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Abstract— Improving the understanding of hand
kinematics during the performance of activities of daily
living may help improve the control of hand prostheses
and hand function assessment. This work identifies sparse
synergies (each degree of freedom is present mainly in only
one synergy), representative of the global population, with
emphasis in unveiling the coordination of joints with small
range of motion (palmar arching and fingers abduction). The
study is the most complete study described in the literature
till now, involving 22 healthy subjects and 26 representative
day-to-day life activities. Principal component analysis
was used to reduce the original 16 angles recorded
with an instrumented glove. Five synergies explained
75% of total variance: closeness (coordinated flexion
and abduction of metacarpophalangeal finger joints),
digit arching (flexion of proximal interphalangeal joints),
palmar-thumb coordination (coordination of palmar arching
and thumb carpometacarpal flexion), thumb opposition,
and thumb arch. The temporal evolution of these synergies
is provided during reaching per intended grasp and during
manipulation per specific task, which could be used as
normative patterns for the global population. Reaching has
been observed to require the modulation of closeness, digit
arch and thumb opposition synergies, with different control
patterns per grasp. All the synergies are very important
during manipulation and need to be modulated for all
the tasks. Finally, groups of tasks with similar kinematic
requirements in terms of synergies have been identified,
which could benefit the selection of tasks for rehabilitation
and hand function assessments.

Index Terms— Activitiesof daily living, hand grasps, hand
kinematics, manipulation, principal component analysis,
reaching, synergies, temporal evolution.

I. INTRODUCTION

THE hand is a complex mechanical system that provides
humans with the ability to reach, grasp, and manipulate
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objects, which are essential to perform activities of daily
living (ADL). Reaching precedes grasp and combines the
approaching movement of the hand to the object and the finger
joint motion in anticipation of the intended grasp [1], [2].
Reaching ends when the hand grasps and stably holds the
object. A different grasp is used depending on the ability, force
and dexterity required to perform the task, thus the number of
grasps of the taxonomies reported in the literature is different
depending on their purpose [3]–[5]. Subsequent manipulation
is characterised by hand motions that allow the required
movements of an object to perform activities. Manipulation
can be as simple as moving an object or as complex as
simultaneously transporting and handling an object accurately
with fingertips [6]. Consequently, the ability to reach, grasp
and manipulate an object involves many neural structures that
work in concert in a highly complex way to control intricate
hand kinematics [7].

The study of hand kinematics required to perform ADL in
both phases can provide objective data to better understand
human movement (e.g. to assess hand function [8]), improve
grasping in robotics [9], make hand models more realis-
tic (such as three-dimensional modelling for films or com-
puter games [10]), or even improve rehabilitation and
physiotherapy [11]–[13]. However, the high number of degrees
of freedom (DoF) of the hand hinders such analysis, so that the
studies of the kinematics used during ADL are mainly limited
to the analysis of the ranges of motion of the hand joints [14],
[15] and grasping trajectories and velocities [16], [17]. Other
important kinematic characteristics, such as the coordination
underlying ADL performance [18], are not addressed.

In a previous work [19], we proposed kinematic reduction
through principal component analysis (PCA) to make the
analysis of the simultaneous movement of all hand joints
affordable, as all these movements are coordinated because of
mechanical and neurological couplings [18], [20]. As a result,
we showed that using these coordinated movements to address
hand characterisation is a good compromise between the sim-
plicity of kinematic representation and accuracy. These coordi-
nated movements are commonly known as kinematic synergies
[21], and are suggested to represent the basic building blocks
underlying natural hand motions that can be used to repre-
sent hand movements to, therefore, reduce the dimensionality
of kinematics [22]–[24]. PCA has been previously applied
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to study the human grasp for different purposes [19],
[25]–[32], but these studies provide limited knowledge about
the characterisation of hand kinematics while performing
ADL. A recent study [33] intended to be representative of
ADL performance as it used data on the hand while performing
a wide range of grasps. However, data were limited to grasp
performance and did not consider manipulation in real ADL.
The main results of all these studies can be summarised as: a
few synergies are needed to reproduce original movements; the
more DoF considered, the more synergies required; synergies
differ depending on the tasks or grasps considered; not all
subjects use exactly the same synergies; hand actions are best
represented as sparse combinations of a predefined set of basic
synergies, with each involving a few DoF.

