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Forecasting Stock Index Volatility – A comparison of Models 

 

Abstract 

This thesis explores the use of popular machine learning algorithms (K-Nearest Neighbor and 

Random Forest) and compares them to traditional techniques (Random Walk, ARIMA and 

GARCH) for forecasting one-day, one-week, one-month and one-quarter volatility using The 

Oslo Stock Exchange All Share Index. A number of error metrics are applied (RMSE, MAE, 

MAPE and R-squared) in order to compare their results. Machine learning methods are shown 

to forecast the changes in volatility to some extent, however, evidence is found favouring the 

ARIMA model when forecasting volatility time series.  
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Introduction 

Forecasting volatility is important in many areas of finance and is therefore the subject of a 

vast amount of research. In this thesis, a comparison between different techniques for 

forecasting stock volatility is conducted. Volatility in financial markets refers to how variable 

the price of a security or index is over a period of time. It is measured by the standard 

deviation or variance of the underlying asset’s returns, or logarithmic returns. There are many 

reasons for why volatility and volatility forecasting are of great interest. Firstly, volatility is a 

common measure of risk and an important variable in finance, for example for VaR-

calculation in risk management, and asset allocation in portfolio management. Additionally, 

option pricing techniques rely on a volatility parameter which is, unlike other variables in 

theoretical pricing formulas, not directly observed in the market. Hence, volatility is the most 

difficult and uncertain part of the valuation and affects the option prices significantly. 

Furthermore, we are often concerned about future volatility levels, which makes forecasting a 

necessity. However, due to the variable’s specific characteristics and complex external 

influences, it is challenging to accurately forecast volatility from historical values without 

large errors. Thus, minimising the error in the forecast proves to be crucial.  

 

Popular techniques for data analysis, forecasting, classification and regression are provided by 

machine learning. This is because of their ability to learn from an input and predict an output 

given a correlation between the two variables. It is therefore interesting to explore the 

predictive abilities of machine learning algorithms, when used on volatility time series.  

The techniques can be divided into supervised and unsupervised learning. Supervised learning 

is where the algorithm learns about the relationships of variables from a training set in order 

to produce an output. Unsupervised learning refers to when there are no output variables, and 

the algorithm is used to find previously unknown patters in the data in order to learn more 
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about it. Since supervised learning fits better with the forecasting tasks in the present research, 

unsupervised learning will be excluded. Furthermore, forecasting is considered a regression 

task, hence regression algorithms will be the focus of this study.  

 

The aim of this thesis is to compare the accuracy of predictions made by traditional volatility 

forecasting models found in literature, to some of the most popular machine learning 

methods. Since there is little to no research concerning the volatility of the Norwegian stock 

market, 10 years of daily closing prices from The Oslo Stock Exchange All Share Index 

(OSEAX) are used. The models implemented are Random Walk, ARIMA, GARCH, K-

Nearest Neighbor and Random Forests algorithms. In order to find evidence for whether the 

same model provides the most accurate forecasts over different timeframes, the one-day, one-

week and one-month volatilities are forecasted. All forecasts are evaluated by their out-of-

sample predictive power, which is measured by the differences between the actual observed 

values in the test dataset and the predicted values. The error metrics used are Mean Absolute 

Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) 

and R squared. 

 

The remainder of this thesis consist of a literature review, an explanation of methodology and 

a presentation of results. Subsequently, a discussion about the results is conducted, before 

arriving at a conclusion with proposed further research. All code used to create, fit and test the 

models is written in Python, and can be found in Appendix A. 
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Literature Review 

Due to the importance of volatility in finance and the challenges of forecasting it, volatility 

has been the subject of a large body of research for the past three decades. Research shows 

that volatility time series have a number of characteristics differentiating them from other 

time series, for example that the distribution has fat tails and that stock shocks have a strong 

impact on volatility. There are two characteristics particularly relevant for the research 

conducted in this thesis. Firstly, there is a great amount of evidence of volatility clustering, 

which mean that a high volatility period tends to be followed by another period of high 

volatility and similarly a low volatility period tends to be followed by one of low volatility. 

Mandelbrot (1963) and Fama (1965) are among many studies providing empirical evidence 

for this. Furthermore, Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and Nelson 

(1994) and Shephard (1996) support the existence of volatility persistence in financial time 

series meaning that the volatility in many periods in the future are affected by the stock return 

today.  

 

Attempting to take different stylized facts into consideration, a large number of models have 

been developed and implemented to solve the task of forecasting volatility. Moving on from 

simple historical volatility models and linear regression, some of the biggest contributions to 

the field are The Autoregressive Moving Average Model (Whittle, 1951), its extension 

ARIMA, as well as the introduction of ARCH models by Robert. F. Engle (1982) leading to 

the development of the generalised ARCH model, GARCH (Bollerslev, 1986). In the 

following years, several extensions to the ARCH models have been added to the literature in 

an attempt to include more of the volatility characteristics. An example of such a model is 

EGARCH proposed by Nelson (1991) which argued that the nonnegativity constraints in the 

linear GARCH model are too restrictive. Moreover, TGARCH (Zakoian, 1994) was 
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introduced to take leverage effects into account, which refers to the tendency of an asset’s 

volatility to be negatively correlated with the asset’s return. There are many papers comparing 

the forecasting accuracy of historical volatility models, time series techniques, stochastic 

volatility models and autoregressive models with conflicting conclusions. In the majority of 

cases, the conflicting evidence arises from different evaluation metrics, forecasting time-

frames, measures of volatility and asset types. See for instance the comparison by Poon and 

Granger (2003).  

