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a b s t r a c t 

Background and objective: As Computed Tomography scans are an essential medical test, many tech- 

niques have been proposed to reconstruct high-quality images using a smaller amount of radiation. One 

approach is to employ algebraic factorization methods to reconstruct the images, using fewer views than 

the traditional analytical methods. However, their main drawback is the high computational cost and 

hence the time needed to obtain the images, which is critical in the daily clinical practice. For this rea- 

son, faster methods for solving this problem are required. 

Methods: In this paper, we propose a new reconstruction method based on the QR factorization that is 

very efficient on affordable equipment (standard multicore processors and standard Solid-State Drives) by 

using Out-Of-Core techniques. 

Results: Combining both affordable hardware and the new software proposed in our work, the images can 

be reconstructed very quickly and with high quality. We analyze the reconstructions using real Computed 

Tomography images selected from a dataset, comparing the QR method to the LSQR and FBP. We measure 

the quality of the images using the metrics Peak Signal-To-Noise Ratio and Structural Similarity Index, 

obtaining very high values. We also compare the efficiency of using spinning disks versus Solid-State 

Drives, showing how the latter performs the Input/Output operations in a significantly lower amount of 

time. Conclusions: The results indicate that our proposed me thod and software are valid to efficiently 

solve large-scale systems and can be applied to the Computed Tomography reconstruction problem to 

obtain high-quality images. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

 

n  

t  

t  

e  

s  

t  

s  

t

 

w  

Q

r  

o  

o  

o  

H  

i  

o  

r  

m  

F  

w

 

h

0

. Introduction 

Nowadays, Computed tomography (CT) [1] is an essential diag-

ostic medical imaging test in clinical practice. Although it involves

he use of X-rays and hence gives ionizing radiation in patients,

he information provided is critical in many cases. Therefore, it is

xtremely important to reduce the radiation dose as much as pos-

ible, and thus prevent patients from absorbing a higher dose than

he recommended one. Otherwise, CTs could be a hazard to them,

ince it has been proven the X-rays can be harmful, especially to

he most vulnerable patients [2,3] . 

The traditional CT reconstruction employs analytical methods,

hich are based on the Filtered Back-Projection (FBP) [4–6] . They
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equire a complete set of projections of an object, over 360 degrees

f rotation and a number of projections higher than the number

f detectors. They are still the most common methods because

f their low computational cost and therefore fast reconstruction.

owever, reducing the X-ray dose is difficult when a high-quality

mage must be obtained. Several methods [7,8] have been devel-

ped that reduce the radiation dose by minimizing the tube’s cur-

ent or voltage, and then reconstruct the sinograms with statistical

ethods that improve the image quality compared to traditional

BP-based methods. There are similar low-dose methods that work

ith dual-energy spectral CT scanners such as [9,10] . 

Another common approach to reduce the radiation dose is the

se of algebraic iterative methods, which do not require a com-

lete set of projections, nor are they restricted in terms of projec-

ion angles [11–16] . These types of methods require fewer projec-

ions to reconstruct an image. Some works such as [17,18] show

ow the use of sparse-sampling CT scanners in the future and
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Table 1 

Simulated fan-beam scanner parameters. 

Source trajectory 360 ◦ circular scan 

Scan radius 75 cm 

Source-to-detector distance 150 cm 

X-ray source fan angle 30 ◦

Number of detectors 1025 

Pixels of the reconstructed image 512 2 

Number of projections 260 
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performing the reconstruction of the images with few-views meth-

ods could potentially reduce the radiation dose induced to the pa-

tients in a significant amount. Nevertheless, they involve a high

computational cost, which implies that the reconstructions are

much slower than with previous methods. Moreover, since these

methods are iterative, convergence is not guaranteed, nor the

number of iterations in case of convergence. Several works [19–

22] showed the problems of working with few-view limited-angle

CT. The use of few views generates streak artifacts that can mask

or conceal important parts of the image to be reconstructed, which

can produce information loss. This is potentially harmful since it

can lead to wrong diagnosis. It also poses a problem for sec-

ondary applications of the CT images, as shown in [21] , where

the reduction of the number of views to a minimum number im-

plied an inaccurate segmentation of the blood vessels. Sechopou-

los [23] showed that few views led to false positives in computer-

aided detection for breast mass detection. Unlike direct methods,

iterative methods often generate patchy or blocky artifacts in the

reconstructed images due to overregularization [20,24,25] . 

Therefore, direct algebraic methods such as the QR factoriza-

tion [26,27] have been explored recently. Although they usually re-

quire a greater number of views than the iterative ones (as was

shown in a previous work [28] ), they are much more accurate

when the rank of the weights matrix is complete. The main draw-

back of the direct algebraic methods is that the sparsity of the

weights matrix cannot be taken advantage of, since the matrix

fills in and becomes dense as the factorization process advances.

Moreover, space problems because of an insufficient main memory

(RAM) can arise. In this case, it is important to find an efficient ap-

proach to tackle large problems without having to acquire expen-

sive and specialized dedicated equipment, which would require a

large monetary cost. 

