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Abstract

Proteins are composed of twenty different types of amino acids, small organic molecules

with different chemical and physical properties resulting from different groups of atoms.

Protein interactions are mediated by the affinity between groups of atoms belonging to

amino acid residues at the surface of each protein, in the interface region. However, it

is not clear at what level these contacts are best evaluated, whether by grouping similar

amino acids together, considering parts of each amino acid or even individual atoms.

The number of databanks and extracted features continue to increase, this means very

rich data, but that also brings the problem of the sheer amount of different features and

what do they really represent in the big picture of protein interactions.Since the data it-

self is collected by scientific communities all around the globe, there is a vast amount

of information but with that there is also a great diversity of the measured or calculated

attributes. This creates a need to learn at which level these contacts occur and what is the

best way to combine the information in the literature to learn a valuable representation.

With the rise of machine learning algorithms making possible to work with data in vari-

ous ways that were not previously possible due to practical limitations, various areas are

using these algorithms to capture information about the data that was inaccessible before,

bioinformatics being one of them. The goal of this work is to use unsupervised deep learn-

ing techniques that transform the data in a way that is intended to be informative and

non-redundant, facilitating the subsequent learning for other algorithms of classification

or regression that will perform better on processed data like this. The transformation

involves finding encodings for the collected features that best capture which are the ones

that are actually relevant to construct these encodings. These encondings can be latent in

relation to the already known information in the area, meaning that they most likely will

not be human friendly, in the sense that they will lack interpretability for humans, but

can increase the performance of machine learning algorithms.

Keywords: Protein, Amino Acid, Atom, Protein Interface, Protein interaction, Deep

Learning, Unsupervised Learning, Feature Extraction . . .
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Resumo

Proteínas são compostas por vinte tipos diferentes de amino ácidos, pequenas molecu-

las orgânicas e com diferentes propriedades químicas e fisicas resultantes de diferentes

grupos de amino ácidos. As interações de proteínas são mediadas entre afinidades entre

grupos de átomos pertencentes ao resíduos de amino ácidos à superficie de cada proteína,

na região da interface. Mas não é claro a que nível é que estes contatos são melhor avalia-

dos, se por agrupar amino ácidos juntos, considerando apenas partes de cada amino ácido

ou ainda átomos individuais. O número de bancos de data e características extraídas

continuam a aumentar, significando data muito enriquecida, mas também carrega o pro-

blema da quantidade de características e o que elas realmente representam na visão geral

das interações de proteínas. Como a data por si própria é colectada manualmente por

comunidades científicas por todo o mundo, existe uma grande quantidade de informação

mas com isso também uma diversidade elevada de atributos medidos ou calculados. Isto

cria uma necessidade de aprender a que nível estes contatos ocorrem e qual é a melhor

maneira para combinar a informação na literatura para aprender um representação mais

valiosa. Com a subida de algoritmos de machine learning deixando possível trabalhar

com data em maneiras variadas que não eram possíveis anteriormente devido aa limita-

ções práticas, várias áreas estão a usar estes algoritmos para capturar informação sobre a

data que estava inacessível antes, com bioinformática sendo uma dessas áreas. O objectivo

deste trabalho é usar técnicas de deep learning não supervisionado para transformar a data

numa maneira que se pretende que seja informativa e não seja redundante, facilitando

assim aprendizagem subsequente para outros algoritmos de classificação e regressão que

oferecem melhores resultados em data processada como esta. A transformação envolve

encontrar encodações para as características recolhidas que melhor capturam quais são

as que são realmente relevantes para construir estas encodações. Estas encodações podem

ser latentes em relação à informação já conhecida na área, significando que não vão ser

human friendly, no sentido que não vão ter interpretabilidade para humanos, mas podem

aumentar a performance dos algoritmos de machine learning.

Palavras-chave: Proteínas, Amino Ácidos, Interface de Proteínas, Interações de Proteínas,

Deep Learning, Aprendizagem Não Supervisionada, Extração de Features . . .
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1
Introduction

In this introduction it will be explained the context involving protein interactions and

the motivation and objectives behind this subject that is one of the most researched in the

bio-informatic field.

1.1 Objectives

The goal of this work is to use unsupervised deep learning techniques, more especially

autoencoders, to reduce the number of features used to describe amino acid residues to

model contacts between proteins. The data used for this work will be collected from

online databanks, specified in section 2.1.1, that have stored a great amount of protein

structures with features, measured and calculated manually using experimental tech-

niques, such as hidrophobicity and Van der Walls force, two examples of a set of features

with around 70 features, many of each have different measurements and formulas for

obtation for the same feature, collected from verified sources specified in section 2.1.2.

A comparison with other unsupervised deep learning techniques that are specified in

section 2.2, Principal Component Analisys and Isomap between others, will also be made,

so various baselines can be established for the reduction comparison. Finally a estimation

of improvements using classification algorithms, already created by third-parties, men-

tioned in section 2.2.6, with the reduced features will also be realized and the results are

going to be evaluated and reported in the next part of this dissertation.

1.2 Context

Proteins are highly complex molecules that do a vast array of functions in biochemistry

and are directly involved with the processes essential to life. The term, coined by Jons

1



CHAPTER 1. INTRODUCTION

Jacob Berzelius derives from the Greek word proteios, meaning "holding first place"[1].

