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In recent years, the advances in topological insulator in the fields of condensed matter have 
been extended to classical wave systems such as acoustic and elastic waves. However, the 
quantitative robustness study of topological states which is indispensable in practical realization 
is rarely reported. In this work, we proposed topologically protected edge states with zigzag, bridge 
and armchair interfaces in a new twisted phononic plate. The robustness of non-trivial band gap in 
bulk structure is clearly presented versus twisted angles, revealing a threshold of 5 degrees which 
is the key fundamental information for the robustness of topological edge states. We further 
defined a localized displacement ratio as an efficient parameter to characterize edge states. Due to 
the different orientation of the three interfaces, zigzag and bridge edge states show higher 
quantitative robustness in their localized displacement ratio. A map of robustness as a function of 
both frequency and twisted angle highlights the better performance of the topological zigzag edge 
state. Robustness is evaluated for twisted angle and for all possible types of interfaces for the first 
time, which benefits for the design and fabrication of solid functional devices with great potential 
applications.   
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1. Introduction 

Topologically protected states with single directional propagation and back scattering free 
properties attract increasing attention in quantum [1] and photonic [2] systems. Recently they have 
been extended to acoustic [3-5] and elastic [6-8] systems. Generally, Dirac cones are protected by 
the space inversion and the time-reversal symmetries. To obtain topological insulators, several 
mechanisms including the quantum Hall effect [9-11], the quantum spin Hall effect [12-19] and 
the valley Hall effect [4, 20-25] are proposed to open non-trivial band gaps from Dirac cones. 
Chern numbers of the bands above and below the opened gap can be calculated as a non-zero value 
revealing the topological property of the bands. Various topological protected edge states and even 
topological Fano resonances [26] can be realized as a consequence and they can exhibit robustness 
against defects, sharp bends/corners, disorders, among others. The analogue in mechanical plate 
system deserves special attention since it has great potential applications in solid functional devices 
in nano/micro scale and vibration isolation and energy harvesting in macroscale.  

However, in most of the previous references, the robustness of the topological edge states 
was demonstrated qualitatively by introducing certain perturbations while the quantitative 



 2 

investigations of their robustness remain unexplored. Recently, Jin et al quantitatively studied the 
robustness of topologically protected zigzag edge states in pillared phononic crystals with respect 
to position and geometrical parameters disorders by calculating the transmission curves and 
revealing that their trends exhibited a threshold with the amount of disorder [27]. Orazbayev and 
Fleury quantitatively analyzed topological edge modes in photonic crystals with zigzag, bridge 
and armchair interfaces and compared them in spin-Hall and valley-Hall insulators showing the 
importance of the specific edge on the robustness [28]. Deng et al systematically studied the angle 
dependence of topologically protected armchair edge states and revealed the difference and 
similarities to spin-Hall and valley-Hall effect designs [29]. For the platform of phononic plates 
[30-34], it is possible to design a phononic plate with double sided pillars and further twist the 
double layers as a Moiré pattern. Therefore, twisted angle behaves as a new perturbating degree. 
Despite that Moiré patterns are widely studied in bilayer of graphene, it remains unexplored in 
mechanical system. It will be interesting to know how topological states maintain robust in 
mechanical Moiré patterns and how the robustness bears for different types of interfaces.  

In this work, we first study the non-trivial band gap in double sided pillared plate that 
possesses wider gap width than single sided case, leading to a better wave prohibition. The 
dependence of this non-trivial band gap with twisted angle will be consequently analyzed to offer 
a general view of the robustness, which plays a key role in robust topological edge states. Then, 
the three types of interfaces, namely zigzag, bridge and armchair, are constructed between two 
bulk topological media, showing different behaviors and robustness of topological edge modes. 
Due to different orientations, the three topological edge states exhibit different trends in localized 
displacement ratio curves as well as the displacement distributions. Finally, the full maps of 
robustness as a function of both twisted angle and frequency are provided to give a comprehensive 
understanding.  
 