These studies present other limitations as regards represen-
tativeness. Firstly, the number of subjects considered in most
works is quite limited (no more than 10), with no evidence
of representativeness of the sample. Secondly, studies tend to
focus on small sets of activities, which poorly represent the
wide range of activities needed in daily living. Thirdly, studies
do not consider important hand DoF such as the palmar arch,
which is important both during reach-to-grasp [34] and object
manipulation [35]. Fourthly, most works in the literature do
not look for synergies sparse in DoF. Actually, some studies
[23] suggest that the sparsity in DoF of synergies cannot
be addressed by PCA methods because all DoF are used to
compute any synergy. However, sparsity in DoF of synergies
could be addressed by applying a rotation method trying to
minimize the number of DoF in each synergy. Lastly, most
studies focus on analysing either postural synergies of static
grasps, and thus ignore the reaching and manipulation phases
required to perform ADL, or very specific and controlled tasks.
Regarding the first limitation, both the data sample size and the
number of subjects involved in the study must be big enough
to obtain representative results as the subject is expected to
be the factor that explains most variance [19]. A selection of
a limited set of representative tasks is needed given the wide
variety of ADL humans can perform. This selection should
consider specific protocols to standardise tasks [36] so as to
help distinguish among different task phases [37]. However,
defining such a set of representative ADL, susceptible to be
standardised, is not straightforward. One possibility is to select
tasks from those considered in the common clinical tests
used to track the functional recovery of the upper extremity.
These clinical tests consider a different variety of ADL, which
ranges from 7 to 20. Some tests focus more on assessing fine
motor skills, such as the Jamar Hand Function Test or the
Jebsen Hand Function Test [38], while others centre more on
measuring the ability to perform tasks required in ADL, such
as the Sollerman Hand Function Test (SHFT) [39]. SHFT
is one of the most popular tests that consists of performing
20 ADL at the maximum possible pace following an operator’s
instructions. It also includes whether subjects have to use both
hands, or only the dominant one. SHFT is commonly accepted
and used as a representative hand test while performing ADL,
and is based on specific directed tasks, which makes these
tasks easy to standardise. However, standard SHFT tasks do
not consider some common grasps with a high percentage of

use in ADL, such as the special pinch [5], therefore some extra
activities should be added to make ADL more representative.

In this work, we used the kinematic reduction method
presented previously [19] to characterise hand kinematics
defined by 16 DoF (including palmar arch). We looked for
synergies sparse in DoF, while 22 subjects performed a set
of 26 representative simulated ADL based on SHFT. Data
are presented by differentiating the reaching and manipulation
phases to better understand human movement. During reach-
ing, the approaching hand movement is determined by the
position, orientation and shape of the object to be grasped,
and also by the subject’s characteristics, such as hand size
and previous experience or preferences, which implies that
subjects may use different types of grasps, even for the same
ADL. On the contrary, during manipulation, hand motion
is characterised by the required movements of the object
to accomplish the task. Therefore, we present the results
during reaching differentiating by the intended grasp per-
formed by each subject during each ADL. The results during
manipulation are presented by ADL.

II. METHODOLOGY

A. Experiment Description

The data used in this experiment come from the publicly
available KIN-MUS UJI database [40]. This section briefly
describes the experiment. For more details about the proto-
col, please refer to [40]. Twenty-two right-handed subjects
gave their informed written consent before participating in
this study, approved by our University’s Ethics Committee.
Subjects performed 26 simulated ADL (Table I), of which
20 were obtained from SHFT. Some ADL from SHFT were
adapted to ensure their repeatability and to favour their
standardisation. Six additional activities (A10, A15, A19,
A24, A25, A26) were added based on the percentage of use
of the commonest grasps used to perform ADL [5]. The
scenarios with the objects used in the ADL are shown in the
supplementary material (S1).

In order to help the ADL repeatability, each simulated ADL
started and ended with the body and arms in the same posture
(arms and hands relaxed at the side of the body when subjects
were standing, or arms and hands resting in a relaxed position
on the table when they were sitting). In addition, precise
instructions for each task were provided, including details as
the rotation angle of a key (A8), the position of a coin (A1 &
A3), the rotation angle of a door handle (A9) or the amount
of water to be poured (A21). The subjects could practice each
task as many times as necessary in advance to become familiar
with performing it before recordings. While carrying out each
task, the operator marked (or labelled) the time stamp of two
specific events: when any part of the hand came into contact
with the object and when contact disappeared to release the
object.

The right hand kinematics was recorded (100 Hz) while
performing these simulated ADL with an instrumented glove
(Cyberglove Systems LLC; San Jose, CA, USA) following a
validated calibration protocol that includes some non-linear
corrections to obtain anatomical angles [41]. The 16 recorded
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TABLE I
DESCRIPTION OF THE ADL PERFORMED. WHEN NOT INDICATED,

THE POSITION OF THE SUBJECT WAS STANDING

joint angles were: flexion of the metacarpophalangeal (MCP)
joints of all fingers and thumb, interphalangeal (IP) joint
of the thumb, and proximal interphalangeal (PIP) joints
of the fingers; flexion and abduction of the thumb car-
pometacarpal (CMC) joint; relative abduction between fingers
(index-middle; middle-ring; and ring-little); and palmar arch
(P_Arch). A reference posture (hand resting flat on a table with
fingers and thumbs close together, middle fingers aligned with
forearms) was recorded before recording the hand kinematics
while performing the selected ADL, and was considered zero
for all the joint angles [41]. The recorded joint angles were
filtered by a 2nd-order 2-way low-pass Butterworth filter with
a cut-off frequency of 5 Hz and initial and final frames of each
record during which the hands remained static were trimmed.

