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Abstract 
 

The objective of this thesis is to analyze whether the default measures obtained through the 

standard EBIT-based structural model are comparable to those obtained through credit ratings. 

This study covers all non-financial companies present on the S&P500 throughout the 2004-

2018 period. Credit risk measures coming from the two approaches were found to be broadly 

comparable. Nevertheless, it was found that on average the structural model under predicts the 

credit-ratings probability of default by 0,68 p.p. and over predicts the distance to default by 

0,57 standard deviations. This under prediction of credit risk was observed across all sectors, 

though with different degrees of intensity depending on the economic sector. The 

underprediction was found in all years of study except the financial crisis period.  

This dissertation proceeded by analysing the relation between the model and rating agencies 

default measures. The two estimates show a relatively strong correlation, notably 44% in the 

case of the probability of default and 52% in the case of the distance to default. The relation 

between the distances to default measures has been further studied through panel data 

regressions both on levels (with and without firm fixed effects) and on time differences. Under 

all approaches the coefficient for the model distance to default measure was found to be 

relatively small but significant at all the usual confidence levels. This result suggests that the 

structural model tends to overreact on all new information, while rating agencies act more 

smoothly. 

 

Title: Can the standard EBIT-based structural model replicate credit ratings? An empirical 

study on S&P500 non-financial firms. 

Author: Simen Bjølseth Madsen. 

Keywords: Credit risk; Default prediction; Structural models; Credit ratings.  
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Resumo 
 

Esta tese tem como objetivo comparar a probabilidade de insolvência obtida através de um 

modelo estrutural baseado no EBIT da empresa e o resultante das classificações das agências 

de rating. Este estudo cobre todas as instituições não financeiras, inteiramente presentes no 

S&P500 durante o período de 2004 a 2018. As duas medidas de risco de crédito são grosso 

modo comparáveis. Contudo, concluiu-se que, em média, o modelo estrutural subestima as 

probabilidades de insolvência atribuídas pelas agências em 0.68 p.p. e sobrestima a distância à 

insolvência em 0.57 desvios-padrão. Esta subestimação do risco de crédito foi observada ao 

longo de todos os setores, ainda que com diferentes graus de intensidade.  A subestimação 

ocorreu em todos os anos, com exceção do período da crise financeira. Esta dissertação 

analisou também a relação temporal entre o modelo e as medidas de insolvência provenientes 

de instituições de classificações de crédito. As duas estimativas mostram uma correlação 

relativamente forte, nomeadamente 44% para probabilidade de insolvência e de 52% para a 

distância à insolvência. A relação entre as medidas de distância à insolvência foi analisada 

através de regressões com dados em painel, em níveis (com e sem efeitos fixos da empresa) e 

em diferenças temporais. Em todas as abordagens, o coeficiente para o modelo da medida 

distência à insolvência mostrou-se relativamente pequeno, mas significativo a todos os níveis 

de confiança, sugerindo que o modelo estrutural tende a exagerar toda a informação nova, em 

contraponto com as agências de classificação de crédito que agem de forma mais gradual. 

 

Título: Consegue o modelo estrutural padrão baseado no resultado operacional replicar as 

classificações de crédito das agências de rating? Um estudo empírico nas instituições não-

financeiras do S&P500.  

Autor: Simen Bjølseth Madsen. 

Palavras-chave: Risco de crédito; Previsão de insolvência; Modelos estruturais; Classificações 

de crédito. 
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1. Introduction 

Throughout time, being able to assess whether a company is on the verge of defaulting on its 

obligations has always been of utmost importance, especially for those in the financial industry 

who hold large amounts of credit. Business reality changes however every day leading to 

changes in corporates creditworthiness. Most of the time it does so in a relatively smooth way 

as result of a sequence of mild shocks. However, these corporations are from time to time 

subject to massive shocks and drastic changes in corporate creditworthiness due to major global 

events, most recently seen due to the pandemic. As a consequence of the continuously changing 

market conditions in which these firms operate, credit risk analysis is essential to be able to 

separate the defaulters form the non-defaulters.  

 

There are multiple ways in which corporate credit risk can be analyzed. In 1942 Charles Lewis 

Merwin (1942) constructed the first accounting-based credit risk model. His model was based 

on a set of ratios that he found to be predicting default. This approach has been developed 

further and is now mostly known due to the Altman Z-score (1968). Contrary to the earlier 

univariate approaches, Altman selected five ratios that he found to be most useful for default 

prediction. These accounting-based models are usually credited to be accurate in the short term 

but often fail to be able to predict well for longer horizons.  

 

Since the before mentioned seminal works, several other approaches have been proposed. Most 

of them are mostly data-driven and lack a theoretical structure behind them. Structural credit 

risk models are a notable exception. This approach was firstly suggested by Black & Scholes 

(1973) and Merton (1974). Contrary to previous models one could finally value debt and equity 

using all observable variables and perform credit risk analysis based on a theoretical structure. 

When proposed, the so-called Merton-model (1974) became the go to model for credit risk 

analysis. Here default could be predicted as the likelihood of debt being valued less than 

nominal value. Following a number of critics to the model strict assumptions, multiple 

contributions have been made giving rise to a large body of literature known as structural credit 

risk models. As opposed to the accounting-based models, the theoretical framework behind 

structural models allowed them to use forward looking market data on stock prices contributing 

to its performance. However, these models still get outperformed by the accounting-based 

models for the shortest horizons.   
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Default probability can also be analyzed through a company’s credit rating. The credit rating 

industry is dominated by three major players, notably, Standard & Poor’s, Moody’s and Fitch 

Group. While these companies use different scores, the underlying purpose is the same: 

measuring credit risk. Given that rating agencies take into consideration a great deal of 

information when assessing firms and issuing their ratings, they are seen as the benchmark in 

terms of credit risk analysis. This dissertation will study whether the bankruptcy measures 

estimated by the standard EBIT-based structural model described in section 3 of Goldstein, Ju 

and Leland (2001) are comparable to those of rating agencies. The scope of study is all non-

financial companies present on the S&P500 throughout the 2004-2018 period. 

2. Literature review 

Structural models of contingent claims pricing and credit risk started from the work of Fischer 

Black & Myron Scholes (1973) and Robert Merton (1974). Following their seminal option 

pricing model, Black & Scholes (1973) suggested to view the equity of a given company as a 

European call option on the company’s assets with strike equal to nominal debt. Debt on the 

other hand could be valued as a risk-free bond less the value of a put option on the company’s 

assets. The probability of default could therefore be estimated as the probability of the put 

option ending up in the money. (Black & Scholes, 1973) (Merton, 1974) 

In 1976, shortly after the issuance of the Black-Scholes-Merton framework, Fischer Black and 

John C. Cox (1976) introduced an adaptation of the previously mentioned framework, 

answering some of the model’s harshest critics. Black and Cox assumed a first passage time 

model. This setting considered the possibility of the firm defaulting on its debt prior to maturity. 

Intuitively, this was introduced as a lower exogenous barrier on firm value, which when crossed 

equaled default. The introduction of this possibility was motivated by covenant clauses written 

on security indentures. Contrary to the Black-Scholes-Merton model, company behavior now 

mattered prior to debt maturity, which in turn increases debt value. Allowing for these new 

inclusions also made Black and Cox able to closer replicate the credit spreads observed in 

historical data. (Black & Cox, 1976) 

Close to two decades later, in 1994 Hayne E Leland (1994) developed the Black and Cox model 

(1976) further. By introducing most importantly bankruptcy cost and corporate income taxes, 

Leland developed a model to determine the optimal capital structure compatible with the trade-

off theory of optimal capital structure. Leland studied the implications of bankruptcy costs and 
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taxes for the firm optimal capital structure when considering both an endogenous- and positive 

net worth default barrier. The endogenous barrier introduced by Leland assumes that coupons 

on issued debt is in fact solely repaid by the company’s shareholders. Consequently, bankruptcy 

occurs when shareholders no longer find value in keeping the company alive. Shareholders 

decision on when to close the company depend on the model parameters. The lower the coupon 

rate and the higher the volatility, the interest rate and the tax rate, the lower the barrier is, 

implying that shareholders wait for longer to see whether the company recovers.  (Leland, 1994) 

A year later, in 1995 Francis A. Longstaff and Eduardo S. Schwartz (1995) further evolved the 

model introduced by Black and Cox (1976). Longstaff and Schwartz implemented several 

improvements to the model, among them, addressing the constant interest rate assumption made 

in the Black-Scholes-Merton framework. Contrary to the models which had previously 

introduced floating interest rates, Longstaff and Schwartz was indeed the first that were able to 

offer a closed-form solution on a first passage time setting. By introducing the possibility of 

floating interest rates Longstaff and Schwartz were able to construct a model for valuing 

corporate bonds which included both interest rate risk and default risk. This inclusion led to 

Longstaff and Schwartz being able to draw clearer connections between the probability of 

default, interest rate fluctuations and credit spreads. (Longstaff & Schwartz, 1995) 

Further developing Leland’s earlier works (Leland, 1994), Hayne E. Leland and Klaus B. Toft 

(1996) addressed the assumption of infinite life debt in their paper “Optimal Capital Structure, 

Endogenous Bankruptcy, and the Term Structure of Credit Spreads”. Contrary to the original 

assumption, Leland and Toft introduced debt rollover. As a result, in order to maintain the static 

debt structure proposed in the model, the company has to continuously replace debt that is 

maturing. Due to this dynamic, the shareholders of the company are subject to rollover risk. By 

rolling over under bad conditions replacing debt will be more costly, and incurred losses has to 

be covered by shareholders. Similar to Leland (1994), the default barrier is solely defined by 

the company’s shareholders strategic behavior.  For the same values of coupon expenses, the 

introduction of rollover risk leads however shareholders to abandon the company sooner. In 

addition, while in Leland’s model distress costs were irrelevant to determine the barrier once 

the coupon rate was set, in Leland and Toft propose that distress costs are still relevant due to 

the rollover. Leland and Toft found their model able to better mimic the historical default and 

credit spreads, compared to what Leland had been able to achieve previously. (Leland & Toft, 

1996) 
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While previous models used a diffusion process to characterize the evolution of company value, 

Chunsheng Zhou (2001) introduced the jump-diffusion process in 2001. In diffusion models, 

the asset value moves proportionally to time. So, it cannot change significantly in a short time 

span. In contrast, jump-diffusion models allow the company value to jump suddenly. This 

certain trait is something that is often due to unexpected wide market movements but can also 

be seen when companies offer completely unexpected new information to the market. Previous 

models were unable to capture this characteristic. Due to the possibility of jumping below the 

bankruptcy threshold, company value at default may vary. (Zhou, 2001)   

In 2001 Robert Goldstein, Nengjiu Ju and Hayne Leland (2001) made another major 

contribution to the literature on optimal capital structure. While Leland’s original paper sees 

the company as a combination of assets, tax benefits and distress costs (Leland, 1994), they 

consider the company as a claim on a project continuously generating earnings. Shareholders, 

debt holders, the government and distress costs are seen as claimants on this perpetual project. 

