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a b s t r a c t 

A new procedure for classifying brain structures described by SPHARM is presented. We combine a dimension 

reduction technique (functional principal component analysis or functional independent component analysis) 

with stepwise variable selection for linear discriminant classification. This procedure is compared with many 

well-known methods in a novel classification problem in neuroeducation, where the reversal error (a common 

error in mathematical problem solving) is analyzed by using the left and right putamens of 33 participants. The 

comparison shows that our proposal not only provides outstanding performance in terms of predictive power, 

but it is also valuable in terms of interpretation, since it yields a linear discriminant function for 3D structures. 
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. Introduction 

Nowadays three-dimensional (3D) magnetic resonance imaging

MRI) with high spatial resolution enables the visualization of different

rain structures. After their segmentation, anatomical structures of in-

erest, or a region of interest (ROI), are analyzed, since structural abnor-

ality might explain and help to detect certain conditions ( Chung et al.,

010 ). Volumetry is a common marker in many studies, such as those

nvolved in the diagnosis of Alzheimer’s disease ( Gerardin et al., 2009 ).

owever, analysis of a structure’s shape can report richer information

han volumetry, because ROI-based volumetric measurements do not

ake explicit if the volume difference occurs over the whole ROI or it is

ocalized within specific zones of the ROI. Gaining insight into morpho-

ogical changes can provide researchers with a better understanding of

he condition ( Epifanio and Ventura-Campos, 2014 ). This is the reason

hy shape analysis plays an important role in neuroimaging nowadays

 Styner et al., 2003 ). This is also the case in neuroeducation. For ex-

mple, Sandman et al. (2014) showed that shape analysis may be more

ensitive than volumetric analysis when we want to associate brain dif-

erences with performance, and they found that deformity of the basal

anglia may be a neurophenotype associated with risk of developmental

mpairment. 

.1. Motivation 

Neuroeducation is another active field of research. There has been

rowing interest in the support that neuroscience can provide to ed-
☆ The data (putamen surfaces) and code in MATLAB and free software R are availab
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cation. In the specific case of problem solving, some examples are

anakawa et al. (2003) and Anderson et al. (2012) , who observed acti-

ation of different areas of the brain while the participants were doing

 problem-solving task. 

Let us focus on mathematical modeling and the difficulties of

ranslating a practical situation into mathematical notation. Behav-

oral studies such as Clement (1982) , Clement et al. (1981) and

lement et al. (1980) found that most students made mistakes when

ranslating sentences from natural language into algebraic language.

hen students know the information from the statement, but they are

ot able to build a correct equation, this is known as reversal error (RE).

lement (1982) showed that the structure of sentences where RE was

resent was as follows: “Write an equation using the variables S and P

o represent the following statement: There are six times as many stu-

ents as professors at this university. Use S for the number of students

nd P for the number of professors ” ( Clement, 1982 , p. 17). Most of the

rong answers were 𝑃 = 6 ⋅ 𝑆, while the correct answer is 𝑆 = 6 ⋅ 𝑃 .
umerous behavioral studies have analyzed this error ( Cooper, 1986;

onzález-Calero et al., 2015; Wollman, 1983 ), but they did not take

nto account the importance of people’s brain development by using

RI. 

Ferrando (2019) studied the differences in gray matter (GM) vol-

me that may exist between subjects that make REs versus those who

o not. An increase in the volume of the bilateral putamen was found

n the group with RE. This follows along similar lines as the study by

in et al. (2004) . Therefore, in this work we will analyze the shape of

he left and right putamen in a classification problem. In other words,
le at http://www3.uji.es/~epifanio/RESEARCH/pufda.zip . 
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e will analyze the morphological changes in the left and right putamen

etween RE and non-RE groups. 

.2. Shape modeling 

In neuroimaging studies, shapes have been modeled using different

pproaches. Some of them are non-parametric, such as medial represen-

ation, where the structure is represented by a skeleton ( Styner et al.,

003 ); the distance map approach ( Golland et al., 2001 ); deformation

elds ( Joshi et al., 1997 ) and the landmark approach ( Park et al., 2008;

hen et al., 2012 ). However, we opt for a parametric approach: the use

f spherical harmonic representation (SPHARM), which has been suc-

essfully applied to model several subcortical structures ( Chung et al.,

007, 2010; Gerardin et al., 2009; Gerig et al., 2001; Gu et al., 2004;

hen et al., 2004, 2009 ). Furthermore, previous studies ( Styner et al.,

004 ) have found good concordance of results based on SPHARM and

-rep shape analysis. In SPHARM, we consider the basis functions of

pherical harmonics or its weighted version (the weighted spherical

armonic representation), then a set of coefficients weighting the ba-

is functions parametrizes each surface. As a consequence, SPHARM is

 way of smoothing functional data. 

Functional data analysis (FDA) is the statistical branch that stud-

es functional observations, i.e. when a whole function is a datum.

lthough typical functional data comprises uni-dimensional functions

ith only one argument, usually time, in our case we work with trivari-

te functions with two arguments (angles), which represent spatial lo-

ations. Functional data are recorded discretely, but a continuous func-

ion lies behind these data. The discrete observations are converted into

 true functional form by approximating (smoothing) each function by

 weighted sum (a linear combination) of known basis functions. In our

ase, each surface is initially described by a set of points belonging to the

urface, and then it is converted into a functional datum by smoothing

t using spherical harmonics. 

FDA shares the same objectives as any other branch of statistics.

n excellent overview can be found in Ramsay and Silverman (2005) ,

hile a non-parametric point of view of FDA is given in Ferraty and

ieu (2006) . A recent review of FDA methods can be found in

ang et al. (2016) , although it is centered on univariate functional data.

s regards applications, Ullah and Finch (2013) review different appli-

ations in different fields, and Sørensen et al. (2013) review FDA with

edical applications. To the best of our knowledge, in brain imaging

tudies, FDA has been applied to the analysis of neuroimaging signal,

ime courses ( Lazar, 2008; Tian, 2010; Viviani et al., 2005 ), but not

o the analysis of brain structures, with some exceptions ( Epifanio and

entura-Campos, 2014; Lila et al., 2016 ). Note that although SPHARM

as been used extensively in neuroscience literature, the majority of

hese works have not been used in the context of FDA and, therefore,

unctional data techniques have not been exploited in this field. 

.3. Our contributions 

We proposed to use FDA for analyzing the shape of 3D brain struc-

ures for the first time in Epifanio and Ventura-Campos (2014) . In

pifanio and Ventura-Campos (2014) the hippocampus surfaces, for the

tudy of Alzheimer’s disease, were described by multivariate (three)

unctions with two arguments. We extended principal component anal-

sis (PCA) to deal with trivariate functional data with two arguments.

unctional independent component analysis (FICA) was also discussed

n Epifanio and Ventura-Campos (2014) . 

Here, as in Epifanio and Ventura-Campos (2014) , we deal with a clas-

ification problem. The novelty of our contribution is twofold. On the

ne hand, in this work our proposal will improve on the method pre-

ented in Epifanio and Ventura-Campos (2014) . In fact, it will improve

n the results of other well-known methodologies, both from the numer-

cal performance point of view and from the interpretative and visual

oint of view. On the other hand, the new methodology will be applied
o the study of RE using the putamen, which is a novel classification

roblem in neuroeducation. 