B. Data Analysis

The movement of each simulated ADL was divided into
reaching and manipulation phases, defined by the marked
events as follows:

• Reaching: until touching the object to be grasped.
• Manipulation: from touching the object until contact

disappeared to release the object.
So that all subjects, ADL and phases weighted equally in

the analyses, the number of frames of each record (per subject
and each ADL) were resampled to 500 for each phase, with
a total of 1000 frames per ADL and subject.

The following statistical analyses were performed:
Kinematic Reduction: In order to obtain representative

kinematic synergies of global population, a PCA was applied

to the data of all subjects altogether, including all the frames
of both phases for all the ADL. The PCA matrix input was
composed of an ensemble of 16 joint angle time-profiles
(1000 frames) for the 26 ADL and 22 subjects (matrix
dimension 16 × 572, 000). Prior to computation of the PCs,
the joint angles were normalised by rescaling them to unit
variance in order to prevent the first PCs from reflecting
the joint angles with the largest amplitudes [19]. The PCs
with eigenvalues larger than 1 were obtained, and Varimax
rotation applied. This is an orthogonal rotation method (factors
obtained are uncorrelated) that provides more sparse synergies.
When performing PCA, first factor of the unrotated solutions
tends to be a general factor with almost every variable loading
significantly, and accounting for a large amount of variance
and the subsequent factors are then based on a residual amount
of variance. Varimax rotation redistributes the variance from
earlier factors to later ones, by maximising the sum of the
variances of the squared loadings, so that all the coefficients
will be either large or near zero [23]. PCs were interpreted
from their correlations with the original variables, given by
the rotated component matrix, and by the variance explained
in the PCA. The synergy represented by each PC was inter-
preted (from the elements of the rotated PCs extracted) and
graphically represented using Opensim. Finally, the temporal
scores of PCs were calculated and used as reduced kinematic
variables (RKV-PCs). Statistics (mean and SD) of the joint
angles across all ADL and subjects (input matrix of the PCA)
are also presented to properly interpret the values of the
RKV-PCs, where a value of zero corresponds to the mean
posture of the corresponding joints.

Minimum Sample Size: In order to study whether our sample
size was big enough to be representative of ADL, we studied
the instability of the PCA. We performed a Monte Carlo
simulation to assess the degree of saturation of the variance
explained when varying the number of subjects [42]. We
performed an iterative approach that consisted of 21 steps.
In each k-th step (k from 1 to 21), we considered a number
of subjects N=k and performed 100 simulation runs with
randomly selected samples of N subjects. I.e. we performed
2100 PCAs (21 steps × 100 simulations runs). For each PCA,
we computed the amount of variance (of the original data,
considering all subjects) that the resulting synergies explained.
For each step, we averaged the results of variance explained
across runs. Finally, we considered that the averaged variance
explained got stabilised when the variation of the percentage
of variance explained was smaller than 0.05 %.

Description of RKV-PCs During Reaching: The 9-type
classification proposed by Vergara et al. [5] for the commonest
grasps used in ADL was considered (Supplementary material,
S2): Cylindrical grasp (Cyl), intermediate power-precision
grasp (IntPP), lateral pinch (LatP), Hook grasp (Hook), lum-
brical grasp (Lum), non-prehensile grasp (NonP), oblique
palmar grasp (Obl), pad-to-pad pinch (PpP), and special pinch
(SpP). This taxonomy was used to classify the intended grasp
performed by each subject in each ADL through a visual check
of the videos (22 subjects × 26 ADL = 572 videos).

Grasps were identified by looking at the time when the hand
grasped the object for the first time, independently of the final
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TABLE II
MEAN AND SD VALUES OF JOINT ANGLES ACROSS ADL, PHASE AND

SUBJECTS. F/E: FLEXION/EXTENSION; AB/AD:
ABDUCTION/ADDUCTION MOVEMENTS

grasp used for manipulation. The frequency of grasps observed
per each ADL is presented, and the characterisation of the
hand kinematics was made with a description of the RKV-PCs
by differentiating per type of intended grasp:

• Mean values across subjects and frames of the RKV-PCs
and differences between the 95th and 5th percentiles (range).

• Temporal description of the averaged RKV-PCs and 95 %
confidence intervals (CI) across subjects.

Description of RKV-PCs During Manipulation: The
characterisation of hand kinematics during manipulation was
made by describing the RKV-PCs by differentiating per ADL
by means of:

• Mean values across subjects and frames of the RKV-PCs
and differences between the 95th and 5th percentiles (range)

• Temporal description of the averaged RKV-PCs and 95%
CI across subjects.

A cluster analysis was performed by using the aforemen-
tioned statistics (mean and range values) to look for similar
requirements while manipulating the different ADL. In this
case, a hierarchical clustering analysis [43], with Euclidean
distance taken as the distance criterion and Ward’s method
as the linkage criterion, was applied to group similar ADL.
The resulting dendrogram with the ADL arranged in branches
was used to identify the clusters by observing the distances in
each step. The resulting groups of ADL were described, and
a summary of their statistics of the RKV-PCs (and box plots)
was used to characterise the kinematics during manipulation
in each group of ADL. All the above analyses were performed
using the MATLAB® software.