 

Machine learning is not a new phenomenon. The first algorithms can be dated back to as early 

as the 1950s. Despite this, it was not until the 21st century that the use of such algorithms 

exploded and the techniques started to become common in most industries. Economics and 

finance were slower to implement the models (Athey and Imbens, 2019). Econometric 

methods are, however, currently being challenged by machine learning which is being 

increasingly included in the research area. 

 

There is evidence in the existing literature demonstrating the ability of machine learning to 

perform well in financial prediction tasks. Most of the research concerns asset pricing and 

stock predicting. Gu, Kelly and Xiu (2019), for example, find evidence suggesting that 

machine learning methods, especially neural networks and regression trees, can help improve 

empirical understanding of asset prices, and is most valuable in forecasting larger and more 

liquid stock returns and portfolios. Furthermore, Alkhatib, Najadat, Hmeidi, Shatnawi (2013) 

applied the K-Nearest Neighbor (k-NN) algorithm and non-linear regression to predict stock 

prices. They found evidence suggesting that the algorithm produced reasonable forecasts with 

small errors. There is, however, existing research concerning machine learning in volatility 

forecasting as well. For example, Luong and Dokuchaev (2018) combines the Heterogenous 
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Autoregressive Model (HAR) and the Random Forest algorithm, in order to forecast the 

direction and magnitude of the realised volatility. They conclude that the HAR model 

framework was improved by the algorithm. In addition to this, Zhang and Li applies a 

modified version of the k-Nearest Neighbor algorithm to forecast volatility of the Tsingtao 

Brewery Co Ltd stock prices and find that the method predicts better than traditional methods.  

 

Taking the difficulty of volatility forecasting, machine learning theory and existing literature 

into consideration, it is reasonable to believe that with a comparison of traditional forecasting 

techniques to some of the most popular machine learning regression algorithms, the inclusion 

of machine learning models have the potential to outperform the other techniques.  
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Methodology 

Dataset 

The dataset used is 10 years of daily prices from The Oslo Stock Exchange All Share Index 

starting on 01.10.2009 and ending on 01.10.2019, resulting in 2510 values, retrieved from 

Bloomberg. Volatility is measured by standard deviation and calculated by   

 
𝜎" = 	%

&
'
∑ (𝑟+ − �̅�)/'
+0& ,	

(1) 

where �̅� is the average of the daily logarithmic return which is on day t calculated by   

 𝑟+ = ln(𝑃+) − ln	(𝑃+5&),	 (2) 

with 𝑃+ being the security closing price on day t and 𝑃+5& the security opening price on day t. 

After calculating returns and standard deviations, the data consists of 2509 and 2508 dates 

and their respective values. In order to make forecasting possible for the supervised machine 

learning models, a sliding window procedure is performed on the dataset creating an 

independent and a dependent value from the time series. Furthermore, the dataset is divided 

into training and testing sets, where the models are fitted using the training set and their out-

of-sample predictive power evaluated with the testing set. The splitting between training and 

testing sets is done with respect to different forecasting horizons, with the aim of determining 

whether the same models perform well on short and semi-long forecasting horizons. The time 

frames used are one-day, one-week and one-month, given by series of 1, 5, 21 and 63 values 

respectively, which represent the number of trading days in the period. The data is plotted for 

a visual illustration.  
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        Figure 1: Daily closing price OSEAX 

 
            Figure 2: Daily logarithmic returns of OSEAX 

    
               Figure 3: Daily standard deviation of OSEAX return 

The visual illustration of daily standard deviation (Figure 3) indicates that volatility clustering 

is present in the dataset. Furthermore, despite periods of extreme volatility, the series appears 

to be mean reverting meaning that it tends to return to its average levels after fluctuating.  
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Stationarity 

Stationarity refers to the situation where the statistical properties, such as mean and variance, 

do not change over time, and is a common requirement for time series modelling. The first 

step in order to determine if the time series is stationary, is to inspect the plotted data for time 

dependent structures such as trend or seasonality. The daily closing prices (Figure 1) show a 

clear increasing trend. However, the plotted daily returns (Figure 2) and standard deviation of 

daily returns (Figure 3), display no such pattern. An Augmented Dickey-Fuller test is 

conducted in order to formally confirm the following hypothesis:  

H0: The time series is non-stationary. 

H1: The time series is stationary.  

The result from the test contains a test statistic, a critical value for different confidence levels 

and a p-value. The p-value needs to be smaller than the significance level of 0.05 for the null 

hypothesis to be rejected and the time series to be assumed stationary. When conducting the 

test on the return and standard deviation datasets, H0 is rejected since the p-value is smaller 

than 0.05, and the test statistics less than the values for each confidence level. Hence, both 

time series are assumed to be stationary, with small probability of the result being false.  

Traditional Models  

Random Walk (RW) 

A random walk is a mathematical process which describes a path where the directionto each 

next step is a random step away from the current observation, within a set of predefined 

directions. In the present research a two-dimensional random walk is conducted, where the 

possible directions to move at each step are up and down, with equal probability to move in 



 10 

either direction. Furthermore, the number of steps in the walk is equal to the forecast horizon. 

The random walk is mathematically given by the sequence 

 (𝑊+) = (𝑆+)+0&8 , (3) 

where 𝑆+ = 	∑ 𝑋:+
:0&  is the value at time step t in the walk, and 𝑋:  the random variable at 

each time step. Hence, T is the forecasting horizon. Let the initial value 𝑆; be set to the 

current level of volatility. 