1.2.1 Amino Acids

Amino acids are the building blocks of proteins. There have been found more than 300

different amino acids but, of those, only 20 are involved in protein synthesis[2]. Amino

acids are composed of a central carbon (C) atom bonded with a carboxyl group(COOH),

an amino group(NH2) and a side-chain or R group, that group being what differentiates

all amino acids. Amino acids are joined together by a condensation process in which the

amino group of one amino acid forms a peptide bond with the carboxyl group of another

amino acid. This process, happening several times, results in a chain of amino acids,

by the name polypetide chain. One single polypetide chain can originate a protein, but

normally these chains group together to form more complex proteins[2].

(a) General representation of an amino acid (b) Three amino acids forming a polypetide chain

Figure 1.1: Amino acids exemplified [3]

1.2.2 Structural Regions of Proteins

To understand the relationship between the sequence, structure and function of a

protein is one of the main focus of biochemistry[4]. Associated with the structural part

of the relationship is the need to segregate regions of the proteins accordingly with their

functions. The greater majority of the scientific community agrees in the division of a

protein, in an interaction context, in three main sectors: surface, interior and interface[4–

6].

1.2.2.1 Surface and Interior

In a simplistic manner the interior of a protein is the region of that protein that is

buried beneath the surface. Along the years different approaches to find features that

best separate these two regions have been studied. Chothia concluded, in 1976, in his

studies, that the average residues in the surface are polar and the ones in the interior

are apolar [7]. Young, Jernigan and Covell investigated, in 1994, the hidrophobicity of

2



1.2. CONTEXT

the residues from the two regions concluding that the surface is mainly constitued by

hidrophilic residues and the interior by hidrophobic ones [8]. Bogan and Thorn more

recently, in 1998, considered a residue to be buried if his relative accessible surface area

is below a certain threshold that best divides these two regions [5]. Acessible surface area,

or ASA, is an area accessible to water, the most common biological solvent, where the

perimeter is defined around the van der Waals surface, which is explained in chapter 2,

with a probe sphere of 1.4Å (Ångström), being 1Å = 10−10m, that rolls around it. This

value is an aproximation to the radius of a water molecule.

1.2.2.2 Interface

As stated before, most proteins interact with other proteins to perform biological func-

tions. Not all of the residues in a protein contribute in the same manner to those inter-

actions. One of the earliest mention of protein’s interfaces depicted them as residues

that are below a threshold value of distance to the residues of another protein. Other

distinction between interface and the other regions is often depicted by a ∆rASA cutoff
value that is equal to the difference between the rASA (relative ASA) in monomer and

the rASA in complex state[4].

Figure 1.2: Interface of two proteins shown in yellow [9]

The standard size of an interface sits roughly between 1200 and 2000 Å2, whereas

smaller interfaces have low-stability and have a short life and bigger interfaces occur

mostly between G-proteins and other components of signal transducers and between

proteases and one class of their inhibitors [6, 10, 11]. On the topic of interaction stability,

3



CHAPTER 1. INTRODUCTION

one can separate interfaces in two types: permanents and transients. As the names

suggest, the permanent interfaces need another protein interface to maintain itself on a

complexed state in order to keep their structure and functions. They can’t be found in
vivo uncomplexed. Transients interfaces can exist in both complexed and uncomplexed

states, making possible to these interfaces to interact with different molecules through

their life.

1.2.3 Hot Spots

As stated before not all residues in a protein contribute in the same manner to the

binding free energy of an interaction. That’s true also for the interface where there are

residues that contribute more than others. Ofran and Rost[12] divided protein-protein

interfaces into six types: intra-domain, domain-domain, homo-oligomer, hetero-oligomer,

homo-complex, and hetero-complex. The division was based on structural differences,

and based on that division, they analized the type of contacts that the residues have with

other residues of the different regions. This viewpoint already let us see the different

residues properties in the interface although it really doesn’t "pick"important residues

and segregates them of all the residues in the interface, it segregates all residues in groups.

The first reference to these important residues was from Clackson and Wells[13]

that coined the term Hot Spots. They tested with the alanine mutation technique, which

consists in mutate the side-chains of the peptyde, deleting that way, all interactions

made by atoms beyond the β carbon revealing the contribution of binding energy of the

removed portion of the side chain. At this point they did not know what type of features

were most relevant to identify hot spots.

Chakrabarti and Janin[10] dissected the interfaces into a core and a rim based on

solvent accessibility. The core contains atoms that are buried on complex formation and

is surrounded by a rim of atoms that remains partly accessible. If the residue contains at

least one buried interface atom it is considered to be part of the core else it is considered

part of the rim. They also noted that the atom compositions of the rim resembles the rest

of the protein surface and the core with an excess of aromatic residues and a deficit of

charged residues except Arg.

Levy[4] continued this concept of rim-core differentiation and suggested a third

region called support. It was considered the accessible surface area for the distinction

where the support residues are already largely buried in the monomer, when the proteins

are not interacting, and become more buried in the complex, when the proteins are

interacting. The rim residues are largely exposed in the monomer and remain exposed in

the complex. The core residues shift from being exposed in the monomer to being buried

in the complex. With this new model the amino acid composition of the rim and the

support are nearly identical with those of the surface and the interior, leaving the core

residues the most distant in this manner. It was noted that the relative contribution of the

interface and rim decreases wit interface size, which helps explain why smaller interfaces

4



1.3. MOTIVATION

are generally more polar than larger interfaces.