In our paper, we present a solution to the CT image reconstruc-

tion problem by using the direct solution of linear systems based

on the QR factorization. By employing special high-performance

software techniques, high-quality images are obtained on afford-

able computers. Without these techniques, the computer required

would be very expensive (tens of thousands of dollars), mainly due

to the price of the large main memory required to store the data.

With these techniques, computers with a price about one order of

magnitude smaller can be employed. A careful application of Out-

Of-Core (OOC) techniques allows to read and write blocks of data

from/to the hard drive just when they are needed for the calcula-

tions, instead of loading the whole matrices into main memory. By

applying this method, as well as some other techniques, we can

solve large-scale problems, and therefore a fast reconstruction of

CT images with high resolutions can be achieved. Our new imple-

mentation is time-efficient and also scalable, as can be seen in the

results. In addition, both very high quality and a reduction in the

number of views (and therefore the absorbed radiation dose) are

achieved, compared to analytical methods. In our work, we have

checked that the OOC approach is still valid on much larger matri-

ces than previous works. Moreover, we have assessed the perfor-

mances on both traditional hard drives (HDD) and modern Solid-

State Drives (SSD). 

The document is organized as follows: Section 2 describes the

simulation of our projection data, as well as the simulated scan-

ner parameters. It is also explained how to perform a CT recon-

struction using the QR factorization of the weights matrix. Be-

sides, the metrics employed to measure the image quality are in-

troduced, and the QR factorization and the reconstruction algo-

rithm are described in detail. Section 3 assesses our new method

in terms of numerical stability and image quality. A detailed per-

formance study comparing the different configurations using two

types of hard drives is also included. Section 4 summarizes and

discusses the advantages of the studied method, and we conclude

with Section 5 . 
. Methods 

.1. CT image reconstruction 

To reconstruct CT images with an algebraic approach, we model

he problem as: 

X = B + W (1)

here A = 

(
a i, j 

)
∈ R 

M×N denotes the so-called system matrix, with

imensions M × N. A is the weights matrix that models the phys-

cal scanner, being a i,j the contribution of the i -th ray on the j -th

ixel. The dimension M is the product of the number of detectors

f the CT scanner multiplied by the number of projections or views

aken. N denotes the resolution of the image (256 × 256 pixels,

12 × 512 pixels, etc.). B = (B j ) is a matrix of M × S elements,

here S is the number of slices to be reconstructed, and B j denotes

he column j that will correspond to the j -th sinogram. X = (X j ) is

 matrix of dimensions N × S , where X 

j is the column where the

econstructed image corresponding with the j -th sinogram will be

tored. W is the noise contained in the sinograms, which will not

e considered in this paper. 

The sinograms have been simulated using Joseph method [29] .

e modeled a fan-beam scanner, using the parameters shown in

able 1 . As was mentioned before, the number of projections taken

epends on the desired reconstruction resolution, and it needs to

e adjusted so that matrix A has full rank. The projections are se-

ected according to (2) , where the symmetry of the projection data

s broken by making an angle shift for every quarter of the circum-

erence to improve the rank. 

i = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

( 360 / v ) ∗ ( i − 1 ) if 1 ≤ i ≤ ( v / 4 ) 
�v / 4 + 0 . 5 + ( 360 / v ) ∗ ( i − 1 ) if ( v / 4 ) < i ≤ ( v / 2 ) 
�v / 2 − 0 . 75 + ( 360 / v ) ∗ ( i − 1 ) if ( v / 2 ) < i ≤ ( 3 v / 4 ) 
�3 v / 4 − 0 . 25 + ( 360 / v ) ∗ ( i − 1 ) if ( 3 v / 4 ) < i ≤ v 

(2)

o solve the problem in (1) , first the QR factorization of A is com-

uted (3) , where Q is orthonormal and R is upper triangular. Then,

o reconstruct the images, (4) is employed. 

 = QR (3)

 = R 

−1 (Q 

T B ) (4)

It is important to note that the QR factorization does not need

o be computed for every image being generated, since it does not

epend on B . It can be computed just once and, by storing the re-

ults, a lot of computational work can be saved. 

.2. Image quality metrics 

To measure the quality of the reconstructed images, we use two

ell-established metrics for images: PSNR (Peak Signal-To-Noise

atio) and SSIM (Structural Similarity Index) [30] . The PSNR metric

easures the ratio of the image signal to the noise it contains. To

alculate it, another metric is used, the so-called Mean Square Er-

or (MSE), which is calculated according to (5) , and represents the
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ean of the squared error between the reference image I 0 and the

econstructed image I ( X in our equations). Once the MSE is calcu-

ated, it is used to calculate the PSNR according to (6) , in which

AX represents the maximum value that a pixel can take. The

igher the PSNR value we get, the better the reconstruction ob-

ained. 

SSIM measures the internal structures (shapes) of the images

ompared with the reference image. Therefore, it does not focus on

he gray levels of the pixels, but on the shapes of the reconstructed

mage with respect to the reference image. Therefore, it measures

hat is perceptible to the human eye. It is applied through win-

ows of fixed size, and the difference between two windows x and

 corresponding to the two images to be compared is calculated

sing (7) . In this equation, μx and μy denote the average value of

he window x and y , σ 2 
x and σ 2 

y the variance, σ xy the co-variance

etween the windows, and c 1 and c 2 are two stabilizing variables

ependent on the dynamic range of the image. 

