalent of the compound 3a-c or 4a-c dissolved in dichloromethane was added. After adding the 

amine, the reaction mixture was heated at 65 °C for 2 hours and the stirring was continued at room 

temperature overnight. After this time, the reaction mixture was neutralized with NaHCO3. The product 

was extracted with dichloromethane (3x80 mL). The organic phases were collected and dried with 
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MgSO4. The solvent was vacuum distilled and the product was purified by flash chromatography using 

a gradient concentration of hexane-ethyl acetate.  

 

Compound 5a. IR(ATR)(cm-1) 3293, 2962, 1702, 1623, 1530; 1H NMR (500 MHz, CDCl3) 

δ(ppm) 10.02 (s, 1H), 7.94 (dd, J = 8.3, J = 2.7 Hz, 2H), 7.85 (dd, J = 7.9, J = 5.9 Hz, 2H), 7.78 

(d, J = 6.7 Hz, 1H), 7.21 (d, J = 4.3 Hz, 1H), 4.59 (t, J = 8.5 Hz, 1H), 3.29 (m, J = 10.1, J = 6.7, 

J = 3.5 Hz, 1H), 3.10 (m, J = 7.1, J = 1.7 Hz, 1H), 2.24 (m, J = 7.0 Hz, 1H), 1.50 (m, 2H), 1.04 

(m, 6H), 0.88 (m, J = 3.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 191.5, 171.5, 166.5, 

139.2, 138.2, 129.6, 128.0, 59.7, 41.3, 31.2, 22.6, 19.3, 18.9, 11.4; HRMS (ESI-TOF)+ calculado 

para C16H22N2O3
+ (M+H)+ (m/z): 291.1709; experimental (M+H)+ (m/z): 291.1704; [α]D= -0.94 

(25 °C, c= 0.0053 g/mL in CHCl3). 

 

Compound 5b. IR(ATR)(cm-1) 3289, 2962, 1695, 1623, 1533; 1H NMR (500 MHz, CDCl3) 

δ(ppm) 10.01 (s, 1H), 7.95 – 7.79 (m, 4H), 7.03 (d, J = 8.5 Hz, 1H), 6.14 (t, J = 5.5 Hz, 1H), 

4.38 (dd, J = 8.6, J = 7.3 Hz, 1H), 3.27 (m, 7 J =.2 Hz, 1H), 3.13 (m, J = 5.6 Hz, 1H), 2.14(m, 

1H), 1.44 (m, 2H), 1.18 (m, 10H), 0.97 (dd, J = 6.8, J = 0.9 Hz, 6H), 0.80 (t, J = 7.0 Hz, 3H); 

13C NMR (125 MHz, CDCl3) δ(ppm) 191.4, 171.2, 166.4, 139.3, 138.3, 129.6, 127.9, 59.6, 39.6, 

31.7, 31.4, 29.4, 29.2, 29.1, 26.9, 22.6, 19.3, 18.8, 14.0; HRMS (ESI-TOF)+ calculated for 

C21H32N2O3
+ (M+H)+ (m/z): 361.2491; experimental (M+H)+ (m/z): 361.2490; [α]D= + 5.07 (25 

°C, c= 0.0043 g/mL in CHCl3). 

 

Compound 5c. IR(ATR)(cm-1) 3285, 2920, 1699, 1627, 1533; 1H NMR (500 MHz, CDCl3) 

δ(ppm) 10.03 (m, 1H), 7.92 (t, J = 10.3 Hz, 2H), 7.86 (m, 2H), 7.52 (d, J = 8.7 Hz, 1H), 7.01 (t, 

J = Hz, 1H), 4.57 (t, J = 8.3 Hz, 1H), 3.31 (m, 1H), 3.12 (m, J = 6.4 Hz, 1H), 2.22 (m, 1H), 1.46 

(m, 2H), 1.25 (m, 18H), 1.01 (m, 6H), 0.86 (t, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) 

δ(ppm) 191.3, 171.1, 166.4, 139.3, 138.3, 129.6, 127.9, 59.5, 39.6, 31.9, 31.4, 29.6, 29.6, 29.5, 
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29.5, 29.4, 29.3, 29.2, 26.9, 22.6, 19.3, 18.8, 14.1; HRMS (ESI-TOF)+ calculated for 

C25H40N2O3
+ (M+H)+ (m/z): 417.3117; experimental (M+H)+ (m/z): 417.3117; [α]D= +7.37 (25 

°C, c= 0.009 g/mL in CHCl3).  