High dimensionality is one of the greatest difficulties in this kind of

lassification problems. Unless we consider simple features such as vol-

metry, the number of variables used to describe the anatomical shape

f brain structures is always much larger than the number of subjects

observations). This is the case when using SPHARM coefficients as fea-

ures in the classification problem. To overcome this problem, we can

onsider two approaches. In the first approach, one can either select or

xtract a small subset of relevant features, as in Gerardin et al. (2009) ,

here the most discriminative features are selected using a bagging

trategy for subsequent classification with a support vector machine

SVM) classifier, or as in Clemmensen et al. (2011) , where sparse dis-

riminant analysis is proposed by extending linear discriminant analysis

LDA) to the high-dimensional setting. Instead of selecting features, in

he second approach, one can reduce the dimension, i.e. one can use all

he features to construct new components which summarize the orig-

nal variables. This is the case of Boulesteix (2004) or Epifanio and

entura-Campos (2014) . The method in Boulesteix (2004) consists of

artial Least Squares (PLS) dimension reduction and linear discriminant

nalysis applied to the PLS components. Although it was originally de-

eloped in the context of classification with high-dimensional microar-

ay data, it can be used for classification of any high-dimensional data.

n Epifanio and Ventura-Campos (2014) , linear discriminant analysis is

pplied to the new components obtained by dimension reduction tech-

iques for functional data. 

Our proposal consists of combining both approaches. The idea is

imple, but effective. First we reduce the dimension by using trivariate

unctional principal component analysis (FPCA) with two arguments or

ther techniques, such as FICA, as described in Epifanio and Ventura-

ampos (2014) , but we improve on this and go one step further. We

hen select the most discriminative components (principal components,

Cs or independent components depending on whether we use FPCA

r FICA) by stepwise variable selection (SVS) ( Weihs et al., 2005 ) for

DA classification. Note that although the dimension has been reduced

n the first step, the number of predictor variables may continue to be

igh, because the number of subjects is usually small in this kind the

lassification problems. Note that in the classical multivariate case we

an use LDA after PCA, assuming the covariance matrix is the same for

ll groups ( Jolliffe, 2002 ). Nevertheless, the separation between groups

oes not necessarily have to occur in the PCs with highest variance,

ut can occur in the last PCs, those with low variance ( Epifanio and

entura-Campos, 2011 ). 

On the other hand, besides the method’s predictive accuracy, human

nterpretability is one of the most valuable characteristics in a classifier.

o the point is to propose methods that are interpretable, rather than try-

ng to explain black box machine learning models ( Rudin, 2019 ). Our

roposal is based on the application of LDA in the final step. Despite the

implicity of LDA, its performance is typically almost as good as that of

ore complicated methods ( Hand, 2006; Pierola et al., 2016 ). Further-

ore, LDA provides low-dimensional projections of the data onto the

ost discriminative directions. We have taken advantage of this and we

ave defined a discriminative function for 3D shapes. From the inter-

retation point of view, this is very useful because it reveals the exact

ocations and directions of the main differences between the groups. In

ther words, we can visualize how the brain structure changes between

he groups. Note that our proposed visual representations are not sig-

ificance maps, which are common visualization tools in neuroscience.

n summary, we propose a local shape methodology that can spatially

ocalize shape changes. 

The outline of the paper is as follows. Section 2 describes our data

nd the proposed methodology. Section 3 includes the numeric results

btained by applying this methodology to our database, together with a

omparison with other well-known methods. This section also includes

he visualization and graphical interpretation of the results using our

rocedure. In Section 4 conclusions are given. 
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Fig. 1. Neuroimaging results of the two-sample t -test per- 

formed between groups. It represents the contrast: RE group 

vs. non-RE group of our study ( p < 0.05 FWE cluster-corrected 

using a threshold of p < 0.005 at the uncorrected voxel level 

and a cluster size higher or equal to 813 voxels). The MNI 

coordinates of the left putamen were x = -23, y = -12, z = 0 with 

Z -value = 3.96 ( k = 938), and the MNI coordinates of the right 

putamen were x = 26, y = -8, z = 3 with Z -value = 3.41 ( k = 813). 
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. Materials and methods 

The data (putamen surfaces) ( Ferrando et al., 2020 ) and code in

ATLAB and free software R ( R Core Team, 2020 ) are available at

ttp://www3.uji.es/~epifanio/RESEARCH/pufda.zip for reproducibil-

ty purposes. 

.1. Processing of structural magnetic resonance imaging (smri) brain scans

Thirty-three participants (20 females) with ages ranging between 18

nd 26 years (mean age: 22.03, SD: 2.36) were analyzed. All partic-

pants were students of Universitat Jaume I. Before participating, they

igned a written consent form. All experimental procedures followed the

uidelines of the research ethics committee at Universitat Jaume I. The

xclusion criteria were trauma with loss of consciousness for more than

ne hour, typical contraindications to MRI, such as metal implants, and

he presence of medical or neurological illness. 

Apart from having an MRI scan, the participants carried out a behav-

oral task. The subjects answered 16 questions, where a mathematical

quation had to be built for each of the statements presented. We used

n application similar to González-Calero et al. (2015) . See details in

errando (2019) . We established two groups, those who committed REs

s. non-RE, according to the number of errors they made. One group

omprised those who failed more than 40% of the equations (RE group:

5 subjects, 4 males, mean age: 21.466, SD: 2.1), and the second group

as formed by those who answered 100% of the questions correctly

non-RE group: 18 subjects, 9 male, mean age: 22.5; SD: 2.53). 

The sMRI scans were acquired using two scanners. A 3 Tesla Philips

canner and 1.5 Tesla Siemens Symphony scanner (Erlangen, Germany).

igh-resolution T1-weighted, TR = 8.4 ms, TE = 3.8 ms, matrix size

 320 × 320 × 250 and voxel size = 0 . 75 × 0 . 5 × 0 . 8 mm was used with the

hilips scanner. However, high-resolution T1-weighted, TR = 2200 ms,

E = 3 ms, flip angle = 90 ∘, matrix size = 256 × 256 × 160 and voxel size

 1 × 1 × 1 mm was used with the Siemens Symphony scanner. The scan-

er acquisitions covered the entire brain and were performed in parallel

o the anterior commissure-posterior commissure plane (AC-PC). 

The Voxel Based Morphometry (VBM) analysis was conducted with

PM12 (SPM12 (v7219), Wellcome Trust Centre for Neuroimaging, Lon-

on, UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm12 ). We per-

ormed the preprocessing steps using the CAT12 toolbox with the default

etting (CAT12.5, http://dbm.neuro.uni-jena.de/cat/ ). We used the GM

mages to identify the differences in volume between the groups. Hav-

ng segmented, modulated, and normalized these images, they were

moothed using 8-mm full-width-half-maximum Gaussian smoothing

nd then fed into a two-sample t -test analysis in SPM12. The VBM re-

ults showed a greater bilateral posterior putamen volume in the group

ith RE in comparison to the non-RE group (see Fig. 1 ). Following these
esults, we consider the left and right putamen as the Region of Interests

ROIs) to our classification study, since they were the most significant

tructures. So, the next step was to extract the left and right putamen

or each participant. To obtain these ROIs, we segmented each putamen

y using the imcalc toolbox of SPM12 and performing an intersection

etween the GM image of each participant and the ROI of the putamen

f the AAL atlas. Finally, the slices of each putamen were put together

sing the isosurface function in MATLAB, which returns the faces and

ertices of the triangle mesh. 