2. Robustness of topologically protected band gaps 

We first consider a honeycomb arrangement of pillars attached to a thin elastic plate on a 
single side or on both sides. The entire structure is made of aluminum, whose elastic parameters 
are Young’s modulus E = 73GPa, Poisson ratio n = 0.17 and density r = 2730kgm-3. It should be 
noted that the model can be applied to other solid materials since the physical trends and 
conclusions are mainly related to the geometrical parameters rather than to the material properties. 
The equations of motion of the solid structure are, assuming harmonic time dependence,   

w2r ui=sij,j                              Eq.(1a) 

sij=Cijkl uk,l                                            Eq.(1b) 

where w is the angular frequency, u is the displacement vector, s  the stress tensor and C the 
stiffness tensor, which for isotropic materials is a function of the Young’s modulus E and Poisson 
ratio n only. Einstein’s summation convention has to be applied for repeated indexes. We apply 
Bloch boundary conditions at the boundaries of the two-dimensional unit cell that defines the 
periodic arrangement of pillars over the plate, and free boundary conditions at the surfaces of the 
solid in contact with air. The resulting eigenvalue problem is solved by the finite element method 
and a set of dispersion curves w=w(k), with k being Bloch’s wave number, are obtained and 
depicted normalized units Wa defined as 

W2 = w2ra2e/D                             Eq.(2) 
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where a is the lattice constant, e the thickness of the plate and D=Ee3/12(1-n2) the rigidity of the 
plate. We will use e=0.1a as the thickness of the plate in the following calculations. The radius of 
the pillar is r =0.1a. In the single-sided unit cell, the masses of the two pillars can be identical 
mR1=mR2 (or h1=h2=1.2a, h is the height of the pillar) or different mR=3mR2 (h1= 1.2a, h2=0.4a). 
For double-sided unit cell, the two pairs of pillars are symmetric with respect to the middle plane 
of the plate. The choice of h1 and h2 should consider two factors: i) increasing the difference 
between h1 and h2 broadens the opened bandgap from the Dirac cone; ii) however, a change in the 
heights h1 and h2 will obviously change the resonant frequencies of the pillar (e.g. bending and 
compressional modes) which consequently may shift into the interested frequency range 
associated with the original Dirac cone and further interact with the flexural mode, resulting in 
several divided bandgaps. To realize a wide opened bandgap which is isolated from resonant 
modes, we found the choice (h1= 1.2a, h2=0.4a) works well. 

Fig.1(a) shows the full band structures of identical or different single-sided pillars in the 
honeycomb unit cell as marked in blue and black, respectively. Due to the spatial symmetry for 
identical pillars, a Dirac cone of flexural mode appears at the K point in the first Brillouin zone. 
The frequency of Dirac cone is related to the compressional resonant frequency of the pillars and 
the ratio between the mass of the pillars and that of the plate in the unit cell[35]. When the two 
pillars are different, e.g. h1= 1.2a and h2=0.4a, the inversion symmetry of the unit cell is broken 
while C3 symmetry is preserved, resulting in the opening of the Dirac cone that forms a non-trivial 
band gap for flexural mode. For the double-sided case, the full dispersions are plotted in Fig.1(b). 
Since the mass ratio between pillars and the plate is double from single-sided to double sided, the 
frequency of the Dirac cone decreases slightly [35]. When the inversion symmetry is broken, the 
width of the non-trivial band gap of flexural mode is about 2 times the one in Fig.1(a). A wider 
band gap can support better flexural wave prohibition with less leakage into the bulk modes, which 
is an advantage of the double-sided pillared phononic plates. It is also found that the robustness of 
the topologically protected state for double-sided phononic plate can be higher than that for single-
sided case (as seen the example in Fig.S1 in the Supplementary Information).  
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Figure 1: (a) Dispersion curves of the phononic crystal plate with single-sided pillars when the masses of two pillars 
in the honeycomb unit cell are equal h1=h2=1.2a (blue) or different h1= 1.2a and h2=0.4a (black). The unit cell 
geometries are shown on the right; (b) same as in (a) but for double-sided pillars. The unit cell geometries are shown 
on the right;(c) and (d) are Berry curvatures for the black bands below and above the non-trivial gap near the valley 
K in (b), respectively. (e) an example of the zigzag interface (marked as the dotted rectangle) between two 
topologically different one-sided phononic plates. The heights of the yellow and red pillars are respectively h1=1.2a 
and h2=0.4a (f) an example of the twisted double sided phononic plate with 4 twisted degrees. The two colors mean 
the positions of the pillar patterns in the two sides of the plate. The twisted zigzag interfaces are marked as blue and 
red dotted rectangles. 
 