The reason for including such a simple model is that there is a large amount of randomness in 

volatility time series, and a random walk can provide understanding of whether the time series 

is predictable. Furthermore, it is interesting to see whether the far more complex techniques 

provide more accurate predictions to a large degree. The magnitude of the movement at each 

time step is chosen to be 0.0058 for scaling purposes, which is the average daily volatility in 

the dataset.  

Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA model creates a linear equation to forecast a future series based on past values, 

where lags and the lagged forecast errors are taken into account. It can be considered as a 

combination of simpler models. The Autoregressive term (AR) refers to how the values at 

different time steps are autocorrelated. Autocorrelation, or serial correlation, is a term used to 

describe the situation where the value in a timeseries is correlated with the values of previous 

steps, meaning the model can use the current values to forecast future ones. Moving Average 

(MA) refers to the fact that the time series does not have a constant average, and the model 

therefore sets different averages along the dataset. Further, the ARIMA equation requires the 

time series to be stationary. If the time series is not stationary, the series must be differenced 
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by replacing the values with the change from the preceding period, which is represented by 

the “Integrated” part of ARIMA. This is given by 

No difference (d = 0):      

First difference (d=1): 

																														𝑦+ = 	𝑌+,	

																								𝑦+ = 	𝑌+ −	𝑌+5&. 

(4) 

(5) 

Y is the original series and y the differentiated (stationary) series defined by   

 𝑌	 = (𝑌&,… , 𝑌8),														𝑦 = (𝑦&, … , 𝑦8), (6) 

where  

 Y@ = ß; +		ß&Y@5& + ⋯+	ßDY@5D +	𝜀+ + 𝜃&𝜀+5&	+ 𝜃G𝜀+5G ,	 (7) 

with ß𝟎 a constant, ßIY@5I + ε@ representing the autoregressive terms and θIε@5I representing 

the moving average terms. A generally accepted notation of the model is ARIMA(p,d,q) 

where parameters p (AR terms), d (order of differencing) and q (MA terms) areto be 

determined. The values of p and q are identified by analysing the Autocorrelation Function 

(ACF) plot and Partial Autocorrelation function (PACF) plot combined with significance 

levels. The ACF plot illustrates the number of lags where values in the series are 

autocorrelated.  

 
     Figure 4: ACF plot for standard deviation 
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Figure 4 reveals that the series has significant positive autocorrelations up to a high number of 

lags. Despite the fact that the stationarity test concludes with a stationary time series, it 

appears here to be under-differenced, which is further confirmed by analysing the residuals of 

ARIMA(0,0,0) and ARIMA(0,1,0). Taking the first difference of the series makes the models’ 

residuals closer to normally distributed and fluctuating around a constant mean. Thus,  

differencing the time series once results in the following ACF plot (Figure 5), which shows 

the correlation between the series and lag after contributions from previous lags are excluded.  

  
      Figure 5: ACF plot of differenced series          

 
The first difference, d = 1, does not result in negative autocorrelation on the first lag which 

indicates that the time series is not over-differenced. In order to identify the AR and MA 

terms, the PACF plot (Figure 6) is also analysed. 

 
Figure 6: PACF plot of differenced series 
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Figure 6 shows a sharp decline of partial autocorrelation after the first lag. This, combined 

with the positive first lag of autocorrelation, indicates that the model is slightly under-

differenced. An AR term is therefore added to the model. The order of AR terms is 

determined by the lag where PACF is within the accepted values for the first time. Hence, the 

model used is ARIMA(1,1,0). 

 

Generalised Autoregressive Conditional Heteroskedasticity (GARCH) 

One problem with autoregressive models such as ARIMA, is that they do not take changes in 

variance over time into account, which is usually a characteristic of stock market volatility. 

GARCH is a generalisation of The Autoregressive Conditional Heteroskedasticity Model 

(ARCH), which is a non-linear model attempting to model the error of the change of variance 

in the time series based on previous lags and their errors. Furthermore, the model recognises 

the difference between conditional and unconditional variance. Unconditional variance is time 

varying, whereas the conditional is not. It creates a function with weighted averages of 

squared past forecast errors and uses this to allow the conditional variance to change over 

time. ARCH is therefore creating a “weighted variance” meaning that the recent values are 

given a greater weight than the ones further in the past. In order to describe the model 

mathematically, let ε@ denote the unexpected returns of the model. The error terms are split 

into a stochastic part 𝑧+, which is a white-noise process, and a time-dependent standard 

deviation 𝜎+. Thus, the error term is defined by 

 ε@ = 𝜎+𝑧+.	 (8) 

Since the current value of variance of errors in the model depends on the previous squared 

error terms, the ARCH(p) model can be described as variance of the series, 𝜎+/, and is 

modelled by  
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 𝜎+/ = 	𝛼; +	∑ 𝛼"ε+5"/O
"0&	 , (9) 

where 𝜎+/ is the current variance of errors, 𝛼; a positive constant, 𝑎" ≥ 0 and 𝜀+5"/  represents 

the squared errors for the period t-i. It is common practice to write the model as ARCH(p) 

where p denotes the number of included. An LM test for ARCH effect was conducted with 

the indication that ARCH effects are present in the time series. 