III. RESULTS

Table II shows the statistics of the postures recorded for
each joint. Zero degrees correspond to the reference posture.
Mean posture corresponds to a slightly flexed posture in all the
joints, except for thumb joints CMC and MCP, with fingers
and thumb also slightly abducted. All the joints seemed to
have displayed ample variation during recordings, with Ab/Ad
movements being those with less variation, as expected given
their narrower range of motion.

TABLE III
CORRELATIONS OF THE PCS WITH THE ORIGINAL VARIABLES

A. Kinematics Reduction

Five PCs were extracted, which accounted for 75% of total
variance, and the first two were responsible for 48% of this
variance. Table III shows the rotated component matrix for the
five PCs extracted, and shows the correlations between all the
original variables and the estimated PCs. To simplify the inter-
pretation of the results, values lower than 0.1 are not shown
and those higher than 0.4 are shown in bold. Note that sparse
synergies were observed as each DOF presents high values
mainly only in one synergy, except the MCP movements of
the ring and little finger which appear in the two first synergies.
The five PCs extracted were graphically represented using
Opensim and are shown in the supplementary material (S3).

PC1 shows a coordinated flexion of the PIP joints of
fingers, with a slight MCP joint flexion of the fingers
and a small abduction/adduction of the MCP of the
little finger (i.e. digit arch). PC2 depicts coordinated
flexion and adduction of the MCP joints of fingers
(i.e. hand closeness). PC3 shows coordination between palmar
arch extension and the CMC joint flexion of the thumb
(i.e. palmar-thumb coordination). PC4 mostly depicts CMC
thumb abduction (i.e. thumb opposition). PC5 shows coordi-
nation between the CMC extension and IP flexion of the thumb
(i.e. thumb arch).

B. Minimum Sample Size

We found that at least 18 subjects were needed to have
a variation in the averaged percentage of variance explained
smaller than 0.05 %. The synergies obtained with 18 subjects
explained an averaged variance of 74.78%, vs 75% when all
the subjects were considered. And the resulting synergies with
18 subjects were similar to those obtained with all subjects,
with angles between the vectors that represent both sets of
synergies smaller than 10◦.

C. Description of RKV-PCs During Reaching

Table T1 (Supplementary material) presents the frequency
of the intended grasps performed by the subjects for each ADL
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TABLE IV
MEAN AND RANGE (DIFFERENCE BETWEEN 95th PERCENTILE

AND 5th PERCENTILE) OF EACH RKV-PC DURING

REACHING PER EACH GRASP

during reaching. PpP was the most frequent grip (35.1%) and
Hook grasp was the least frequent (3.8%). In addition, SpP was
not identified in the reaching phase in any case. Note that some
ADL, e.g. #14 (using a knife and fork), #15 (eating soup with
a spoon), #16 (writing with a pen) or #24 (putting toothpaste
on a toothbrush), display no clear predominant grasp.

Table IV shows some statistics across subjects and frames
of each RKV-PC per intended grasp, such as mean and
range (difference between the 95th and 5th percentiles). Some
differences per intended grasp can be observed. Across grasps,
all the RKV-PCs present negative (less digit arch, closeness
and thumb opposition) or zero mean values (palmar-thumb
coordination, thumb arch). The widest range is observed for
digit arch.

The temporal evolution of the mean value of each RKV-PC
with the 95% confidence interval for the eight identified grasps
is shown in the supplementary material (S4). Curve profiles
are similar for some RKV-PC between different grasps (but
with differences in the average and peak values), but present
clear differences in other cases.

Digit arch (RKV-PC1) shows the highest positive mean and
range values for the Obl grasp, with the highest negative values
found for grasps NonP, Cyl and Lum. From the temporal evo-
lution, digit arch presents similar profiles during the reaching
movement for all grasp types (ascending value), i.e. when
opening the hand required in the pre-shaping phase, the PIP
joints are flexed. The Hook grasp presents the main difference,
in which the ascending profile occurs at the end of the phase.

For all the grasps, closeness (RKV-PC2) shows almost no
movement in the first half of the reaching phase; i.e. no
movement is required for the MCP joints. The Cyl, Obl
and Hook grasps firstly decrease in the second half of the
movement, followed by an increase until the end of the phase;
i.e. while opening the hand required in the pre-shaping phase
for these grasps, MCP joints are first extended and then flexed.
Contrarily, Lum and LatP showed only a slightly increase,
which means only a slight flexion of the MCP joints, while
PpP, IntPP and NonP need a slight decrease in the phase; i.e.
these grasps require slightly extended MCP joints. Note that
closeness shows the widest range value for the Cyl grasp.

Palmar-thumb coordination (RKV-PC3) profiles present
some dispersion, but almost no differences during any grasps;
i.e. with similar mean and range values between grasps, except

TABLE V
RKV-PC NEEDED TO BE CONTROL PER GRASP IN THE REACHING

PHASE. THE MOVEMENT DIRECTION REQUIRED MARKED BY: +
POSITIVE DIRECTION; − NEGATIVE DIRECTION. +/− BOTH

DIRECTIONS NEEDED; = FIXED POSTURE WITHOUT

MOVEMENT NEEDED

for the Obl grasp that presents the widest range and mean
values, needed to flex the palm to grasp the object while the
thumb extends. It shows slight homogeneity between grasps
(wide IC), except in PpP for which almost no changes can be
seen.