SE = 

1 

MN 

M−1 ∑ 

i =0 

N−1 ∑ 

j=0 

(I 0 (i, j) − I(i, j)) 2 (5) 

SNR = 10 log 10 

MAX (I 0 ) 
2 

MSE 

(6) 

SIM = 

(2 μx μy + c 1 )(2 σx,y + c 2 ) 

(μ2 
x + μ2 

y + c 1 )(σ 2 
x + σ 2 

y + c 2 ) 
(7) 

.3. Out-Of-Core computations 

Some problems require the storage of data so large that there

re no computers with such a main memory or, in case they exist,

heir prices are very high. Most operating systems provide a vir-

ual memory system to store data (and programs) that do not fit

nto the computer’s main memory at one time. However, its perfor-

ances are not very high when employed on structured scientific

roblems. Hence, in high-performance scientific computing, special

echniques, called Out-Of-Core (OOC) or Out-Of-Memory (OOM),

re required to efficiently process data stored in the hard drive.

hese techniques keep the data stored in the hard drive, read them

nto memory, and write them into disk whenever is needed. The

im of these techniques is to minimize the effect of the slow speed

f the read and write operations from/to disks in order to render

erformances as high as possible. 

.3.1. Traditional approach 

In modern computer architectures floating-point operations are

uch faster than memory accesses. Therefore, the ratio of flops to

emory accesses in computations is very important. An increased

atio provides much higher performances since it allows to com-

ute several or even many flops per each memory access, and

ence cache memories and other modern features can be fully ex-

loited. For instance, matrix-matrix operations obtain significantly

igher performances than matrix-vector operations. 

In linear algebra, unblocked algorithms perform one stage at a

ime (e.g. one column in column-oriented algorithms). In contrast,

 blocked algorithm performs several stages (e. g. several columns

n column-oriented algorithms) of the traditional (unblocked) algo-

ithm at the same time because this aggregation can take advan-

age of the more efficient matrix-matrix operations. This number

f stages (e. g. columns) that are processed at the same time is

sually called the block size. 

However, since most usual algorithms in linear algebra proceed

n triangular matrices, processing a fixed number of columns (or

ows) at the same time can make the data to be processed very

arge at the beginning, and very small at the end, or vice versa.
his can make performances not to be optimal because main mem-

ry could be underused in some stages and because of the large

ariation in the data being transferred. This variation of the trans-

er size can be a problem when the data are stored in disk since

his kind of devices are more sensitive to transfer sizes. 

There are usually two common types of algorithms: right-

ooking algorithms update the rest of the matrix (right part) af-

er the processing of the current (block) column or row, thus re-

uiring O(n 3 ) writes. In contrast, left-looking algorithms update

he current (block) column or row, with the data previously pro-

essed (left part), thus requiring O(n 2 ) writes. Since the cost of a

rite operation in hard drives is usually higher than the cost of a

ead operation, left-looking algorithms are usually preferred when

orking on data stored in disk. Great efforts have been made to

fficiently solve problems from linear algebra whose data do not

t in RAM and must be stored in disk [31–36] . 

.3.2. Algorithms-By-Blocks 

Like blocked algorithms, Algorithms-By-Blocks also perform 

everal stages of the traditional (unblocked) algorithm at the

ame time in order to take advantage of the higher speeds of

atrix-matrix operations. Unlike blocked algorithms, Algorithms- 

y-Blocks achieve matrix-matrix operations by raising the granu-

arity of the data. First, the traditional (unblocked) algorithm must

e reformulated to perform operations that process only scalar ele-

ents. Then, the scalar elements are raised to being square blocks

f dimension b × b , and the operations processing them are ac-

ordingly raised too so that they correctly process these square

locks. Therefore, in the end the whole computation to be per-

ormed is divided into many tasks, each one processing a few

quare blocks (between one and four, but more usually two or

hree). 

One of the main benefits of this approach is that all blocks are

lways of the same size (except maybe for the final right and bot-

om blocks). This brings in the benefit of making the majority of

he transfers of the same size. Thus, by tuning the block size for a

iven machine, all the data transfers will be very efficient, regard-

ess of the stage of the algorithm (first stages or last stages). 

Quintana-Ortí et al. [37,38] developed a runtime that can pro-

ess Algorithm-By-Blocks very efficiently by applying two tech-

iques: The use of a cache of blocks stored in memory to reuse

nformation, and the overlapping of computation and communica-

ions to reduce the cost of the latter. 

.3.3. QR factorization 

The Algorithm-By-Blocks for efficiently computing the QR fac-

orization was described in 2009 [39] . This approach employed

he methods and runtime described by Quintana-Ortí et al. [37,38] .

owever, these works assessed smaller matrices, they did not test

odern fast Solid-State Drives (SSD), and they only assessed the

R factorization. In our current work we have checked that this

pproach is still valid on much larger matrices, we have compared

he performances of this approach on both traditional hard drives

nd modern SSDs, and we have implemented and assessed the ap-

lication of orthogonal transformations previously computed and

he resolution of triangular linear systems (problems not included

n these previous works). 