GARCH includes a moving average element which makes it possible to model both the 

conditional change in variance as well as changes in the time-dependent variance, with the 

aim of capturing more of the variance in volatility. A common notation for the model is 

GARCH(p,q). Following the notation from the ARCH section, let p be the order of ARCH 

terms (𝜀/) and q the order of GARCH terms (𝜎/).  The GARCH(p,q) model is then defined 

by   

 𝜎+/ = 	𝛼; +	∑ 𝛼"𝜀+5"/ +	∑ 𝛽"𝜎+5"/G
"0&

O
"0&	 ,		 (10) 

where 𝛽" ≥ 0. This makes GARCH (0,q) equivalent to an ARCH model, while GARCH (0,0) 

is simply white noise. GARCH assumes, like ARCH, that the time series is stationary apart 

from the change in variance. In order to determine the ARCH and GARCH term, ACF and 

PACF plots of the squared returns are inspected. 

 
Figure 7: ACF plot of squared returns 
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The ACF plot shows significant positive autocorrelation for multiple lags and crosses the 

upper confidence level at a value of 49 resulting in choosing this as the order of ARCH terms. 

The GARCH effect can be found by inspecting the PACF plot of the squared returns. 

 

Figure 8: PACF plot of squared returns 
The plot (Figure 8) displays positive significant partial autocorrelation for up to 9 lags, 

resulting in setting q = 9 in the model leading to a GARCH(49,9) model.  

Machine Learning Methods  

K-Nearest Neighbor (k-NN)  

k-NN is a simple algorithm to use and is commonly used in different regression tasks. The 

model is non-parametric meaning it does not make any assumptions about the underlying 

data. The rationale behind the algorithm is that it assumes that similar things are close to each 

other. It works by calculating the distances between the values in the dataset with the chosen 

distance function, considering what the closest value is to the one it is trying to predict and 

takes the average of the closest points in order to do so. A value of K, which is the number of 

near data points to include in the average, must be chosen. Increasing K makes the model 

more stable but will at some point result in bigger errors. Decreasing K below this point will 

result in a more unstable model, making the predictions less accurate when tested out-of-
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sample. The parameter is chosen by fitting the model with different values of K and selecting 

the one that minimises the errors on the training set. In this research, up to K=300 is tested, 

where K=39 is the value for which the model produces the smallest errors.  

Random Forest (RF) 

The Random Forest algorithm is built up by many decision trees. Thus, in order to understand 

The Random Forest, it is critical to first understand how a decision tree works. A decision tree 

uses a tree-like structure to make decisions. It starts with a root and divides the dataset 

following certain criteria suited for the dataset. At each node a new rule is introduced, and the 

values will either follow this rule or not. This continues until there are no more conditions to 

be met and the leaf nodes are reached, which are the target variables. The depth of a tree 

refers to how many criteria are included and will vary depending on the dataset. Finally, the 

decision tree can use the same rules created on a training set to predict out-of-sample values. 

Decision trees are easy to understand and use, and are fast even when implemented on large 

datasets. However, there is a possibility of overfitting, especially if the tree is very deep. One 

way of tackling this is to set a maximum depth of the tree, but this will make the model a 

worse fit for the data which creates bigger errors. Basing the decision on several trees 

(creating a “forest”) will reduce the possibility of overfitting, and not give less accurate 

forecasts. Each of the trees in a random forest is individually a worse predictor than when a 

single decision tree is used. However, if enough trees are included, combined they will be 

more robust and produce better predictions than a simple decision tree. The individual trees 

are trained on different samples with random features in order to make them less correlated. 

More trees will lead to a better model, but the algorithm is very slow when a large number of 

trees are included. Furthermore, the added value of each tree will decrease and at some point 

be close to zero. The number of trees included in the model, N, is found by running the 
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algorithm with different values of N and evaluating when the added value of one additional 

tree declines. Here, the process results in N=3.  

Evaluation  

In order to evaluate and compare the models’ predictive power, several error metrics have 

been implemented. These are evaluation techniques that measure the difference between the 

forecasted series and test dataset. Different evaluation techniques are used to get a clearer 

picture of the model’s performance. The following error functions are included in the 

evaluation, where y represents the observed values, ŷ the forecasted values and n the number 

of values.   

Mean Absolute Percentage Error (MAPE)  

MAPE presents the accuracy of the forecast as a percentage. It can be calculated as the 

averaged absolute value of the difference between the observed and forecasted values, divided 

by the observed value. The percentage errors are summed without the consideration of 

positive/negative percentages, eliminating the problem of the errors cancelling each other out. 

The metric works best when there are no extreme outliers or zeros. It is easier to interpret 

when different measures of volatility are used because it provides the error in percentage 

form, unlike the other error functions. Naturally, the smaller the percentage the better. 

Mathematically it can be calculated by  

 𝑀𝐴𝑃𝐸 = (&
X
∑ YZ[5ŷ[

Z[
Y)	X

"0& . (11) 

Mean Squared Error (MSE)  

MSE is the average of squared differences between the predicted values and the test dataset. It 

is always positive, and the smaller the errors, the better. It measures both how widely spread 
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the forecasted values are and how close they are to the observed values. The error function is 

mathematically described as 

 𝑀𝑆𝐸 =	 &
X
∑ (𝑦"X
"0& − ŷ")/. (12) 

Root Mean Squared Error (RMSE) 

RMSE is the square root of the MSE. The metric gives relatively large weight to large errors 

because it squares the errors before calculating the average. The measurement is negatively 

oriented meaning that lower scores are preferred. It can be defined as  

 
𝑅𝑀𝑆𝐸 = %&

X
∑ (𝑦"X
"0& − ŷ")/.	