Figure 1.3: Cross section of a protein complex [4]

1.3 Motivation

Proteins are composed of more than twenty different types of amino acids, small or-

ganic molecules with different chemical and physical properties resulting from different

groups of atoms [1]. Protein interaction prediction is important for the investigation of

intracellular signaling pathways, modelling of protein complex structures which are a

group of two or more associated polypeptide chains formed by short chains of amino acid

monomers[14], and for gaining insights into various biochemical processes[15]. These

protein interactions are mediated by the affinity between groups of atoms belonging to

amino acid residues at the surface of each protein, in the interface region[16]. However,

it is not clear at which level these contacts are best evaluated, whether by grouping sim-

ilar amino acids together or considering only certain parts of each amino acid or even

individual atoms [4–6, 17, 18]. Protein-protein interactions are essential in all cellular

processes. Mutations on the genetic code can cause proteins to disrupt themselves which

often leads to some form of disease. Perceiving at what level these interactions occur is

growing in importance in today’s molecular biology community. The computers boom
in the early 2000’s turned possible for people from all over the world to contribute to

this field, by using computational methods for modeling protein complexes requiring the

data from the structure of a protein’s components combined with the sequences of amino

acids data extracted from other methods[19]. Although the number of features of data

related to proteins is already very broad and have an extensive literature associated the

data itself can be raw, unstructured, or noisy. For that reason it is of great importance to
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extract salient and informative features from the input data while discarding redundant

and noisy information, so that they can be used further in predictive algorithms. While

most of the time these salient features can be uninterpretable to humans, to machines,

they can be interpreted and have much more usefulness.

1.4 Thesis Structure

This thesis consists of 4 core components:

Context: In this section it is presented pertinent information about the world of

proteins that will be utilized in the next sections.

State of the Art: In this section it is presented several techniques that explore the

problem in question in numerous ways and they will be studied and performance metrics

will be utilized to judge them.

Experimental Work: In this section it is presented the experimental work that was

done for the preparation of this dissertation

Conclusion and Future Work: In this final chapter it is presented the conclusions

that are relative to the results and the future work that can be done following this disser-

tation.
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2
State of Art

2.1 Data

Every deep learning algorithm needs data, this case not being an exception. Protein

data banks were created to storage data collected generally from individual scientific

publications that validate interactions between some proteins. A good dataset needs to

fill certain characteristics, namely, the data needs to be directly relevant to the problem

imposed, resembling as much as possible real-world data. It also needs to have a good

coverage of the input space that we care about, meaning a big representation of values

across all the features. For these reasons this section as the purpose of showing different

reliable sources of data and the most common relevant features used in the literature.

2.1.1 Data Sources

In this subsection there will be presented the different data sources considered for

this work. Many of the features can be extracted from more than one source, but there

are a significant number of features that are represented in only one of the sources. For

this reason is important to gather a reasonable number of diferent sources to enrich the

number of features for this work.

2.1.1.1 Protein Data Bank

Created in 1971, the PDB exists for having a free and publicly available to the commu-

nity around the world single source of information about the 3D structures of proteins,

nucleic acids, and complex assemblies [20]. Software developers and users of the PDB

will be presented with consistent data consequence of the formal mechanism for standard-

izing the presentation of the data. As of 26 June 2018 this data bank has approximately

147000 structures where around 90% is protein structures. This is one of the most utilized
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data bank with around 679,421,200 downloads of the information just in 2017. Also, for

each protein that enters this data bank, it is assigned a unique PDB_ID, created with the

purpose of unifying diferent databanks under the same standard. This feature makes this

databank very useful since other databanks that are going to be explored identify protein

complexes with the PDB_ID also. It will be the principal source for protein structures

altough it does not have many features available.

2.1.1.2 Dockground

Dockground is a database with several curated complexes [21], which, for the purpose

of this dissertation will be useful to acquire complexes with one base chain and for each

one of these base chains has one chain that is correct in the meaning that can interact

with the first chain and it has others chains that are used as decoys to be tested against the

correct one. This data bank is used to benchmark classifiers so they can identify correctly

the correct ones. For the purpose of this dissertation it can be used to create correct and

false contacts to predict them in the classifier.

2.1.1.3 AAIndex

Amino Acid Index, or AAIndex, is a database that holds information for representing

various physicochemical and biochemical properties of amino acids and pairs of amino

acids [22]. Currently it is subdivided in three sections, two of each will be of use for the

context of this work:

• AAIndex1: Containing, as of today, 544 amino acid indices, each entry consisting

in a description of the index, references with information about it and the values

for the properties of the 20 amino acids. In addition to this information, there is,

for each entry, cross-links to other entries with a value for the correlation coefficient

of 0.8 or larger. This is useful since it enables the users to identify a set of entries

with similar properties.

• AAIndex3: Containing, as of today, 47 amino acid contact potencial matrices, the

entry contains 210 values for a symmetric matrix and 400 or more values for a non-

symmetric matrix, with each value representing the statistical contact potential

between the amino acids.

This databank will prove very useful for extraction of values from different proper-

ties from each type of amino acid, that will be used for training the models in section 2.2.

2.1.2 Features

In this subsection it will be presented some features that are relevant for representing

the proteins. There are several more, with AAIndex, having a list of more than five

hundred different features (altough much of them are calculated from others, which are

going to be mostly discarded by the algorithms explained in section 2.2), but these ones

are the most referenced in the literature.
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• Ionic Bonding: A chemical bonding that happens between oppositely charged

ions,by a electrostatic attraction, and is the primary interaction in ionic compounds.

Resulting from a redox reaction when atoms of an element, whose ionization energy

is low, give some of their electrons to reach a stable electron configuration, forming

cations for the atom that gave the electrons and anions for the atom that receive

them.

• Van der Walls Force: This force is dependent on the distance between the atoms

or molecules that are interacting. Unlike ionic bonding, this force is not electro-

chemical and is more susceptible to being disturbed, vanishing at longer distances

between interacting molecules. This kind of force results from a transient shift in

electron density.