Notably, Goldstein, Ju and Leland (2001) related the project value with the company’s capacity 

to generate earnings, while in Leland’s model (1994) the asset value was taken to be completely 

exogenous to the model. Similar to Leland (1994), the barrier is set by shareholders as the result 

of an optimal stopping time problem. The main difference between the barrier proposed by 

Leland (1994) and the one used in this model, is that the firm has a continuous payout that can 

be used to pay the coupons.  While the firm is solvent, earnings are split between the 

shareholders, debt holders and the government. In the case of default, the project value after 

distress costs is divided between debt holders and the government. In the second part of the 

paper, they consider that the firm has the opportunity to issue further debt later depending on 

how the project earnings evolve. As a result of this option, it is optimal for the firm to issue 

considerably less debt in the starting stages, which is often close in line with what is observed 

in real life. This option also increased shareholder interest in the project, making them hold on 

to the company for longer without declaring bankruptcy. As a result of the lower initial debt 

and the increases in shareholder interest, the barrier value is considerably lower than in a static 

model with the same amount of coupon. (Goldstein, Ju, & Leland, 2001)  

Previously cited literature focus on either corporate finance or bond pricing questions. By 

purely focusing on improving the estimation of the probability of default, Jeff Bohn and Peter 

Crosbie (2003) introduce a pragmatic reinterpretation of the Black-Scholes-Merton framework 

in 2003. In his seminal article Merton (1974) does not discuss how to calibrate the model neither 
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its performance in default prediction. Benefiting from Moody’s extensive database, Bohn and 

Crosbie contribute on this side. In order to apply Merton-model (1974) in practice one needs to 

estimate the asset value, the asset return volatility and the default barrier. In Merton’s original 

model (1974) the default barrier is the book value of debt, as this is what the firm is obligated 

to repay. These authors consider however that the default barrier should be somewhere between 

total- and short-term debt. When estimating the default trigger Bohn and Crosbie gives a lower 

weight to the long-term debt as repayment is often far in the future. Short-term debt is weighed 

higher, as it has to be serviced within a short horizon. Once the default barrier is set, they use 

the observed market capitalization of firms to estimate the asset value and the asset return 

volatility through the utilization of an iterative algorithm. In order to further improve the 

estimated asset volatility, they combine the asset volatility from the iterative approach with the 

averages of those values obtained for firms with the same size, operate in the same industry or 

operate in the same country. Once the model is calibrated, they computed the distance to default 

(DD) for each given company. The DD measures the distance between the expected asset value 

on the maturity date and the default barrier in terms of the number of standard deviations of the 

firm asset return. They claim that this measure is a powerful determinant of a firm 

creditworthiness but that the normal distribution is unable to translate it correctly into default 

probabilities. So, as a final step they directly infer the probability of a firm defaulting within a 

year by assessing the default ratios of firms in their database having the same distance-to-

default. As this distribution is based on private information their results are not reproducible. 

However, it is known that Moody’s distribution tends to give higher probabilities than the 

Normal distribution for high DD values and lower probabilities than the Normal for low DD 

values.  The approach to probability of default estimation outlined by Crosbie and Bohn in 

combination with the Vasieck-Kealhofer model is known as Moody’s MKMV Expected 

Default Frequency (MKMV EDF). MKVM EDF is a methodology developed by Moody’s in 

order to estimate the likelihood of bankruptcy for shorter horizons. (Crosbie & Bohn, 2003) 

In 2007 Alexander S. Reisz and Claudia Perlich (2007) introduced another adaptation of first-

passage time model to the literature. Similar to Black and Cox (1976), Reisz and Perlich model 

the default barrier as an exponential function, rather than a flat barrier. Reisz and Perlich 

furthermore introduce an early default barrier in order for debt holders to extract value if some 

prespecified event would occur. Reisz and Perlich were able to outperform both the Black-

Scholes-Merton framework and the KVM approaches when estimating bankruptcies for longer 
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time horizons. However, according to the authors, for the 1-year forward estimations of 

bankruptcy the accounting-based models remain superior. (Reisz & Perlich, 2007) 

Depending on the model, the point of default varies drastically. In order to understand when 

firms actually default, Sergei A. Davydenko (2012, November) conducted a purely empirical 

study of endogenous-barrier models in 2012. Contrary to the zero net worth barrier applied by 

many models, Davydenko’s empirical findings show that asset value at the time of default often 

is significantly lower. They found values from 30% at the 5th percentile to 122% at the 95th 

percentile. The company’s average asset value is 66% at the time of default. These values are 

compatible with many insolvent firms being able to keep operating and avoid bankruptcy for 

long time. Davydenko additionally studied the relevance of the different endogenous barrier 

determinants in structural models. By analyzing empirically observed barriers of default, he 

concluded that asset-volatility and bankruptcy costs were the only determinants which 

consistently had any clear effects on the default barrier. He went on to claim that the large 

variation in default boundaries is the main driver for structural models’ difficulty in predicting 

default. He concludes that diffusion models with endogenous default barriers seem to be unable 

to replicate the empirical results, as there seems to be multiple unobservable variables that 

determine the point of default. (Davydenko, 2012, November) 

3. Model 

 

3.1 EBIT-Based Model of Dynamic Capital Structure 

My choice of model in this thesis is the EBIT-based model proposed by Goldstein, Ju & 

Leland (2001). The authors introduced two version of the model, one with the option to issue 

further debt in the future and one without this option. In this thesis the model is considered 

without this option. Even though the EBIT-based model is originally constructed to decide on 

the optimal capital structure, with minor adjustments, it is well-suited to estimate measures of 

default. 

Goldstein, Ju & Leland (2001) considers a company to hold a perpetual project, producing a 

payout flow. The distinct characteristics of this payout flow is given by the process     
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Equation 1 

  

where 𝜇𝑝 and 𝜎 both are constants. Here,  𝜇𝑝  is the drift of the project, whereas 𝜎 is the 

volatility of this projects returns. 𝑑𝑧 is a variation of the Brownian Motion or Wiener Process, 

which is a stochastic process in continuous-time. This Brownian motion has stationary 

increments, and a continuous path which means that the process is unable to jump between 

levels. Here the shocks to the log of 𝛿 are normally distributed, which is known in the 

literature as the Geometric Brownian motion (GMB). 

 

By utilizing the risk neutral approach, the authors are able to value the project by discounting 

all future cash flows at the risk-free rate. Consequently, the value of the project under the risk 

neutral approach is   

Equation 2 

 

where 𝜇 = (𝜇𝑝 − 𝜃𝜎) is the risk-neutral drift of the project and r is the risk-free rate. Both 𝜇 

and r are assumed to be constants. Here 𝜃 is defined as the market price of risk. The same 

expression can be obtained by discounting 𝛿𝑡 at the rate 𝜇𝑎, where 𝜇𝑎 = 𝑟 +  𝜃𝜎. 

The projects risk neutral drift is simply the drift of the project less the volatility adjusted market 

price of risk.  

 

Through applying Ito’s lemma to the previously defined project value function, one is able to 

derive the specific dynamics of the project value as 

Equation 3 
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Goldstein, Ju & Leland continue by defining the payout ratio of the company as 

Equation 4 

  

By substituting the payout ratio into Eq.  (2), it can be shown that the payout ratio is equal to 

the difference between the risk-free rate and the previously define risk neutral drift of the 

project. 

Equation 5 

  

Subsequently the risk-neutral drift of the project is equal to the risk-free rate less the payout 

ratio 

Equation 6 

  

By rewriting Eq.  (3), it follows that the dynamics of the project value can be described as 

Equation 7 

  

Goldstein, Ju & Leland furthermore presupposes the company to take on debt in order to obtain 

the optimal capital structure. It is considered that the company issues a perpetual bond, with a 

constant coupon C. The firm must pay this coupon independently of the project payout. As there 

is no cash buffer in the model, whenever the project payout is not enough to pay the coupon, 

the difference must be paid by the shareholder. As further explained below, it is considered that 

the firm is liquidated whenever the project level reaches a certain level. The level of liquidation 

is known as the default barrier  VB. This level is chosen by the shareholder.  

 

 

 

 

 

 



 16 

 

Under the before mentioned assumptions, any claim to the project has to satisfy the following 

partial differential equation (PDE): 

Equation 8 

  

Here P is a general claim to the payout flow and will vary in accordance to what security one 

wants to price. A claim to the all 𝛿 prior to bankruptcy would result in 𝑃 =  𝛿, whereas a 

claim to all C prior to default would result in 𝑃 =  𝐶. 

 

For all claims I am interested in, 𝐹𝑡=0 because their value is time independent. In this case, the 

partial differential equation becomes a second order ordinary differential equation (ODE): 

Equation 9 

  

It is well known in that the solution to this type of equation can be found by summing the 

general solution to the homogenous equation and a particular solution1.  

 

The general solution to the homogeneous equation is given by 

Equation 10 

 

Where 

Equation 11 

 

 
1 The homogenous equation is same equation, with constants equal to zero. As a result, all that is not multiplied 

with F or its derivatives disappears. 
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Equation 12 

 

are constant.  A1 and A2 are constants that are determined through boundary conditions specific 

to the claim that one wishes to price. The homogenous equation 𝐹𝐺𝑆 is not considering any 

intertemporal cash flows. 

 

The particular solution depends on the specific claim one wants to price.  

 

The authors proceed by introducing PB(V). They define this as a claim that pays $1 contingent 

on the company value reaching the default barrier. As PB(V) is in line with  𝐹𝐺𝑆 (i.e. it is not 

subject to any intertemporal cash flows), its solution is the solution to the homogeneous 

equation. Thus, 

Equation 13 

 

They proceed by considering these boundary conditions 

Equation 14 

 

As company value goes towards infinity, the claim that pays $1 contingent on the company 

value reaching the default barrier becomes zero. If the company value on the other hand goes 

towards the default barrier, the value of this claim becomes one.  