(13) 

R-Squared (R/) 

The problem with the so far described error functions is that it can be challenging to know 

what values are acceptable for a model. The coefficient of determination, R/, is therefore 

included as an error metric. It evaluates how well the regression line created by the model fits 

the data and can be considered a ratio. It measures how good the fitted model is compared to 

the simplest model possible. The R-Squared formula is given by 

  𝑅/ = 	1 −	 ∑(Z[5	ŷ[)
_

∑(Z[5	Z̀[)_	
,	 (14) 

where �̀�" is the predicted value of a non-fitted model. This means that the error compares the 

sum of error squares for the model (regression line) to the total sum of squares for a non-fitted 

model. Thus, 𝑅/ is a measure of how the best fitted line from the model follows the forecast, 

or how much of the forecast can be explained by the model. Its advantage is that it will 

always have a value ranging between negative infinity and one, and is therefore easy to 

interpret. Negative values reveal that the model fits the data worse than a simple horizontal 

line. 
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Results  

In order to visually analyse the model’s predictive power, their one-month forecast is plotted 

against the actual observed volatility in the period.  

 
Figure 9: Random walk forecast                                   

  
                        Figure 10: ARIMA Forecast                                Figure 11: GARCH Forecast                                     

  
    Figure 12: k-NN forecast                                          Figure 13: RF Forecast  
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The following table shows the results of the error metrics. Note that the function for R-

squared fails when only one prediction is made by the models. This is shown as nan in Table 

1. 

   Horizon RMSE MAE MAPE 𝐑𝟐 

 
RW 

Day 
 Week 
Month 
Quarter 

0.00510 
0.00396 
0.00960 
0.02081 

0.00510 
0.00372 
0.00737 
0.01582 

729.07300 
303.48195 
413.04350 
 973.27802 

nan 
-1.67467 
-3.72282 
-26.7539 

 
ARIMA 

Day 
 Week 
Month 
Quarter 

0.00043 
0.00320 
0.00501 
0.00442 

0.00043 
0.00254 
0.00399 
0.00347 

 62.28832 
158.46472 
199.64139 
 352.14641 

nan 
-0.74335 
-0.28388 
-0.25431 

 
GARCH 

Day 
 Week 
Month 
Quarter 

0.00832 
0.00487 
0.00454 
0.00449 

0.00832 
0.00446 
0.00361 
0.00350 

1189.6266 
350.78178 
177.57392 
268.31458 

nan 
-3.03820 
-0.05891 
-0.29240 

 
k-NN 

Day 
 Week 
Month 
Quarter 

0.00337 
0.00368 
0.00470 
0.00416 

0.00338 
0.00344 
0.00371 
0.00325 

482.60138 
275.78895 
172.59254 
340.18410 

nan 
 -1.31527 
-0.13223 
-0.05669 

 
RF 

Day 
 Week 
Month 
Quarter 

0.00010 
0.00437 
0.00589 
0.00565 

0.00012 
0.00316 
0.00447 
0.00457 

15.26155 
218.63676 
236.55045 
467.05198 

nan 
-2.25156 
-0.77757 
-1.05172 

Table 1: Error metrics represented for each model and the respective time frame.  

The errors in Table 1 reveal large differences in the forecasting accuracy across the models, 

and between different forecast horizons with the same model. One of the most noticeable 

trends in Table 1 is that all models have poor R-squared values. This means that they do not 

explain the changes in the dataset well and can be considered an illustration of the challenging 

nature of volatility forecasting. However, when compared to the graphs of the fitted models, 

the plotted Random Walk (Figure 9) illustrates their predictive power. While the Random 

Walk forecast can end up far from actual volatility levels for long time horizons, the other 
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models are able to capture the mean-reverting tendency of volatility. Despite a low R-squared 

indicating an inability among the trained models to explain a large amount of the changing 

values in the time series, the graphs display that certain models are able to model the series 

fairly well.  

The models are fitted with daily volatility. One could therefore expect that the shorter 

horizons would have the lowest error rate. The error metrics reveal that this is true for 

ARIMA and RF who both produce one-day forecasts with small errors. However, k-NN and 

GARCH forecast one-month volatility most accurately. It is reasonable to believe that the 

mean-reverting characteristics of volatility and changes in the underlying provide difficulties 

when forecasting longer horizons with daily volatility, which to some degree can be seen in 

Table 1. 

With regards to the most accurate forecasts, Figures 10, 12 and 13 show that ARIMA, k-NN 

and RF are able to capture the direction of changes in volatility. ARIMA is, on average, the 

model that best predicts the levels at all points in time. However, the model predicts the 

changes to occur at a slightly later time compared to the real data, which appears to be a trend 

among the models in general. When taking the error metrics into consideration, it is also the 

aforementioned models which produce, on average, the forecasts with the smallest errors. 

Furthermore, both Random Forest and ARIMA have small one-day forecast errors. This is a 

surprising result given the large differences in complexity between the two models.  

It is interesting to inspect the differences in the forecasts produced by the machine learning 

methods. They are both able to predict the general structure of the series, however k-NN tends 

to underestimate the magnitude of the changes in volatility. Taking the construction of the 

model into consideration, this is not a surprising result. Random Forest, on the other hand, 
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switches between overestimating and underestimating the variability of volatility, and 

produces larger individual errors.  