Fig. 1 illustrates the process performed by a left-looking

lgorithm-By-Blocks for computing the QR factorization of a 9 × 9

atrix with block size 3. The ‘ • ’ symbol represents a non-modified

lement by the current task, the ‘ ∗’ symbol represents a modified

lement by the current task, and the ‘ ◦’ symbol represents a nul-

ified element (either by the current task or by a previous task).

he nullified elements are shown because they store information

bout the Householder transformations that will be later used to

pply them. The continuous lines surround the blocks involved in
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Fig. 1. An illustration of the first tasks performed by an algorithm-by-blocks for computing the QR factorization. The ‘ • ’ symbol represents a non-modified element by the 

current task, ‘ ∗ ’ represents a modified element by the current task, and ‘ ◦’ represents a nullified element (by the current task or by a previous task). The continuous lines 

surround the blocks involved in the current task. 

 

 

 

 

 

 

m  

c  

t  

b  

7

 

A  

p  
the current task. To reduce the size of this graphic, it only shows

the factorization of the first and second block columns. 

In the processing of the first column, as there are no previous

columns, the work to do is just to nullify all the elements be-

low the main diagonal. This process is performed with three tasks

(tasks 1, 2, and 3). The first task nullifies elements below the di-

agonal in A 00 . The second and third tasks nullify elements in A 10 

and A 20 , respectively. To nullify those two blocks, these two tasks
ust also update the A 00 block. In the processing of the second

olumn, the first work to do is to apply previous transformations

o the current block column (tasks 4, 5, and 6). Then, the elements

elow the diagonal in blocks A 11 and A 21 must be nullified (tasks

 and 8). 

Table 2 illustrates all the tasks generated and executed by the

lgorithm-By-Blocks for computing the QR factorization for the

revious case (and also for the general cases m = n = 3 b, where b
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Table 2 

List of tasks generated by the Algorithm-by-blocks for computing 

the QR factorization when m = n = 3 b, where b is the block size. . 

Operation Operands 

Out In 

Comp_dense_QR A 00 S 00 A 00 

Comp_TD_QR A 00 A 10 S 10 A 00 A 10 

Comp_TD_QR A 00 A 20 S 20 A 00 A 20 

Apply_left_Qt_of_dense_QR A 01 A 00 S 00 A 01 

Apply_left_Qt_of_TD_QR A 01 A 11 A 10 S 10 A 01 A 11 

Apply_left_Qt_of_TD_QR A 01 A 21 A 20 S 20 A 01 A 21 

Comp_dense_QR A 11 S 11 A 11 

Comp_TD_QR A 11 A 21 S 21 A 11 A 21 

Apply_left_Qt_of_dense_QR A 02 A 00 S 00 A 02 

Apply_left_Qt_of_TD_QR A 02 A 12 A 10 S 10 A 02 A 12 

Apply_left_Qt_of_TD_QR A 02 A 22 A 20 S 20 A 02 A 22 

Apply_left_Qt_of_dense_QR A 12 A 11 S 11 A 12 

Apply_left_Qt_of_TD_QR A 12 A 22 A 21 S 21 A 12 A 22 

Comp_dense_QR A 22 S 22 A 22 
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Table 3 

List of tasks generated by the Algorithm-by-blocks for solving 

a linear system using a previously computed QR factorization 

when m = n = 3 b, where b is the block size. 

Operation Operands 

Out In 

Apply_left_Qt_of_dense_QR B 00 A 00 S 00 B 00 

Apply_left_Qt_of_TD_QR B 00 B 10 A 10 S 10 B 00 B 10 

Apply_left_Qt_of_TD_QR B 00 B 20 A 20 S 20 B 00 B 20 

Apply_left_Qt_of_dense_QR B 10 A 11 S 11 B 10 

Apply_left_Qt_of_TD_QR B 10 B 20 A 21 S 21 B 10 B 20 

Apply_left_Qt_of_dense_QR B 20 A 22 S 22 B 20 

Trsm_lunn ( B = upper (A ) −1 B ) B 20 A 22 B 20 

Gemm_nn_mo ( C = −AB + C) B 10 B 10 A 12 B 20 

Trsm_lunn ( B = upper (A ) −1 B ) B 10 A 11 B 10 

Gemm_nn_mo ( C = −AB + C) B 00 B 00 A 01 B 10 

Gemm_nn_mo ( C = −AB + C) B 00 B 00 A 02 B 20 

Trsm_lunn ( B = upper (A ) −1 B ) B 00 A 00 B 00 

Table 4 

Evolution of the relative residual. 