.2. Surface parametrization 

We need three functions with two angular parameters to repre-

ent the putamen surfaces: x ( 𝜃, 𝜙), y ( 𝜃, 𝜙), z ( 𝜃, 𝜙) (more details in

hen et al. (2009) ). In fact, the surface of these closed 3D objects is

apped onto a unit sphere under a one-to-one. There are several well-

nown surface flattening techniques that provide this bijective mapping:

rea preserving mapping ( Brechbühler et al., 1995; Shen et al., 2004 ),

onformal mapping ( Gu et al., 2004 ), the deformable surface algo-

ithm ( Macdonald et al., 2000 ) or semi-isometric mapping ( Timsari and

eahy, 2000 ), for instance. Nevertheless, the implementation of these

attening methods is not trivial and, especially, their computational in-

ensity leads us to use the method proposed by Chung et al. (2010) as

 better alternative for objects that are almost convex or star-shaped.

his method considers the equilibrium state of heat diffusion by trac-

ng the geodesic path of heat equilibrium state from a heat source (the

utamen) to a heat sink (the unit sphere). This flattening technique is

umerically simpler than the previous methods, since the solution of an

sotropic heat equation in a 3D image is computationally trivial and it

oes not require either to optimize a target function (for more details

ee Chung et al. (2010) ). In any case, any flattening method could be

sed without altering the subsequent analysis. 

Once the surface is projected into the sphere, the angles will act as

oordinates for the surfaces of the putamen. Fig. 2 shows an illustration

f the surface flattening process for a left putamen with this procedure

nd the surface parametrization using the angles ( 𝜃, 𝜑 ). The north pole

f a unitary sphere coincides with the point 𝜃 = 0. 

.3. Representing putamens using SPHARM 

Although each putamen could be described by a set of points or dis-

rete observations of its surface, each putamen is truly a smooth surface,

 function whose two arguments are angles. Smoothing allows us to con-

ert the discrete data to functions and to perform FDA. This smoothing

s carried out using a basis system, SPHARM, and considering the co-

fficients of each putamen in this basis function expansion. As said be-

ore, we have chosen SPHARM because it has previously been applied

http://www3.uji.es/~epifanio/RESEARCH/pufda.zip
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://dbm.neuro.uni-jena.de/cat/
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Fig. 2. A left putamen example: (A): The sur- 

face flattening process from the original puta- 

men (top left) to the sphere (bottom right). The 

same level sets as in ( Chung et al., 2010 ) are 

used (1.0, 0.6, 0.2, -0.2, -0.6, -1.0). (B): The 

spherical angles are projected on the putamen 

surface and the unitary sphere, for 𝜃 (first row) 

and 𝜑 (second row). (C): The putamen repre- 

sentation using a different number of spheri- 

cal harmonics: L = 1, 2, 5, 11, 30 (from left to 

right). This will be explained below. The head 

of the putamen is on the left, while the tail is 

on the right. This orientation is considered the 

reference throughout the paper. 
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uccessfully to model several subcortical structures. Furthermore, its or-

hogonality will simplify calculations. Nevertheless, other less common

ases, such as spherical splines ( Alfeld et al., 1996; He et al., 2005 ), the

eighted Fourier series ( Chung et al., 2007 ) or spherical wavelets ( Nain

t al., 2007; Yu et al., 2007 ), could also be used. 

We have used the real spherical harmonics as in Chung et al. (2007,

010) , although we could have used spherical harmonics of complex

alue as in Gerig et al. (2001) or Shen et al. (2004) . We prefer to set up a

eal-valued model because we only need real-valued spherical functions

n our application, as in most applications. 

A real basis of spherical harmonics, where l is the degree and m is

he order, is given by: 

 𝑙𝑚 ( 𝜃, 𝜑 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

√
2 𝑁 ( 𝑙,𝑚 ) cos ( 𝑚𝜑 ) 𝑃 𝑚 

𝑙 
( 𝑐𝑜𝑠𝜃) if 𝑚 > 0 

𝑁 ( 𝑙, 0) 𝑃 
0 
𝑙 
( 𝑐𝑜𝑠𝜃) if 𝑚 = 0 √

2 𝑁 ( 𝑙, |𝑚 |) sin ( |𝑚 |𝜑 ) 𝑃 |𝑚 |
𝑙 

( 𝑐𝑜𝑠𝜃) if 𝑚 < 0 

(1)

here 𝑃 𝑚 
𝑙 

is the associated Legendre polynomial of order m defined over

he range [−1 , 1] : 

 

𝑚 
𝑙 
( 𝑥 ) = 

(−1) 𝑚 

2 𝑙 𝑙! 
(1 − 𝑥 2 ) 𝑚 ∕2 𝑑 

𝑙+ 𝑚 

𝑑𝑥 𝑙+ 𝑚 
( 𝑥 2 − 1) 𝑙 

nd N ( l,m ) = 

√ 

2 𝑙+1 
4 𝜋

( 𝑙− 𝑚 )! 
( 𝑙+ 𝑚 )! . 

Let S 2 be the unit sphere in ℝ 

3 , and f and g ∈ L 2 ( S 2 ). The inner

roduct is given by: 

 𝑓, 𝑔 > = ∫
𝜋

𝜃=0 ∫
2 𝜋

𝜑 =0 
𝑓 ( 𝜃, 𝜑 ) 𝑔 ( 𝜃, 𝜑 ) 𝑑Ω = ∫𝑆 2 𝑓 ( 𝜃, 𝜑 ) 𝑔 ( 𝜃, 𝜑 ) 𝑑Ω = ∫𝑆 2 𝑓𝑔𝑑Ω

(2)

here d Ω = sin ( 𝜃) d 𝜑 d 𝜃. The spherical harmonics satisfy the orthonor-

al condition with respect to the inner product: 

𝑆 2 
𝑌 𝑙𝑚 𝑌 𝑙 ′𝑚 ′𝑑Ω = 𝛿𝑙 𝑙 ′𝛿𝑚𝑚 ′

here 𝛿ij is the Kronecker delta. 

Three functions represent each putamen in terms of the spherical

armonics, where L determines the smoothing degree: 

• 𝑥 ( 𝜃, 𝜑 ) = 

∑𝐿 

𝑙=0 
∑𝑙 

𝑚 =− 𝑙 𝑐 
𝑥 
𝑙𝑚 
𝑌 𝑙𝑚 ( 𝜃, 𝜑 ) 

• y ( 𝜃, 𝜑 ) = 

∑𝐿 

𝑙=0 
∑𝑙 

𝑚 =− 𝑙 𝑐 
𝑦 

𝑙𝑚 
𝑌 𝑙𝑚 ( 𝜃, 𝜑 ) 

•
∑𝐿 ∑𝑙 𝑧 
z ( 𝜃, 𝜑 ) = 

𝑙=0 𝑚 =− 𝑙 𝑐 𝑙𝑚 𝑌 𝑙𝑚 ( 𝜃, 𝜑 ) 
This can be expressed as a vector-valued function: 

 ( 𝜃, 𝜑 ) = ( 𝑥 ( 𝜃, 𝜑 ) , 𝑦 ( 𝜃, 𝜑 ) , 𝑧 ( 𝜃, 𝜑 )) ′ = 

𝐿 ∑
𝑙=0 

𝑙 ∑
𝑚 =− 𝑙 

𝐜 𝑙𝑚 𝑌 𝑙𝑚 ( 𝜃, 𝜑 ) (3)

here 𝐜 𝑙𝑚 = ( 𝑐 𝑥 
𝑙𝑚 
, 𝑐 

𝑦 

𝑙𝑚 
, 𝑐 𝑧 

𝑙𝑚 
) ′. The coefficients can be estimated by least

quares, since we know the values of each function in a sample of points,

( 𝜃𝑖 , 𝜑 𝑖 )} 𝑛 𝑖 =1 . For x ( 𝜃, 𝜑 ) (and similarly for y ( 𝜃, 𝜑 ) and z ( 𝜃, 𝜑 )), x =
 𝑥 ( 𝜃𝑖 , 𝜑 𝑖 )} 𝑛 𝑖 =1 is the vector of observations, Y = { 𝑌 𝑙𝑚 ( 𝜃𝑖 , 𝜑 𝑖 )} 𝑛 𝑖 =1 is the ma-

rix of basis function values at the observation points and c x is the vector

ith the coefficients 𝑐 𝑥 
𝑙𝑚 
, which can be least square estimated by c x =

 𝐘 

′𝐘 ) − 𝟏 𝐘 

′𝐱 or by the iterative residual fitting algorithm ( Chung et al.,

007 ). 

