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Rubén Moliner-Heredia1, Ignacio Peñarrocha-Alós1 & Roberto Sanchis-Llopis1

Abstract— In this paper, we have developed an Economical
Model Predictive Control (EMPC) for a Wastewater Treat-
ment Plant (WWTP) with the use of a standard semidefinite
programming solver. In this case, the objective has been to
keep the ammonium concentration in the effluent under limits
manipulating the air insufflation pumps at the biological reactor
and an internal recycle valve. The minimized cost function
consists of the product of the energy consumed by the air
insufflator and the cost of the electricity, taking into account
the variations of the tariffs over the day. We have simulated
the behaviour of the WWTP using the Benchmark Model
Simulation no 1 (BSM1), and we have developed a linear
prediction model in order to apply the EMPC method.
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I. INTRODUCTION

Wastewater is one of the results of human activity. This
polluted water must be treated before returning it to the
environment. Wastewater Treatment Plants (WWTPs) are
industrial facilities whose aim is to treat and cleanse wastew-
ater in order to return it in acceptable conditions. Thus,
WWTPs are crucial agents in an environment-friendly so-
ciety, so an appropriate control of their behaviour is essen-
tial. Unfortunately, WWTPs are complex nonlinear dynamic
systems subjected to large disturbances and uncertainties.
This is due to the fact that these systems must face wide
variations of the influent wastewater, and the biochemical
and physical processes that happen in their inside feature
limits and saturations. Therefore, controlling WWTP can be
an intricate task. In the literature, different control strategies
have been proposed. Most of those papers are based on the
model that the Benchmark Model Simulation no 1 offers [1],
which also has developed a control strategy that consists of
two proportional-integral controllers (PI). Another paper [2],
also takes into account this control method, and compares
its performance with a Model Predictive Control (MPC)
and with an Economic Model Predictive Control (EMPC)
they have proposed. Other papers, such as refs [3]–[5],
have also developed EMPC methods. While all of them
use Performance Indexes (which are linear combinations of
inner states of the WWTP utilized to check its performance
assessment) or weighted variations of those indexes in order
to minimize a cost function proposed by the BSM1, none of
them take into consideration the electricity tariff variation,
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which changes over the day. Besides, more control methods
have been proposed, such as fuzzy control in [6]. A more
deep dynamic analysis of the WWTPs is also addressed in
[7]. On the other hand, some papers (ref [2]–[4]) apply the
optimization (which is needed to solve the EMPC problem)
directly onto the whole system, so it technically becomes a
nonlinear model predictive control method. Actually, papers
[3], [4] use a simplification of the BSM1 model, which
reduces the calculation time (but it is still a nonlinear MPC).
A linear prediction model would significantly reduce the
calculation time while using the BSM1 equations, as well
as the implementation cost.

II. MODEL DESCRIPTION

A. Base Model

In order to obtain an appropriate model of a WWTP, we
have used the Benchmark Simulation Model no 1 (BSM1)
[1]. This model describes the behaviour of a biological
reactor with two non-aerated compartments followed by
three aerated compartments. The equations that regulate
this reactor come from the Activated Sludge Model no 1
(ASM1). The BSM1 also describes the behaviour of the
secondary clarifier. An explanation of these equations can
be found in [8]. As it can be seen in Figure 1, influent
wastewater (Qi) enters the bioreactor and crosses all the
compartments. In the meanwhile, the bacteria stored in the
reactor treats the wastewater, eliminating some components
and generating some others. In the last compartment, there
is a bifurcation, where some of the flow (Qint) is recycled
back to the first compartment, and the other part flows to the
secondary clarifier (Qf ). Here, wastewater is subjected to a
settling process, and the flow is yet divided into the effluent
(Qe), which may be dumped directly into the river, and the
underflow (Qu), which is rich in particulate components.
This flow is partially purged to eliminate some of these
particles, which results in the generation of sludge (Qw).
The rest of the flow (Qr) is also recycled back to the first
compartment of the biological reactor.