The valley Chern number of the lower and upper bands associated with the gap are 1/2 and -
1/2 by the numerical integration of the Berry curvature over a small region around the valley K, 
calculated as 

𝐶 = !
"# ∫Ω(𝑘

'⃗ ) 𝑑𝑘'⃗                            Eq.(3) 

Ω(𝑘'⃗ ) are the Berry curvatures, shown in Fig.1(c) and (d) for the two bands which are below and 

above the gap. The opposite valley Chern numbers are implied by band inversion mechanism, 
making the system support topologically protected states within the non-trivial band gap, as an 
elastic analog of quantum valley Hall effect. An interface can be consequently constructed by two 
bulk media with different orientations (as shown the zigzag interface in the dotted rectangle in 
Fig.1e) and topologically protected interface states can be realized. The comparison of quantum 
valley Hall, quantum spin Hall and quantum Hall effects analogs can be found in detailed in recent 
reviews [5, 8].  

For double-sided pillared phononic plates, it is possible to twist the honeycomb lattice pillars 
on one side while keeping the other side fixed, forming a Moiré pattern as shown in Fig.1(f). From 
Fig.1, the absolute band gap of flexural modes maintains along any direction of the first Brillouin 
zone.  

We construct a 12´10 superlattice of double-sided pillared phononic plates. Periodic 
boundary conditions are applied to the two edges of the plate along the direction of 12 units. A 
flexural wave is excited and out of plane displacement is integrated along a line at the exit of the 
superlattice. We fix pillars on one side of the plate, then twist the pillars on the other side with the 
origin as the center of the superlattice. The transmission is calculated as the integrated 
displacement ratio between pillared plate and a reference plate without pillar. Wave propagations 
along GK and GM directions are compared to the case when the twist angle is zero. In Fig.2 (a) 
and (b), the transmission diagrams as a function of the normalized frequency and twist angle are 
displayed, where the values of the color bar stand for the transmission. When the twist angle is 0 
degree, the band gap ranges from Wa =9.5 to Wa =13.7 for GK and from Wa =8 to Wa =12.8 for 
GM. For twist angles larger than 5 degrees, the non-trivial band gap disappears. The twisted 5 
degrees plays a threshold in robustness of the non-trivial band gap.   

Increasing twist angle changes the double-sided pillared phononic plate from an insulator to 
a conductor for flexural waves. Since edge states are topologically protected in the non-trivial band 
gap, if the non-trivial band gap is disturbed, topologically protected edge states will fail to exist, 
showing the importance of the robustness property displayed in Fig.2.  
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Figure 2: (a) GK directional transmission diagram as a function of the normalized frequency and twist angle. (b)  
same as in (a) but in GM direction. The values in the color bar mean the transmission coefficient. (c) The three 
boundaries (zigzag, bridge and arm chair) of the honeycomb lattice and the corresponding first Brillouin zone.  
 
3. Robustness of topologically protected interface states 

Similar to the graphene lattice, the honeycomb lattice has three types of edges, namely zigzag, 
bridge and armchair edges. In most previous studies, one type of edge is chosen to analyze 
topological edge states for acoustic and elastic waves. Here, we compare topological states among 
all the three edges for twisted Moiré patterns. The interface of two bulk lattices as zigzag, bridge 
and armchair edges are constructed in the center of a stripe with finite length in horizontal direction. 
The dispersions of these stripes are calculated and presented in Fig.3, where the color bar means 
the ratio of total displacement 𝛽 in interface pillars and in all pillars 

𝛽 =
∭ %|'!|"()'#)