 

Compound 6a. IR(ATR)(cm-1) 3314, 2962, 1695, 1631, 1526; 1H NMR (500 MHz, CDCl3) 

δ(ppm) 10.09 (m, 1H), 7.92 (q, J = 8.2 Hz, 4H), 7.29 (m, 6H), 5.69 (s, 1H), 4.81 (m, 1H), 3.29 

(dd, J = 13.5, J = 5.8 Hz, 1H), 3.18 (m, J = 6.6 Hz, 1H), 3.09 (m, 2H), 1.37 (m, 2H), 0.81 (m, 

3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 191.4, 191.4, 170.7, 166.0, 138.9, 138.3, 136.6, 129.7, 

129.3, 128.7, 127.8, 127.1, 55.5, 41.3, 38.9, 22.5, 11.2; HRMS (ESI-TOF)+ calculated for 

C20H22N2O3
+ (M+H)+ (m/z): 339.1709; experimental (M+H)+ (m/z): 339.1706; [α]D= +7.52 (25 

°C, c= 0.0085 g/mL in CHCl3). 

 

Compound 6b. IR(ATR)(cm-1) 3301, 2926, 1695, 1634, 1535; 1H NMR (500 MHz, CDCl3) 

δ(ppm) 10.07 (d, J = 3.7 Hz, 1H), 8.93 (m, 4H), 7.27 (m, 6H), 5.85 (t, J = 5.5 Hz, 1H), 5.83 (m, 

1H), 3.28 (dd, J = 13.5, J = 5.9 Hz, 1H), 3.20 (m, 1H), 3.11 (m, 2H), 1.39 – 1.10 (m, 12H), 0.89 

(m, 3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 191.4, 170.4, 165.9, 138.9, 138.3, 136.6, 129.7, 

129.3, 128.7, 127.8, 127.1, 55.5, 39.7, 39.0, 31.7, 29.2, 29.2, 29.1, 26.8, 22.6, 14.0; HRMS (ESI-

TOF)+ calculated for C25H32N2O3
+ (M+H)+ (m/z): 409.2491; experimental (M+H)+ (m/z): 

409.2488; [α]D= -3.46 (25 °C, c= 0.0107 g/mL in CHCl3). 

 

Compound 6c. IR(ATR)(cm-1) 3300, 2923, 1695, 1631, 1533; 1H NMR (500 MHz, CDCl3) 

δ(ppm) 10.06 (d, J = 0.8 Hz, 1H), 8.90 (m, 4H), 7.28 (m, 6H), 5.92 (t, J = 5.6 Hz, 1H), 4.84 (dd, 

J = 14.1, J = 8.0 Hz, 1H), 3.36 – 2.98 (m, 4H), 1.54 – 0.95 (m, 20H), 0.88 (dt, J = 7.0, J = 3.4 

Hz, 3H); 13C NMR (125 MHz, CDCl3) δ(ppm) 191.4, 170.4, 165.9, 138.9, 138.4, 136.7, 129.7, 

129.3, 128.7, 127.8, 127.1, 55.5, 39.7, 39.0, 31.9, 29.6, 29.6, 29.5, 29.3, 29.2, 29.2, 26.8, 22.7, 
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14.1; HRMS (ESI-TOF)+ calculated for C29H40N2O3
+ (M+H)+ (m/z): 465.3117; experimental 

(M+H)+ (m/z): 465.3113; [α]D= -0.94 (25 °C, c= 0.0054 g/mL in CHCl3). 

 

General procedure for the synthesis of compound 7. 4-Methoxylacetophenone was added to 1 

equivalent of acetic anhydride. Then 2 equivalents of BF3•OEt2 were added. The solution got dark and 

then the system was refluxed for 75 minutes. After this time, the reaction mixture was cooled to room 

temperature and poured into excess ether (200 mL). The obtained red precipitate was filtered, washed 

with ether and dried under vacuum. 

 

Compound 7. (1.5 g, 32%) IR (ATR)(cm-1): 3086, 2943, 2849, 1640, 1593, 1498; 1H NMR (500 

MHz, DMSO-d6) δ(ppm) 8.85 (s, 1H), 8.45 (m, 4H), 8.38 (s, 1H), 7.28 (m, 4H), 3.95 (d, J = 7.1 

Hz, 6H), 2.89 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ(ppm) 174.7, 170.5, 166.0, 165.2, 163.1, 

132.8, 131.3, 124.5, 121.7, 116.1, 115.8, 115.6, 111.9, 56.6, 56.5, 56.5, 21.3; HRMS(ESI-TOF)+ 

calculated for C20H19O3
+ (M+)(m/z): 307.1334; experimental (M+)(m/z): 307.1341. 