 

 

Taking these conditions into account, one obtains 

Equation 15 
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The second claim that the authors consider is the claim to all the intertemporal cashflows of the 

project. As long as the firm does not default, shareholders, the government and debtholders will 

divide the payout of the project among them. These claimants are receiving the payout flow 

through dividends, taxes and coupon payments.  

 

The combined value of these claims to the payout flow of the company is defined as Vsolv. 

Here P will be replaced by (𝑘 ∗ 𝑉) in the ODE (Eq. 9). A particular solution to this ODE is 

thus 𝑉. Vsolv is thus given by  

Equation 16 

 

Again, A1 and A2 can be found by imposing boundary conditions. In the case that V goes to 

infinity, Vsolv  goes towards  V, On the contrary in the case that V is equal to VB, Vsolv  becomes 

zero. This allow us to determine A1 and  A2.  

 

Consequently Vsolv can be written as 

Equation 17 

 

Following the same approach as for Vsolv, the value of the claim to the interest payments is 

given by 

Equation 18 

 

 

The value of the claims of the shareholders, the government and debtholders are  

Equation 19 

 

Equation 20 
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Equation 21 

 

Here 𝜏𝑒𝑓𝑓  is the effective tax rate and 𝜏𝑖 is the tax on interest.  

 

In order to find the optimal default barrier VB, the authors use the smooth-pasting condition 

Equation 22 

 

By solving the smooth-pasting condition they are able to find the optimal VB
∗ 

Equation 23 

 

where 

Equation 24 

 

and C* is the optimal amount of debt, which is found in the paper by maximizing the sum of 

equity and debt value.  

 

Goldstein, Ju & Leland did not provide any formula to compute the default probability. The 

first passage time probability of a GBM is nevertheless standard in the literature. Following for 

instance Forte & Lovreta (2012), this can be computed as  

Equation 25 

 

 

As the formula in Eq.  (25) computes the probability of survival, probability of default is 

found by subtracting one.  

 



 20 

 

The second measure of default estimated in the model is the distance to default. Which was 

computed in the following manner  

Equation 26 

 

4. Calibration strategy  

Prior to estimating the default measures, I calibrated the asset value, asset volatility (𝜎𝑎), payout 

ratio (𝑘) and the market price of risk (𝜃). Asset value, 𝜎𝑎 and 𝑘 are set through the iterative 

scheme presented in Section 4.1 and further detailed in Section 5.3. 𝜃 is set as explained in 

Section 4.2 and further detailed in Section 5.4. The remaining parameters are calibrated through 

accounting or market data. The EBIT and equity are set as explained in Section 5.2. The 𝛽, 

EQRP and 𝜎𝑒 are set as explained in Section 5.4.  

 

4.1 Iterative approach 

In order to calibrate the Goldstein, Ju & Leland model (2001), I have utilized the iterative 

approach proposed by Vassalou & Xing (2004). This approach is frequently referred in 

Moody’s KMV technical documentations2. This iterative approach was originally suggested to 

calibrate the Merton-model (1974), since one only has to give values to asset and sigma.  

 

In words, their approach works as follows. 

 

1. Compute the volatility of equity based on daily observation for the last year and use 

this value as a starting point for 𝜎𝑎.  

2. For each day of trading, estimate the value of assets through the equity valuation 

formula from Black & Scholes (1973) by using the real and observed value of equity 

and the “estimated” 𝜎𝑎.  

3. Recompute 𝜎𝑎 as the standard deviation of the newly estimated daily asset values.  

4. Repeat this process until 𝜎𝑎 coming from two repeated iterations converge.  

 

 
2 (Crosbie & Bohn, 2003) 
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Vassalou & Xing set their tolerance level of convergence to be 0,0001. Following the estimation 

of 𝜎𝑎, they could proceed to obtain the value of assets. 

 

Following the same procedure as my fellow student Lukas Weisel (2020), I extended this 

approach also to calibrate 𝑘. 

 

1. Based on the iterative approach of Vassalou & Xing (2004), the tolerance level of 

convergence was set to 0,0001. 

2. The initial estimate for 𝑘 to be used in the iterative approach was set to 5 %. 

3. Proceed to use the iterative approach of Vassalou & Xing on the model of Goldstein, 

Ju & Leland (2001) to estimate the project value and 𝜎𝑎 .  

4. Estimate the value of 𝑘. Here 𝑘 is equal to the average of EBIT divided by the asset 

values obtained through the iterative approach.  

5. Repeat this process until the value of 𝑘 obtained from two consecutive iterations is 

below the tolerance level of convergence of 0,0001.  

 

Following the estimations of both 𝑘 and 𝜎𝑎, a time series for the value of assets can be 

attained. In this dissertation both 𝑘 and 𝜎𝑎 are assumed to be constant for the whole time 

series.  

 

4.2 Market price of risk - θ 

In order to compute the actual probability of default, one must use measure P as opposed to 

Q. In order to do this, the market price of risk has to be obtained. While there are many 

approaches that can be followed in order to construct the market price of risk, for simplicity I 

have chosen to utilize the capital asset pricing model.  

The capital asset pricing model is frequently used to find the required rate of return one 

should demand when investing in risky assets, mostly used for stocks.  

The capital asset model states that the required rate of return by an investor investing in 

stocks/equity is given by 
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Equation 27 

 

Here 𝑟𝑖 is the required rate of return, 𝑟𝑓 is the risk-free interest rate, 𝛽𝑖 is the beta of the stock 

and 𝑟𝑚 is the return of the market portfolio.  (𝑟𝑚 − 𝑟𝑓) is therefore the excess return above the 

risk-free rate or the equity risk premium (EQRP) obtained by an investor, when investing in the 

market portfolio. 𝛽𝑖 is defined as a measure of the systematic risk of a company. 𝛽𝑖 ∗ (𝑟𝑚 − 𝑟𝑓) 

therefore, expresses the required return above the risk-free rate expected by an investor, based 

on the systematic risk of a stock relative to the market portfolio.  

 

Goldstein, Ju & Leland (2001) do not give an expression to compute the expected return on 

stocks/equity. However, it is well known that the expected return on stocks/equity under this 

model can be written as  

Equation 28 

 

Here 𝜇𝑒 is the expected return on stocks/equity, 𝜃 is the market price of risk and 𝜎𝑒 is the 

volatility of that particular stock/equity. This expression follows from the application of Ito’s 

lemma to the equity valuation formula. One should note however that under this model, 𝜎𝑒 is 

not a constant but rather a function of the project value and project returns volatility σ. When 

comparing to Eq. (27) it is clear that (𝑟𝑖 −  𝑟𝑓) from Eq. (27) and  (𝜇𝑒 −  𝑟𝑓) from Eq. (28) 

expression is the same thing i.e. the expected return from the stock/equity above the risk-free 

rate. Consequently 𝛽𝑖 ∗ (𝑟𝑚 − 𝑟𝑓) or 𝛽𝑖 ∗ (𝐸𝑄𝑅𝑃) from Eq. (27) and (𝜃 ∗ 𝜎𝑒) from Eq. (28) 

has to be the same.  

Replacing (𝜇𝑒 −  𝑟𝑓) with 𝛽𝑖 ∗ (𝐸𝑄𝑅𝑃) in Eq. (28) the market price of risk can be obtained 

as  

Equation 29 

 

The market price of risk is the usually referred to as the Sharpe ratio. Which is constructed as 

the risk adjusted equity risk premium (stocks return above risk free rate), divided by the 

particular stocks/equity volatility. The estimation of 𝛽, 𝜎𝑒 and 𝐸𝑄𝑅𝑃 is found in Section 

5.4.1, 5.4.2 and 5.4.3, respectively. 
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5. Data 

 

5.1 Company selection 

Prior to doing any estimations or treatments of data I first had to construct the portfolio of 

companies. Through accessing Compustat - Capital IQ in the Wharton Research Data Service 

(WRDS) database I was able to obtain the list of index constituents on the S&P500 for the 

2004-2018 period. This selection of companies was narrowed down by excluding 251 

companies that are not present on the S&P500 throughout the entire period covered by this 

dissertation, which spans from 2004 to 2018. As I wanted to assess how default measures varied 

across time, while assuring that the companies were of comparable size, I wanted to keep the 

same sample of companies across the entire timespan.  

Furthermore, I excluded 44 financials companies (i.e. those belonging to the S&P Economic 

Sector Code – 800). The initial round of company selection resulted in a sample of 206 

companies across 10 sectors3.  

 

The second and final round of data cleaning was performed post acquiring the accounting data 

for the initial sample. Since the model assumes a Geometric Brownian motion, negative EBIT 

violates the model assumptions. Nevertheless, the estimation method used is able to overcome 

this as long as the average EBIT is positive. This resulted with 5 companies with an average 

negative EBIT being removed. Furthermore, 42 firms with zero interest expense for one or 

multiple periods were excluded. As the model relies on interest cost to estimate the default 

barrier and thus all measures of default, this firms would simply never default.  

After the two rounds of data cleaning, the final sample consisted of 159 companies across 9 

sectors as outlined in Table 1.  

Table 1 - Company overview 

 

 

The detailed description of all firms is found in Appendix 1-2.  

 

 
3 The S&P 500 is mostly composed of very large companies. This exclusion of companies entering post 2004 

might have exacerbated the selection bias.  
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5.2 Parameters calibrated through accounting and market data 

 

5.2.1 EBIT and interest cost 

The company specific EBIT and interest cost were retrieved from DataStream. Due to both 

EBIT and interest costs being accounting data, these variables were downloaded as yearly 

values. In order to adapt these variables to fit the weekly increments of the model, I used 

interpolation. The interpolation process consisted of two steps. The initial step was to construct 

start of the year values for each year as the yearly EBIT or interest costs divided by 52. Finally, 

I computed all weekly values in between by constructing a straight line between the start of the 

year values, known as linear interpolation.  

 

5.2.2 Interest rate 

The interest rate for the 2004-2018 period was approximated using the time series of the 30-

Year US Treasury Bill. This long-term interest rate is used since it reduces the number of cases 

where a negative value for the risk-free rate could occur. The time series was downloaded in 

weekly increments from DataStream. The interest rate used in the model is the after-tax interest 

rate, found through applying the tax rate on interest. While the tax rate on interest has varied 

slightly from 2004-2018, it is desirable to have a constant rate across time. Based on the values 

observed in the period of study, I have assumed it to be constant at 35%. The interest rate before 

and after applying interest rate tax is presented in Figure 1. 
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Figure 1 - Interest rate  

 

Here a major drop in the interest rate is observed in the end of 2008 during the financial crisis. 