Fig. 2 (C) shows a putamen example represented by SPHARM using

ifferent L values. For small L values, the surface is highly smoothed

nd many details are missing, but for high L values, such as L = 30, the

urface is quite noisy, since noise is also fitted. The value L = 11 repre-

ents a trade-off between both positions, and it has been chosen for left

utamens following the strategy suggested by Ramsay and Silverman

2005 , Section 4.6.2) to determine the number of basis. This strategy

onsists of computing the unbiased estimate of the residual variance and

electing the number of basis that makes this variance decrease substan-

ially ( Millán-Roures et al., 2018 ). Specifically, we compute the residu-

ls as the square Euclidean norm of the difference between the points

n smoothed surfaces and the original surface for every spherical mesh

ertex. These values are added for all the vertices and divided by the

umber of vertices minus the number of basis, which is ( 𝐿 + 1) 2 for the

egree value L ). Then, we compute the pooled variance for all the indi-

iduals for L values from 2 to 23 and the minimum variance estimate

as attained at L = 11 for left putamens and L = 12 for right putamens.

No alignment is necessary, since each putamen was translated to the

ame point in such a way that its centroid coincided with that point, i.e.

ocation was removed previously. No rotation is needed, since all the

utamens had the same orientation. Scaling is not needed either, i.e. we

ant to keep size since the volume is used as discriminant feature in

any classification problems. If size had to be removed, then we could

ivide each putamen by the size of the centroid at the beginning, as in

pifanio and Ventura-Campos (2011) . Note that no registration is nec-

ssary, as happened in Chung et al. (2010) , because the coordinates (( 𝜃,

 )) on the surfaces are corresponding pairs, therefore the coefficients

atch each other. 
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For this and the previous Section 2.2 , the follow-

ng packages are very helpful: the SurfStat package

 http://www.math.mcgill.ca/keith/surfstat ) and its exten-

ion ( http://www.stat.wisc.edu/~mchung/research/amygdala/ )

 Chung et al., 2010 ). 

.4. Functional principal component analysis 

Before introducing FPCA, let us remember how PCA works in the

tandard multivariate case. Let X be the centered data (the mean has

een subtracted) matrix with N rows. N indicates the number of individ-

als. Let V be the sample variance-covariance matrix, V = ( 𝑁 − 1) −1 𝐗 

′𝐗 ,

here X ′ indicates the transposition of X . The solution of the following

igenequation, where 𝜌 is an eigenvalue and 𝜉 is an eigenvector of V ,

rovides the PCA solution: 

𝛏 = 𝜌𝛏, (4)

The PC scores for the k -th PC are computed by 𝑠 𝑘 
𝑖 
= 

∑
𝑗 𝑥 𝑖𝑗 𝜉

𝑘 
𝑗 
. 

In FPCA, PCs are not vectors, but functions, and summations change

nto integrations. Let us begin by recalling FPCA for the functional

nivariate case with one scalar argument t . Let { x 1 ( t ), … , x N ( t )} be

he set of observed functions. The mean function is defined by �̄� ( 𝑡 ) =
 

−1 ∑𝑁 

𝑖 =1 𝑥 𝑖 ( 𝑡 ) , while the variance-covariance function v(s,t) is defined

y 𝑣 ( 𝑠, 𝑡 ) = ( 𝑁 − 1) −1 
∑𝑁 

𝑖 =1 𝑥 𝑖 ( 𝑠 ) 𝑥 𝑖 ( 𝑡 ) , once the data have been centered.

he functional counterpart of Eq. 4 (see details in Ramsay and Silverman

2005 , Chapter 8)) is: 

𝑣 ( 𝑠, 𝑡 ) 𝜉( 𝑡 ) 𝑑𝑡 = 𝜌𝜉( 𝑠 ) , (5)

here 𝜌 is still an eigenvalue and 𝜉(s) is not an eigenvector, but an eigen-

unction. The score for the k th PC for the i th subject is now calculated

y using the inner product for functions: 𝑠 𝑖𝑘 = ∫ 𝑥 𝑖 ( 𝑠 ) 𝜉𝑘 ( 𝑠 ) 𝑑𝑠 . 
To solve 5 there are different alternatives (see Ramsay and Silverman

2005 , Sec. 8.4.2) for a review). One of them consists of considering

he coefficients in a basis functions. In fact, if the basis is orthonormal,

PCA reduces to the classical multivariate PCA of the coefficient matrix,

hich reduces the computational cost. The functions 𝜉k ( t ) satisfy the

rthonormality constraint, as in the multivariate case. 

The maximum number of possible functional PCs is limited by 𝑁 − 1 ,
lthough if the number of basis functions M is less than N , then the max-

mum would be M . Let K be the number of functional PCs considered,

hen x i ( t ) is described by 
∑𝐾 

𝑘 =1 𝑠 𝑖𝑘 𝜉𝑘 ( 𝑡 ) . 

.4.1. FPCA With multiple functions and multiple arguments 

Let { 𝐹 𝑖 ( 𝜃, 𝜑 )} 𝑁 

𝑖 =1 = (( x i ( 𝜃, 𝜑 ), y i ( 𝜃, 𝜑 ), z i ( 𝜃, 𝜑 )) be the set of vector-

alued functions with two arguments. Each of them represents the puta-

en of a subject. As previously, we can calculate pointwisely three

ean functions, �̄� ( 𝜃, 𝜑 ) , �̄� ( 𝜃, 𝜑 ) and �̄� ( 𝜃, 𝜑 ) , three covariance functions

 XX (( 𝜃, 𝜑 ), ( ϑ, 𝜙)), v YY (( 𝜃, 𝜑 ), ( ϑ, 𝜙)), v ZZ (( 𝜃, 𝜑 ), ( ϑ, 𝜙)), and cross-

ovariance functions. For example, the cross-covariance function of

he centered data for the combination XY is 𝑣 𝑋𝑌 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) = ( 𝑁 −
) −1 

∑𝑁 

𝑖 =1 𝑥 𝑖 ( 𝜗, 𝜙) 𝑦 𝑖 ( 𝜃, 𝜑 ) , it can be computed analogously for the combi-

ation XZ and YZ . 