 

General procedure for the synthesis of compounds 8a-c and 9a-c. The corresponding 2, 4-

diaryl-6-pyrylium salt and 1.1 equivalents of the selected compound 5a-c or 6a-c were mixed in 

a round bottom flask in the presence of 10 mL of acetic acid. The reaction mixture was refluxed 

overnight. Then, the obtained solution was cooled to room temperature and poured into excess 

ether (150 mL). The observed precipitate was filtered, washed with ether and dried under 

vacuum.  

 

Compound 8a. IR(ATR)(cm-1) 2959, 2848, 1631, 1583, 1488, 1249, 1173; 1H NMR (500 MHz, 

DMSO-d6) δ(ppm) 8.81 (d, J = 19.9 Hz, 1H), 8.58 (m, 3H), 8.48 (d, J = 8.3 Hz, 2H), 8.37 (d, J 

= 8.7 Hz, 1H), 8.31 (d, J = 16.3 Hz, 1H), 8.06 (d, J = 8.2 Hz, 3H), 7.97 (d, J = 7.9 Hz, 2H), 7.73 

(d, J = 16.4 Hz, 1H), 7.30(m, 4H), 4.29 (t, J = 8.4 Hz, 1H), 3.96 (d, J = 9.3 Hz, 6H), 3.11 (dd, J 
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= 13.0, J = 6.2 Hz, 1H), 3.00 (dd, J = 12.8, J = 6.0 Hz, 1H), 2.12(m, 1H), 1.44 (dd, J = 13.1, J = 

7.2 Hz, 2H), 0.97(m, 6H), 0.86 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ(ppm) 

171.2, 169.1, 167.5, 166.0, 165.9, 165.3, 162.2, 142.5, 137.4, 136.8, 132.6, 131.7, 129.0, 128.9, 

124.9, 121.9, 120.8, 116.1, 115.8, 115.1, 59.7, 56.7, 56.6, 30.6, 22.7, 21.5, 19.8, 19.4, 11.9; 

HRMS (ESI-TOF)+ calculated for C36H39N2O5
+ (M+)(m/z): 579.2859; experimental (M+)(m/z): 

579.2860; [α]D= -229.10 (25 °C, c= 0.0067 g/mL in CH3CN). 

 

Compound 8b. IR(ATR)(cm-1) 2935, 2854, 1635, 1587, 1484, 1249, 1173; 1H NMR (500 MHz, 

DMSO-d6) δ(ppm) 8.82 (s, 1H), 8.58 (m, 3H), 8.48 (t, J = 7.9 Hz, 2H), 8.37 (d, J = 8.6 Hz, 1H), 

8.31 (d, J = 16.3 Hz, 1H), 8.04 (dd, J = 11.6, J = 6.8 Hz, 3H), 7.97 (d, J = 7.8 Hz, 2H), 7.73 (d, 

J = 16.3 Hz, 1H), 7.29 (m, 4H), 4.28 (t, J = 8.5 Hz, 1H), 3.95 (m, 6H), 3.13 (m, 6.5 Hz, 1H), 3.02 

(m, J = 5.8 Hz, 1H), 2.11(m, 1H), 1.40 (d, J = 6.8 Hz, 2H), 1.23 (d, J = 7.4 Hz, 10H), 0.97 (m, 

6H), 0.84 (dd, J = 6.8, J = 6.0 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ(ppm) 172.4, 171.1, 

169.1, 167.5, 166.0, 165.9, 165.3, 162.2, 142.4, 137.4, 136.8, 132.6, 131.7, 129.0, 128.9, 124.9, 

121.9, 120.7, 116.1, 115.8, 115.1, 59.7, 56.7, 56.5, 31.6, 30.6, 29.4, 29.1, 26.8, 22.5, 21.5, 19.8, 

19.4, 14.4.; HRMS (ESI-TOF)+ calculated for C41H49N2O5
+ (M+)(m/z): 649.3641; experimental 

(M+)(m/z): 649.3635; [α]D= -311.89 (25 °C, c= 0.0067 g/mL in CH3CN). 