Other significant drops are seen at the end of 2011 during the EU sovereign debt crisis and 

during the oil crisis in 2014-2016.  

 

5.2.3 The effective tax rate on corporate profits 

In addition to the tax rate on interest, the model uses the effective tax rate. In order to compute 

this, I had to know both the tax rate on dividends and the corporate tax rate. Both the corporate- 

and dividend tax rate has varied across the timespan of the analysis. However, I wanted to keep 

both of these variables’ constant throughout the calculations. Considering the different values 

for both variables and timespan these values were present, it was chosen to use the same tax 

rate of 20% for both the corporate- and the dividend tax rate.  

The effective tax rate was therefore computed in the following manner as 

 

(1 − 𝐸𝑓𝑓𝑡𝑎𝑥) = (1 − 𝐶𝑜𝑟𝑝𝑡𝑎𝑥) ∗ (1 − 𝐷𝑖𝑣𝑡𝑎𝑥) 

 

Resulting in an effective tax rate of 36%.  
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5.2.4 Market value of equity  

Equity is not a parameter, but an input that is used to find the market value of the project.  

Company specific equity was as with previously mentioned variables retrieved from 

DataStream. As market value of equity is a flow measure, the values were downloaded in 

weekly increments. The market value of equity is the product of the number of shares 

outstanding and the price per share. As the number of shares rarely change, variations are 

caused by the change in the share price. In order to compare the evolution of the market cap of 

the portfolio with the S&P500, I downloaded the weekly time series of the S&P500 from 

DataStream. 

The combined market value of all firms can be seen in Figure 2  

Figure 2 - Market capitalization 

 

 

 

As seen from both the plot and the correlation between the series, the portefolio of 159 

companies follow the dynamics S&P500 closely. These results are a little suprising, considering 

the S&P500 continuously has firms exiting and entering the index and that the entire financial 

sector is excluded. As observe in the Figure 2 above, market capitalization is drastically reduced 

during the financial crisis of 2008-2009. Furthermore one can also see the significant drops in 

market capitalication caused by the sovereign debt cirisis within the EU in 2011 and the end of 

the oil crisis in 2014-2016. 

*Values in millions Correlation: 0,989 
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5.3 Parameters calibrated through the iterative algorithm 

 

5.3.1 Asset volatility - 𝝈𝒂 

Asset volatility is one of two variables obtained from the iterative approach outlined in 

Section 4.1. The asset volatility used for estimations in the model, is extracted when two 

repeated iterations converge. When extracted, 𝜎𝑎 is equal to the product of the standard 

deviation of the log changes in asset values and the square root of 52.  

The average asset volatility across the different sectors is found in Table 2. It is clear that 

average asset volatility for the utilities and the consumer staples sector are considerably lower 

than the other sectors (Table 2). In contrast, the health care and technology sector show the 

highest average asset volatility. 

Table 2 - Average asset volatility 

 

 

When comparing the asset volatilities with the empirical equity volatilities (Table 5), there is 

a much lower level clearly observed for all firms.  

I furthermore assessed if there is any connection linking the individual company’s asset- and 

equity volatility (Section 5.4.2) by running a regression between the two series as seen in 

Figure 3.  
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Figure 3 - Asset volatility vs equity volatility 

 

 

Even though the coefficient of determination is low, it indicates that some of the variation in 

the equity volatility series can be explained by the variation in the asset volatility series. This 

relation is weaker than expected, which shows that more business risk does not necessarily 

mean more equity risk, as firms with lower business risk may be more levered.  

 

5.3.2 Payout ratio – 𝒌 

The company payout ratio similarly to asset volatility is found through the iterative approach 

(Section 4.1). The payout ratio at the sector level is found in Table 3. 

Table 3 - Payout ratio 

 

 

Considering Table 3 it is apparent that the utilities sector has a much higher payout than the 

other sectors. Since the utilities sectors on average is very stable and mature, the high payout 

ratio was not surprising. On the other side of the spectrum a similar payout ratio is seen across 
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the remaining eight sectors, with technology and health care being slightly lower. Due to the 

necessity of continuous research into new technologies and new pharmaceutical products, as 

well as the emphasis on growth for the technological companies these payout ratios are 

representable.  

 

5.3.3 Project value – 𝑉 

The project value is found through the iterative approach (Section 4.1) following the 

estimations of 𝜎𝑎 and 𝑘. The project value is the one implicit in the market cap (i.e. equity 

value) conditional on the model (Section 3) and the calibrated value of all its parameters. The 

combined project value of all firms can be seen in Figure 4. It is clear that the project- and 

equity value follow each other, as indicated by the lines in Figure 4. However, one can 

observe that the variations in the equity value are amplified when compared to the project 

value. This is due to equity being a leveraged claim.  

Figure 4 - Project value 

  

 

 

 

 

 

*Values in millions Correlation: 92,16% 
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5.4 From measure Q to measure P 

 

5.4.1 Beta – 𝛽 

The company specific beta-coefficients were also acquired through DataStream. As for the 

market value of equity, beta was downloaded in weekly increments. In order to avoiding that 

changes in the PD computations was a result of changes in beta value, the company specific 

beta used for estimation was the average of all company beta values.  

 

The average beta for each industry can be seen in Table 4 below.  

Table 4 - Beta 

 

 

There are significant differences between the average beta of each industry (Table 4). Due to 

utilities being a necessity, its demand stays relatively stable regardless of market condition. 

Hence, the low beta value is expected. The same characteristics can be seen for both consumer 

staples and health care. On the contrary it is apparent that the technology sector is considered 

riskier than the other sectors. This result was also expected due to the extreme volatility that 

usually describes technological companies. 

 

5.4.2 Empirical equity volatility - 𝝈𝒆   

Empirical equity volatility is mainly used in the calibration of the market price of risk. 

The equity volatility was computed in the following manner. Initially I estimated the non-

annualized empirical equity volatility as the standard deviation of the log changes in equity. As 

a second step I recomputed a new series with the log changes in equity. In the third step I 

constructed upper and lower limits for the series of log changes in equity as plus/minus three 

standard deviations. Furthermore, I removed all values outside these boundaries. Finally, I 

computed the volatility of equity as the product of the standard deviation of this time series and 

the square root of 52. This process follows the approach done by my fellow student Lukas 

(2020). As 𝜎𝑒  is used in the calibration of the model, this will help make results comparable.  

The average equity volatility in the different sectors is seen in Table 5. 
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Table 5 - Average empirical equity volatility 

 

 

It is apparent that the utilities and consumer staples sector has the lowest average equity 

volatility (Table 5). As previously mention in Section 5.4.1, these sectors tend to be very stable, 

therefore these results are not surprising.  

 

Additionally, I computed the model implied equity volatility through the application of Ito’s 

lemma. The regression between the empirical equity volatility and the model implied equity 

volatility resulted in a R-Squared of 0,99, which suggest that the model is well calibrated. The 

section on model implied equity volatility and the regression can be found in Appendix 9. 

 

5.4.3 Equity risk premium (EQRP) 

The equity risk premium for the 2003-2018 period was downloaded from the web page of 

professor Aswath Damodaran. Professor Damodaran is an often-cited source when it comes to 

valuation and is therefore also used in this thesis. In his website, Professor Damodaran present 

several estimates of the equity risk premium for the U.S. market. In this dissertation, two 

estimates are used. The first measure Implied Premium (FCFE) refers to implied premium 

based on the free cash flow to equity, which is seen as dividends to stockholders. The second 

measure Implied Premium (FCFE with sustainable Payout) on the other hand assumes that free 

cash flow to equity will decrease over time to a more sustainable level. By combining the 

Implied Premium (FCFE) (Appendix 8) and Implied Premium (FCFE with sustainable Payout) 

(Appendix 8), I obtained a new yearly series of EQRP values (Appendix 8). Due to the yearly 

nature of the EQRP many of the detailed changes within the year is non observable. In order to 

solve the previously mentioned problem, I proceeded by doing the following. I downloaded a 

weekly time series of the S&P500 from DataStream for the period 2003-2018. Constructed 

weekly ratios by dividing each weekly observation by the average value of the S&P500 that 

year. Created weekly EQRP values by dividing the combined EQRP for that year with the 

weekly ratios. Finally, the weekly EQRP for the 2004-2018 period was computed as the 4-week 

moving average of the constructed timeseries.  
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The constructed EQRP timeseries and the combined yearly EQRP from Damodaran can be seen 

in Figure 5 below. 

Figure 5 - Equity risk premium 

 

When referring to the Figure above it is obvious the combined EQRP from Damodaran has 

changes only at year end, whereas the constructed EQRP has a lot more detail. From the MA-

4* it is apparent that EQRP peaks at the end of 2008 during the financial crisis, before it drops 

drastically in the first months of 2009.  

 

5.4.4 Market price of risk – 𝜽 

As previously outlined in Section 4.2, 𝜃 is found as the product of 𝛽 and EQRP divided by the 

empirical equity volatility. Since 𝛽 and 𝜎𝑒  are set constant across time, all variation in 𝜃 is 

caused by changes in the EQRP. 

The time series of 𝜃 in all sectors is seen in Figure 6 (panel A and B). 
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Figure 6 - Market price of risk 

Panel A 

  

 

Panel B 

 

 

Due to the constant 𝛽 and 𝜎𝑒 the dynamics of the time series is equal to those of the EQRP 

(Figure 5).  
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The average 𝜃 in the different sectors is found in Table 6. 

Table 6 - Average θ 

 

 

As can be observed in both Figure 6 and Table 6 there is quite big differences between the 

different sectors. Since the EQRP is the same for all sectors, the variation is driven by the 

differences in 𝛽 and 𝜎𝑒. Since the average 𝜎𝑒 across sectors is within relatively close 

proximity of each other, the differences in 𝜃 are caused by the large span of the beta-

coefficient.  

 

5.5 Robustness check 

 

5.5.1 State variable – 𝜹 

In the EBIT-based model (2001), Goldstein, Ju & Leland assume that the dynamics of the model 

state variable (EBIT) follow a Geometric Brownian Motion (GBM). Consequently, the state 

variable has a Log-normal distribution. In order to assess whether the EBIT for each individual 

company has a Log-normal distribution, I have tested the log changes of EBIT using the 

Shapiro-Wilk test.  