The addition of the inner products of the three components (as de-

ned in 2 ) yields an inner product on the space of vector-valued func-

ions: 

 𝐹 1 , 𝐹 2 > = < 𝑥 1 , 𝑥 2 > + < 𝑦 1 , 𝑦 2 > + < 𝑧 1 , 𝑧 2 > . (6)

The PC score for the k -th PC is calculated by 𝑠 𝑘 
𝑖 
= < 𝐹 𝑖 , 𝜉

𝑘 > =
𝑆 2 𝑥 𝑖 𝜉

𝑘 
𝑋 
𝑑Ω + ∫

𝑆 2 𝑦 𝑖 𝜉
𝑘 
𝑌 
𝑑Ω + ∫

𝑆 2 𝑧 𝑖 𝜉
𝑘 
𝑍 
𝑑Ω, where PCs are now a three-

ector 𝜉= ( 𝜉 , 𝜉 , 𝜉 ) of functions, which are solutions of the following
X Y Z 
igenequation system 𝑉 𝜉 = 𝜌𝜉, which is expressed as 

𝑆 2 
𝑣 𝑋𝑋 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑋 ( 𝜃, 𝜑 ) 𝑑Ω + ∫𝑆 2 𝑣 𝑋𝑌 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑌 ( 𝜃, 𝜑 ) 𝑑Ω

+ ∫𝑆 2 𝑣 𝑋𝑍 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑍 ( 𝜃, 𝜑 ) 𝑑Ω = 𝜌𝜉𝑋 ( 𝜗, 𝜙) 

𝑆 2 
𝑣 𝑌 𝑋 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑋 ( 𝜃, 𝜑 ) 𝑑Ω + ∫𝑆 2 𝑣 𝑌 𝑌 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑌 ( 𝜃, 𝜑 ) 𝑑Ω

+ ∫𝑆 2 𝑣 𝑌 𝑍 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑍 ( 𝜃, 𝜑 ) 𝑑Ω = 𝜌𝜉𝑌 ( 𝜗, 𝜙) 

𝑆 2 
𝑣 𝑍𝑋 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑋 ( 𝜃, 𝜑 ) 𝑑Ω + ∫𝑆 2 𝑣 𝑍𝑌 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑌 ( 𝜃, 𝜑 ) 𝑑Ω

+ ∫𝑆 2 𝑣 𝑍𝑍 (( 𝜗, 𝜙) , ( 𝜃, 𝜑 )) 𝜉𝑍 ( 𝜃, 𝜑 ) 𝑑Ω = 𝜌𝜉𝑍 ( 𝜗, 𝜙) . 

(7) 

As mentioned before, we consider the basis function expansion of

he vector-valued functions to solve the eigenequation system. Each F i 
s described by the following vector of basis coefficients c i = ( { 𝑐 𝑥 

𝑖𝑙𝑚 
} ,

 𝑐 
𝑦 

𝑖𝑙𝑚 
} , { 𝑐 𝑧 

𝑖𝑙𝑚 
} ), with l = 0, ..., L and m = − 𝑙 to l , and a matrix C with N

ows (one per subject) is built by stacking those vectors. We only need

o compute the PCA of the N × 3 M matrix C since spherical harmonics

re orthonormal ( M is 144 for L = 11, whereas M is 169 for L = 12).

nce PCs are calculated, the parts corresponding to each coordinate are

eparated (see Ramsay and Silverman (2005 , Sec. 8.5.1) for details in

he case of bivariate FPCA with one argument). 

As in the multivariate case, the proportion of variance explained by

ach eigenfunction was given by each eigenvalue 𝜌 divided by the sum

f all eigenvalues. In addition, for the j -th principal component 𝜉j = ( 𝜉
𝑗 

𝑋 
,

𝑗 

𝑌 
, 𝜉

𝑗 

𝑍 
), we can compute the variation accounted for each coordinate

y < 𝜉
𝑗 

𝑋 
, 𝜉

𝑗 

𝑋 
>, < 𝜉

𝑗 

𝑌 
, 𝜉

𝑗 

𝑌 
> and < 𝜉

𝑗 

𝑍 
, 𝜉

𝑗 

𝑍 
> respectively, since their sum is

ne by definition. 

.5. Functional linear discriminant analysis (FLDA) 

In order to obtain meaningful results of LDA with functions, some

ind of regularization or filtering is necessary (naively, we could ap-

ly the linear discriminant method to the high-dimensional vectors,

ut this approach does not give meaningful results, see ( Ramsay and

ilverman, 2002 , ch.8) for details about the explanation for this). A

ommon regularization approach consists of carrying out LDA on the

rst PCs (or other types of dimension reduction techniques), i.e. all the

Cs up to a certain number are considered in LDA. This idea has been

sed in the functional univariate case with one argument ( Epifanio,

008; Hall et al., 2001 ), with multivariate functions with one argu-

ent ( Ramsay and Silverman, 2002 , ch.8), and with two arguments

 Epifanio and Ventura-Campos, 2014 ). 

However, as explained in Section 1.3 , this dimension reduction may

ot be enough, since we are dealing with small sizes. Furthermore, PCA

s an unsupervised statistical learning technique, and its application does

ot ensure that the separation between classes occurs in the first few

omponents, but it can occur in the last PCs ( Jolliffe, 2002 ). On the one

and, if these last PCs were not considered, the accuracy of classifica-

ion would be affected. On the other hand, if we consider a very high

umber of components, i.e. a very high number of predictors with few

bservations, we return to a high-dimensionality problem again. This is

he reason why we propose to consider only the most discriminative PCs

y SVS for LDA classification. 

.6. Stepwise variable selection for classification 

There are many methods for variable section for classification. We

onsider a stepwise forward variable selection based on Wilks’ lambda

riterion. The method is implemented in the greedy.wilks function of

he R package klaR ( Weihs et al., 2005 ). The variable which separates

he groups most constitutes the initial model. Then, more variables are

dded to the model depending on Wilks’ lambda criterion: we add the

ariable that minimizes Wilks’ lambda of the model, including the vari-

ble if its p-value still shows statistical significance. 

http://www.math.mcgill.ca/keith/surfstat
http://www.stat.wisc.edu/~mchung/research/amygdala/
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Another variable selection method could also be considered, such

s the method implemented in the stepclass function of the R package

laR ( Weihs et al., 2005 ). However, the selection of variables in this

ind of method is based on optimizing a performance measure, such as

ccuracy, which is estimated by cross-validation (CV). As the sample size

s very small in our application, the results of this kind of method are

nstable due to the cross-validation step. In other words, the variables

elected can change a lot depending on how the data are split. This is

hy we opt for a deterministic method like greedy.wilks . 

In summary, our proposal, which is referred to as FPCA-SVS-LDA,

onsists of SPHARM representing putamen, applying FPCA, selecting

he scores of the PCs by SVS using the greedy.wilks method and carrying

ut LDA on this selection. 

.6.1. Linear discriminant function 

As in the multivariate case ( Mardia et al., 1979 , Sect. 11.5), we can

efine the linear discriminant function in the functional case. The lin-

ar discriminant vector function 𝜆j ( 𝜃, 𝜑 ) = ( 𝜆𝑗 
𝑋 
( 𝜃, 𝜑 ) , 𝜆𝑗 

𝑌 
( 𝜃, 𝜑 ) , 𝜆𝑗 

𝑍 
( 𝜃, 𝜑 ))

s the functional counterpart of the linear discriminant vector or canon-

cal variate in the multivariate case. Therefore, the score or discrim-

nant value of F i can be obtained by 𝑑 
𝑗 

𝑖 
= < 𝐹 𝑖 , 𝜆

𝑗 > = ∫
𝑆 2 𝑥 𝑖 𝜆

𝑗 

𝑋 
𝑑Ω +

𝑆 2 𝑦 𝑖 𝜆
𝑗 

𝑌 
𝑑Ω + ∫

𝑆 2 𝑧 𝑖 𝜆
𝑗 

𝑍 
𝑑Ω. 

Let us express both functions in the orthonormal base defined by

he PCs, then 𝑑 
𝑗 

𝑖 
= < F i , 𝜆

j > = < 

∑𝐾 

𝑘 =1 𝑠 
𝑘 
𝑖 
𝜉𝑘 , 

∑𝐾 

𝑘 =1 𝑙 
𝑗 

𝑘 
𝜉𝑘 > . Due to the

rthonormality, 𝑑 
𝑗 

𝑖 
= < s i , l 

j > , i.e. the vector l j is the j -th canonical

ariate for the N × K matrix S with the scores for the N individuals,

here each row in S is formed by s i , which has the K scores for the

ndividual i . 