• Hydrogen Bonding: A hydrogen bond is a partially electrostatic attraction between

a hydrogen (H) atom which is bound to a more electronegative atom or group,

such as nitrogen (N), oxygen (O), or fluorine (F),referred to as the hydrogen bond

donor, and another adjacent atom bearing a lone pair of electrons, referred to as the

hydrogen bond acceptor. Hydrogen bonds can be intermolecular, where they occur

between separate molecules or intramolecular, where they occur among parts of

the same molecule. They are stronger than a Van der Waals interaction, and weaker

than ionic bonds.

• Salt Bridges: A salt bridge is a non-covalent interaction between two ionized sites of

a molecule. It has two components: a hydrogen bond and an electrostatic interaction.

In a salt bridge, a proton migrates from a carboxylic acid group to a primary amine

or to the guanidine group. Of all the non-covalent interactions, salt bridges are

among the strongest.

• Solvent Accessible Surface: The solvent accessible surface area is the area of the

surface that is accessible to a solvent, in most cases water. To calculate this value one

needs to consider the radius of a water molecule, which is 1.4 Ångström approxi-

mately, and drawing an equidistant line from each atom of the molecule beyond the

van der Walls radius, which can be considered like rolling a ball along the surface.

• Hidrophobic Interactions: The hydrophobic interaction is an entropic effect origi-

nating from the disruption of the dynamic hydrogen bonds between molecules of

liquid water and the nonpolar solutes. The structure formed is more highly ordered

than free water molecules due to the water molecules arranging themselves to in-

teract as much as possible with themselves, and thus results in a higher entropic

state which causes non-polar molecules to clump together to reduce the surface area

exposed to water and decrease the entropy of the molecular system.

2.2 Unsupervised Learning Algorithms

The task of an unsupervised learning algorithm normally is to find a representation of

data that preserves as much information about the data but with some type of constraint
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or penalty with the objective to make the representation more accessible and manage-

able than the data itself. Being more accessible is a ambiguous way of defining the

representation, nevertheless there are three common ideas, reduction of the dimensional

representation where the information about the data is compressed, distribution of the

data along the axes of the representation space and trying to find a representation that

have statistically independent dimensions [23]. Below are described some algorithms

that can be proved useful for the purpose of this dissertation.

2.2.1 First Considerations

Prior to the explanation of the algorithms that can be used to represent the data set,

first there is a need to tackle some concepts that are of relevance to the problem in hands

and are in a way or another involved with each of the algorithms.

2.2.1.1 No Free Lunch Theorems

The no free lunch theorems, or NFLT, are a set of mathematical proofs that examine

general-purpose algorithms, or black-box algorithms, and the problems that they are

trying to solve. Generally speaking, the main idea behind these theorems is that, given an

algorithm that searches for an optimal cost or fitness solution is not universally superior

to any other algorithm. As stated by Wolpert and Macready [24],

“NFL theorems mean that if an algorithm does particularly well on average for one

class of problems then it must do worse on average over the remaining problems. In

particular, if an algorithm performs better than random search on some class of problems

then it must perform worse than random search on the remaining problems. Thus com-

parisons reporting the performance of a particular algorithm with a particular parameter

setting on a few sample problems are of limited utility. While such results do indicate

behaviour on the narrow range of problems considered, one should be very wary of trying

to generalize those results to other problems.”

With these theorems rises the question of which type of algorithm one should try

to model, one which primes to have a high level of generality, where the algorithm is

a jack-of-all-trades, but a master of none, or another, which primes to have a high level

of specificity, where the space of problems is reduced to only a cluster of very similar

problems [25].

To avoid the problem of overfitting the data, with a model memoryzing the specific

input data instead of lerning from it, there are some techinques that one can use. The

most common technique that can be applied to almost every machine learning problem

consists in dividing the dataset into three parts, the training set, validation set and test set.

The model will only learn from the training set while using the validation set to track the

progress to select models or optimize hyperparameters. The test set is then used after the

training of the model to evaluate the performance of it. It is important that the validation

set and the test set come from the same distribution and that they reflect the data that the
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model is supposed to receive in the future. However, by partitioning the available data

into three sets, the number of training samples is reduced which can be affect the learning

of the model. Another approach is k-fold cross validation, where the training set is split

into k smaller sets, called folds, and each one goes through the same procedure, in which

the model is trained using k −1 folds as training data. The model is then validated on the

remaining fold. The performance measure of the k-fold cross validation is the average of

the values computed. This approach can be expensive but does not waste too much data

like the other solution.

2.2.1.2 Curse of Dimensionality

Another concept inherent to machine learning is the curse of dimensionality. First

of all, the definition of dimensionality refers to the minimum number of coordinates

needed to specify any point within a space. Data has dimensionality to it. The more

dimensions, features like hydrophobicity and charge, that are in a data set, the more

sparsity is observed in the data as well, making the job to find patterns in the data more

difficult and complex leading the algorithms designed to deal with high-dimensional

data to have a very high time complexity. As shown in figure reffig:protein-interface

the exponential increase in the size of the learning data needed by an algorithm is one

consequence of the curse of dimensionality [26].

Figure 2.1: Demonstration of the curse of dimensionality paradigm [27]

In other words, relevant generalization is possible from interpolation, the numerical

method of calculation of values that lie somewhere in the middle of the given discrete

set of data points, but not from extrapolation, the numerical method of that calculates
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points that are outside the range of the given set of discrete data points by using relevant

methods of assumption [28]. The Hughes phenomenon states that, with a fixed size of

training data, a classifier or regressor predictive power will increase and then decreases

as the number of dimensions grow larger [29]. To summarize, the curse of dimensionality

is the expression of all phenomena that appear with high-dimensional data, and that in

most cases, have unwanted consequences on the behaviour and performance of learning

algorithms [30].