The Shapiro-Wilk test tests the null hypothesis that the log changes in EBIT are normally 

distributed. Following most scientific papers, I have assumed an alpha of 0,05. This means that 

if a series of log changes in EBIT obtains a p-value of less than 0,05 one rejects the null 

hypothesis of normal distribution. If the p-value is above 0,05 one cannot reject the null 

hypothesis of normal distribution.  

 

P-values from the Shapiro-Wilks test for all firms can be found in Appendix 3-5. The number 

of companies with p-values below 0,05 within each sector is found in Table 7. 
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Table 7 - State variable 

 

 

The Shapiro-Wilk test is rejected for 62 out of 159 firms (Table 7), which is approximately 

39%. Consumer staples is the sector with the largest rejection rate, whereas transportation 

surprisingly has no rejections. Additionally, a 40% rejection rate can be observed for the 

consumer cyclicals sector. The name of the sector itself suggest that the GMB may not fit well. 

The GBM states that the past is irrelevant for prediction, only the present matters. In contrast, 

a cyclical sector means that it from time to time returns to something. As a result, it is normal 

that the GBM tends to be more rejected in this type of sector.  

6. Results 

This chapter is divided into two parts. The first part presents the 5-year distance to default (i.e. 

the expected distance in 5 years between the market value of the business and the default barrier 

normalized by business risk) and the probability of default that is produced by the model (i.e. 

the likelihood of the asset process hitting the default barrier at least once in the next 5 years). 

In the second part, these results are compared with the ones implied by credit ratings.   

 

6.1 Model estimated default measures  

 

6.1.1 Distance to default (DD) 

The distance to default is a widely used credit risk metric since Merton (1974) first proposed 

its ground-breaking model. Summarized, this metric measures the expected distance in T years 

between the market value of the assets (or business) and the default barrier normalized by 

business risk. It thus synthetizes in a single measure three key corporate characteristics: market 

leverage, expected dynamics and risk. In this thesis as for PD I have considered a 5-year horizon 

for the DD estimations. The average value per sector can be seen in Table 8. The average 

aggregate DD is computed directly on firms and has a mean value 2,92 (Table 8). With the 

exception of the utilities sector, and at a lesser extent, the basic materials sector, all sectors have 
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an average DD close to 3. The lowest DD found on a sector level is 1,37 for the utilities sector 

in May 2009, whereas the health care sector has the highest DD of 4,54 in December 2004.  

Table 8 - Average DD 

 

 

The time-series of the average DD by sector is presented in Figure 7 (panel A and B). The 

aggregate average DD ranges from 1,93 in May 2009 to 3,27 in May 20064. One can observe 

that all sectors show a high level of co-movement (Figure 7). For instance, it is noticeable that 

all sectors have a significant drop in DD during the financial crisis. While there is quite a large 

spread between the sectors prior to this event, post 2009 this gap becomes a lot tighter. This 

global pattern is mixed with some sector specific events. As an example, during the oil crisis 

the energy-, technology- and transportation sectors show a larger decline, while the other 

sectors are less effected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4 Individual sector ranges: Transportation(1,76:3,78), Utilities(1,37:2,74), Health care(2,35:4,54), Capital 

good(1,84:3,95), Energy(1,96:3,66), Technology(2,22:4,27), Basic materials(1,52:3,14), Consumer 

cyclicals(1,85:3,45), Consumer staples(2,14:3,37) 
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Figure 7 - DD 

Panel A 

 

 

Panel B 
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The dynamic of the DD can be better understood by looking at business risk (i.e. 𝜎𝑎), the drift 

term (𝜇𝑝) and the ratio of the market value of assets to the barrier. The first measure was already 

discussed in Section (5.3.1). If a company’s business risk increases all else equal, the distance 

to default decreases. In Section 5.3.1 we have seen that the consumer staples and utilities sector 

had a level of business risk below all other sectors. In contrast, the technology sector showed a 

level of business risk above all others. The measure P drift and the ratio between the market 

value of assets and the default barrier are presented in Table 9 and 10, respectively. 

 

The project drift is the return on assets (Appendix 10) less the companies payout ratio (Section 

5.3.2). This is also referred to as the company’s expected growth rate. Looking at Table 9, it 

can be noted that there is big difference between the sectors. For the utilities sector the growth 

rate is actually negative, whereas the technology sector has a growth rate well above the 

remining sectors. The remaining sectors can be divided in two groups. Here the transportation, 

basic materials and consumer staples sector range between a lower range of 0,41% to 0,60%. 

Whereas the health care, capital goods. energy and consumer cyclicals sector ranges between 

0,97% to 1,46%. Furthermore, it should be noted that the technology sector is the only sector 

with a drift above mean inflation level over the past years  

Table 9 - Project drift 

 

 

The default barrier to asset ratio measures how far the asset value is from the barrier without 

scaling by the project volatility. It can be thus seen as a market-based leverage measure. Due 

to the fact that a company defaults if the value of assets is equal to or less than the barrier, the 

ratio must lie between zero and one. If the barrier to asset ratio of a company increases, so does 

the probability of default, while the DD decreases. The barrier to asset ratio for all sectors is 

presented in Table 10. On average most sectors have a barrier to asset ratio close to each other. 

The utilities sector has a significantly higher barrier to asset ratio signalling a high degree of 

financial leverage.  
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Table 10 - Barrier/Assets 

 

 

The three indicators just presented help us understand the DD results. In particular, regarding 

the utilities sector, it can be concluded that though it has lower business risk than the other 

sectors, it also shows a higher degree of leverage and the lowest drift. As a result, it has the 

lowest DD over time. The technology sector shows the opposite characteristics. With the 

highest business risk, the highest drift and the lowest leverage it has the highest DD across time.  

 

6.1.2 Probability of default (PD) 

The most used credit risk measure is the probability of default (PD). This is presented in Figure 

8 (panel A and B). In this dissertation as for the DD, the horizon considered is 5 years. The 

probabilities presented are cumulative probabilities. 
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Figure 8 – PD 

Panel A 

  

Panel B 
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The average probability of default of the entire portfolio is 0,63%, ranging between 0,30% in 

December 2006 and 2,95% in March 2009. This relatively tight range hides however 

considerable variation at the sector (Table 12) and especially at the firm level (Table 11). As 

expected, and in line with the DD, the utilities and basic materials sectors are the ones with the 

highest PD. In contrast, the transportation sector shows the lowest PD. 

Table 11 – PD, sector ranges at individual firm level 

 

Table 12 - Average PD 

 

 

On the time dimension, it is apparent that all sectors spent the period from 2004 until the start 

of 2008 recovering from the financial turmoil associated with the dotcom bubble (Figure 8). 

Throughout this period the PD for the utilities sectors stands out from the remaining sectors. 

This sector shows a non-negligible PD whereas most other sectors show close to no probability 

of default. During the financial crisis of 2008-2009 there are significant observable difference 

in how the different sectors PD evolve. The basic materials, consumer cyclicals and utilities 

sectors have a much larger increase in the PD, than the remaining sectors. The utilities and basic 

materials sectors have PDs of 4,5% and 5% at the peak of the crisis, respectively. For all sectors, 

PDs decrease towards post crisis levels within 2011. For the 2015-2016 oil crisis there are clear 

differences between how individual sector PDs react. As expected, the PD for the energy sector 

peaks at 3,2%, significantly higher than for the others. With the exception of the basic materials, 

at a lesser extent the technology sector, whose PDs also increased during this period, the PD 

for all other sectors remained more or less stable. Lastly, the energy sector has a clear peak at 

the end of 2018, just in line with the steep drop in oil prices. 
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6.2 Credit rating 

A credit rating is a letter issued by a credit rating agency, which represents the probability of 

the debt not being repaid. The world leaders in credit rating are Moody’s, S&P and Fitch Group. 

These credit rating agencies take into account enormous amounts of both firm and 

macroeconomic information when issuing credit ratings. Consequently, their credit ratings are 

seen as the benchmark5 when evaluating the probability of default of a given firm. The model 

here proposed is much easier to implement and is based solely on widely available information. 

An obvious question is thus how far credit ratings are from the credit risk measures. In this 

Section, and in order to further assess the default measures estimated by the model, I compare 

them to the credit rating-based measures. In section 6.2.1 this is done by looking at average 

values and through scatter plots. In section 6.2.2 the analysis is extended by running some panel 

data regressions. 

 

6.2.1 A comparison between credit rating implied measures and model measures 

In order to compare the measures, I started by gathering the credit ratings from both Moody’s 

and Standard and Poor’s for all companies. I proceeded by transforming the credit ratings from 

Moody’s and Standard and Poor’s into one single measure. This was done by transforming the 

individual measures into numerical values using a numerical scheme6, averaging them and 

finally restating the obtained value in the usual S&P scale (Appendix 7). The average credit 

rating per sector, per year is found in Table 13. It is clear that most of my sample is made of 

investment grade corporates (Table 13). Taking all corporate-date pairs, one can conclude that 

92% of all individual ratings are investment grade.  

 

 
5 The fact that they are seen as the benchmark, does not mean that they are right. 

6 1 to AAA, 2 to AA+, 3 to AA, 4 to AA-, 5 to A+, 6 to A, 7 to A-, 8 to BBB+, 9 to BBB, 10 to BBB-, 11 to 

BB+, 12 to BB, 13 to BB-, 14 to B+, 15 to B, 16 to B-, 17 to CCC+ and 18 to CCC. 
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Table 13 - Average credit ratings by year and sector of activity 

 

 

Lastly, I utilized the transition matrix issued by Standard and Poor’s (Appendix 6) in order to 

transform the credit ratings into probabilities of default. This resulted in yearly probabilities of 

default for all companies. The average probability of default per sector can be seen in Table 14. 

This table shows that model PDs underestimate the credit rating PDs by 0,68 p.p. on average. 