"
(|'$|"*+%&'()*+,(	.%//+)0

∭ %|'!|"()'#)
"
(|'$|"*++//	.%//+)0

                  Eq.(4) 

where ux, uy and uz are the three displacement components. From Fig.3, new edge modes 
highlighted in colors appear in the flexural non-trivial band gaps for all three types. For zigzag and 
bridge interfaces which are along GK direction (as shown in Fig.2c), only the topologically 
protected edge modes exist in the band gap with highly concentrated elastic energy at the interface 
pillars; the armchair interface which is parallel to GM direction supports two light branches as well 
as two blue branches appearing in the band gap which are all quite flat, hence they are not expected 
to support sufficient robust edge propagations [28]. From the associated eigenmodes at the bottom 
of each dispersion curves in Fig.3, the elastic energy of the zigzag and bridge interface states is 
mostly concentrated at the middle interface whereas it is leakier into the bulk for the armchair case.  
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Figure 3: Edge mode dispersions for (a) zigzag (b) bridge and (c) armchair interfaces. The color bar of dispersions 
with the same scale represents the ratio between total displacement in the interface pillars and in all pillars. The 
displacement fields of the three edge modes are placed at the bottom of dispersion curves.  
 
 

It is important to quantitatively investigate the robustness of edge states against perturbations 
in solid-state phononic device applications. The robustness against random positions and 
geometric parameters/resonant frequencies are already studied recently in [27, 28] . We study here 
this issue in Moiré pattern double-sided pillared phononic plates. For this purpose, we consider the 
round structure in Fig. 4 where the interface pillars are covered by the blue rectangle. Two bulk 
lattices I and II with different topological phases that define the interfaces are separated by the 
blue dotted line. A flexural wave source with finite length (out of plane force applied to a finite 
vertical section in the plate) is set at the left of the interface and perfectly matched layers are 
applied to the outer boundary of the round phononic plates to avoid any wave reflection. The red 
dot defines the center point around which the twisting takes place. We quantitatively calculate the 
localized displacement ratio F as  

Φ =
∭ %'!"('#"('$"*+12!(3	.%//+)0

∭ %'!"('#"('$"*++//	.%//+)0

                  Eq.(5) 
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Figure 4: Adopted simulating model (zigzag interface as an example). The lattices I and II of the bulk phononic 
structures are separated by the dotted blue line with the interface pillars covered by the blue rectangle. The red dot is 
the center of twisting. A line Lamb wave source is excited at the left exit of the interface. The whole phononic structure 
is surrounded by a PML to avoid any wave reflection from the boundary.  
 

We choose the normalized frequency 9.66 (zigzag),11.34 (bridge),9.91(arm chair) to analyze 
the robustness of interface states against different twisted angles since the three interface states are 
well excited at these frequencies. In the left part of Fig.5, we plot the behaviors of localized 
displacement ratios, then we show 4 propagating fields for each interface on the right. For zigzag 
interface, the localized displacement ratio first keeps stable until a twisted angle of 1°, then it 
slowly decreases until 3°. Between 3° and 5°, it dramatically drops from 0.85 to 0.4. Finally, it 
remains around 0.35 for higher twisted angles. For bridge interface, it increases a bit until 2°and 
significantly drops from 1.15 (2°) to 0.55 (5°), then it stays around 0.5 for higher twisted angles. 
For armchair interface, it almost decreases immediately and linearly from 0° to 5°with the value 
dropping from 1 to 0.4, then keeping stable for higher twisted angles. Given that 5° plays a 
threshold to change from topological insulator to conductor for flexural waves as revealed in Fig.2, 
the trends of the three curves in Fig.5 also support this conclusion that they all turn to small 
fluctuations around a constant value when the twisted angle is larger than 5°. The initial tendencies 
of zigzag and bridge interfaces show certain robustness as topologically protected states while the 
armchair interface shows less robustness. 

 The right part of Fig.5 exhibits propagating fields of flexural waves at 4 different twisted 
angles for each interface. Among the zigzag and bridge interface states, the former is more 
localized at the interface than the latter. Both of them show the robustness at 2°. Due to the closing 
of non-trivial band gap, the flexural waves distribute in the whole structure resulting in a low 
localized displacement ratio at 5° and 9°. Nevertheless, the interfaces can still support wave 
propagations. However, the armchair interface state loses the ability to support wave propagation 
when increasing the twisted angle.  