 

Compound 8c. IR(ATR)(cm-1) 2925, 2854, 1635, 1583, 1492, 1253, 1173; 1H NMR (500 MHz, 

DMSO-d6) δ(ppm) 8.84 (s, 1H), 8.60 (m, 3H), 8.48 (d, J = 8.8 Hz, 2H), 8.37 (d, J = 8.6 Hz, 1H), 

8.32 (d, J = 16.3 Hz, 1H), 8.04 (dd, J = 16.5, J = 6.9 Hz, 3H), 7.97 (d, J = 8.2 Hz, 2H), 7.74 (d, 

J = 16.3 Hz, 1H), 7.30 (dd, J = 12.2, J = 9.0 Hz, 4H), 4.28 (t, J = 8.4 Hz, 1H), 3.98 (m, 6H), 3.13 

(dd, J = 13.1, 6.5 Hz, 1H), 3.02 (dd, J = 12.3, J = 5.6 Hz, 1H), 2.12 (dd, J = 14.0, J = 6.8 Hz, 

1H), 1.40 (d, J = 6.8 Hz, 2H), 1.23 (d, J = 9.6 Hz, 18H), 0.93 (m, 6H), 0.83 (dd, J = 7.2, J = 6.4 

Hz, 3H).; 13C NMR (125 MHz, DMSO-d6) δ(ppm) 172.4, 171.2, 169.1, 167.5, 166.0, 165.9, 

165.3, 162.2, 142.5, 137.4, 136.8, 132.6, 131.6, 129.0, 128.9, 124.9, 121.9, 120.8, 116.1, 115.8, 
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115.1, 59.7, 56.7, 56.6, 31.7, 30.6, 29.5, 29.5, 29.4, 29.4, 29.2, 29.1, 26.8, 22.5, 21.5, 19.8, 19.4, 

14.4; HRMS (ESI-TOF)+ calculated for C45H57N2O5
+ (M+)(m/z): 705.4267; experimental 

(M+)(m/z): 705.4264; [α]D= -76.93 (25 °C, c= 0.0088 g/mL in CH3CN). 

 

Compound 9a. IR(ATR)(cm-1) 2930, 2853, 1634, 1588, 1485, 1253, 1181; 1H NMR (500 MHz, 

DMSO-d6) δ(ppm) 8.83(m, 1H), 8.69 (d, J = 8.5 Hz, 1H), 8.60 (t, J = 8.3 Hz, 2H), 8.56 (s, 1H), 

8.48 (t, J = 9.3 Hz, 2H), 8.29 (d, J = 16.3 Hz, 1H), 8.07 (dd, J = 15.3, J = 9.6 Hz, 1H), 8.96 (m, 

4H), 7.72 (d, J = 16.3 Hz, 1H), 7.30 (m, J = 15.5, J = 7.5 Hz, 8H), 7.17 (m, 1H), 4.72(m, 1H), 

3.95 (m, 6H), 3.05 (m, 4H), 1.41 (dq, J = 14.2, J = 7.2 Hz, 2H), 0.83 (t, J = 7.4 Hz, 3H); 13C 

NMR (125 MHz, DMSO-d6) δ(ppm) 172.4, 171.4, 169.1, 167.5, 165.9, 165.8, 165.3, 162.2, 

142.4, 138.8, 137.6, 136.6, 132.6, 131.6, 129.6, 129.0, 128.8, 128.5, 126.7, 124.9, 121.9, 120.8, 

116.1, 115.8, 115.1, 56.6, 56.6, 55.5, 38.0, 22.7, 21.5, 11.8; HRMS (ESI-TOF)+ calculated for 

C40H39N2O5
+ (M+)(m/z): 627.2859; experimental (M+)(m/z): 627.2852; [α]D= -257.14 (25 °C, c= 

0.007 g/mL in CH3CN). 

 

Compound 9b. IR(ATR)(cm-1) 2933, 2849, 1635, 1587, 1488, 1253, 1173; 1H NMR (500 MHz, 

DMSO-d6) δ(ppm) 8.83(m, 1H), 8.68 (d, J = 8.4 Hz, 1H), 8.59 (m, 2H), 8.56 (d, J = 1.3 Hz, 1H), 

8.49 (t, J = 9.7 Hz, 2H), 8.30 (d, J = 16.3 Hz, 1H), 8.06 (t, J = 5.6 Hz, 1H), 7.95 (m, 4H), 7.72 

(d, J = 16.3 Hz, 1H), 7.29 (m, 8H), 7.17 (m, 1H), 4.71(m, 1H), 4.95 (m, 6H), 3.11 – 2.98 (m, 

4H), 1.37 (dd, J = 13.8, J = 7.8 Hz, 2H), 1.29 – 1.16 (m, 10H), 0.85 (m, 3H); 13C NMR (125 