The plotted GARCH forecast (Figure 11) shows some similarities to that of ARIMA in the 

sense that it underestimates the level of changes in volatility. However, GARCH greatly 

overestimates the volatility towards the end of the forecast horizon. Given the development of 

the forecast, this could be due to the model putting more weight on recent observations. 

Furthermore, when evaluating the errors of the model, it is necessary to consider metrics other 

than MAPE, given its emphasis on large individual errors which becomes evident in the 

plotted forecast. It is seen that the errors are on the average level for long forecast horizons, 

but unreasonably large short-term. Based on the model’s popularity in the field, one would 

expect more accurate predictions. However, it must be mentioned that with longer a longer 

forecasting horizon, GARCH could outperform the other models given its attention to 

conditional and unconditional changes in variance. Nevertheless, the models’ poor 

performance indicates that different parameters, a combination with other models or another 

version of ARCH-family or would have been more appropriate to use. 

Conclusion 

Forecasting volatility is a challenging task. Due to the specific characteristics of volatility and 

its large implications in financial markets, a vast number of models have been created with 

the aim of producing more accurate forecasts. Some of them are compared in the present 

research.   

Machine Learning was included due to its applicability to complex regression tasks and 

successful implementations in the field’s existing literature, when combined with other 

models. This is also evident in the present research, even when the models are used alone. 

Although the algorithms have low errors in most forecast horizons and are able to capture the 
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general structure of the series, it is shown that they do not outperform the traditional, and 

much simpler, model ARIMA. This could be due to the fact that the algorithms are not 

specialised for volatility. If one were to take characteristics of volatility time series into 

consideration, they would be likely to produce improved forecasts. A limitation with machine 

learning algorithms is that they are trained to find relationships between values in a series and 

will do so even in cases where there are none, potentially resulting in wrongful forecasts. 

The accuracy of the ARIMA(1,1,0) model is somewhat surprising. Despite being a relatively 

non-complex model compared to the other techniques, it produces the most accurate forecasts 

in the majority of the time horizons. This illustrates the fact that the accuracy of a forecast 

does not necessarily increase with the complexity of a model. One of the advantages to 

ARIMA is that it is flexible. It can be fitted to the data to determine the orders of parameters 

which lower the errors. However, a disadvantage with time series models compared to 

machine learning algorithms, is that they assume more about the input data.  

If machine learning is specialised to volatility and combined with time series type models, the 

resulting forecasts would likely be of greater accuracy than their individual predictions 

included in the present thesis. This is suggested as further research, in addition to exploring 

other models in the ARCH family. 
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Appendix 

APPENDIX A: Code used to create and test the models  

# Plotting prices, returns and standard deviation  
 
import pandas as pd  
from matplotlib import pyplot  
from statsmodels.tsa.stattools import adfuller 
 
df = pd.read_excel("/Users/mariongemst/Desktop/DATASETS OSEAX /OSEAX 
MAIN.xlsx")    
df = df.dropna() 
returns = df["RETURN"] 
stdev = df["STDEV"]  
prices = df["PX_LAST"] 
 
pyplot.plot(prices) 
pyplot.xlabel("Year") 
pyplot.ylabel('Closing Price') 
pyplot.show() 
 
pyplot.xlabel("Year") 
pyplot.ylabel('Log Return') 
pyplot.plot(returns) 
pyplot.show() 
 
pyplot.plot(stdev) 
pyplot.xlabel("Year") 
pyplot.ylabel('Standard Deviation') 
pyplot.show() 
 
#Testing stationarity   
print("Restults of Stationarity Test:") 
test = adfuller(returns, autolag="AIC") 
print("ADF Statistic: %f" % test[0]) 
print("p-value: %f" %test[1]) 
print("Critical Values:") 
for key, value in test[4].items(): 
    print('\t%s: %.3f' % (key, value)) 
 
print("Restults of Stationarity Test:") 
test = adfuller(stdev) 
print("ADF Statistic: %f" % test[0]) 
print("p-value: %f" %test[1]) 
print("Critical Values:") 
for key, value in test[4].items(): 
    print('\t%s: %.3f' % (key, value)) 
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___________________________________________________________________ 
#RANDOM WALK MODEL  
 
from random import seed  
from random import random 
from matplotlib import pyplot  
import pandas as pd  
from sklearn import metrics 
import numpy as np 
 
df = pd.read_excel('/Users/mariongemst/Desktop/DATASETS OSEAX /OSEAX 
MAIN.xlsx') 
stdev = df["STDEV"] 
stdev = stdev.values 
 
n_test = 5                        #Number changes with forecasting horizon 
test= stdev[-n_test:]         #Making the test set of observed values  
 
 
#Creating the forecast 
seed(0)   
forecast = list() 
forecast.append(-0.0058 if random() < 0.5 else 0.0058) 
for i in range(n_test-1):   
    step = -0.0058 if random() < 0.5 else 0.0058 
    value = forecast[i-1] + step 
    forecast.append(value) 
     
 
#plot the 30 day forecast 
pyplot.plot(forecast, label="Forecast", color='grey')    
pyplot.plot(test, label = "Observed" ) 
pyplot.legend(loc="upper left") 
pyplot.xlabel("Days") 
pyplot.ylabel("Volatility")  
pyplot.title("Random Walk Forecast") 
pyplot.xticks(range(0,22))                                       
pyplot.show()       
 