In summary, if there are Q groups, each of them with size N i 

 

∑𝑄 

𝑖 =1 𝑁 𝑖 = 𝑁), LDA is applied to N × K matrix S of PC scores. The K × r

atrix L , where r = min { 𝐾, 𝑄 − 1} is the number of discriminant func-

ions, contains the linear discriminant vectors l j , while the N × r matrix

 = SL contains the discriminant values, and the linear discriminant

unction 𝜆j ( 𝜃, 𝜑 ) ( j = 1, ..., r ) is 
∑𝐾 

𝑘 =1 𝑙 
𝑗 

𝑘 
𝜉𝑘 , where 𝑙 

𝑗 

𝑘 
is the element ( k, j )

f the matrix L . 

.7. Visualization of the results 

The effect of each functional PC (FPC) or linear discriminant function

an be displayed by adding a suitable multiple, which can be positive or

egative, of that function to the mean function (mean putamen). This

pproach is common in the literature on shape analysis ( Dryden and

ardia, 1998 ) and FDA ( Ramsay and Silverman, 2002 ). We can plot

 vector map, where vectors are drawn from the mean putamen to the

urface formed by the mean plus the multiple of the function in question.

r we can also color the mean putamen using the magnitude (norm) of

hose vectors. Furthermore, the PCA scores and the discriminant values

an be also displayed. 

.8. Functional independent component analysis 

Let us introduce the methodology when the FPCA step is exchanged

or another dimension reduction technique: FICA. 

Let us remember ICA for the multivariate case. The data matrix X is

xpressed as a linear combination of non-Gaussian (independent) com-

onents: X = SA , where columns of S contain the independent compo-

ents and A is a linear mixing matrix. ICA seeks to “un-mix ” the data

y estimating an un-mixing matrix W such that 𝐗𝐖 = 𝐒 . Under this as-

umption, the “signals ” in X will be “more Gaussian ” than the source

omponents in S due to the Central Limit Theorem. Therefore, the objec-

ive is to find an un-mixing matrix W that maximizes the non-gaussianity

f the sources. 

For the functional univariate case, let x 1 ( t ), ..., x N ( t ) be N linear

ixtures of K independent components s j ( t ): 𝑥 𝑖 ( 𝑡 ) = 

∑𝐾 

𝑗=1 𝑎 𝑖𝑗 𝑠 𝑗 ( 𝑡 ) , for

ll i . Assume the following basis expression for each function: x i ( t ) =
𝑀 

𝑏 𝑖𝑚 𝐺 𝑚 ( 𝑡 ) . 
𝑚 =1 
Let x be a vector-valued function with components x 1 , ..., x N and

 the vector-valued function with components G 1 , ..., G M 

, then the si-

ultaneous expansion of all N functions can be expressed by x = B G ,

here B is the coefficient matrix, with size N × M . ICA can be performed

n B ′ , thus 𝐁 

′ = 𝐒 𝐛 𝐀 𝐛 and x = B G = 𝐀 

′
𝐛 𝐒 

′
𝐛 𝐺. In other words, the data x

re generated by a process of mixing the K components I = 𝐒 ′𝐛 𝐺 (the

ndependent components are the rows of 𝐒 ′𝐛 ). 
For any function �̃� ( 𝑡 ) that is not contained in the initial data set,

ts expansion in terms of those ICA components is �̃� ( 𝑡 ) = 

∑𝐾 

𝑗=1 �̃� 𝑗 𝐼 𝑗 ( 𝑡 ) ,
here I j ( t ) is the j -th component of I . If I and G are estimated in p points

 { 𝑡 𝑘 ; 𝑘 = 1 , … , 𝑝 } ), the p × K matrix I and the p × M matrix G can be

efined, as well as I = GS b . Then, we can compute the K -vector ̃𝐚 with the

oefficients �̃� 𝑗 by least squares fitting ( Ramsay and Silverman, 2005 ): �̃�
 ( 𝐈 ′𝐈 ) −1 𝐈 ′�̃� , with �̃� = { ̃𝑥 ( 𝑡 𝑘 )} 

𝑝 

𝑘 =1 , i. e. �̃� = ( 𝐒 ′𝐛 𝐆 

′𝐆𝐒 𝐛 ) 
−1 𝐒 ′𝐛 𝐆 

′�̃� . Similarly,

e can estimate the M -vector with the coefficients ̃𝑏 𝑚 by ̃𝐛 = ( 𝐆 

′𝐆 ) −1 𝐆 

′�̃� ,
here G is the basis and �̃� ( 𝑡 ) = 

∑𝑀 

𝑚 =1 �̃� 𝑚 𝐺 𝑚 ( 𝑡 ) . In the case where the basis

 is orthonormal, i.e. G ′ G is the identity matrix, then 

̃
 = ( 𝐒 ′𝐛 𝐆 

′𝐆𝐒 𝐛 ) 
−1 𝐒 ′𝐛 𝐆 

′�̃� = ( 𝐒 ′𝐛 𝐒 𝐛 ) 
−1 𝐒 ′𝐛 ̃𝐛 . (8)

The same discussion can be adopted when the functions have more

han one argument. In the case of multivariate functional data, the coef-

cients for each function can be concatenated into a single long vector,

s done in Section 2.4.1 with multivariate FPCA. In this case, ̃𝐛 would

e ( c i ) ′ . 

In order to reduce noise and prevent overlearning ( Hyvärinen et al.,

001 , Section 13.2), data dimension reduction by PCA should be carried

ut prior to the application of the ICA algorithm (see Hyvärinen et al.

2000 , Section 5) for details). Therefore, PCA is computed first with a

oncrete number of components, then the same number of independent

omponents as the PCA reduced dimension are estimated. 

As previously, let Q be the number of groups, with size N i ( 
∑𝑄 

𝑖 =1 𝑁 𝑖 =
). For computing the linear discriminant vector function 𝜆j ( 𝜃, 𝜑 ), LDA

s applied to the K × N matrix A with the coefficients of the K ICA compo-

ents. Then, we obtain a K × r matrix L ( r = min { 𝐾, 𝑄 − 1} is the number

f discriminant functions), which yields the r × N matrix D of discrimi-

ant values ( 𝐃 = 𝐋 

′𝐀 ). According to Eq. 8 , A = ( 𝐒 ′𝐛 𝐒 𝐛 ) 
−1 𝐒 ′𝐛 𝐂 

′, where S b 
s the 3 M × K matrix that contains the independent components of C ′ ,

he N × 3 M matrix with the SPHARM coefficients. As 𝐃 = 𝚲𝐂 

′, where

is the r × 3 M matrix with the SPHARM coefficients of the r functions
j ( 𝜃, 𝜑 ) ( j = 1, ..., r ) ( 𝝀j is the j -th row), then 𝚲 = 𝐋 

′( 𝐒 ′𝐛 𝐒 𝐛 ) 
−1 𝐒 ′𝐛 . 

In summary, when FPCA is exchanged for FICA in our methodol-

gy, while keeping the remaining steps the same, we call this procedure

ICA-SVS-LDA. 