2.2.1.3 Dimensionality Reduction

As stated in section 2.2.1.2 the curse of dimensionality is an unavoidable challenge

when one is trying to model an algorithm that deals with high-dimensional data. The

idea behind this method lies in the belief that there may be too many features for the

available data, leading to overfitting or some features may be too noisy or even they are

costly to measure [31].

There are two main ways to reduce dimensionality:

• Feature Selection: By only keeping the most relevant variables from the original

dataset the computational load is reduced making the algorithm achieve greater per-

formance. More importantly the irrelevant features may lead to overfitting, leading

the model infering false conclusions about their relationship with the data. There

are also methods that the main focus is to find out how many features are necessary

to represent the data without losing much information, employing heuristics to

locate the optimal number and combination of features [32].

• Feature Extraction: The main idea is to transform the original data into a more

useful data set. This is achieved by using a function that combines, linearly or non-

linearly, the original data, the input, into a new set of features, the output. The new

set is intended to be informative and non-redundant, facilitating the subsequent

learning and generalization step [33].

The method that will be needed to help solve the problem in this dissertation is

feature extraction since we want to extract meaningful information so classification algo-

rithms can achieve better results and performance. Also the goal of this work is to reduce

the number of features by transforming them in new features instead of discarding fea-

tures and maintaining others.

2.2.1.4 Manifold

As stated in section 2.2.1.3, a given high-dimensional dataset may contain many fea-

tures that are all from measurements taken, that are related to the same underlying

cause. The manifold hypothesis [34, 35] describes that the data generating distribution is

assumed to concentrate near regions of low dimensionality.

In mathematics, a manifold is a topological space that resembles Euclidean space

near each point [36], and can be perceived like a surface of any shape, in layman’s terms.
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The use of the term manifold in machine learning is looser than its use in mathematics for

practical reasons, where the data may not be strictly on the manifold, but only near it, the

dimensionality may not be the same everywhere and the notion referred to in machine

learning extends to discrete spaces [23]. The dataset lies along a low-dimensional man-

ifold embedded in a high-dimensional space, where the low-dimensional space reflects

the underlying parameters and high-dimensional space is the feature space.

(a) A klein bottle is an example of a manifold
[37].

(b) A manifold in a shape of a swiss-roll [38].

Figure 2.2: Manifold exemplified

2.2.2 Principal Component Analisys

Principal Component Analisys, or PCA, is a method of identifying patterns in data,

excelling at data with high dimensionality where graphical representation is not an option.

The goal of PCA is to extract the most important information, while compressing the size

of the dataset and then analyze the structure of the observations reducing this way the

possibility of overfitting [39].

First consider aX dataset that asmxn size wherem represents the samples, a protein

residue is a sample for example, and n represents the various features. PCA gives a

choice on which type of matrix to use for analizying the data points, the covariance matrix

and the correlation matrix. The covariance matrix retains the units of measurement,

meaning that the different features must be comparable between themselves, it also makes

changes to the scale, even by a similar constant, of the features, resulting in different

results. The correlation matrix is dimensionless since it divides the value of covariance

by the product of standard deviations which have the same units and the result is not

influenced by a changing in the scale of the values. Since the features presented in

section 2.1.2 do not have the same type of unit measurement, the use of correlation

matrix may be more appropriate [40].

The core of PCA are the eigenvectors, or in this algorithm also called principal

components, that represent the directions of the new feature space and the eigenvalues
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that represent their magnitude explaining the variance of the data along the new feature

axes. These are obtained by performing a eigendecomposition on the covariance matrix

Σ, a matrix of size dxd with each element representing a covariance between two features.

After having both eigenvalues and eigenvectors it is time to reduce the dimensionality of

the original feature space. Since the eigenvectors have all a unit length of one, they can’t be

used to predict which ones are better than others at conserving the most variance between

the data points as possible, there is a need to analize the correspondent eigenvalues. This

analysis consists in sorting the values in a descent manner by value and choose the top

eigenvectors pretended. The number of eigenvectors to use depends for each context case

and which level of variance is pretended to be saved. The most common way to find this

number is just by calculating the explained variance from the eigenvalues that reveals

how much variance can be related to each principal component.

Figure 2.3: Diagram showing three principal components. The order of the principal
components follow the highest variance of the data [41].

PCA tries to find a linear subspace of lower dimensionality, such that the largest

variance of the original data is kept. However, it has to be noted that the largest variance

of the data does not necessarily represent the most discriminative information. Linear

subspaces may not adequately represent the the underlying manifold on a dataset which

may have some other nonlinear structure. Even when a linear projection on the data

can find a representation with some number of dimensions, there is still a possibility of

finding a more efficient representation that captures the data even better using a lower

dimensional manifold. For this reason another algorithm is needed, one that finds a

nonlinear subspace. It will be interesting to analyze what kind of lower dimension best

represents the dataset.
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2.2.3 Isomap

Isomap stands for isometric mapping and it is a nonlinear dimensionality reduction

algorithm by trying to preserve the geodesic distances in a lower dimension. Due to

euclidean distances being highly misleading in a nonlinear data structure, Isomap uses

the geodesic distance, a distance that "follows"the manifold and because of that, holds off
on the same data structure, giving a better estimation on the distance of two points [42].

This can be observed in figure 2.4.