MHz, DMSO-d6) δ(ppm) 172.4, 171.3, 169.1, 167.5, 165.9, 165.8, 165.3, 162.2, 142.4, 138.8, 

137.5, 136.6, 132.6, 131.7, 129.6, 129.0, 128.8, 128.6, 128.5, 126.7, 124.9, 121.9, 120.8, 116.1, 

115.8, 115.1, 56.7, 56.6, 55.5, 31.7, 29.5, 29.2, 29.1, 26.8, 22.5, 21.5, 14.4; HRMS (ESI-TOF)+ 

calculated for C45H49N2O5
+ (M+)(m/z): 697.3641; experimental (M+)(m/z): 697.3639; [α]D= -

326.47 (25 °C, c= 0.0077 g/mL in CH3CN). 

 



14 

 

Compound 9c. IR(ATR)(cm-1) 2929, 2849, 1631, 1587, 1483, 1253, 1177; 1H NMR (500 MHz, 

CDCl3) δ(ppm) 8.83 (t, J = 13.3 Hz, 1H), 8.68 (d, J = 8.4 Hz, 1H), 8.59 (m, 2H), 8.57 (s, 1H), 

8.48 (d, J = 8.9 Hz, 2H), 8.30 (d, J = 16.3 Hz, 1H), 8.05 (m, 1H), 7.96 (q, J = 8.7 Hz, 4H), 7.73 

(d, J = 16.3 Hz, 1H), 7.37 – 7.21 (m, 8H), 7.16 (m, 1H), 4.70 (m, 1H), 3.97 (m, 6H), 3.04 (m, 

4H), 1.36 (d, J = 12.7 Hz, 2H), 1.24 (m, 18H), 0.82 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, 

DMSO-d6) δ(ppm) 172.4, 171.3, 169.1, 167.5, 165.9, 165.8, 165.3, 162.2, 142.4, 138.8, 137.4, 

136.5, 132.6, 131.6, 129.6, 128.9, 128.8, 128.7, 128.5, 126.8, 124.9, 121.9, 120.8, 116.1, 115.8, 

56.7, 56.6, 55.4, 31.7, 29.5, 29.5, 29.4, 29.2, 26.7, 22.5, 21.5, 14.4; HRMS (ESI-TOF)+ 

calculated for C49H57N2O5
+ (M+) (m/z): 753.4267; experimental (M+)(m/z): 753.4262; [α]D= -

360 (25 °C, c= 0.0067 g/mL in CH3CN). 

 

Fluorimetric and absorption studies.  

 

Photophysical characterization. Emission and absorption spectra of all compounds (10 µM) 

were recorded on solvents of different polarity (dichloromethane, acetonitrile and phosphate 

buffered saline solution (PBS 20 mM). The steady-state spectra and emission decays of the 

corresponding solutions were recorded using 1 x 1 cm quartz cells. 

 

Fluorescence titrations with N-protected amino acids. 1 mM stock solution in acetonitrile was 

prepared for each of the compounds 8a-c and 9a-c. From this solution, a diluted one (10µM) was 

prepared in the fluorescence cuvette. To this solution, aliquots of a 0.5 M stock solution of the 

corresponding N-protected amino acid in acetonitrile were added. Emission spectra were 

recorded exciting at the absorption maximum wavelength of the dye.  

 

1H NMR titrations.  
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2 mL of a 5 mM solution of compound 8a was prepared in deuterated acetonitrile (solution a). 1 

mL of this solution was used to prepare a 0.5 M solution of the corresponding N-protected amino 

acid in deuterated acetonitrile (solution b). 0.7 mL of solution a were placed in an NMR tube and 

increasing aliquots of solution b were added until a final concentration of 190 mM of amino acid. 

1H NMR spectra were recorded after each addition of substrate. 

Results and discussion 

Six new pyrylium salts (8a-c and 9a-c) were prepared according to Scheme 1. They contain a 

styrylpyrylium core fluorophore and a pending arm displaying an amino acid (valine or 

phenylalanine) fragment and an alkyl chain of variable length (3, 8 or 12 carbon atoms). While 

the presence of the amino acid moiety provides a number of recognition sites, and the potential 

for enantioselective recognition, like in previously reported receptors,15–17 the long alkyl chain 

can be expected to contribute to the generation of hydrophobic interactions, since these could 

play a key role in the complexation process and is currently a topic of intense research.42–44 

The synthesis of the intermediate 7 was carried out according to literature procedures.45 

For the preparation of intermediates 5a-c and 6a-c, the first step was the coupling between the 