Resolution 

64 2 256 2 384 2 512 2 

Residual 2 . 09 × 10 −13 1 . 50 × 10 −12 2 . 69 × 10 −12 6 . 42 × 10 −12 

t  

t

 

p  
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t  
s the block size). As can be seen, in this case the full factorization

omprises 14 tasks. The effect of the first eight tasks is shown in

ig. 1 . The remaining tasks (not shown in the graphic) proceed in

n analogous way on the third block column: First, the transforma-

ions obtained when annihilating the elements below the diagonal

n the first block column are applied to the third block column.

econd, the transformations obtained when annihilating the ele-

ents below the diagonal in the second block column are applied

o the third block column. Finally, the elements below the diagonal

n the third block column are annihilated. The QR factorization of

 matrix of any dimension only requires the following four generic

asks: 

• Compute_dense_QR(A, S) : This task nullifies all the elements be-

low the diagonal of input/output block A . The output is two-

fold: The first is the updated matrix A , and the second is the

S factor. The upper triangular part of A contains the updated

R triangular factor. The strictly lower triangular part of A con-

tains the Householder reflectors generated in this QR factoriza-

tion. Matrix S contains the S factors, also required to apply the

transformations obtained in this task. 

• Apply_left_Qt_of_dense_QR(Y, S, C) : The input data of this task

are matrices Y (the Householder reflectors) and S (the S factors),

the output of the previous task. Given these two input matrices

Y and S , this task applies those transformations to input/output

block C . 

• Compute_TD_QR(T, D, S) : The input data of this task are matri-

ces T and D (triangular and dense, respectively, and hence the

acronym TD). This task nullifies all the elements in block D and

accordingly updates block T . The output is three-fold: The first

output is matrix T (containing the updated triangular factor),

the second output is matrix D (containing the Householder re-

flectors), and the third output is matrix S (containing the S fac-

tors). 

• Apply_left_Qt_of_TD_QR(D, S, F, G) : The input data of this task

are the input matrix D (the Householder reflectors) and S (the

S factors). Both of them are the output of the previous task,

i.e. the computation of the QR factorization of a triangular-

dense factor. This task correspondingly updates input/output

matrices F and G with those transformations. 

These four generic tasks will be employed when computing the

R factorization ( A = QR ) and when computing the solution of the

inear system X = R −1 (Q 

T B ) . 

.3.4. System solving 

When a linear system of equations AX = B must be solved by

sing the QR factorization, the first stage is obviously to compute
he factorization A = QR . The second stage is the following compu-

ation: X = R −1 (Q 

T B ) , where Q 

T is the transpose of Q . 

The first sub-step of the second stage ( X = R −1 (Q 

T B ) ) is to com-

ute the product Q 

T B . As usual in linear algebra, matrix Q (or its

ranspose) is not explicitly built because of the large cost (in both

pace and time) of the building operation and the even larger com-

utational cost of the following matrix-matrix multiply. Instead,

he transpose of matrix Q will be implicitly applied by using the

ouseholder reflectors and the S factors previously obtained in the

R factorization. 

The second sub-step of the second stage ( X = R −1 (Q 

T B ) ) is to

ultiply the inverse of R and the result of the previous sub-step

 Q 

T B ). As usual in linear algebra, to reduce the computational cost,

he inverse of R is not explicitly computed, and instead a linear

ackward substitution is applied. A block row algorithm for the

ackward substitution has been employed in order to both increase

he locality and minimize the number of blocks being written (if a

ache of blocks is employed). 

Table 3 illustrates all the tasks generated and executed by the

lgorithm-By-Blocks for computing X = R −1 (Q 

T B ) when the QR

actorization has been previously computed for the case m = n =
 b, where b is the block size. 

. Results 

In this section, the precision and the speed of our new imple-

entations are assessed. The first subsection describes the pre-

ision study, whereas the second subsection describes the per-

ormance study. In all the experiments we used double-precision

rithmetic with double-precision real matrices. 

.1. Precision and image quality study 

In a preliminary test to check the validity of this method, the

orbild Head Phantom [40] for different resolutions (from 64 2 to

12 2 ) was projected and reconstructed. Table 4 shows the rela-

ive residual r = || AX − B || F / || A || F for those resolutions. As can be

een, the data shows that the method is numerically stable and

he solution obtained is very accurate even on the highest resolu-

ion. Although the residual grows with the resolution, it is still low,
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Fig. 2. CT images. 

Table 5 

Average reconstruction image quality. 

Resolution 

64 2 256 2 384 2 512 2 

PSNR 258 228 220 204 

SSIM 1 1 1 1 
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so higher image resolutions could be reached if needed. Table 5

shows the quality metrics results, as an average of the quality of

every slice of the phantom. It is worth mentioning that for the

simulation of the acquisition, the images are always represented

taking attenuation coefficients as gray values. The attenuation coef-

ficients are expressed relative to that of water. In the mathematical

phantom, the range of the gray values is between 0 (air, CT number

-10 0 0) and 1.8 (bone, CT number 800). This is the range of values

used for calculating the quality metrics, and the same conversion

from CT number to attenuation coefficient is also performed for

real CT images. The number of slices for every resolution in these

tests is 32 for the 64 2 pixels resolution, 128 for the 256 2 and so on.

The SSIM metric is equal to 1 for every image resolution, which

indicates we are not losing any internal structure of the images.