Figure 2.4: Differences between 1-D mappings of the two distance metrics. The mapping
obtained with the euclidean distance gives off incorrect distances between the points
while the geodesic distance gives a very accurate distance between the same points [43]

For this, first the algorithm must determine the neighbors of each point, either by a

fixed radius or by using the k-nearest neighbors algorithm, or k-NN. In both situations

one has to choose the lenght of the radius or the number of k neighbors. In k-NN a point

is classified by a plurality vote of its neighbors, with the object being assigned to the

class most common among its k-nearest neighbors. Then these neighborhood relation

are used to construct a weighted graph. For the next step, an estimation of the geodesic

distance between all pairs of points is needed while making sure that the resulting graph

is fully connected. To calculate the shortest distance one can use the Djkstra’s algorithm,

an algorithm that finds a shortest path tree from a single source node, by building a set of

nodes that have minimum distance from the source. Finally one needs to compute a lower-

dimensional embedding. This can be achieved by using the multidimensional scaling
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algorithm, or MDS, an algorithm that tries to find a set of vectors in p-dimensional space

such that the matrix of euclidean distances among them corresponds as closely as possible

to some function of the input matrix according to a criterion function called stress. The

smaller the value returned by the stress function, the greater the correspondance between

the two points. This algorithm can be perceived as a mathematical operation that converts

a point-by-point matrix into a point-by-feature matrix.

Isomap gives the advantage of finding a nonlinear representation of the data, whereas

PCA cannot. But this comes with extra concerns, namely, the sensitivy to noise where a

few outlier points can break the mapping, the few free parameters that one can change

making the algorithm rely mostly on the choice of the radius length, or k for the k-NN,

and also the fact that Isomap usually performs poorly when the manifold is not well sam-

pled and contains holes. For these reasons a final algorithm will be presented, which can

function in a nonlinear subspace and do not have some of the requirements of Isomap.

2.2.4 Other Algorithms

In this subsections it will be presented algorithms that are fully implemented by python

packages referred in section 2.3.5.They will be used as comparison to the autoencoders

that will be the main focus of this work.

2.2.4.1 t-Distributed Stochastic Neighbor Embedding

The aim of t-Distributed Stochastic Neighbor Embedding, or t-SNE, is to extract clus-

tered local groups of samples, which can be beneficial to disentangle data that have many

manifolds associated to them [44]. To achieve this t-SNE converts similarities between

data points to joint probabilities, and with that, tries to minimize the Kullback-Leibler

divergence between the joint probabilities of the higher-dimensional data and the lower-

dimensional projected data. Since this divergence is not convex, diferent runs of the

algorithm will return different results, but it is perfectly fine to run t-SNE several times,

and select the solution with the lowest Kullback-Leibler divergence. This algorithm is

computationally expensive, so passing first the data through a PCA algorithm can im-

prove significatily that.

2.2.4.2 Multi Dimensional Scaling

The goal of Multi Dimensional Scaling, or MDS, is to place each data point in a lower-

dimensional space such that the distances between the data points are preserved as well

as possible in relation to the original space [45]. There are different variants of this

algorithm, including the metric multi dimensional scaling and the non-metric multi

dimensional scaling. The first preserves the original distance metric, between points,

as well as possible. That means that the distances in the higher-dimensional space are

in the same metric as the ones of the lower-dimensional projected data. To the second
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variant the important is not the metric of a distance value, but its value in relation to the

distances between other pairs of data points. This means that if the distances between

two different data points rank xth in the higher-dimensional space then they also have to

rank xth in the lower-dimensional projected data.

2.2.4.3 Local Tangent Space Alignment

The goal of Local Tangent Space Alignment, or LTSA, is based on the intuition that

when a manifold is correctly unfolded, all of the tangent hyperplanes to the manifold will

become aligned [46]. Like others algorithms described in this section first it will start by

computing the neighborhood for each data point. Next it will calculate the local geometry

of each neighborhood by its tangent space. Finally the algorithm will perform a global

optimization to align all the local tangent spaces.

2.2.5 Auto Encoders

With the rise of processing power of computers neural networks became a recurrent

topic in deep learning, since it offers advantages in pattern recognition that other unsu-

pervised learning algorithms cannot, like the performance of the algorithm increase with

the quantity of data available. An autoencoder is essentally a neural network that has the

objective of copying is input to the output. The usefulness of an autoencoder relies on

having a hidden layer that is smaller than the input layer, imposing the creation of a more

compressed representation of the data. When the data has some latent representation

structure, i.e. correlations between input features, it can be learned in the bottleneck

of the autoencoder, also refered as code size, which is the smaller layer of an autoen-

coder. There are two important operations in an autoencoder: the encoder, responsible

for compressing the input into a latent-space representation and the decoder, responsi-

ble for reconstructing the output from the latent-space representation. The decoder is

symmetric to the encoder in terms of the layer structure [23].

With this the autoencoder can be represented as o = g(f (i)), where o tries to be as

close as possible to i. That means that the algorithm will have to encapsulate the infor-

mation from the input in h, saving in this representation the information in a way that

can be used to generate an output very close to the input. An autoencoder can be trained

by minimizing the reconstruction error, L(o, i), which measures the differences between

the input and the reconstruction. When constructing the model off an autoencoder one

must balance the sensivity to the needs of the problem. The model must be sensitive

enough in relation to the input so its reconstruction is accurate, but not so sensitive so

the model does not simply copy the training data and be overfitting. This trade-off can

be accomplished by using a loss function, a function that punishes the model when the

output deviates from the input, combined with a regularizer, a parameter that tries to

battle overfitting of the data. In real life problems, a scaling parameter can be added

in front of the regularization term so that the trade-off can be more easily manipulated.
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Figure 2.5: Example of an autoencoder with the diferent parts represented. The bottle-
neck is formed where the encoder intersects the decoder, Y [47].