The differential equations that model the BSM1 use 13
different internal states for each compartment, which cor-
respond with 12 components and a measure of alkalinity.
In this paper, due to the recent improvements in the field
of ammonium sensors, we have chosen the ammonia and
ammonium concentration in the effluent flow (SNH,e) as the
measured variable. In correspondence with the BSM1 exam-
ple, the oxygen transfer coefficient in the fifth compartment
(kLa5) is a controllable input. Besides, we have considered
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Fig. 1. BSM1 Model Adaptation.

that a valve (VIR) located in the internal recycle (Qint),
which decides the percentage of the flow that returns back
to the reactor, is also a controllable input.

B. Modeling for prediction and control

The BSM1 model defines the secondary treatment of a
WWTP as a nonlinear system that can be described as a
space-state model that requires up to 145 state variables. This
is due to the substantial amount of inner processes that take
place in each reactor:{

ẋ(t) = f (x(t), u(t)) ,
y(t) = g (x(t)) ,

(1)

x ∈ R145 u = [kLa5, VIR] ∈ R2.

In order to implement a predictive controller that can
optimize the cost of the consumed energy with an acceptable
computation time, the full nonlinear model (which is ex-
tremely complex) cannot be used in the optimization. There-
fore, we need a simpler approximate model. The approach
followed in this paper has been to use a linear discrete time
model of a high order, completed with a nonlinear static term
at its output to form a Wiener model (Fig. 2).
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Fig. 2. Proposed Wiener Model for the plant.

The linear model consists of a difference equation of
order m relating the three considered inputs (control inputs
kLa5 and VIR and disturbance Qi), and an intermediate

output signal z. The final output, SNH,e, is a static nonlinear
function of this intermediate variable z:

zk =

j=m∑
j=1

(aj zk−j + bj kLa5,k−j+

+cj VIR,k−j + dj Qi,k−j) +K,

SNH,e(k) = g (zk) .

(2)

where the model coefficients aj , bj , cj , dj and K are
calculated applying an identification procedure using data
obtained from a simulation experiment performed in the
nonlinear model. In this experiment, the input variables have
been changed such that the input output data is sufficiently
exciting for the frequencies of interest.

The nonlinear function g(z) has been selected to be
continuous, differentiable and monotonously increasing in
the considered range, trying several candidates and choosing
the one that minimizes the prediction error. Finally, function
g(z) = z2 has been selected as a reasonable compromise
between simplicity and prediction accuracy.

Model (2) aims to approximate the behaviour of the
nonlinear model (1) and is used in the prediction equations
of the optimization algorithm. We assume that the inflow
concentration is constant, as the primary treatment acts as a
large capacity buffer tank, which filters out the variations of
inflow concentrations.

C. Electricity pricing

In the Spanish electricity market, there are some special
tariffs that are usually applied to industries which have high
electricity consumption rates. These tariffs consist of several
(three or six) pricing periods, distributed around the whole
day, whose price does not depend on the market pool. In
this paper, we take into account the daily oscillations of the
electricity tariffs (ET). In this case, we assume that only the
input variable kLa5 consumes electricity, as the consumption
of valve VIR is negligible compared to it. To obtain the



total cost of the electricity during a time span, we use this
equation:

EC5 =
Ssat
O · Vas,5

1.8 · 1000

t=tf∫
t=t0

ET (t) kLa5(t) dt. (3)

where oxygen saturation concentration, Ssat
O and the volume

of tank 5, Vas,5 are parameters of the BSM1 model. This
equation is an enhanced and modified version of the aeration
energy AE from the BSM1 [1], as it includes the electricity
cost variation, and only considers the energy consumption of
the air insufflation pump in the fifth compartment, as only
that one is assumed to be controlled. Calculating the cost
of using the other air pumps is pointless, as they remain
constant and no enhancement can be shown.