The PSNR is high for every case, with results always above 200, al-

though it is higher for the smaller resolutions. In other works as

[16] where we worked with iterative methods, we considered re-

constructions with a PSNR of around 60 to be high-quality when

working with this particular mathematical phantom. 

Fig. 2 (1) and .(2) show the central slice of the phantom and our

reconstruction for a resolution with 512 × 512 pixels, the higher

resolution we have reconstructed. As can be observed, the images

are identical. 

A randomly chosen collection of real CT images from the

dataset DeepLesion [41] was also tested. The selected images,
hich had 512 × 512 pixels, were projected with Joseph’s method

nd used as reference. With these images from the dataset, the

verage PSNR of the reconstructions for 2048 slices correspond-

ng to different studies is 220, and the SSIM is 1. Fig. 2 (3) and

(4) show that our method achieves really high-quality reconstruc-

ions, even though these images are much more complex than the

hantom. 

Fig. 3 shows a comparison of the reconstructions obtained with

oth the QR and LSQR method proposed in [27] using 260 views,

s well as with the FBP method with the Ram-Lak filter using dif-

erent number of views along the 360 degrees of rotation. In this

gure, it can be observed how the QR and the LSQR reconstruc-

ions are similar, although the latter is smoother since our method

ncludes a regularization technique that smooths the image. The

R reconstruction is identical to the reference image. 

As for the FBP reconstructions, it can be seen that using the

ame 260 views, the resulting image contains artifacts due to an

nsufficient number of projections. The artifacts diminish when we

ncrement the number of projections taken, until they can’t be ap-

reciated anymore ( Fig. 3 (6)). This is due to the Nyquist-Shannon

ampling theorem, that implies the ratio between the number of

rojections and the number of samples must be in the order of

/2 (as demonstrated in [1,42] ). In this particular case, since we

ave 1025 detectors (samples), the minimum number of projec-

ions or views needed is 1601 to get an image without artifacts

ue to undersampling. 

Table 6 shows the metrics for this particular image with every

ethod. The results show how the quality improves when we in-

rease the number of views with the FBP method. The best result

ith the FBP has worse quality than the LSQR reconstruction, but

he SSIM is fairly close so the image is similar in terms of internal

tructures, although it has more noise. The QR reconstructions are

uch better than the others, since they are almost identical to the

eference image, with a MSE of 9 . 56 × 10 −24 . 
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Fig. 3. Reconstruction using different methods. 

Table 6 

Quality metrics results for several reconstruction 

methods. 

PNSR SSIM MSE 

QR 235.8 1 9 . 56 × 10 −24 

LSQR 55.1 0.986 2 . 22 × 10 −05 

FBP 260 35.76 0.827 9 . 62 × 10 −04 

FBP 360 37.97 0.920 5 . 78 × 10 −04 

FBP 720 39.25 0.969 4 . 30 × 10 −04 

FBP 1610 39.31 0.973 4 . 24 × 10 −04 
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To conclude, it can be said that to reconstruct the images,

aving full rank in the sparse weights matrix when employing

lgebraic methods is not equivalent to having enough projec-

ions when using analytical methods, since when employing the

ame number of views many more artifacts are obtained with the

atter. 

.2. Performance study 

The computer used in the performance experiments featured

ne Intel i7-7800X® CPU (6 physical cores) and 128 GiB of RAM

n total. The clock frequency of the processor was 3.50 GHz, and

he so-called Max Turbo Frequency was 4.00 GHz. In addition to one

mall SSD for storing the operating system and programming tools,

he computer had two disks that were employed in the experi-

ents, both with a capacity of 2 TB: One Hard Disk Drive (HDD)

nd one Solid-State Drive (SSD) with an M.2 connector. The HDD
spinning disk) was a Toshiba DT01ACA200 (Firmware MX4OABB0).

he SSD was a Samsung SSD 970 EVO 2TB (Firmware 1B2QEXE7).

ccording to the Linux operating system hdparm tool, the read

peed of the first one was about 191.43 MB/s, whereas the read

peed of the second one was about was 2427.50 MB/s. This is an

pper-middle desktop personal computer and its current price is

nly about a few thousand dollars. Its OS was GNU/Linux (ker-

el version 3.10.0-862.14.4.el7.x86_64). GCC compiler (version 4.8.5

0150623) was used. Intel(R) Math Kernel Library (MKL) Version

018.0.2 Product Build 20180127 for Intel(R) 64 architecture was

mployed for solving some advanced linear algebra problems. Our

ew implementations were coded with the libflame (Release

1104) high-performance library, which employed Intel’s MKL for

erforming the small- and medium-sized basic linear algebra com-

utations. 

Because of the variability of the experimental running time on

ome computers, when solving linear systems three experiments

ere ran, and the average values were reported. Nevertheless, we

ust say that the three obtained times were similar on the as-

essed architecture. All the experiments reported show only the

ime required by the computation X = R −1 (Q 

T B ) , since the QR fac-

orization can be computed only once and then employed for many

ifferent images. 