The most relevant properties of an autoencoder is the specificity of the data, where an

autoecoder is only able to compress data similar to the training data, the lossiness of the

output compared to the original inputs and the specialization of training instances that

will perform better on specific types of input.

• Undercomplete Autoencoders: This type of autoencoders rely in a loss or penal-

izing function that the algorithm tries to minimize. This minimization can be

expressed by L(i,g(f (i))) where L penalizes g(f (i)) for being dissimilar in relation

to i. This way the autoencoder can learn the most salient features. Since it does

not have a regularization term, the model needs to have the number of nodes in the

hidden layers restricted, so it won’t overfit the the training data.

• Sparse Autoencoders: This type of autoencoders can provide an information bot-

tleneck without the need to reduce the number of nodes in the hidden layers. For

this to happen it takes a training criterion with a sparsity penalty, Ω, on the code

layer, h, in addition to the reconstruction error L(i,g(f (i))) +Ω(h), where g(h) is the

decoder output and h the encoder output. This is useful when the objective is to

learn features for other tasks like classification. This way the loss function penal-

izes activations within a layer makes the model become more sensitive to specific

attributes of the input data.

• Denoising Autoencoders: The idea behind this type of autoencoder is that the rep-

resentation should be robust to the introduction of noise. For this the input must

pass through a function that adds noise to it, that can be a random assignment of

a subset of inputs to 0 with an arbitrary probability or can be also a gaussian noise

that is a statistical noise having a probability density function equal to that of the

normal distribution. Then the output is reconstructed from the corrupted input

18



2.2. UNSUPERVISED LEARNING ALGORITHMS

and finally the loss function compares the output with the original input without

noise.

Autoencoders are very flexible, in the sense that one can introduce nonlinear prob-

lems by using a nonlinear activation function. This and the fact that the increase of

features will result in a slower processing performance of PCA comparing with autoen-

coders. Also the dataset does not have to fit into memory, and can be dynamically loaded

up and trained with some variant of stochastic gradient descent, which is not the case

for Isomap that forces the dataset to exist in memory. The main disadvantage of an au-

toencoder is the fact that it is extremely uninterpretable, making nearly impossible to a

human to visualize and understand the latent features. The different types of autoencoder

have each different utilities based on their functioning. The undercomplete autoencoders

have a smaller dimension for hidden layer compared to the input layer which helps to

obtain important features from the data. The sparse autoencoders have the sparsity con-

straint that prevents the output to be just a copy of the input, making the model less

likely to overfit. The denoising autoencoders ensures that a a good representation can be

robustly derived from corrupted or noisy input data and that helps with the task of re-

covering a clean input that corresponds to the corrupted one. These differences between

the functioning of the variations of the autoencoders will be empirically tested.

2.2.6 Last Considerations

The three chosen algorithms have all their advantages and disadvantages in relation

to one another that are declared in the last chapters where the algorithms are described.

It is important to refer that there is not one that is fully superior to other, making the

dataset itself the chooser of the most appropriate algorithm.

Finally to assess the quality of the resulting low-dimensional data representations,

one can measure the performance of the algorithms with trustworthiness and continuity to

evaluate to what extent the local structure of the data is retained [48]. The trustwhortiness

measures the proportion of points that are close togheter in the low-dimensional space:

T (k) = 1− 2
nk(2n− 3k − 1)

n∑
i=1

∑
j∈U (k)

i

(r(i, j)− k),

where r(i, j) is the the rank of the low-dimensional datapoint j according to the pair-

wise distances between the low-dimensional datapoints. The variable U (k)
i indicates the

set of points that are among the k nearest neighbors in the low-dimensional space but not

in the high-dimensional space.

The continuity is measured by:

C(k) = 1− 2
nk(2n− 3k − 1)

n∑
i=1

∑
j∈V (k)

i

(r̂(i, j)− k),
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where r̂(i, j) is the rank of the high-dimensional datapoint j according to the pairwise

distances between the high-dimensional datapoints and V
(k)
i is the set of points that

are among the k nearest neighbors in the high-dimensional space but not in the low-

dimensional space.

Besides these techniques to compare the performance of the different reductions

there is a need to use classification algorithms used to classify the contacts between

the molecules. One of the algorithms is a Naive Bayes Classifier with the addition of a

constraint-based method for improving protein docking results, used in another work

[49], that utilizes combinations of features for improving protein docking. Another work

worth to be cited is HawkRank [50], a scoring function used in the sampling stage of

protein–protein docking using energy terms, including van der Waals potentials, electro-

static potentials and desolvation potentials. This function uses weighted potentials from

different features and sums everything to the final score. It is also worth mentioning the

dataset used for the benchmarking, the ZDOCK benchmark collection, more specifically

the fourth version [51]. This benchmark is a collection of distinct protein docking test

cases that was used for evaluating HawkRank to other algorithms. These two algorithms

are examples of how to test the uselfuness of the extracted features. There are other

examples that can be chosen, using a criterion of how simple is to adapt the models to

the extracted features.

2.3 Tools

In this section it will be presented the software technology that exists that can be used

to build the machine learning algorithms to solve the problem that is presented in this

thesis. Since the programming language chosen is Python, due to the sheer amount of

packages related to machine learning and also parsing and plotting data, the frameworks

considered must allow to work with Python.