Thumb opposition (RKV-PC4) has the highest negative
mean and median value for NonP (less opposition of the
thumb), while the highest positive mean and median and range
values went for grasps Cyl and Lum (more opposition of the
thumb). Thumb opposition profiles present a slight ascending
value throughout movement for all grasps, except for the
Hook grasp, which presents quite a constant value; i.e. in the
reaching phase, thumb CMC abduction is required, except for
the Hook grasp in which the CMC joint remains invariable.

Thumb arch (RKV-PC5) obtains the highest negative mean
and median values for the Lum grasp (less arching of the
thumb), while the highest positive values (more arching of the
thumb) are for the Cyl grasp. Thumb arch profiles present
visually similar and slightly increasing profiles for all the
grasps, except for the Lum grasp, with a slightly lowering
value throughout the reaching movement, i.e. for this grasp,
coordination between CMC flexion and IP extension of the
thumb is needed.

Table V summarises those synergies that need to be
controlled per grasp in the reaching phase.

D. Description of RKV-PCs During Manipulation

Table VI shows some statistics of each RKV-PC per ADL
across subjects and frames, such as the mean and difference
between the 95th and 5th percentiles (range). The temporal
evolution of the mean value of each RKV-PC per ADL,
together with their 95% confidence interval, are shown in the
supplementary material (S5).

Figure 1 shows the dendrogram from the hierarchical cluster
analysis with the ADL organised on branches according to the
similarity of their mean and range values of RKV-PCs. When
the distance between the clustered groups in a step was high
compared to the previous steps, the grouped elements or clus-
ters are not so close, and is not considered appropriate. Six
clusters or groups of ADL were identified. Table VII shows
the description of these groups: ADL included in the group,
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TABLE VI
MEAN AND RANGE (DIFFERENCE BETWEEN 95th AND 5th

PERCENTILES) OF EACH RKV-PC DURING

MANIPULATION FOR EACH ADL

Fig. 1. Clusters obtained with the ADL organised on branches according
to their similarity of the mean and range values of RKV-PCs.

intended grasps in the reaching phase, and average values
across ADL of the mean and range of each RKV-PC.

The statistics of the mean and range values of each RKV-PC
per group show clear differences for the identified groups.
These values are represented in two box plots (Figure 2), one
for the mean and another one for the range. Boxes represent
median and percentiles (25% and 75%). Whiskers represent
values that are within 1.5 times the interquartile range.

Some clear differences are observed between groups:
Group 1 brings together activities #6, #14, and #20 (using
a screwdriver, a knife and fork, picking up the phone).

TABLE VII
DESCRIPTION OF THE GROUPS OF ADL FROM THE CLUSTER

ANALYSIS: ADLS GROUPED, GRASPS IN THE REACHING

PHASE, AND THE AVERAGE VALUES OF THE

MEAN AND RANGE OF EACH RKV-PC
IN THE MANIPULATION PHASE

This group has the highest positive mean value for digit arch
(i.e. more digit flexion is needed), while the highest negative
mean value is shown for palmar-thumb coordination (i.e. more
palmar arch and thumb CMC extension is needed). Closeness
and thumb opposition present the widest range of values.

Group 2 includes activities #2, #5, #8, #9, #15, #16, #22 and
#25 (using a zip, moving an iron, opening a lock with a key,
turning a door handle, eating with a spoon, writing with a pen,
pouring water from a jug and using a spray). This group has
the highest positive mean value for digit arch and closeness
(i.e. more digit and MCP flexion are needed, with similar
values).

Group 3 includes activities #4 and #11 (moving wooden
cubes and unscrewing lids with a hand). This group has high
positive values for thumb opposition and thumb arch, while
the highest negative value is shown for closeness (i.e. more
thumb opposition and arch are needed but with less hand
closeness). This group also presents the widest range of values
for closeness and thumb arch.

Group 4 comprises activities #19 and #26 (writing using a
keypad and cleaning the table with a cloth). This group has
almost all the RKV-PC with negative mean values, and the
highest goes to thumb opposition.

Group 5 combines activities #1, #21, and #23 (putting a
coin into a change purse, pouring water from a jug and from
a glass). This group has the highest positive mean value for
thumb opposition, while the highest negative mean value is
shown for thumb arch (i.e. more thumb opposition and less
thumb arch are needed). The range values are narrow for all
the RKV-PCs, except for thumb arch.