This underestimation is computed as the p.p. difference between measures. Though this 

difference is large in relative terms (credit rating implied PDs are 0,68 p.p. higher), it can be 

deemed small in absolute terms. This type of difference is observed in most sectors, except the 

utilities sector, where the PDs are noticeably close. On the contrary one can see a very large 

spread between the estimates for the technology sector. Here, the probability of default implied 

by credit ratings are 1,76 p.p. higher than the ones coming from the model.  
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Table 14 - PD comparison7 

 

 

The average PD for all companies across the period 2004-2018 can be seen in Figure 9. The 

PDs obtained from credit ratings are very stable, with a peak in 2009 (Figure 9). This was 

already in part expected as all companies assessed in this thesis have stayed listed on the 

S&P500 throughout the entire period and are mostly investment grade credit ratings. Notice 

that for these ratings PDs tend to be very small. Apart from the PD coming from the model in 

2009, model PDs are consistently lower than the ones implied by credit ratings. 

Figure 9 - PD, rating vs. model 

  

 

The probability of default is known to be very non-linearly related with fundamentals, which 

turns hard any econometric analysis built on traditional linear models. Given these non-linear 

relations, it is common to carry most of the analysis on an alternative setting and then restore it 

back. This is what occurs in a Logit or Probit credit risk regression-based models. In the latter 

case, this is done by using the Normal distribution. Interestingly, something similar occurs in 

Merton’s model. In this case, the distance to default (i.e. the risk adjusted distance between the 

market values of assets and the default barriers) is computed and then translated into a PD by 

 
7 Difference = Average credit rating PD – Average model PD 
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using the Normal distribution function. In the case of Merton’s model, the distance to default 

is thus just the inverse normal of the PD. In the model here presented, due the possibility of 

hitting the barrier before the considered maturity, the inverse normal is not equal to the risk 

adjusted distance between the market values of assets and the default barriers, as previously 

defined. Nevertheless, it can still be seen as a more tractable credit risk indicator. Figure 10 

(panel A and B) shows two scatter plots of the PD and the DD, respectively. The DDs were 

computed from the PDs at the individual company level by using NORM.INV in Microsoft 

Excel. From these figures, it can be seen that while in the case of the PD, a correlation of 44% 

was found, in the case of the DD, this figure increases to 52%. 

 

Figure 10 - Scatter plot regressions 

Panel A 
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Panel B 

 

 

The aggregated DD for all sectors across the 2004-2018 period can be seen in Figure 11. 

Furthermore, the average DD per sector can be seen in Table 15. On average DD coming from 

the model is 0,57 standard deviations higher than the credit rating implied (Table 15). This is 

estimated as the difference in DD between the two measures. It is evident from Figure 11 that 

the DD implied by credit rating remains very stable over time. Even though there is a minor 

decline in the DD in 2009, it remains within 2,3-2,4 for the entire timeseries. The DD from the 

model has much larger variations. Under normal circumstances the DD coming from the model 

remains higher than the ones implied by credit ratings, whereas in 2009 during the financial 

crisis it is lower. 
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Figure 11 -DD, ratings vs. model 

  

Table 15 - DD averages8 

 

 

Throughout this section we have seen that the model is underestimating credit risk, but why? 

In the standard EBIT-based structural model company dynamics are assumed to follow a 

Geometric Brownian motion, which leads to a continuous path meaning that the process is 

unable to jump between levels in a short period of time. Related to this, the project return 

distribution does not have much probability in the tails. In my model, as in the original Merton-

model, except for the consideration of the first passage time, the PD is basically the negative of 

the DD evaluated under the Normal Distribution. The drawback of this approach has been 

illustrated by Hamilton, Munves & Sun (2012) from Moody’s Analytics. Since the Normal 

distribution does not have much probability in the tails, for higher values of DD, we end up 

with an underestimation of credit risk. Moody’s compensates this by using their empirical 

mapping, which related observed default rates with their model distances do default. In the case 

of very low DDs, the use of the Normal distribution leads to an overestimation of credit risk.  

 

 
8 Difference = Average credit rating DD – Average model DD 
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In addition to the assumption of GBM, the EBIT-based model does not consider debt rollover. 

As a consequence of not rolling over debt, the companies are not subject to the potential 

liquidity risk. This can cause the probability of default to be underestimated.  

  

6.2.2 An econometric analysis of the results 

Section 6.1 has shown that the structural model proposed in this dissertation tends to 

underestimate credit risk as compared to credit rating agencies.  Is this difference constant 

across all firms and sectors? Is this a problem just on the mean level? In this section these 

questions are addressed by carrying some panel regressions using the function “plm” in R.  

These regressions can be divided into two groups. First, the relation between the credit ratings 

implied DD and the model DD is studied. Then, the focus turns to the time variation in the DDs.  

 

To start, I run a pooling model with and without intercept term. Here the credit rating implied 

DD is the dependent variable and model DD is the independent variable. The results from these 

regressions are found in Table 16. One can see that in the case with intercept I obtain a large 

intercept of 1,87 and a 𝛽 of only 0,17 (Table 16). These are basically the same values presented 

in Figure 10 (Panel B). Both of these coefficients are significant at all significance levels. 

Additionally, an R-Squared of 0,26 is attained. I proceed by analysing the same regression while 

removing the intercept. Here we can notice a significant change in 𝛽, which is now 0,75. The 

mean error level is now positive at 0.177. While the value has changed, it is still significant at 

all significance levels. In addition, it is worth mentioning that, though the intercept was 

significant, taking it out does not change the R-Squared. Both R-Squared obtained from the 

regressions on levels tell me that the model DD is able to explain 26,05% of the variation in 

credit rating implied DD.  

Table 16 - Panel regression, levels 
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Next, a panel regression with firm fixed effects was run. The results of this fixed effect 

regression are found in Table 17. Here I obtain a 𝛽 of only 0,07, significant at all significance 

levels. Additionally, an R-Squared of 12% is obtained. This value is nevertheless the add-on 

due to the covariate. When the firm fixed effects are taken into account, the R-Square increases 

to 83%. Most of the variation is thus explained by the firm fixed effects rather than the structural 

model distance to default. 

Table 17 - Panels regression, levels and fixed effects 

 

 

I proceeded by extracting the firm fixed effects using the function “fixef”. The average, 

maximum and minimum fixed effect per sector can be seen in Table 18. Here it is noticeable 

that the average fixed effect is similar across sector. Sectors average fixed effect range from 2 

in the technology sector to 2,25 in the health care sector. Interestingly, the average fixed effect 

is higher than the intercept computed in the pooling model (Table 16). Within each sector, the 

technology sector provides the widest range of 1,43, whereas the transportation sector 

noticeably has a much narrower spread than all other sectors. 

Table 18 - Fixed effects 
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I advanced by making a histogram of all fixed effects. This is presented in Figure 12. Here one 

can see that the fixed effects are relatively concentrated between 1,92 and 2,4. There is however 

some left skew. This left skewness is mainly caused by the technological sector.  

Figure 12 - Fixed effects, histogram 

 

 

Following the analysis on levels, I proceeded by analysing the effect of changes in the model 

DD on the changes in the credit rating implied DD at the individual firm level. Here changes in 

credit rating implied DD is the dependent variable and changes in model DD is the independent 

variable. The results of this regression are found in Table 19. If the difference between the 

model and the credit rating implied DD were just a question of levels, one should have a 

coefficient of 1. Instead, the regression results in a small negative intercept and a 𝛽 of only 0,04 

(Table 19). The intercept is significant at a 5% significance level, whereas 𝛽 is significant at all 

significance levels. Furthermore I attain an R-squared of 0,05, which tells us that the changes 

in the model DD is able to explain only 5% of the variance in the changes in the credit rating 

implied DD. I proceeded by running the same regression, but now not allowing for an intercept. 

Notice that since the model is written in differences, an intercept implies a trend in the DD. The 

results of this regression are also found in Table 19, where it is apparent that the 𝛽 and R-

squared almost do not change.  



 51 

 

Table 19 - Panel regression, changes 

 

 

Both regressions in Table 19 provided very small 𝛽-values and an R-Squared slightly lower 

than expected. One possible explanation for this finding is the high persistence in credit ratings. 

In order to explore this hypotehsis I estimated the amount of periods where there is no change 

in credit ratings at the individual company level. The aggregated results of this can be seen in 

Table 20.  

Table 20 - Credit rating, periodical changes 

 

 

It can be noted that 74% of the time there are no changes in credit ratings (Table 20). 

Consequently the small size of 𝛽 may be due to the fact that ratings do not change, which turns 

estimation particularly hard with a linear model.  

In order to adress this issue, a dummy variable was added to the regression of the effect of 

changes in the model DD on the changes in the credit rating implied DD at the individual firm 

level. This dummy variable took the value one when there were no changes in credit rating, and 

zero otherwise. In addition, I added an interaction term between the dummy variable and the 

model DD. The results of this regression can be found in Table 21.  

From Table 21 one can see that I obtain a small estimate for the dummy variable, which is not 

deemed significant. However, a clearly negative and significant cross term Dummy:Beta was 

found. This result is in line with the expectations. In addition, the model 𝛽 increased from 

0,04(Table 19) to 0,15 (significant at all levels). Despite a clear increase, this is still a small 

figure. The R-Squared also increased significantly from 0,05 (Table 19) to 0,17. Hence, the 

inclusion of the dummy variable clearly provides to regression with greater explanatory power. 
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From all this it can be concluded that changes in the model DD and changes in the credit rating 

implied DD clearly covary. However, the changes in model DD have a significantly larger 

variation leading the 𝛽 to be statistically different from one.  

Table 21 - Panel regression, changes with dummy variable 

 

7. Conclusion 

The main objective of this dissertation was to study whether the bankruptcy measures estimated 

by the standard EBIT-based structural model presented in section 3 of Goldstein, Ju and Leland 

(Goldstein, Ju, & Leland, 2001) are comparable to those produced by credit rating agencies. 

The scope of study was all non-financial companies present on the S&P500 throughout the 

2004-2018 period. 

 

Model and credit rating implied credit risk measures were found to be different, but broadly 

comparable. On average the probability of default coming from the structural model 

underestimated credit implied values by 0,68 p.p. Whereas, distance to default coming from the 

structural model was found to overestimate credit implied values by only 0,57 standard 

deviations. This underprediction of credit risk was prominent across all sectors. However, the 

degree of underprediction was found to be varying vastly. The clear underprediction of credit 

risk was found in all years of the study, except from the financial crisis period, where the 

probability of default coming from the structural model overestimated credit implied values by 

0,14 p.p. This dissertation also discussed possible reasons for this underestimation, notably the 

lack of jumps and debt rollover. 