D. Influent flow prediction

An appropriate predictive control method requires a fore-
casting of the forthcoming disturbances. In the BSM1, the
main disturbance is the influent flow, which, due to being the
result of daily human activity, it roughly follows a certain
daily and weekly pattern. However, the seasonal nature of
human activity and natural random variations from day to
day distort that pattern. Hence, the behaviour of the influent
can be modelled as a sum of two components, as:

Qi(n) = h1(n) + h2(n), (4)

where n is an index that defines the relative instant inside
one week, h1 represents the periodic predictable part, and
h2 represents the uncertain unpredictable part. The pattern
h1 is predicted by means of a lookup table that is filled
with averaged measurements. As the weekdays patterns are
different from the weekend ones, the table stores the values
of each timestamp for a whole week. The table updating
equation includes a first order averaging, so every sampling
time the following equation is computed:

ĥ1(n) = p ĥ−
1 (n) + (1− p)Qi(n). (5)

where ĥ−
1 (n) represents the value of the lookup table cor-

responding to instant n of the week, which was updated
the previous week. The online update of the table tries to
maintain in a low value the part of the uncertainty (h2) that
depends on the seasonal behaviour. In case of rainfall, the
update of the table is simply interrupted, leaving the old
values unchanged. On the other hand, the prediction of the
influent flow is calculated as the value of the stored table
(ĥ1(n)) for future instants, but as the real measured input
flow (Qi(k)) for past instants. The past values are needed
to compute the prediction model equations. Therefore, Q̂i is
calculated as:

Q̂i(t0 + j) = ĥ1(n0 + j),

Q̂i(t0 − j) = Qi(t0 − j).
(6)

where n0 indicates the instant inside this week that corre-
sponds to the absolute time t0.

III. DESCRIPTION OF THE PROPOSED CONTROL
STRATEGIES

The approach we have proposed is an Economic Model
Predictive Control (EMPC) strategy. The fundamentals of
EMPC are described in [9]. The main control objective
is to minimize the cost of the electricity, expressed as
a discretization of equation 3, fulfilling some constraints
regarding the range of the input signals and the limits in
the output ammonia concentration:

min
kLa5(t0:t0+H),VIR(t0:t0+H)

J =

k=t0+H∑
k=t0

kLa5 (k)ET (k) ,

(7)

s.t.

kLa5(k) ∈ [kLa5, kLa5] k ∈ [t0, t0 +H] ,
VIR(k) ∈ [VIR, VIR] k ∈ [t0, t0 +H] ,
ẑk = g−1 (SNH,e,k) k ∈ [t0 −m, t0] ,

ẑk ∈
[
g−1(SNH,e), g

−1(SNH,e)
]

k ∈ [t0, t0 +H] ,

ẑk =

j=m∑
j=1

(aj ẑk−j + bj kLa5,k−j+

+cj VIR,k−j + dj Q̂i,k−j

)
+K

k ∈ [t0 + 1, t0 +H] .

The control objective consists of the minimization of
the total electricity cost of the aeration during a prediction
horizon H (integral along the period of the product of the
electric power resulting from kLa5 times the electricity cost
ET (t)). The main constraint to be fulfilled is the allowed
upper limit of ammonium concentration in the effluent
(SNH,e). The future ammonium evolution is predicted using
the approximate model (2). On the other hand, kLa5 and VIR

are also restricted to the actuator limits (kLa5, kLa5, VIR,
VIR).

This optimization problem can be unfeasible in some
instants. This could happen due to uncertainties caused by
approximating the whole nonlinear model with a Wiener
model, or due to miscalculations of the influent flow pre-
diction. If this happens, a secondary tracking optimization
controller is ready to obtain a suitable control action:

min
kLa5(t0),VIR(t0)

J =
(
SNH,e − g (ẑt0+1)

)2
, (8)

s.t.

kLa5(t0) ∈ [kLa5, kLa5],
VIR(t0) ∈ [VIR, VIR],
ẑk = g−1 (SNH,e,k) k ∈ [t0 −m, t0] ,

ẑk =

j=m∑
j=1

(aj ẑk−j + bj kLa5,k−j+ ,

+cj VIR,k−j + dj Q̂i,k−j

)
+K

k = t0 + 1.

This secondary controller (TMPC) tries to minimize the
difference between the ammonia output concentration and



the upper limit. We use the same prediction model in order
to predict the future value of zk and therefore, the value of
SNH,e.