Finally, Group 6 includes activities #3, #7, #10, #12, #13,
#17, #18, and #24 (removing a coin from the change purse,
inserting a nut inside a bolt, tying a shoelace, passing buttons,
putting a bandage on the arm, folding a piece of paper
and placing it inside an envelope, using a clip, and putting
toothpaste on a toothbrush). This group presents similar
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Fig. 2. Box plots of the statistics shown in Table VII (mean and
range values of RKV-PCs after differentiating per group obtained in the
dendrogram). Boxes represent median and percentiles (25% and 75%).
Whiskers represent values that are within 1.5 times the interquartile
range.

values for all the RKV-PCs, except for thumb arch with a
high negative value (i.e. less arching of the thumb). Note
that Groups 5 and 6 have the widest range values for all
the RKV-PCs.

IV. DISCUSSION

In this work we characterised the functional kinematics
patterns of the hand while simulating ADL. We have yield
synergies representative of global population, obtained from
a high number of subjects (and we have proved that the
number of subjects is high enough). We provide a detailed
description of what are the most used synergies during the
performance of representative ADL (being the most complete
set of kinematic hand synergies related to ADL as far as we
know), both during reaching (in terms of the grasps used) and
during manipulation (in terms of specific tasks). The study was
performed according to standardised actions based on SHFT,
these tasks reflecting an accurate representativeness of hand
functions in day-to-day life.

The PCA reduced the dataset size (16 DoF) to a limited
number of kinematic patterns (5 PCs) underlying a wide vari-
ety of hand movements and explained most of the variability
(over 75%) in the dataset. These results can be considered
further experimental evidence for the modular organisation of
the control strategy of the central nervous system, of the bio-
mechanical connections between digits and of the functional
organisation of multi-tendon finger muscles [18], [20]. The
PCA extraction method herein used (Varimax rotation) allowed
obtaining sparse synergies, i.e. each synergy uses a limited
set of DoF (7 or less DOF) and actions are implemented
with a combination of five synergies, according to the most
recent findings [23]. Therefore, this set of new variables, each
corresponding to a PC, provides almost the same informa-
tion, but in a more easily interpretable manner: digit arch,
closeness, palmar-thumb coordination, thumb opposition,
and thumb arch.

The first two PCs (digit arch and closeness) explain almost
50% of variance, whereas all three remaining PCs explain
only about 8%-9% each. As proposed by Santello [30],
lower-order synergies (digit arch and closeness) define the
gross motion of the hand, while higher-order synergies
(palmar-thumb coordination, thumb opposition and thumb
arch) are required to improve or refine the control of hands
by finely adapting to the shape of an object and the task to be
performed.

Some of the synergies herein obtained were similar to those
found in a previous work for static postures [19] (digit arch,
closeness and palmar-thumb coordination), and also to those
reported in the literature [26], [28], [30], [33], especially
the first two synergies (digit arch and closeness). However,
the third synergy (palmar-thumb coordination) has not been
previously described, as P_Arch DoF has a narrow range
of motion (so that it is neglected without normalisation)
and is not usually recorded. A recent study about grasping
postures [33] reported a coordination of the palmar arching
with wrist flexion, being the second synergy in percentage
of explained variance. However, such coordination can’t be
considered as representative of ADL, as wrist motion is very
dependent on the relative position between the product to
be manipulated and the body [44], and such position was
not varied in that study, but used the same location for all
the grasps considered. The fourth and fifth synergies mainly
represented thumb joint coordination, which is also frequently
described in the literature [26]. However in the present study,
the variance explained by these synergies was higher than
that reported in most literature studies, save the recent study
on grasping postures [33], which reported thumb opposition
to be the third synergy. These results reveal the importance
of the thumb for performing ADL. Thakur and collaborators
[31] obtained more PCs than those reported herein because
of the large number of objects (up to 50) and the extraction
of subject-specific synergies. Della Santina and collaborators
[45] studied the synergistic organization during environmental
constraint exploitation on a plane, both in the pre-shaping
and grasping phases. They found that, during unimpaired
condition, only three PCs explained more than 72% of the
variance, being the PCs similar to digit arch, and closeness,
and being also similar between pre-shaping and grasping
phases. However, palmar arch was not considered and the
PCA methodology followed in those studies neglected the
fingers abduction because of their smaller range of motion.
In addition, as they did not applied rotation, the first unrotated
factor was a general factor with almost every variable loading
significantly, and accounting for a large amount of variance
(>50%) and the subsequent factors are then based on the
residual amount of variance. In our case, the rotation applied
herein redistributed the variance from earlier factors to later
ones to achieve sparse, simpler and more meaningful solutions.

To summarise, the methods used in our work present
significant differences with respect the applied in most studies
of literature: (i) In order to characterise the hand kinematics
without hiding the importance of the palmar arch and other
DoF with small range of motion (e.g., fingers abduction), joint
angles were rescaled to unit variance (otherwise, the first PCs
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would reflect the joint angles with the largest amplitudes).
(ii) We applied a Varimax rotation to the PCs, in order to
obtain synergies sparse in DoF, according to most recent
findings. (iii) Most studies have considered only static pos-
tures or simple movements, such as achieving a grasp, com-
pared to the complex movements (including reaching and
manipulation) considered herein.