. Results and discussion 

FPCA-SVS-LDA and FICA-SVS-LDA are applied to our data set. Due

o the small sample size of our data set, the findings cannot be conclu-

ive from the neuroeducational point of view. However, the proposed

ethodology can be applied without modification to a larger data set.

he first two FPCs account for 46% of the variance for the left putamens

62% for the right putamens, respectively), while the first 19 FPCs ex-

lain 95% of the variation (the first 18 FPCs for the right putamens,

espectively). Note that the 1st FPC is not selected by our procedure

ntil step 17 for the left putamens, which demonstrates again that the

rst PCs are not necessarily the most discriminative ones, as explained

n Sect. 1.3 . The most discriminating FPCs for the left putamens are

he 20th and 11th. Fig. 3 displays the scores for these two components.

lue stars and red circles represent the RE and non-RE subjects, respec-

ively. The separation between both groups can be perceived visually.

ig. 3 also displays the discriminant values for the left putamens. As we

nly have two classes, only one discriminant function can be defined.

n this case, the whole training set is classified correctly. 

Fig. 4 shows the effect of the first three FPCs on the mean left puta-

en by representing their magnitudes with two standard deviations.
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Fig. 3. Left side: Score plot of 20th and 11th PCs for the left putamens. The legend indicates the groups. Right side: Index versus Discriminant values. Note that the 

first 15 subjects correspond to the RE group, while the remaining individuals belong to the non-RE group. 

Fig. 4. The effect of first FPCs on the mean 

shape (from left to right and from top to bot- 

tom) for the left putamens. The viewpoint of 

the first image is defined by azimuth of 150 ∘

and elevation of 31 ∘. The viewpoint of the sec- 

ond image is defined by azimuth of -4 ∘ and ele- 

vation of 20 ∘, while the third one has the same 

orientation as the reference. 
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o  
he viewpoints have been selected in order to show the effect of each

omponent better. As the code is available, figures can be reproduced

nd rotated. The first FPC shows a more global effect than the second

nd third FPCs, which have a more localized effect. In other words, for

he first FPC the effect is distributed throughout a large zone of the puta-

en; while the effect of the other two components is concentrated on

 specific part of the putamen. Fig. 5 displays the linear discriminant

unction on the mean left putamen by FPCA-SVS-LDA. The directions

n which the discriminant score increases fastest are shown by the ar-

ows. The norm of these arrows is displayed by color. The differences

etween both groups are located in the yellow/orange zones of the puta-

en. Analogously, Fig. 6 displays the linear discriminant function on the

ean right putamen by FICA-SVS-LDA. It seems that the differences are

ore localized in small zones in the right putamen than in the left puta-
en, where the differences are more spread out. This also occurred in

andman et al. (2014) in another study on neuroeducation. 

In order to assess the performance of FPCA-SVS-LDA, we estimate it

y leave-one-out (LOO) cross-validation. In each trial, one individual is

eft out, while FPCA-SVS-LDA is applied to the remaining individuals,

hich constitute the training set of that trial. Then, the FPCA scores for

he individual that was left out, which is the test set, are computed and

sed to predict its class. This procedure is repeated for each individual

f the data set. So, finally the performance estimates by LOO are ob-

ained and shown in Table 1 for the left putamen and in Table 2 for the

ight putamen, together with the LOO performance of FICA-SVS-LDA

nd other methods explained in Section 3.1 . Note that in each trial the

PCs are different, since the training sets are different, and the number

f selected FPCs for classification varies for each trial. This is why the
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Fig. 5. Representation of the linear discriminating function by FPCA-SVS-LDA, with a vector map (left side) and magnitude map (right side) for the left putamens. 

The images have the same orientation as the reference (see Fig. 2 ). 

Fig. 6. Representation of the linear discriminating function by FICA-SVS-LDA, with a vector map (left side) and magnitude map (right side) for the right putamens. 

The viewpoint of the images are defined by azimuth of 63 ∘ and elevation of -23 ∘. 

Table 1 

Left putamen. LOO performance for different methods: accuracy, recall or sensitivity, speci- 

ficity, precision or positive predictive value, and negative predictive value (NPV), assuming 

the RE class as the positive class. The maximum value in each column appears in bold. 

Method No. features Accuracy Recall Specificity Precision NPV 

FPCA-SVS-LDA 14.12 0.6364 0.5333 0.7222 0.6154 0.6500 

FICA-SVS-LDA 1.94 0.5758 0.4667 0.6667 0.5385 0.6 

Volume 1 0.4545 0.2 0.6667 0.3333 0.5 

SVM 33 0.5152 0.4667 0.5556 0.4667 0.5556 

SDA 20 0.4848 0.4 0.5556 0.4286 0.5263 

PLS-LDA 10.91 0.4242 0.4 0.4444 0.3750 0.4706 

FPCA-LDA 23 0.4848 0.4667 0.5 0.4375 0.5294 

FICA-LDA 12 0.4848 0.4667 0.5 0.4375 0.5294 

m  

f
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n  

L  

i

 

m  

fi  

u  

b  

c  

T

ean of the number of selected FPCs in each trial is shown in the ‘No.

eatures’ column of those tables. 

.1. Comparison with other methods 

We apply different classification methodologies in order to compare

he results. The first and simplest one is based on putamen volumetry.

he putamen volume is estimated by the sum of the slice areas, i.e. the

umber of pixels that belong to each slice of the putamen. We perform
DA with this data using LOO cross-validation, and the results are shown

n the ‘Volume’ row of Table 1 and Table 2 . 

The second methodology is that used in Gerardin et al. (2009) . As

entioned previously, an SVM is used to classify the SPHARM coef-

cients. These are selected with a bagging strategy, where t -tests are

sed for finding the coefficients that best separate the classes. The num-

er of coefficients used is selected by double or nested leave-one-out

ross-validation. The results are shown in the ‘SVM’ row of Table 1 and

able 2 . 
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Table 2 

Right putamen. LOO performance for different methods: accuracy, recall or sensitivity, 

specificity, precision or positive predictive value, and negative predictive value (NPV), 

assuming the RE class as the positive class. The maximum value in each column appears 

in bold. 

Method No. features Accuracy Recall Specificity Precision NPV 

FPCA-SVS-LDA 13.73 0.6364 0.6000 0.6667 0.6000 0.6667 

FICA-SVS-LDA 5.42 0.7273 0.667 0.7778 0.7143 0.7368 

Volume 1 0.4242 0 0.7778 0 0.4828 

SVM 27 0.6364 0.6 0.6667 0.6 0.6667 

SDA 20 0.4848 0.4 0.5556 0.4286 0.5263 

PLS-LDA 10 0.4848 0.4 0.5556 0.4286 0.5263 

FPCA-LDA 7 0.6061 0.4667 0.7222 0.5833 0.6190 

FICA-LDA 8 0.6970 0.6 0.7778 0.6923 0.7 
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Fig. 7. Left putamen. A map view of the F-statistic of the difference in shape 

between the subjects in the RE group and the subjects in the non-RE group (the 

random field-based threshold corresponding to level 𝛼= 0.05 is 33.93 and for 

level 𝛼= 0.1 is 30.26, while the maximum F -statistic value is 16.73). The image 

has the same orientation as the reference (see Fig. 2 ). 
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The third methodology is sparse discriminant analysis (SDA), pro-

osed by Clemmensen et al. (2011) . We apply SDA ( Sjöstrand et al.,

018 ) to the SPHARM coefficients. The number of variables is selected

y nested leave-one-out cross-validation. The results are shown in the

SDA’ row of Table 1 and Table 2 . 

The fourth methodology is the method proposed by

oulesteix (2004) and it is implemented in the R package plsge-

omics ( Boulesteix et al., 2018 ). The choice of the number of latent

omponents is performed by the cross-validation method proposed

y Boulesteix (2004) . The results are shown in the ‘PLS-LDA’ row of

able 1 and Table 2 . 