Every sampling time the EMPC optimization is run first. If
it delivers a feasible solution, it is applied until next period.
However, if no feasible solution is obtained from EMPC, the
TMPC optimization is run, and the obtained solution applied
until next sampling time.

IV. SIMULATION RESULTS

A. Simulation settings

In this subsection, we explain the parameters that have
been used to implement the EMPC.

The influent data is provided by the BSM1 [1]. In this case,
we have used the dry weather data set repeatedly throughout
the length of the simulation. As we have only used dry
weather data, the rain effect is not taken into account.

The volumes of the compartments at the biological reactor
are also provided by the BSM1. They are Vas,1 = Vas,2 =
1000 m3 and Vas,3 = Vas,4 = Vas,5 = 1333 m3.

The electricity tariff we have chosen corresponds to work-
ing winter days for Spanish tariff 3.1A., leading to an
electricity price, ET (k) that varies along the day as shown
in figure 5. The reason is because in this tariff there are a lot
of variations of the price over the day, so the performance
of this EMPC method is tested in an unfavorable case.

We have used the toolbox YALMIP to prepare the opti-
mizer sedumi, which minimizes the objective function.

The air insufflators in compartments 3 and 4 of the
biological reactor are working at a constant rate of kLa3 =
kLa4 = 240 d−1, while compartments 1 and 2 are anoxic, so
kLa1 = kLa2 = 0 d−1. The air insufflator in compartment
5, as the main controllable input, can work in a range of
kLa5 ∈ [0, 240] d−1.

On the other hand, the signal VIR is defined as the per-
centage of flow from compartment 5 that gets recycled back
(Qint) to the first compartment, that is changed using a valve.
Therefore, it ranges from 10% to 90% to prevent completely
closed loops or bypasses (VIR ∈ [0.1, 0.9]). Besides, in order
to avoid undesired effects of sudden changes of flow in
valves, we have added a small time filter to smooth the
changes of the variable VIR.

We have set the ammonium limit SNH,e to 9 g N ·m−3,
while setting SNH,e to 0 to indicate mathematically the lower
real limit of a concentration. The legal requirement for the
upper limit refers to a daily average below 9. However, we
have set it as an instantaneous limit, to cope with transient
violations due to the approximate prediction model and
disturbance uncertainties.

We have performed the simulation of the BSM1 WWTP
dynamic model using a time sampling of 1 min. However,
we executed the control algorithm with a higher sampling
period of 60 min. We have chosen an order m = 13 for the
linear dynamic model of the WWTP used in the predictor,
i.e., the predictor model uses the last m = 13 hours of
data. The prediction horizon of the predictive control is H =

32 h. The experiment simulates 39.66 days of control and
operation.

With the aim of a comparative analysis of the behaviour
of the proposed EMPC, we considered a simple relay-based
control as an alternative. We chose that method because
it is a common, simple and effective way to control the
ammonium concentration. This control method only activates
the air pump in compartment 5 when the ammonium effluent
surpasses the threshold SNH,e. The logic of the relay is
shown here:

{
if SNH,e ≥ SNH,e, kLa5 = 240 d−1,
if SNH,e < SNH,e, kLa5 = 0 d−1.

(9)

The valve VIR remains in this case static at 60%, which
recycles the flow in the same proportion as the stable
conditions from BSM1. As for kLax in compartments 1
to 4, the conditions are identical to the previous case, as
kLa1 = kLa2 = 0 d−1 and kLa3 = kLa4 = 240 d−1.

B. Simulation results

In this subsection, we show and discuss the simulation
results.
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Fig. 3. SNH,e under limits using the EMPC method.

1) Keeping SNH,e under limits: Figure 3 shows the values
of SNH,e from day 20 to day 30. We took this sample to
facilitate comprehension. As it can be seen, most of the
time the effluent ammonium concentration remains under the
limit (SNH,e). There is an explanation for the moments that
SNH,e surpasses the upper limit. This happens because the
Wiener model is an approximation of the nonlinear system,
and sudden signal peaks may not always be detected by the
EMPC, who interprets them as still being under limits. The
uncertainty of the inlet flow prediction is another factor that
makes the final ammonium surpass the limit. However, the
average daily value of SNH,e (expressed as avgSNH,e

) shows
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Fig. 4. SNH,e under limits using the relay-based control method.

that it always remains well under the limits, which is the
desired result.