#Evaluating the forecast  
print("Root Mean Squared Error", np.sqrt(metrics.mean_squared_error(test, 
forecast))) 
print("Mean Absolute Error:", metrics.mean_absolute_error(test, forecast)) 
 
def mean_absolute_percentage_error(test, forecast):  
    test, forecast = np.array(test), np.array(forecast) 
    return np.mean(np.abs((test - forecast) / test)) * 100 
print("Mean Absolute Error",mean_absolute_percentage_error(test,forecast)) 
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print("confidence", metrics.r2_score(test, forecast)) 
 
___________________________________________________________________ 
#ARIMA MODEL 
 
import pandas as pd 
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 
from matplotlib import pyplot 
from sklearn import metrics 
from statsmodels.tsa.arima_model import ARIMA 
import numpy as np 
 
df = pd.read_excel('/Users/mariongemst/Desktop/DATASETS OSEAX /OSEAX 
MAIN.xlsx')    
df = df.dropna() 
returns = df["RETURN"] 
stdev = df["STDEV"]  
 
 
n_test = 22 
train = stdev[:-n_test]  
test = stdev[-n_test:] 
 
#Plotting ACF and PACF   
 
plot_acf(stdev, title="") 
pyplot.xlabel("Lag") 
pyplot.ylabel("ACF")  
pyplot.show()   
 
stdev_diff = stdev.diff() 
stdev_diff = stdev_diff.dropna() 
stdev_diff = stdev_diff.values 
 
plot_acf(stdev_diff, title="") 
pyplot.xlabel("Lag") 
pyplot.ylabel("ACF")  
pyplot.show()   
 
plot_pacf(stdev_diff, title="")  
pyplot.xlabel("Lag") 
pyplot.ylabel("PACF")  
pyplot.show() 
 
#Confirming if we need first order differencing  
 
stdev = stdev.values 
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model1 = ARIMA(test, order = (0,1,0)) 
model_fit_check = model1.fit(disp=0) 
 
residuals = DataFrame(model_fit_check.resid) 
residuals.plot() 
pyplot.show() 
residuals.plot(kind="kde") 
pyplot.show() 
print(residuals.describe()) 
print(model_fit_check.summary()) 
 
residuals = DataFrame(model_fit_check.resid) 
residuals.plot() 
pyplot.show() 
residuals.plot(kind="kde") 
pyplot.show() 
print(residuals.describe()) 
print(model_fit_check.summary()) 
 
#Creating and fitting the model  
 
previous = [x for x in train] 
predictions = list() 
for t in range(len(test)): 
 regressor = ARIMA(previous, order=(1,1,0)) 
 model_fit = regressor.fit(disp=0) 
 output = model_fit.forecast() 
 prediction = output[0] 
 predictions.append(prediction) 
 obs = test[t] 
 previous.append(obs) 
 
print(model_fit.summary().tables[1]) 
 
#Plotting the Forecast and observed values  
 
#Plotting the one month forecast  
pyplot.plot(predictions, label="Forecast", color='grey')    
pyplot.plot(test.values, label = "Observed" ) 
pyplot.legend(loc="upper right") 
pyplot.xlabel("Days") 
pyplot.ylabel("Volatility")  
pyplot.title("ARIMA Forecast") 
pyplot.xticks(range(0,21)) 
pyplot.show() 
 
#Evaluating the model  



 30 

print("Root Mean Squared Error", np.sqrt(metrics.mean_squared_error(test, 
predictions))) 
print("Mean Absolute Error:", metrics.mean_absolute_error(test, predictions)) 
 
def mean_absolute_percentage_error(test, forecast):  
    test, forecast = np.array(test), np.array(forecast) 
    return np.mean(np.abs((test - forecast) / test)) * 100 
print(mean_absolute_percentage_error(test,predictions)) 
 
print("confidence", metrics.r2_score(test, predictions)) 
 
___________________________________________________________________ 
#GARCH MODEL  
 
import pandas as pd 
from arch import arch_model 
from matplotlib import pyplot 
import numpy as np 
from sklearn import metrics 
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 
from statsmodels.stats.diagnostic import het_arch 
import pandas as pd  
 
df = pd.read_excel("/Users/mariongemst/Desktop/DATASETS OSEAX /OSEAX 
MAIN.xlsx")   
df = df.dropna() 
returns = df["RETURN"] 
stdev = df["STDEV"] # this doesnt remove date 
stdev_diff = stdev.diff() 
stdev_diff = stdev_diff.dropna() 
stdev_diff = stdev_diff.values 
stdev = stdev.values 
returns = returns 
 
#Testing for ARCH effects  
het_arch(returns)  
 
#Plotting ACF and PACF of squared returns  
squared_returns = returns**2 
 
plot_acf(squared_returns, lags = 60, title="") 
pyplot.xlabel("Lag") 
pyplot.ylabel("ACF")  
pyplot.show()   
 
plot_pacf(squared_returns, title="")  
pyplot.xlabel("Lag") 
pyplot.ylabel("PACF")  
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pyplot.show() 
 
#Create train and test  
n_test = 5 
train = returns[:-n_test]  
test = stdev[-n_test:] 
 
#Scaling returns  
returns *= 100 
 
#Creating and fitting model  
model = arch_model(train, vol='GARCH', p=49, q=9)  #include mean?  
res = model.fit() 
 
df["forecast_stdev"] = 0.01*np.sqrt(res.params['omega']  
+ res.params['alpha[1]'] * res.resid**2 
 + res.conditional_volatility**2 * res.params['beta[1]']) 
 
forecasted = df["forecast_stdev"] 
forecast = forecasted[:n_test]   
 