Therefore, the results in Fig.5 reveal that the armchair interface mode shows poor robustness 
against twisted angle; the zigzag and bridge interface modes show high robustness until the 
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nontrivial band gap disappears with a threshold twist angle of 5°. Given that armchair interface 
directs along GM while zigzag/bridge interface points along GK, the above conclusions support 
the claim of different robustness at the beginning of this section.  

 
Figure 5: (a) Localized displacement ratio F/F(0) as a function of twisted angle for the three types of edges. F(0) is 
for the untwisted case (twisted angle of 0°). The flexural wave propagating states for the three types of edges at 0°, 
2°, 5° and 9° are displayed at (b-d). The white dotted boxes at 0°for the three edges stand for the position of the 
interfaces. 
 
    The full robustness of edge states against both twisted angle and normalized frequency is 
calculated and similar localized displacement ratio is plotted as a 2D color maps in Fig.6 where 
the color bars are identically scaled to show the localized displacement ratio F. The zigzag edge 
state covers the frequency range from Wa =9 to Wa =11.5 at 0°, then it has a sudden shift from 4° 
to 5°, showing a much higher robustness than the other two interfaces. The bridge edge state is 
narrow band as compared to the zigzag case. The armchair edge state exhibits two highlighted 
bands in the 2D map being consistent with the behavior shown in Fig.3. The localized displacement 
ratio bands of the bridge and armchair cases in Fig.6b and 6c show a cutting edge at 5°. From the 
maximum color fields, the zigzag edge state is better confined than the bridge and armchair states. 
To conclude, the zigzag edge state shows a high robustness with broadband and highly localized 
properties; meanwhile, 5° plays a threshold value to all of the three interface states.  
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Figure 6: localized displacement ratio diagram as a function of the twist angle and the normalized frequency for 
(a)zigzag, (b) bridge and (c) arm chair interfaces. The color bars are identically scaled to show the localized 
displacement ratio.  
 
4. Summary 

In this work, we proposed a new type of phononic plate with double-sided pillars in a 
honeycomb array. The two sides of lattice pillars can be twisted with respect to each other resulting 
in a so-called Moiré pattern in this mechanical system. A non-trivial band gap is designed with the 
Valley-Hall effect by breaking the inversion symmetry in the unit cell. It is found that the non-
trivial band gap of such double-sided phononic plate is wider than that of the single-sided case, 
showing a better isolation of wave propagation and confinement of edge states with less leaky 
effect. A sufficient large supper-lattice is constructed to study the robustness of the non-trivial band 
gap against twisted angle. It reveals that 5° plays a key threshold in the robustness since the non-
trivial band gap will disappear when twisted angle is larger than 5°. Then we design zigzag, bridge 
and armchair interfaces to study their fundamental physics in topologically protected edge states. 
We quantitatively characterize the robustness with localized displacement ratio which is an 
important and useful parameter to describe edge states. Given that armchair interface directs along 
GM and zigzag/bridge interface orients along GK, the robustness of zigzag/bridge edge state is 
better than that in the armchair case as the non-trivial band gap is opened from the Dirac cone at 
K point. Twisted 5° is also a crucial threshold for all the three types of interfaces but with different 
behaviors at larger twisted angles: for zigzag and bridge edges, although the wave penetrates into 
bulk media, the interface propagation is still conserved; for armchair edge, the interface 
propagating disappears. Full quantitative maps of robustness are provided for localized 
displacement ratio as a function of normalized frequency and twisted angle, which are consistent 
with the edge modes in dispersions and shows 5° being a cut-off value for the conservation of the 
topological edge states. The most robust designs in both twisted angle and frequency is found as 
zigzag interface. The systematic quantitative robustness revealed in this study is an indispensable 
tool for the realization of solid devices based on topological physics not only in micro/nano scale 
but also in macroscale. Some possible techniques can be considered for sample fabrication in 
future, such as nanoimprint lithography for nanoscale, 3D printing for microscale and machining 
process for macroscale.      
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