The fifth and sixth methods are the procedures proposed by

pifanio and Ventura-Campos (2014) , where LDA is applied to the

oefficients of FPCA and FICA, but without selection of components.

he number of components is selected by nested leave-one-out cross-

alidation. The results are shown in the ‘FPCA-LDA’ and ‘FICA-LDA’

ows of Table 1 and Table 2 . 

For the left putamen, the method that obtains the best results for

ll the performance measures is our proposal FPCA-SVS-LDA, while the

econd one is our other proposal, FICA-SVS-LDA. The third best method

ields worse results, particularly in terms of accuracy, despite using a

igh number of features. The importance of considering selection of

ariables after the dimension reduction step is revealed. Note the great

mprovement in the measures when SVS is performed. For example, the

ccuracy goes from 48.48% for FPCA-LDA or FICA-LDA to 63.64% for

PCA-SVS-LDA and 57.58% for FICA-SVS-LDA. It is clear that using a

ariable selection step after the dimension reduction step has been a

uccess. Note that in this comparison, all the methods except that based

n volume, are local shape methods based on SPHARM and the same

re-processing steps have been carried out for all of them. In this way,

e have compared the different methods once the SPHARM representa-

ion is available. 

For the right putamen, the method that obtains the best results for all

he performance measures is our proposal FICA-SVS-LDA, which returns

etter results than those for the left putamen. The second best method in

erms of accuracy is FICA-LDA, while the third best are FPCA-SVS-LDA

nd SVM. As happened with the left putamen, using a variable selection

tep after the dimension reduction step has improved the results. The

ccuracy obtained with FICA-SVS-LDA and the right putamen is higher

0.7273) than that obtained with the left putamen. 

.1.1. Multivariate linear model 

Although discriminant analysis and testing of mean group dif-

erence are different problems, we apply the methodology in

hung et al. (2010) for emphasizing the usefulness of the linear dis-

riminant function applied to brain structures as in Figs. 5 and 6 , and

or differentiating it from the significance maps of group differences that

re commonly used in the neuroimaging literature together with clas-

ification results ( Gerardin et al., 2009 ). Multivariate linear modeling

 Taylor and Worsley, 2008 ) is carried out on SPHARM, and the effect

f the group variable on the model is tested. Fig. 7 shows the F -statistic
alue on the mean left putamen. No statistically significant differences in

hape with 𝛼= 0.05 are found when we test for group differences at each

ertex of the putamen surface. However, we can check that discriminant

nalysis is worthwhile in this problem. In order to check that discrimi-

ation is worthwhile in this problem, we apply multivariate analysis of

ariance (MANOVA) to the PC scores selected to test the hypothesis of

quality of group means, as explained in Mardia et al. (1979 , Sect. 11.4).

n this problem, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is 4-e8, which is small enough to reject the

ull hypothesis of equality of group means, and discriminant analysis is

herefore worthwhile. We have therefore shown the superiority of our

pproach versus the use of the methodology in Chung et al. (2010) in

his problem. 

.1.2. Laplace-Beltrami spectra 

We compare our proposal with a methodology for global shape com-

arison based on the Laplace-Beltrami eigenvalues, as described by

euter et al. (2006, 2009) , Wachinger et al. (2015) . The spectra for

ll the putamens are computed. To compute the eigenfunctions of the

aplace-Beltrami operator, we use the finite element method (FEM) de-

cribed by Chung and Taylor (2004) . Then, we consider a nearest neigh-

or algorithm (1-NN), with two distances for the eigenvalues that de-

cribe each shape, as explained by Wachinger et al. (2015) . On the one

and, the Euclidean distance with a linear re-weighting of eigenvalues is

onsidered. We call this procedure LB-WE. On the other hand, the Maha-

anobis distance is considered. We call this procedure LB-M. We assess

he performance by LOO cross-validation. The number of eigenvalues
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sed is selected by double or nested leave-one-out cross-validation. For

he left putamen, the accuracy is 0.5758 (with 5 eigenvalues) for LB-WE

nd 0.7272 (with 27 eigenvalues) for LB-M, while for the right putamen,

he accuracy is 0.4242 (for any number of eigenvalues considered) for

B-WE and 0.7272 (with 12 eigenvalues) for LB-M. Therefore, the per-

ormance of our proposal is better than that of LB-WE. For LB-M, the

erformance for the right putamen is equal to that of our proposal, but

etter than our proposal for the left putamen. In any case, the best classi-

cation rate is attained for the right putamen with both LB-M and FICA-

VS-LDA. However, LB-WE or LB-M are black box methodologies, since

hey do not explain why or how these differences occur; they are lacking

n human interpretability, unlike our proposal. As discussed previously,

t is desirable to have information that provides qualitative understand-

ng ( Hastie et al., 2009 ). 

.2. Limitations 

We have seen the advantages of FPCA-SVS-LDA, in terms of both

erformance and interpretability, especially in comparison with other

ethodologies. As regards the limitations of our methodology, they may

esult from the limitations of LDA ( Clemmensen et al., 2011 ) and the

ariable selection step. On the one hand, a situation where LDA can fail

s when the groups cannot be separated by linear boundaries. Then SVS

ould still be used, but instead of LDA, quadratic discriminant analysis

ould perhaps be used. A difficult situation occurs when we have un-

alanced groups, and the sample size of one of them is very small. In

he most extreme case, a single observation per group is insufficient to

ompute LDA. Furthermore, the confidence in SVS decisions based on

ery few samples could decrease. On the other hand, the SVS used is

ased on Wilks’ lambda criterion, which may not be the best option for

on-Gaussian distributions. 

Our methodology is based on local shape analysis rather than global

hape analysis. In local shape analysis approaches, one-to-one corre-

pondences between surfaces need to be established. This could be seen

s a limitation, since global shape analysis approaches may need fewer

re-processing steps. However, our methodology yields spatially local-

zed results that are straightforward to interpret, unlike global shape

nalysis approaches. Global shape analysis approaches can be seen as

lack boxes that do not explain their predictions in a way that humans

an understand them easily. Nowadays, it is therefore preferable to use

odels that are inherently interpretable ( Rudin, 2019 ). 

. Conclusions 

We have proposed a methodology based on the use of SPHARM rep-

esentation of brain structures for classification. The procedure is an im-

rovement on that proposed by Epifanio and Ventura-Campos (2014) .

e have shown that our proposal not only performs well in terms of

redictive power, but also yields interpretable classification in the high-

imensional setting. Furthermore, it has been applied to a novel classi-

cation problem in neuroeducation. 

Although the procedure has been applied to a binary classification

roblem, it can be used in multiclass classification problems. In that

ase, more than one discriminant function can be obtained, as in classi-

al LDA. 

As future work, from the practical point of view, the proposed

ethodology can be applied to any classification problem in neuro-

cience where the anatomical structures can be expressed with SPHARM

oefficients. From the theoretical point of view, other variable selection

ethods could be studied. Furthermore, we could extend the methodol-

gy to the problem of ordinal classification, i.e. when groups (categories

r classes) are ordered. In addition, we could extend the methodology

o combine not only functional data with SPHARM coefficients, but also

ultivariate features, such as variables related to education. In other

ords, we have to define FPCA for hybrid data with vector and multi-

ariate functions, similarly to what Ramsay and Silverman (2005 , Chap-
er 10) did for univariate functions. Finally, the FDA approach could be

sed not only for classification but also in other problems where the

ata are 3D brain structures. 
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