 

Following the analysis of averages, the dissertation proceeded to analyse the relation between 

the model and credit rating probabilities of default and distance to default. Both credit risk 

measures were found to show a relatively strong correlation. The probability of default had a 
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correlation between the two approaches of 44%, whereas the distance to default obtained a 

clearly higher correlation of 52%. The particular relation between the model and credit rating  

distance to default was studied further through econometric analysis.  

 

The econometric analysis was done through multiple panel data regressions. These consisted 

of regressions on levels with and without firm fixed effects and on time differences. The 

average firm fixed effects was found to be similar across sectors. All regressions found the 

model distance to default measure to be significant at all usual confidence levels. However, the 

coefficient associated with the measure was found to be small for all approaches. This suggests 

that the structural model tends to overreact on all new information, while the credit rating 

agencies act more smoothly.   

 

Nevertheless, there are a few limitations that have to be mentioned regarding this dissertation.  

The EBIT-based model (Goldstein, Ju, & Leland) does not allow for companies with negative 

EBIT. This results in the model not being able to asses many companies in the developing 

stages and other companies operating on a negative EBIT. The assumption of a Geometric 

Brownian motion does not allow for jumps, which is prominent in real life. Additionally, debt 

is considered to be perpetual, which is not always the case in real life.  

 

In addition to limitations stemming from the model, there are also limitations as a result of the 

methods used in model calibration. During construction of the model I assumed constant tax 

rates across all periods, if this had been varying through time, results may have changed. I 

removed outliers when estimating equity volatility in order to make it comparable to previous 

studies. Using non altered values may have altered estimates slightly. Several of the variables 

have been constructed through interpolation. Different approaches were possible, which could 

lead to different results. Lastly, the removal of companies with negative EBIT on average 

and/or no interest costs may result in a skewed representation of both individual sectors and the 

total portfolio. This limitation is especially relevant in the technological sector. 
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9. Appendix  

Appendix 1 - Company overview pt.1 

 

 

Appendix 2 - Company overview pt.2 
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Appendix 3 - Shapiro-Wilks pt.1 

 

Appendix 4 - Shapiro-Wilks pt.2 

 

Appendix 5 - Shapiro-Wilks pt.3 
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Appendix 6 - Conversion matrix9 

  

 

 
9 Data from S&P's 2018 annual corporate default study and rating transition report. 
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Appendix 7 - Numerical scheme10 

 

 

Appendix 8 - Damodaran equity risk premium 

 

 
10 Source: Sajjad, Faiza. (2018). Credit Rating as a Mechanism for Capital Structure Optimization: Empirical 

Evidence from Panel Data Analysis. International Journal of Financial Studies. 6. 13. 10.3390/ijfs6010013. 
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Appendix 9 - Model implied equity volatility 

Model implied equity volatility 

The model implied equity volatility is found through the application of Ito’s lemma  

 

 

Figure 13(panel A and B) shows the timeseries of average model implied equity volatility per 

sector.  
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Figure 13 - Model implied equity volatility 

Panel A 

  

Panel B 

 



 62 

 

 

In Figure 13 one can see that in times of crisis when the value of assets is closer to the barrier 

of default 𝜎𝑒,𝑖𝑡𝑜  is high. Whereas in calmer times, 𝜎𝑒,𝑖𝑡𝑜  is lower.  

 

Even though the equity volatility varies across time, the average value should be very close to 

the one calculated based on log changes in equity. This comparison is shown in Figure 14. 

Figure 14 - Empirical equity volatility vs. model implied equity volatility 

 

As expected, the average equity volatility found through the application of Ito’s lemma is able 

to explain close to all variation in the empirical equity volatility.   

 

Appendix 10 - Return on assets 

Return on assets - 𝝁𝒂 

The return on assets is estimated as the risk-free rate plus the product of 𝜃 and 𝜎𝑎. Since the 

risk-free rate is the same for all companies, the difference between the sectors is driven by 𝜃 

and 𝜎𝑎. This difference can easily be seen in Figure 15 (panel A and B) 
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Figure 15 - Return on assets 

Panel A 

 

 

Panel B 
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As the average asset volatility of the 9 sectors are close in promilitary to each other, the 

difference in levels are mainly cause by 𝜃.  

 

The average 𝜇𝑎 across the time series can be found in Table 22 

Table 22 - Average return on assets 

 

 

Here one sees that the technology sector has a significantly higher average 𝜇𝑎 than the other 

sectors, whereas the utilities- and communication services sector has a markedly lower value. 

These results were expected in both the technology- and utilities sector.  

 

All of these results are significantly lower than the return on equity, as the asset volatility is 

much lower than the empirical equity volatility. This issue is further analysed in Appendix 11. 

 

 

Appendix 11 - Return on equity 

Return on equity - 𝝁𝒆 

The return on equity is computed according to Eq. (29), which simplifies to the expected 

return on equity in accordance to the capital asset pricing model. Here return on equity is the 

risk-free rate plus the product of 𝛽 and EQRP. When computing 𝜇𝑒  it is important to 

remember that both risk-free rate and EQRP is a time series, whereas 𝛽 is constant. 

Consequently, variations in 𝜇𝑒 is cause either by changes in the EQRP or the risk-free rate.  

 

The evolution of 𝜇𝑒 for all sector can be seen in Figure 16(panel A and B). In Figure 16(panel 

A) the series of the capital goods- and energy sector lie on top of each other.  
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Figure 16 - Return on equity 

Panel A 

 

Panel B 

 

 

Due to the constant 𝛽 and a quite stable interest rate, all of the time series are dominated by 

the dynamics of the EQRP. As one can see the return on equity peaks at the end of 2008 
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during the financial crisis, in 2011 during the sovereign debt crisis in the EU and in 2014 

during the oil crisis.  

The average  𝜇𝑒  in the different sectors is found in Table 23. 

Table 23 - Average return on equity 

 

 

Since all sectors considered has the same EQRP and is subject to the same risk-free rate, the 

variations are cause singlehandedly by differences in 𝛽. As the technology sector is subject to 

more systematic risk, its return on equity is higher. Whereas the utilities sector due to its 

small 𝛽 has a drastically lower return on equity.  

 

Appendix 12 - Code 

#GJL model functions 

 

x_function <-function(rf, k, sig_a) { 

  miu <- rf-k  

  a <- sig_a^2/2 

  b <- 2*rf*sig_a^2 

  c <- (miu-a)^2 

  d <- miu-a 

  e <- d+sqrt(c+b) 

  x <- e/sig_a^2  

  return(x) 

} 

y_function <- function(rf, k, sig_a) { 

  miu <- rf-k 

  a <- sig_a^2/2 

  b <- 2*rf*sig_a^2 

  c <- (miu-a)^2 

  d <- miu-a 

  e <- d-sqrt(c+b) 
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  y <- e/sig_a^2  

  return (y) 

} 

#Default Barrier Function  

#found by invoking smooth pasting condition 

v_b_function <- function( rf, k, sig_a, C) { 

  l_d <- x_function(rf=rf, k=k, sig_a=sig_a) / (x_function(rf=rf, k=k, sig_a=sig_a)+1) 

  V_b <- l_d*C*(1/rf) 

  return (V_b) 

} 

#v_b_function(rf,k,sig_a,C=Intexp) 

 

p_b_function <- function( v_a, rf, k, sig_a, C){ 

  R<- v_a/v_b_function(rf=rf, k=k, sig_a=sig_a, C=C) 

  p_b <- R^(-1*x_function(rf=rf, k=k, sig_a=sig_a)) 

  return ((R>1)*p_b+(R<=1)*10^10) 

  return (p_b) 

} 

#p_b_function(v_a,rf,k,sig_a,C) 

 

v_int_function <- function( v_a, rf, k, sig_a, C ){ 

  v_int <- (1-p_b_function( v_a=v_a, rf=rf, k=k, sig_a=sig_a, C=C ))*C/rf  

  return(v_int) 

} 

 

v_solv_function <- function(v_a, rf, k, sig_a, C){ 

  v_solv <- v_a - v_b_function( rf=rf, k=k, sig_a=sig_a, C=C )*p_b_function( v_a=v_a, rf=rf, 

k=k, sig_a=sig_a, C=C)  

  return(v_solv) 

} 

 

e_function <- function( v_a, rf, k, sig_a, C, TaxCorp, TaxDiv){ 

  Tx_eff <- (1-TaxCorp)*(1-TaxDiv) 
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  return(Tx_eff*(v_solv_function( v_a=v_a, rf=rf, k=k, sig_a=sig_a, C=C)-v_int_function ( 

v_a=v_a, rf=rf, k=k, sig_a=sig_a, C=C ))) 

} 

 

#Data, CSX 

#Data, FDX 

#Data, NSC 

#Data, LUV 

#Data, UNP 

#Data, UPS 

xpto<-as.matrix(UPS) 

 

Time   <- xpto[,0]        

date    <- as.numeric(xpto[,1]) 

EBIT     <- as.numeric(xpto[,2]) 

Equity  <- as.numeric(xpto[,3]) 

Intexp     <- as.numeric(xpto[,4]) 

RF      <- as.numeric(xpto[,5])*0.01 

rf      <- as.numeric(xpto[,5])*0.01 

 

FindV <- function(x, k, sig_a, TimeM) { 

  ModelEquity<-e_function(v_a=x, rf=RF[TimeM], k=k, sig_a, C=Intexp[TimeM], 

TaxCorp=0.2, TaxDiv=0.2) 

  #print(ModelEquity) 

  return(Equity[TimeM]-(ModelEquity>0 & ModelEquity<x)*ModelEquity) 

} 

 

#Finds the project value that matches equity value 

Vfunction <- function(k, sig_a){ 

  

BBsolve(par=v_b_function(rf=RF,k=k,sig_a=sig_a,C=Intexp)+100000,fn=FindV,k=k,sig_a=

sig_a,1:783)$par 

} 

#Vfunction(k,sig_a) 
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#Finds sig_a1 

FindAssetVol <- function (k, Start_sig_a) { 

  Error <- 10^10 

  while (Error > 0.00001){ 

    RecoveryAssetVec_1 <- Vfunction(k, sig_a=Start_sig_a) 

    log_ret <- diff(log(RecoveryAssetVec_1),lag=1) 

    sig_a1 <-  sd(log_ret)*sqrt(52)  

    Error<- abs(Start_sig_a-sig_a1)  

    Start_sig_a <- sig_a1 

  } 

  return(sig_a1) 

} 

 