On the other hand, Figure 4, shows that the ammonium
output SNH,e surpasses the limit far more frequently and
with more intensity with the relay control than with the
EMPC method. The average avgSNH,e

also fluctuates more,
crossing the limits in some occasions, and in others the
average goes under 8 g N ·m−3. This shows that the EMPC
optimizes the consumed energy, as it keeps SNH,e under
limits without overusing the air pump.
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Fig. 5. Electricity tariff function and behaviour of the inputs (EMPC
method).

2) Effect of the tariffs on the actuators: Figure 5 shows
the actuator and the electricity tariff values, so the effective-
ness of the EMPC method can be displayed. The ET changes
along the day. The graph shows that in the cheapest periods
kLa5 works at its maximum power, trying to minimize the
SNH,e output at minimum cost. On the other hand, note that
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Fig. 6. Electricity tariff function and behaviour of the inputs (relay method).

in the more expensive periods, kLa5 is off or in lower values,
and only activates if it has no choice to keep SNH,e under
limits. The valve VIR is gradually opened (recycling more
flow) in the cheapest periods, increasing SNH,e, so in the
most critical and expensive periods it can be closed, reducing
SNH,e and the need of aeration.

On the other hand, Figure 6 shows that, as expected, the
relay control method activates and deactivates the air pump
kLa5 without taking into account the electricity cost. The
valve VIR, as we have explained before, remains fixed at
60%.

3) Cost comparison of the implemented methods: Figure
7 shows the daily cost of aeration of tank 5 (in AC). Both
control methods can be compared. We have obtained the
values using equation 3. It can be seen that the daily cost
with the EMPC method is clearly lower than the cost with
the relay control method. The cost reduction is between 20%
and 30% depending on the day. This could represent, for a
small plant, around 10000 AC in savings per year. And this
savings are obtained while at the same time the ammonium
concentration control is improved, as we explained. The
weekly variations can also be observed in this plot; the cost
in the weekends is lower because the input flow is lower in
the weekends, according to the BSM1 data set used.

V. CONCLUSIONS

In this paper, we have presented an Economic Model Pre-
dictive Control for the regulation of a wastewater treatment
plant. The objective is the minimization of the energy cost
of the aeration process, taking into account the electricity
tariffs, which vary along the day. The output variable that
is assumed to be measured is the ammonium concentration
at the outlet flow. This variable must be maintained below
a given threshold defined by legal requirements. The main
control action is the aeration of the last compartment of the
plant, which is assumed to be performed by an electrical air
pump.



0 10 20 30 40

0

20

40

60

80

100

120

days

AC
EMPC Relay

Fig. 7. Comparison of the total cost of aerating compartment 5 using each
control methods.

We have used the BSM1 model in order to simulate the
plant behaviour. This is a highly nonlinear complex model
with 145 states. In order to define a low computational cost
optimization problem for the predictive controller, we have
proposed a simpler model of the plant. It consists of a linear
discrete time model with a nonlinear static function at the
output. We have obtained the parameters of this model by
identification from the simulated nonlinear plant.

We also defined a simple input flow predictor. It consists
of a one week length lookup table that is updated online with
every input flow measurement using an updating filter.

We carried out some simulations to test the validity of
the approach. The behaviour with respect the ammonium
concentration at the outlet flow is correct. The concentration
surpasses the upper limit sporadically, due to uncertainties in
the input flow prediction and due to the approximate model
used, but the average daily concentration is clearly below the
limit. On the other hand, as we expected, the controller tries
to use maximum aeration during the cheapest tariff periods,
while trying to reduce the aeration during the most expensive
ones. The result is a significant overall cost reduction if
compared, for example, with a simple relay controller.
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