Unless explicitly stated otherwise, all the experiments em-

loyed six threads (and therefore six cores) for computation since

he computer had six cores, the only exception being the codes

ith overlapping of computation and I/O. In this case, five threads

and five cores) were employed for computation and one thread

one core) was employed for disk I/O tasks. 
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Fig. 4. Overall times and decomposed times of the initial configuration (B-OOC + 

HDD) for solving a linear system with A of dimension 266,500 × 262,144, and B of 

dimension 266,500 × k , where k is the number of slices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Time in seconds per slice versus number of slices. 

Number of slices 

Method 256 512 1024 2048 

B-OOC + HDD 14.54 7.72 4.33 2.50 

O-OOC + SDD 1.65 1.00 0.83 0.72 
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We have assessed four configurations, which are obtained as

the combinations of two OOC AB methods (non-overlapping or ba-

sic OOC AB, and overlapping OOC AB) and two types of disks (HDD

and SSD). The assessed four configurations were the following: 

• B-OOC + HDD : The basic (or non-overlapping) Out-Of-Core

Algorithm-by-Blocks for solving the linear system was em-

ployed on the HDD described above. This is also called the ini-

tial configuration. 

• O-OOC + HDD : The Out-Of-Core Algorithm-by-Blocks with over-

lapping of computation and I/O for solving the linear system

was employed on the HDD described above. 

• B-OOC + SSD : The basic (or non-overlapping) Out-Of-Core

Algorithm-by-Blocks for solving the linear system was em-

ployed on the SSD described above. 

• O-OOC + SSD : The Out-Of-Core Algorithm-by-Blocks with over-

lapping of computation and I/O for solving the linear system

was employed on the SSD described above. 

In all our implementations we employed a block size 10240 for

the OOC computations (the number of rows and columns of ev-

ery square block, kept in a different file), since this size usually

renders good results on all the assessed code variants [37–39] . In

our codes, the block size employed inside every task to process the

blocks once they are stored in RAM was 128, since this size usu-

ally renders good performances when processing matrices of size

10240. In the rest of the codes not developed by us (matrix-matrix

products, etc.), the block size was determined by the library that

performed that task (usually Intel’s MKL). 

Fig. 4 shows the overall times and the decomposed times of

the initial configuration (B-OOC + HDD, that is, the basic or non-

overlapping OOC Algorithm-by-Blocks on the HDD) for solving a

linear system with A of dimension 266,500 × 262,144, and B of

dimension 266,500 × k , where k is the number of slices. The aim

of this plot was to assess if the process was feasible, and to deter-

mine the main bottleneck of the application. For the system with

2048 slices, 2.50 seconds per slice were needed; for the system

with 256 slices, 14.54 seconds per slice were needed. These times

showed that the process was feasible, but the times were a bit high

in some cases and very high in other cases. Moreover, the decom-

position of the time showed that I/O times were very high, but

they did not grow too much as the number of slices increased.

Therefore, the main bottleneck of this problem was the I/O time,

instead of the computational time. Then, adding more cores or sev-
ral GPUs to the hardware configuration was not going to help in

his case, and the focus should instead be on a fast disk. 

Fig. 5 compares the performances of the four configurations

escribed above: Basic OOC AB on HDD, Overlapping OOC AB on

DD, Basic OOC AB on SSD, and Overlapping OOC AB on SSD. The

op subplot shows the times in seconds (lower is better), whereas

he bottom subplot shows the speedup (higher is better) with

espect to the initial configuration (basic OOC AB on HDD). The

peedup is computed as the quotient of the time obtained by the

eference configuration and the time obtained by the new con-

guration. Thus, this concept means how many times the new

onfiguration is as fast as the reference configuration. Hence, the

igher the speedups, the better the performances are. As the refer-

nce configuration is the initial one, in the bottom subplot the ini-

ial configuration will be shown as ones. As can be seen, the SSD

reatly reduced the overall times and increased the speed by more

han 6 times for the smallest case (256 slices) with respect to the

nitial configuration. The overlapping of computation and I/O fur-

her increased the speed up to nearly 9 times for the smallest case

256 slices). When the number of slices was high, the improve-

ents were not so great but still very noticeable. 

Fig. 6 shows the overall times and the decomposed times for

olving a linear system with A of dimension 266,500 × 262,144,

nd B of dimension 266,500 × k , where k is the number of slices,

n three configurations: B-OOC + HDD, B-OOC + SSD, and O-OOC +

SD. The left bar for each number of slices shows the overall times

nd the decomposed times of the initial configuration (B-OOC +

DD). As can be seen, its main drawback is the high I/O cost be-

ause of using a HDD. The center bar for each number of slices

hows the overall times and the decomposed times of a configu-

ation similar to the previous one with an SSD (B-OOC + SSD). As

an be seen, the high I/O cost has been greatly reduced. The right

ar for each number of slices shows the overall times of the best

onfiguration (O-OOC + SSD). As this configuration overlaps com-

utation and I/O, the time cannot be decomposed. As can be seen,

n most cases the I/O cost (the fast SSD) of the previous configura-

ion is completely removed. 