Studying hand kinematics by the temporal evolution of
the extracted synergies provided us with a good compromise
between the simplicity of kinematic representation and accu-
racy. Some authors [31], [46], [47] have already considered the
temporal evolution of the synergies. Averta and collaborators
[47] warned that PCA cannot by applied to time series
data of movement, since these data violate the assumption
of being Independent and Identically Distributed. However,
the violation does not affect the results when the objective is
merely descriptive [48]. In this work, the PCA has been used
mainly descriptively, although the results are also proposed as
inference to the global population. This inference is possible
because each of the ADLs can be considered as an independent
observation (activities are quite different from each other),
and because the complexity of the tasks, it is reasonable to
consider more than one independent observation per ADL.
We have considered 1000 frames per ADL, but it might
have been enough a more reduced number of frames in each
activity. However, given the complexity of the tasks, choosing
the minimum number of frames to be representative was not
straightforward.

The results obtained herein for the reaching phase are
consistent with these previous studies, demonstrating syn-
ergistic variations of joint angles during pre-shaping [31].
However, temporal evolution of kinematic synergies during
reaching have been poorly studied in previous works, among
which stand a two-digit grasping study [49] that considered
a very controlled environment, only the kinematics of two
fingers (thumb and index fingers), and a limited number of
grasps (Lateral and Pad-to-pad Pinch) and subjects (10). They
found that reaching in both grasps could be explained by
one PC (that accounted 76% of variance) representing the
coordination between flexion of PIP and DIP index joints and
thumb opposition (CMC and MCP abduction). This synergy
was modulated to undertake the grasps, starting from a low
score (index extended and CMC adducted) that increased
reaching its maximum at object contact (index flexed and
CMC abducted). Our outcomes are consistent with this result,
showing similar temporal profiles for digit arch and thumb
opposition in both Lateral Pinch and Pad-to-pad Pinch grasps
during reaching (see supplementary material, S3).

Herein, the temporal evolution of RKV-PCs allowed us to
identify the kinematic patterns required to shape the hand
according to eight intended grasp types. The pad-to-pad pinch
is achieved by controlling the closeness, digit arch and thumb
opposition jointly (decreased closeness and increased digit
arch and thumb opposition) to be able to open the hand
in the pre-shaping phase. The cylindrical grasp is shaped
by controlling the digit arch and thumb opposition jointly
(both increase), and by also controlling closeness separately
(a first decrease, followed by a posterior increase until the

hand touches the object to be grasped). In this way, the hand
controls the opening, depending on the object size. Lateral
pinch, Intermediate power-precision grasp and oblique palmar
grasp are characterised by the same profiles for almost all
the RKV-PCs: they are achieved by jointly controlling the
digit arch and thumb opposition, but closeness is controlled
separately. Lateral pinch and oblique palmar grasp require
them increasing at the end of the reaching phase to close the
hand, while the intermediate power-precision grasp requires
opening the hand in this phase. The lumbrical grasp is achieved
mostly by controlling thumb opposition and thumb arch,
i.e. controlling the thumb in the pre-shaping phase. The Hook
grasp is shaped by controlling closeness and the digit arch,
i.e. controlling digit movements in the pre-shaping phase. The
non-prehensile grasp is characterised by almost no movement
of any RKV-PC. Special pinch was not identified in any case
during reaching, which is consistent with the fact that it is not
used to pick up objects at first. They are grabbed with other
grasp types like pad-to-pad pinch, and then grasp is changed
during the manipulation (e.g. in tasks like writing).

These results could be used to improve the control of current
prostheses during reaching by considering the different behav-
iours noted between the observed grasps. Table V summarises
those synergies that need to be controlled per grasp, and
shows that the most widely used synergies during reaching
are closeness, digit arch and thumb opposition with different
control patterns per grasp (Table V), while thumb arch and
palmar-thumb coordination are almost fixed and, therefore,
they do not need to be controlled, save thumb arch for the
Lumbrical grasp. Note that palmar-thumb coordination is the
same for all grasps (Table V), except for Oblique grasp, for
which slight variation is observed in the mean posture to
achieve this grasp. Although this variation could be greater
if the observed object had other sizes/shapes, it would seem
that its usefulness is better observed during manipulation.

We are not aware of any previous study on temporal
evolution of kinematic synergies during the manipulation
phase. Herein, we have addressed such study differentiating by
ADL, as hand kinematics strongly depends on specific tasks:
some tasks require more finger movements (e.g. fingers move
while turning a nut), while others need to maintain an exact
hand configuration (e.g. fingers are fixed when pouring water).
In order to provide a global insight into the kinematics of this
phase, we grouped the ADL with similar kinematic require-
ments, looking at mean postures and variability (mean and
range between the 95th and 5th percentiles) of the RKV-PCs.
The cluster analysis provided us with six groups of ADL:

Group 1 is defined by three ADL: using a screwdriver,
using knife and fork and picking up the phone. These ADLs
are characterised by using intermediate power-precision grasp
to manipulate objects with an elongated shape. The hand kine-
matics of this group is characterised mostly by a positive digit
arch and negative palmar-thumb coordination. In addition,
closeness and thumb opposition present the widest ranges of
movement. Group 2 is defined by eight ADL: using a zip,
moving an iron, opening a lock with a key, turning a door
handle, eating with spoon, writing with a pen, pouring water
from a jug and using a spray. These ADLs are characterised
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by a positive digit arch and closeness, corresponding to
Cylindrical grasp, Oblique palmar grasp, Hook and Lateral
Pinch. This group is composed of different ADL that need
grasps for which the flexion of fingers is necessary. Group 3
is defined by two ADL: moving wooden cubes and unscrewing
lids with the hand. These ADL are characterised by a negative
closeness and a positive thumb arch corresponding to Pad-
to-pad Pinch. Group 4 is defined by two ADL: writing
using a keypad and cleaning the table with a cloth. These
ADL are characterised by Non-Prehensile grasp. This group
is characterised mostly by negative digit arch, closeness and
thumb opposition with low ranges. Group 5 is defined by
three ADL: putting a coin into a change purse, pouring water
from a jug and pouring water from a glass. These ADL are
characterised by positive thumb opposition, corresponding to
Cylindrical and Lumbrical grasps. This group is characterised
mostly by positive thumb opposition and negative closeness
and thumb arch, with wide ranges for thumb arch. Finally,
Group 6 is defined by eight diverse ADL: removing a coin
from the change purse, inserting a nut inside a bolt, tying
a shoelace, passing buttons through buttonholes, putting a
bandage on an arm, folding a piece of paper and placing it
into an envelope, using a clip, and putting toothpaste on a
toothbrush. These ADL are more complex, and involve not
only one grasp type and can, thus, be performed in more
than one way. These ADL are characterised mainly by a
negative thumb arch with wide ranges of motion for digit arch,
closeness, thumb opposition and thumb arch.

The kinematic behaviour observed during manipulation
differs from that during reaching. Comparison of use of
RKV-PCs between phases was possible thanks to a PC extrac-
tion using the data of both phases altogether. Comparison of
mean values between phases reveal that negative mean values
are needed during reaching, i.e. less digit arch, closeness and
thumb opposition (Table V), while positive mean values are
required during manipulation, i.e. more digit arch, closeness,
and thumb opposition (Table VII). Palmar-thumb coordination
and thumb arch present similar mean values (about zero) in
both phases, but with a wider range of movement during
manipulation. During reaching, thumb arch and palmar-thumb
coordination remain almost unchanged, while all synergies
during manipulation need to be modulated for all tasks.

Finally, the results obtained may lead to some practical
applications. The obtained groups of ADL are quite homo-
geneous in kinematic demands, so that rehabilitation proce-
dures can benefit from them: assessing which is the affected
movement, the action needed for rehabilitation can be planned.
Furthermore, one representative ADL can be selected per
group to consider quantitative parameters to evaluate hand
kinematics, and to find different patterns that can simplify
current rehabilitation protocols. The temporal evolution of
reduced kinematic variables is provided for a wide range
of healthy subjects during reaching (Supplementary material,
S4) per intended grasp, and during manipulation per ADL
(Supplementary material, S5). These profiles may be used to
obtain the quantitative normative patterns of kinematics that
will shed light on the demand required for common tasks to
provide baselines to evaluate clinical populations.

The results described for kinematic hand synergies can
be also applied in prosthetics, and possibly in industrial
manipulation. Robotic hands that reproduce hand movements
by modulating the main postural hand synergies have been
recently presented [50], [51]. The results obtained herein
(using standardised and representative ADL, and differenti-
ating between reaching and manipulation phases) can greatly
improve the usability of these prostheses. These biomechanical
models can lead to prostheses that offer more functional
adaptability and better interaction with the environment under
real life conditions. Including reach-to-grasp and manipulation
phases in biomechanical models and to improve prostheses
make them more similar to real hands.

V. CONCLUSION

Hand kinematic analysis while performing complex and
various ADL can benefit from the PCA method as the whole
hand kinematics during such tasks was found to be actually
low dimensional. Therefore, it can be efficiently described
by only five kinematic variables: digit arch, closeness,
palmar-thumb coordination, thumb opposition, and
thumb arch.

Kinematic reduction provided a comprehensive study on
hand movement in the reaching and manipulation phases.
Reaching requires the modulation of synergies closeness, digit
arch and thumb opposition, with different control patterns per
grasp, while thumb arch and palmar-thumb coordination arch
remain almost unchanged. On the contrary, all synergies need
to be modulated during manipulation for all tasks. Kinematic
reduction allowed to group ADL according to similar kine-
matic requirements, which may benefit the selection of tasks
for both rehabilitation and hand function assessments.

The temporal evolution of the reduced kinematic variables is
provided for a wide sample of healthy subjects during reaching
per intended grasp and during manipulation per ADL. This
scenario may help to improve the control of hand prostheses
and to quantify the hand function assessment.

Finally, it is noteworthy that the used PCA method offers
two key features compared to other studies: (i) characterises
the hand kinematics without hiding the importance of the
palmar arch and other DoF with small range of motion
(e.g., fingers abduction), and (ii) obtains more sparse synergies
by applying Varimax method, according to the most recent
findings [23].
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