N-protected amino acid (Z-Val-OH or Z-Phe-OH) and the corresponding alkylamine to give 1a-

c and 2a-c.46 Cbz deprotection was achieved in acidic medium to yield 3a-c and 4a-c.47 The 

resulting amido amines were reacted with 4-formylbenzoic acid in the presence of SOCl2 to give 

the diamides 5a-c and 6a-c.48 Finally, the obtained aldehyde was condensed with the 2,4-diaryl-

6-methylpyrylium salt obtained previously (7) by refluxing the mixture in the presence of acetic 

acid and giving rise to the desired pseudopeptidic styryl pyryliums 8a-c and 9a-c.49
 The identity 

of compounds 8a-c and 9a-c was confirmed by 1H / 13C NMR spectroscopy and HRMS 

spectrometry data.  
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Scheme 1. Synthetic route to obtain pseudopeptidic styryl pyrylium salts 8a-c and 9a-c. Reagents and conditions: i) Et3N, 

ClCOOEt in THF (24 h, rt); ii) HBr/CH3COOH (1 h, rt); iii) SOCl2 in CH2Cl2 (2 h at 65 oC, then 24 h at rt); iv) 

BF3·OEt2 (75 min, 50-120 oC); v) CH3COOH (24 h, reflux). 

 

Compounds 8a-c and 9a-c were fully characterized in acetonitrile (ACN), 

dichloromethane (DCM) and PBS (20mM) using UV-Vis and fluorescence spectroscopies. 

Figures 1 and 2 present the absorption and emission spectra of 8a-c and 9a-c in several solvents, 

while Table 1 gathers the data collected for all compounds, including absorption (λabs) and 

emission maxima (λf), extinction coefficients (), emission quantum yields (f) and fluorescence 

lifetimes (f). The solvatochromic effect is very small for all the compounds irrespective of the 

amino acid or the length of the alkyl chain, since the absorption and emission features for all the 

compounds are very similar, thus indicating a small charge-transfer character of the excited state. 

The effect of the solvent is more pronounced in the emission quantum yield, since in DCM all 

compounds are strongly fluorescent, with f =0.45-0.51, but in polar solvents this value drops 

with f=0.14-0.19 in ACN and f =0.01-0.03 in PBS. The radiative deactivation constants 
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calculated with the emission quantum yields and fluorescence lifetimes (kr = f / f) resulted 

higher in apolar DCM (ca. 1.0·108 s-1- 1.2·108 s-1) that in polar ACN (ca. 6·107 s-1- 1.0·108 s-1) 

or PBS (ca. 6·106 s-1- 1.3·107 s-1). This higher kr in apolar solvents  is in agreement with the data 

reported by Haucke et al. for other pyrylium compounds.50 In some instances, the introduction 

of an extended conjugation in pyrylium compounds can lead to a dual emission, as it has been 

studied previously.33,51,52 However, this is not the case for compounds 8a-c and 9a-c, which 

display a single emission band. Structurally related pyrylium dyes with p-methoxystyryl units 

display a dual emission with a localized emission at ca. 540 nm and a delocalized fluorescence 

at ca.620 nm. The fluorescence observed for 8a-c and 9a-c arises from a localized state centered 

at the pyrylium core since the emission maxima is at 537-560 nm in all the cases, with no 

contribution from any other band above 600 nm. The reason for this difference can be accounted 

for taking into account the electron-withdrawing nature of the carboxamide group linking the 

pyrylium fluorophore to the amino acid part of the molecule. In the case of the above mentioned 

pyrylium salts with dual emissive behaviour, the group present at this position is an electron-

donating alkoxy one, which enhances the charge-transfer nature of the excited state, and hence 

favouring the occurrence of fluorescence from a delocalized state. 
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Figure 1 Normalized absorption (black) and emission (red) spectra for 8a-8c in dichlorometane (left column), acetonitrile 

(central column) and PBS 20 mM (right column). A, B, C: 8a; D, E, F: 8b; G, H, I: 8c. λexc = 400 nm.  

 

 



19 

 

 

Figure 2. Normalized absorption (black) and emission (red) spectra for 9a-9c in dichlorometane (left column), acetonitrile 

(central column) and PBS 20 mM (right column). A, B, C: 9a; D, E, F: 9b; G, H, I: 9c. λexc = 400 nm. 