#Plotting one month forecast  
pyplot.plot(forecast.values, label="Forecast", color='grey')    
pyplot.plot(test, label = "Observed" ) 
pyplot.legend(loc="upper right") 
pyplot.xlabel("Days") 
pyplot.ylabel("Volatility")  
pyplot.title("GARCH Forecast") 
pyplot.show() 
 
#Evaluating the forecast  
print("Root Mean Squared Error", np.sqrt(metrics.mean_squared_error(test, 
forecast.values))) 
print("Mean Absolute Error:", metrics.mean_absolute_error(test, forecast.values)) 
 
def mean_absolute_percentage_error(test, forecast):  
    test, forecast = np.array(test), np.array(forecast) 
    return np.mean(np.abs((test - forecast) / test)) * 100 
print("Mean Absolute Percentage Error", 
mean_absolute_percentage_error(test,forecast.values)) 
 
print("confidence", metrics.r2_score(test, forecast.values)) 
 
___________________________________________________________________ 
#KNN 
 
import pandas as pd  
import matplotlib.pyplot as pyplot  
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from sklearn import metrics 
import numpy as np 
from sklearn.neighbors import KNeighborsRegressor 
 
df = pd.read_excel('/Users/mariongemst/Desktop/DATASETS OSEAX /Sliding 
Window stddev.xlsx') 
 
#Create train and test  
 
n_test = 22 
train = df[:-n_test] 
test = df[-n_test:] 
 
#Seperate the independent and the target varibale on training data  
train_x = train.drop(columns=["y Dependent"],axis=1)    
train_y = train["y Dependent"]   
 
#seperate the independent and target variable on testing data  
test_x = test.drop(columns=["y Dependent"],axis=1)  # 
test_y = test["y Dependent"]  
 
#Determing the value of K  
 
error = []  
for K in range(300): 
    K = K+1 
    test = KNeighborsRegressor(n_neighbors = K) 
    model_test.fit(train_x, train_y)  l 
    pred_test = model.predict(test_x)  
    rmse= np.sqrt(metrics.mean_squared_error(test_y,pred))  
    error.append(error) #store rmse values 
    print('RMSE value for k= ' , K , 'is:', error) 
     
#plotting the rmse values against k values 
curve = pd.DataFrame(rmse_val) #elbow curve  
curve.plot() 
pyplot.show() 
 
#Creating, fitting and making predictions  
regressor = KNeighborsRegressor(n_neighbors=39)  
regressor.fit(train_x,train_y) 
y_pred = regressor.predict(test_x) 
 
#Plotting one month forecast  
pyplot.plot(y_pred, label="Forecast", color='grey')    
pyplot.plot(test_y.values, label = "Observed" ) 
pyplot.legend(loc="upper right") 
pyplot.xlabel("Days") 
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pyplot.ylabel("Volatility")  
pyplot.title("K-Nearest Neighbors ") 
pyplot.xticks(range(0,21)) 
pyplot.show() 
 
#Evaluating the model  
print("Root Mean Squared Error", np.sqrt(metrics.mean_squared_error(test_y, 
y_pred))) 
print("Mean Absolute Error:", metrics.mean_absolute_error(test_y, y_pred)) 
 
def mean_absolute_percentage_error(test, forecast):  
    test, forecast = np.array(test), np.array(forecast) 
    return np.mean(np.abs((test - forecast) / test)) * 100 
print(mean_absolute_percentage_error(test_y, y_pred)) 
 
print("confidence", metrics.r2_score(test_y, y_pred)) 
 
___________________________________________________________________ 
#RANDOM FOREST  
 
import pandas as pd  
import numpy as np  
from sklearn.ensemble import RandomForestRegressor  
from sklearn import metrics 
from matplotlib import pyplot 
from sklearn import metrics 
import numpy as np 
 
df = pd.read_excel('/Users/mariongemst/Desktop/DATASETS OSEAX /Sliding 
Window stddev.xlsx') 
 
n_test= 22 
train = df[:-n_test] 
test = df[-n_test:] 
 
#Seperate the independent and the target varibale on  training data  
train_x = train.drop(columns=["y Dependent"],axis=1) 
train_y = train["y Dependent"] 
 
#seperate the independent and target variable on testing data  
test_x = test.drop(columns=["y Dependent"],axis=1) 
test_y = test["y Dependent"] 
 
#Creating, fitting and predicting  
regressor = RandomForestRegressor(n_estimators=3, random_state=0)    
regressor.fit(train_x,train_y) 
y_pred = regressor.predict(test_x) 
test_y = test_y.values 
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#Plotting the forecast and observed values 
pyplot.plot(y_pred, label="Forecast", color='grey')   
pyplot.plot(test_y, label = "Observed" ) 
pyplot.legend(loc="upper right") 
pyplot.xlabel("Days") 
pyplot.ylabel("Volatility")  
pyplot.title("Random Forest Forecast") 
pyplot.show() 
 
print("Root Mean Squared Error", np.sqrt(metrics.mean_squared_error(test_y, 
y_pred))) 
print("Mean Absolute Error:", metrics.mean_absolute_error(test_y, y_pred)) 
 
def mean_absolute_percentage_error(test, forecast):  
    test, forecast = np.array(test), np.array(forecast) 
    return np.mean(np.abs((test - forecast) / test)) * 100 
print(mean_absolute_percentage_error(test_y, y_pred)) 
 
print("confidence", metrics.r2_score(test_y, y_pred)) 
 
 
 
 
 
 