# K as average of  (EBIT)/AssetVector  

Findk<- function(Start_k, sig_a){ 

  Error <- 10^10 

  for (i in 1:783) 

    while (Error>0.00001){ 

      RecoveryAssetVec_1 <- Vfunction(k=Start_k, sig_a) 

      k_a1 <- (sum(EBIT[1:783]))/sum(RecoveryAssetVec_1) 

      Error<- abs(Start_k-k_a1)  

      Start_k <- k_a1 

    } 

  return(k_a1) 

  return(RecoveryAssetVec_1) 

} 

 

FindEstimates<- function(Start_k, Start_sig){ 

  Error <- 10^10       

  for (i in 1:783) 

    while (Error>0.00001){ 

      sig_a1 <-FindAssetVol(k= Start_k , Start_sig_a= Start_sig )          

      RecoveryAssetVec_1 <- Vfunction(k= Start_k,sig_a= Start_sig )    
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      k_a1 <- (sum(EBIT[1:783]))/sum(RecoveryAssetVec_1)     

      Error<- abs(Start_k-k_a1)      

      Start_k <- k_a1    

    } 

  return(sig_a1)  

   

}  

 

FindEstimates2<- function(Start_k, Start_sig){ 

  Error <- 10^10       

  for (i in 1:783) 

    while (Error>0.00001){ 

      sig_a1 <-FindAssetVol(k= Start_k , Start_sig_a= Start_sig )          

      RecoveryAssetVec_1 <- Vfunction(k= Start_k,sig_a= Start_sig )    

      k_a1 <- (sum(EBIT[1:783]))/sum(RecoveryAssetVec_1)    #changed formula do find 

delta/assets aka k 

      Error<- abs(Start_k-k_a1)      

      Start_k <- k_a1    

    } 

  return(k_a1)  

}  

 

#run the iterative approach at once and safe the values in sig_a & k 

Sig_K <-FindEstimates(Start_k=0.05,Start_sig=0.2) 

sig_a <- Sig_K[1] 

 

Sig_K1 <-FindEstimates2(Start_k=0.05,Start_sig=0.2) 

k    <- Sig_K1[1]  

 

# Define Market price risk 

EQRP <- as.numeric(xpto[,6]) #in percentage 

beta <- mean(as.numeric(xpto[,7])) 

miu_e<- RF+beta*(EQRP) 
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UPS_miu_e<-miu_e 

 

#cleaned empirical achieved standard deviation of Equity 

#cleaning the data from outliers 

#empirically computing the equity standard deviation 

sig_e1      <- sd(diff(log(Equity[1:783]))) 

all_outliers<- diff(log(Equity[1:783])) 

limits <- 3*sig_e1 

all_outliers<- all_outliers[!(all_outliers> limits)] 

all_outliers<- all_outliers[!(all_outliers< -limits)] 

b           <- boxplot(all_outliers) 

sig_e1      <-sd(all_outliers)*sqrt(52) 

 

UPS_sig_e1<-sig_e1 

 

Mk_Rsk <- function(EQRP,beta,sig_e1){ 

  Mk_Rsk    <- (beta*EQRP)/sig_e1 

  return(Mk_Rsk) 

} 

Mk_Rsk <- Mk_Rsk(EQRP,beta,sig_e1) 

 

UPS_mkrsk<-Mk_Rsk 

 

# Sigma as standard deviation of log returns  

Findmiu_a <- function(beta, EQRP, sig_a,Mk_Rsk){ 

  miu_a     <- RF+Mk_Rsk*sig_a 

  return(miu_a) 

} 

miu_a <- Findmiu_a(beta, EQRP, sig_a,Mk_Rsk) 

 

UPS_miu_a<-miu_a 

 

#Find miu_d => drift of the project/process 

miu_d_function <- function(beta,EQRP,sig_e1,sig_a,k,Mk_Rsk){ 
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  miu_d     <- RF+Mk_Rsk*sig_a-k 

  return(miu_d) 

} 

miu_d <- miu_d_function(beta, EQRP, sig_e1,sig_a,k,Mk_Rsk) 

#returns miu_d's time series 

 

UPS_miu_d<-miu_d 

 

#Probability of default function  

##scope of bankruptcy is DELTA_T 

 

RecoveryAssetVec_1 <- Vfunction(k,sig_a) 

Barrier<- 1:783 

for(i in 1:783){  

  Barrier[i]<-v_b_function(rf=RF[i], k, sig_a, C=Intexp[i]) 

} 

V_b_Ratio <- Barrier / RecoveryAssetVec_1      #Barrier => v_b_function => optimal level 

of default //// Recoveryassetvector => Asset value at time T 

max(Barrier/RecoveryAssetVec_1) 

 

# Time Series of PDs  

#Gives distance to distress (DD) at each moment in time 

# DD = how many standard deviations away from default 

DD<-function(k, sig_a, miu_a, years, Time){ 

  Delta_t <- 1/52 

  TimeT   <- 52*years  

  a <- (miu_a - k - (sig_a^2/2)) 

  b <- TimeT*Delta_t 

  c <- log(RecoveryAssetVec_1[Time]/v_b_function(rf=RF[Time], k=k, sig_a=sig_a, 

C=Intexp[Time])) 

  d <- sig_a*sqrt(b) 

  e<- (c+a*b)/d 

} 

#Gives Probability of V being below V_B at time T (ignores first passage time) 
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AuxProbability<-function(k, sig_a, miu_a, years, Time){  

  pnorm(-DD(k, sig_a, miu_a, years, Time)) 

} 

#Gives the probability of defaulting in "years"-years at time "Time" 

PDfunc <- function(k, sig_a, miu_a, years, Time) 

{  

  Delta_t <- 1/52 

  TimeT   <- 52*years  

  a <- (miu_a - k - (sig_a^2/2)) 

  b <- TimeT*Delta_t 

  c <- log(v_b_function(rf=RF[Time], k=k, sig_a=sig_a, 

C=Intexp[Time])/RecoveryAssetVec_1[Time]) 

  d <- sig_a*sqrt(b) 

  e <- pnorm(((a*b)-c)/d) 

  f <- exp((2/sig_a^2)*a*c)*pnorm(((a*b)+c)/d) 

  g <- e-f 

  return(1-g) 

} 

 

PD_Series <- 1:783 

DD_Series <- 1:783 

PD_Series_aux1 <- 1:783 

 

#Computes output 

for(i in 1:783){ 

  DD_Series[i]<-DD(k, sig_a, miu_a=miu_a[i], years=5,Time=i) 

  PD_Series_aux1[i]<-AuxProbability(k, sig_a, miu_a[i], years=5,Time=i) 

  PD_Series[i] <- PDfunc( k, sig_a, miu_a[i], years=5, Time =i ) 

} 

UPSPD_Series<-PD_Series 

UPSDD_Series<-DD_Series 

UPSPD_Series_aux1<-PD_Series_aux1 

UPS_V_b_Ratio<-V_b_Ratio 

UPS_Sig<-sig_a 
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UPS_k<-k 

 

#Creating all the necessary new functions in order to compute the timeseries of estimated 

equity volatilities. All functions below is like their previously defined functions, but now the 

derivative with respect to asset value. 

 

# The derivative of the probability of default with respect to asset value. 

p_b_deriv_function <- function( v_a, rf, k, sig_a, C){ 

  R<- v_a/v_b_function(rf=rf, k=k, sig_a=sig_a, C=C) 

  a<- x_function(rf=rf, k=k, sig_a=sig_a) 

  b<- (v_a*(R^(1*x_function(rf=rf, k=k, sig_a=sig_a)))) 

  c<- -(a/b) 

  return ((R>1)*c+(R<=1)*10^10) 

  return (c) 

} 

 

# The derivative of V_int with respect to asset value. 

v_int_deriv_function <- function( v_a, rf, k, sig_a, C ){ 

  v_int_deriv <- (p_b_deriv_function( v_a=v_a, rf=rf, k=k, sig_a=sig_a, C=C ))*C/rf  

  return(v_int_deriv) 

} 

 

# The derivative of V_solv default with respect to asset value. 

v_solv_deriv_function <- function(v_a, rf, k, sig_a, C){ 

  a<-(-p_b_deriv_function( v_a=v_a, rf=rf, k=k, sig_a=sig_a, C=C )) 

  b<- v_b_function(rf=rf, k=k, sig_a=sig_a, C=C) 

  v_solv_deriv<- (a*b)+1 

  return(v_solv_deriv) 

} 

 

# The derivative of equity with respect to asset value. 

e_deriv_function <- function( v_a, rf, k, sig_a, C, TaxCorp, TaxDiv){ 

  Tx_eff <- (1-TaxCorp)*(1-TaxDiv) 
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  return(Tx_eff*(v_solv_deriv_function( v_a=v_a, rf=rf, k=k, sig_a=sig_a, C=C)-

v_int_deriv_function ( v_a=v_a, rf=rf, k=k, sig_a=sig_a, C=C ))) 

} 

 

# Computing the time series of equity volatility. As the product of the derivative of equity 

with respect to asset value, asset volatility and asset value over equity. 

 

Sigma_E<- 1:783 

for(i in 1:783){  

  Sigma_E[i]<- e_deriv_function(v_a=RecoveryAssetVec_1[i], rf=RF[i], k=k, sig_a, 

C=Intexp[i], TaxCorp=0.2, TaxDiv=0.2)*sig_a*(RecoveryAssetVec_1[i]/Equity[i]) 

} 

 

#Firm specific output. 

Output2<-do.call(rbind.data.frame,Map('c', PD_Series, DD_Series, V_b_Ratio, 

RecoveryAssetVec_1, sig_a, k, sig_e1, Sigma_E, miu_a. miu_d, miu_e,Mk_Rsk )) 

write.table(Output2, file = "UPS_specific Important.csv",  sep=";", dec = ",") 

 

#Sector output of core data for easier treatment.  

Output2<-do.call(rbind.data.frame,Map('c', CSXPD_Series, FDXPD_Series, NSCPD_Series, 

LUVPD_Series, UNPPD_Series, UPSPD_Series, CSXDD_Series, FDXDD_Series, 

NSCDD_Series, LUVDD_Series, UNPDD_Series, UPSDD_Series, CSX_V_b_Ratio, 

FDX_V_b_Ratio, NSC_V_b_Ratio, LUV_V_b_Ratio, UNP_V_b_Ratio, UPS_V_b_Ratio)) 

write.table(Output2, file = "600 Important.csv",  sep=";", dec = ",") 
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