A series of fluorescence titrations were carried out to study the interaction of these 

pseudopeptidic pyrylium with N-protected amino acids. Ala, Val, Phe, Met, Trp and Tyr, in their N-

protected forms and L-configuration were initially selected. For this purpose, the absorption and 

emission spectra of 8a-c and 9a-c were recorded in the presence of increasing amounts of the 

corresponding substrate (see Figure 3 for the case of 8a). For those amino acid derivatives presenting a 

measurable interaction, titrations were also carried out with the appropriate D-enantiomer. Amino acids 

with alkyl side chains (Z-Ala-OH and Z-Val-OH) or a benzene ring (Z-Phe-OH) did not induce changes 

in the absorption or emission spectra. By contrast, in the experiments with amino acids displaying 

electron rich side chains (Z-Met-OH, Z-Tyr-OH and Z-Trp-OH) a decrease in the intensity of the 

emission was observed.   
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Table  1 Photophysical properties of compounds 8a-c and 9a-c in acetonitrile (A), dichloromethane (D) and PBS 20mM (W).  

 

 

 

Figure 3. Fluorescence spectra of 8a in the presence of increasing amounts of N-protected amino acids (from 0 to 45 mM): 

A) Z-L-Ala-OH, B) Z-L-Val-OH, C) Z-L-Phe-OH, D) Z-L-Met-OH, E) Z-L-Tyr-OH and F) Z-L-Trp-OH. 

 

Comp. Solvent λabs (nm) log ε λf(nm) Φf
 τf (ns) kr (s-1) / 107 

8a D 448 4.76 550 0.48 4.4 10.9 

A 430 4.74 556 0.17 2.4 7.1 

W 437 4.55 554 0.03 2.3 1.3 

8b D 448 4.77 550 0.51 4.3 11.9 

A 428 4.71 553 0.19 1.9 10 

W 438 4.55 541 0.03 3.1 1.0 

8c D 448 4.77 552 0.50 4.4 11.4 

A 428 4.75 560 0.16 1.7 9.4 

W 433 4.58 540 0.02 3.8 0.6 

9a D 448 4.79 551 0.45 4.4 10.2 

A 428 4.71 557 0.14 2.2 6.4 

W 433 4.56 549 0.03 2.4 1.2 

9b D 449 4.80 550 0.46 4.4 10.4 

A 430 4.76 553 0.17 2.4 7.1 

W 433 4.59 538 0.03 3.3 0.9 

9c D 448 4.63 547 0.49 4.2 11.7 

A 430 4.71 548 0.15 2.6 5.8 

W 433 4.52 537 0.03 3.3 0.9 
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The quenching of the fluorescence can occur via dynamic or static mechanisms.19 The 

static mechanism involves a supramolecular association between the receptor and the substrate, 

whereas the dynamic mechanism implies only collisional interactions with the excited state. 

Several models have been suggested to describe both types of quenching. The simplified 

expression shown in eqn (1) has been habitually used to describe the fluorescence quenching 

when both mechanisms are operating.53 

                                                    I0/I = (1 + Kd ·[Q])(1 + Ka ·[Q])               (1) 

In eqn (1) the ratio of emission intensities in the absence (I0) and in the presence (I) of a 

certain quencher Q depends on its concentration ([Q]), and Kd and Ka are the constants describing 

the dynamic and static processes, respectively. When only collisional quenching takes place then 

the expression can be written as eqn (2), where kq is the bimolecular quenching constant. 

                                               I0/I = 0/ = 1 + Kd ·[Q] = 1 + kq·f·[Q]             (2) 

In our case tryptophan is the substrate causing the greatest decrease in fluorescence when 

interacting with all the studied pyrylium salts (Figures 2 and 3). Fluorescence quenching in the case of 

Z-Met-OH and Z-Tyr-OH is notably lower than in the case of Trp. In most cases, quenching fits well 

(Figure 4) to a linear Stern-Volmer model, indicating that dynamic quenching is the only contribution. 

An upward deviation from linearity is observed, however, for the fluorescence quenching of 8a by Z-

Trp-OH, which is indicative of the presence of static quenching processes due to the formation of ground 

state complexes.  