Fig. 7 shows the time in seconds required to compute one slice.

s it shows, this time was not constant, and it depended some-

hat on the number of slices: the more slices to compute, the

ower the time per slice. Just consider that, regardless of the num-

er of slices (even for just one slice), the whole factorized matrix

 must be read from disk. Thus, this large cost becomes diluted

s more slices are being computed. In the initial configuration (ba-

ic OOC AB and HDD) the time per slice greatly depended on the

umber of slices. In the best configuration (overlapping OOC AB

n SSD) the time per slice is not so dependent on the number of

lices. 

Table 7 shows the time in seconds required to compute one

lice for both the initial configuration and the most performant

onfiguration. As can be seen, the range of the initial configuration

s very wide (from 2.50 to 14.54 s), whereas the range of the most

erformant configuration is much narrower (from 0.72 to 1.65 s). 

The weights matrix for the highest resolution in our experimen-

al study required a storage of about 560 GB (265,500 × 262,144

ouble precision elements). Besides the weights matrix, additional

pace (patient’s data, final image, temporary data, application code,



M. Chillarón, G. Quintana-Ortí and V. Vidal et al. / Computer Methods and Programs in Biomedicine 193 (2020) 105488 9 

Fig. 5. Time and speedups for the four configurations. 

Fig. 6. Overall times and decomposed times of three configurations for solving 

a linear system with A of dimension 266, 500 × 262,144, and B of dimension 

266,500 × k , where k is the number of slices. 

Fig. 7. Time in seconds per slice for the four configurations. 
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perating system, disk buffers and cache, etc.) makes the total size

equired by this problem even larger. As was told, the computer

ad 128 GB of RAM. However, only 32 GB were employed as a

ache to store blocks of the weights matrix, leaving the rest for

ther purposes (operating system disk cache and buffers, etc.). We

ssessed another computer with 48 GB of RAM, and results were
imilar when using a similar number of cores, but we did not

eport its results because it was a much more expensive server.

ence, to obtain good performances, a smaller main memory could

e used (thus reducing the total price), but a fast SSD is a strong

equirement. 

. Discussion 

In this paper, we present a direct algebraic method based on

he QR factorization for reconstructing CT images efficiently on af-

ordable computers. As we have shown, this method is numeri-

ally stable even for high resolutions provided the weights ma-

rices have full rank. For this reason, our method employs more

-ray projections than the algebraic iterative methods, but fewer

han the analytical methods. Although we have not measured the

adiation dose, literature shows how introducing sparse-sampling

T scanners in the clinical practice could reduce the dose by re-

ucing the exposure time. 

With our proposed method, which uses a number of projections

hat guarantee the full rank of the weights matrix, high-quality im-

ges are obtained without requiring an a-priori knowledge or inter-

ction with the patient. This method guarantees the non-creation

f artifacts except those produced by problems on detectors, dis-

ersion, movement, intensity of the source, etc., which can be cor-

ected by filtering and segmentation techniques. In addition, our

econstructions achieve remarkable quality even for complex real

T images. It is worth mentioning we have not considered or re-

oved the possible noise on the projections, which we consider

nnecessary for this work since most modern CT scanners have

heir own algorithms to improve the projections and remove the

rtifacts on the sinograms when a scan is performed, so the data

e get is already clean. 

We have shown that an efficient reconstruction of CT images

an be achieved using Out-Of-Core and Algorithm-By-Blocks tech-

iques. By using our techniques, affordable computers with a price

f about one order of magnitude lower can be successfully em-

loyed, because a large main memory (which is quite expensive) is

ot required, just a fast hard drive. For this reason, the equipment

eeded to reconstruct the images is affordable and thus more ac-

essible to the public. The type of hard drive can improve our re-

onstruction times drastically. When using a HDD, the performance

s dominated by the I/O time, whereas when using an SSD the I/O

ime is greatly reduced and the performance is dominated by the

omputational time again. 

Furthermore, the method that overlaps computation and I/O

an further reduce the reconstructing time, thus making our

ethod more competitive. We could perform an standard CT study
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with resolution 512 2 and 256 slices in about 7 minutes. We have

also shown that the cost per slice is lower as the number of simul-

taneous slices to reconstruct is higher, which would be beneficial

for full-body CT scans. Our proposed method is not as fast as the

state-of-the-art fast backprojection techniques [43,44] , which can

obtain a high-resolution 1024 2 pixels image in 0.565 s on an Intel

Xeon 3.4 GHz processor when reconstructing only one slice. How-

ever, we believe that this performance difference is much smaller

when reconstructing multiple slices (see Table 7 ). On the other

hand, our proposed method provides exact solutions that avoid

noise or artifacts, which can be a very interesting approach even

if the computational complexity is slightly higher. 

5. Conclusions 

With the proposed QR factorization method and system solving

using Out-Of-Core techniques we were able to reconstruct high-

quality CT images using the minimum number of projections to

have full rank. Our results show that efficiently computing high-

quality reconstructions with direct algebraic methods on afford-

able equipment can be achieved since our approach relies on the

cheaper hard drives, instead of the more expensive main memory.

Using SSD storage we can further boost the performance of the

method, reducing the I/O time significantly. Because of the stabil-

ity of our method, we could increase the resolution of the images

provided we had enough storage space, and solve larger systems

getting valid results. 
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