Table 2 summarizes the calculated Kd values for the quenching of all pseudopeptidic 

pyrylium salts by different N-protected amino acids. As it can be seen, the most effective 

quencher is tryptophan, with constants between 29.6 and 40.5 M-1. Z-Tyr-OH and Z-Met-OH 

induce quenching with constants between 5.9 and 19.9 M-1. The observed quenching can be 

rationalized through a photoinduced electron transfer (PeT) process taking place from the 

electron-rich side chain to the excited state (S1) of the pyrylium salt. This process is favoured in 

the case of Trp having a lower oxidation potential than the other amino acids. The quenching 
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effect of several amino acids (or related compounds) has been studied for other systems12,18,19,54,55 

and in all the cases PeT has been found the key to explain the pronounced tendency of Trp to 

cause the highest quenching effect. Other substances with electron-donating properties have been also 

reported to cause quenching of the fluorescence of pyrylium dyes.56,57  

 

Figure 4. Stern-Volmer plots for the studied interactions between compounds A) 8a, B) 8b, C) 8c, D) 9a, E) 9b and 

F) 9c and the different N-protected amino acids.  
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Table 2. Kd values (M-1) for the quenching of the fluorescence of compounds 8a-c and 9a-c in the presence of 

different N-protected amino acids in acetonitrile. 

 

Aminoacid 8a 8b 8c 9a 9b 9c 

Z-L-Trp-OH 30.6 ±1.3 29.8 ± 0.3 34.8 ± 0.8 35.4 ± 0.9 40.5 ± 1.0 33.0 ± 0.6 

Z-D-Trp-OH 33.5 ±0.7 26.6 ± 0.5 30.4 ± 0.7 37.0 ± 0.9 41.0 ± 0.8 33.6 ± 0.7 

Z-L-Tyr-OH 15.8 ± 0.5 19.4 ± 0.7 13.1 ± 0.6 19.9 ± 0.7 16.5 ± 1.0 17.7± 0.1 

Z-D-Tyr-OH 11.7 ± 0.2 16.3 ± 0.3 16.9 ± 0.3 17.5 ±0.5 16.9 ± 0.3 16.2 ± 0.4 

Z-L-Met-OH 13.5 ± 0.6 13.1 ± 0.4 14.5 ± 0.4 11.0 ± 0.2 10.9 ± 0.1 13.8 ± 0.2 

Z-D-Met-OH 12.9 ± 0.9 10.8 ± 0.7 12.8 ± 0.9 5.9 ± 0.5 8.6 ± 0.4 17.4 ± 0.7 

 

Notably, 8a is the only receptor showing this moderate association since 8b, 8c and 9a-c 

presented linear fits. The lack of curvature of the corresponding Stern-Volmer plots is indicative 

of a pure collisional mechanism for the quenching in these cases. The association constants (Ka) 

in the ground state could be roughly estimated from the quenching data for the interaction of 8a 

with the L (5.3 ± 0.4 M-1) and D (5.5 ±0.3 M-1) enantiomers of Z-Trp-OH applying eqn (1).  

In order to confirm qualitatively the formation of the corresponding complexes in the 

ground state 1H NMR titrations were carried out. Figure 5 shows very different trends in the case 

of receptor 8a in the presence of Z-Trp-OH and Z-Ala-OH. In the former case, a clear upfield 

shift is observed for the different signals, suggesting the involvement of  interactions in the 

formation of the corresponding ground state complex. Such shifts are absent for the addition of 

Z-Ala-OH. Due to the weak interaction between pyrylium and substrate the corresponding 

association constant could not be calculated by 1H NMR.  
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Figure 5. Stacked 1H NMR spectra in CD3CN of 8a in the presence of increasing amounts of N-protected L-tryptophan (A) 

and L-alanine (0 to 45 mM). 

Conclusions 

In summary, we have prepared six new fluorescent pseudopeptidic pyrylium salts 

synthesized using valine or phenylalanine as building blocks and alkyl chains of different length. 

The new molecules have been characterized by 1H / 13C NMR, HRMS, UV-vis and Steady-State 

/ Time-Resolved Fluorescence. The emissive properties (emission quantum yields, lifetimes and 

radiative deactivation constants) in different media have been described. The molecules here 

described show a single emission band, unlike related pyrylium compounds described in the 

literature.  The interaction with amino acids in their N-protected forms has been studied by means 

of fluorescence quenching, using the Stern-Volmer methodology to determine static and dynamic 

constants. It has been found that the main quencher of the fluorescence of pyrylium salts 8a-c 

and 9a-c is Z-Trp-OH, and to a lesser extent Z-Tyr-OH and Z-Met-OH. No quenching was 

measured with Z-Ala-OH, Z-Val-OH and Z-Phe-OH. A detailed analysis of the fluorescence 

spectra using the Stern-Volmer formalism allows obtaining association constant between 8a and 
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Z-Trp-OH (ca. 5 M-1). Complementary 1H-NMR titrations confirmed the existence of such weak 

ground state complex for Z-Trp-OH.  
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