2.3.1 Theano

Theano [52]is a Python library that is used to define, optimize, and evaluate mathemat-

ical expressions, especially the ones with tensors. Using Theano, it is possible to surpass

the language C on a CPU by many orders of magnitude by taking advantage of recent

GPUs. The combination of computer algebra system (CAS) with optimizing compila-

tion is particularly useful for tasks in which very complex mathematical expressions are

evaluated repeatedly and evaluation speed is of most importance. For situations where

many different expressions are each evaluated once, Theano can minimize the amount

of compilation/analysis overhead, but still provide symbolic features such as automatic

differentiation. The Theano project stopped having new relases after version 1.0.0 in

2017, which can be a deciding factor in the selection of a framework.
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2.3.2 Tensorflow

TensorFlow [53] was originally developed by researchers on the Google Brain team

within Google’s Machine Intelligence Research organization for the purposes of conduct-

ing machine learning and deep neural networks research. A computational framework,

with a stable Python and C API, for building machine learning models using data flow

graphs. The nodes of the graph are mathematical operations, whereas the edges repre-

sent tensors that flow between them. One of the key functionalities of Tensorflow is it’s

flexible architecture enables deployment computation to one or more CPUs or GPUs in

a desktop, server, or mobile device without rewriting code. It can be used to lower-level

APIs to build models by defining a series of mathematical operations or can be used for

higher-level APIs to specify predefined architectures, such as linear regressors or neural

networks. These reasons make Tensorflow a good framework to use in this work.

2.3.3 PyTorch

PyTorch [54] is an open source machine learning framework for python developed

by Facebook research group. It allows one to flexible experiment and produce in an

efficient manner through a hybrid front-end, distributed training and a vast amount of

tools and libraries. It takes advantage of native support for asynchronous execution of

collective operations and peer-to-peer communication. These reasons makes PyTorch, as

it happened with Tensorflow, to be considered to be used in this work. This framework

will probably be used if the work cannot run on top of Tensorflow, making this framework

a safety net.

2.3.4 Keras

Keras [55] is more of an interface rather than a standalone machine-learning framework

that was developed with the objective of enabling faster experimentation. It offers a

high-level set of abstractions that make it easy to develop deep learning models on top

of Tensorflow or Theano. For these reasons this framework will be tested on top of

Tensorflow.

2.3.5 Python Libraries

These are language dependent libraries that are going to be used, many of them widely

used in the machine learning context.

• Scikit-Learn: a Python free to use library with a large number of state-of-the-art

machine learning algorithms for supervised and unsupervised problems[56].

• SciPy: a free and open-source library built for Python that contains a wide array of

tools for optimization, linear algebra, integration, interpolation, special functions,

signal and image processingand other tasks common in science and engineering[57].
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• Matplotlib: a free and open-source plotting Python library which produces a very

wide variety of graphs and plots namely like histograms, bar charts, power spectras,

error charts between others[58].

• Pandas: Pandas, or Python Data Analysis Library, is a free Python library under

the BSD license that is useful for data manipulation and analysis. One of the main

features of this library is the existence of DataFrame objects that make the data

manipulation more accessible to deal with [59].

• OpenBabel: a open Python library under the GNU GPL license where the main fo-

cus is to search, convert, analyze, or store data from molecular modeling, chemistry,

solid-state materials, biochemistry and other related areas. OpenBabel version 2.3

interconverts over 110 formats[60].

• BioPython: a Python library under the bioinformatics license that allows the cre-

ation of reusable modules and classes and includes parsers for various file formats,

access to online services, interfaces to a big number of programs between other

features [61].

• PyMOL a Python library for visualization of molecular complexes free of use and

distributed with a Python license[62].
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3
Experimental Work

This chapter is composed by the details about the implementation of the whole system

used in this thesis including the preprocessing of the data algorithms and presentation

of results.

3.1 Implementation

The implementation of the system consists of the following parts:

• Preprocessing: Starting with .pdb files downloaded from Dockground and features

downloaded from the AAIndex, this part will transform to .csv files which consist of

the data points of the contacts and the neighbours with the corresponding features

and labels that will be used by the algorithms.

• Algorithms: The algorithms used are an implemented Autoencoder and a PCA for

dimensionality reduction and a Naive Bayes classifier to evaluate how much of a

improvement the reduced features will be.

• Presentation: Finally the graphic representation of the results are also implemented

to a more easy human interpretation.

In figure 3.1 it is represented a diagram with the principal components of the imple-

mentation.

3.2 Data

This section will discuss the treatment of the data since its origin to the moment that

will be used by the algorithms implemented.
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Figure 3.1: Diagram of the principal pipeline of the project

3.2.1 Data Source, Features and Labels

The proteins files are downloaded from the Dockground website [21], where each pro-

tein file consists of a set composed by two parts: the first part is a .pdb file with the first

part of the complex and the second part includes a one near native and ninety nine in-

correct docking poses for the specific protein-protein complex in which the first model is

the correct one. The starting total of complexes is 164 but after eliminating files which

originated problems with the parsing the final number of complexes processed decreases

to 156. Table 3.1 shows the complete set of complexes that are used in this dissertation.

The files names represent the code id of the complex with four alphanumeric char-

acters. The code of the complex is the same for both the receptor and the ligand, with

the only difference being the chain for each one. The receptor has one chain and the

other ligand models are all represented by a different chain from the receptor but equal

between them.

The features used are extracted from the AAIndex database, in which two parts of

the database are used, the first and the third that are composed of the amino acid index

of 20 numerical values and the statistical protein contact potentials, respectively. In total

there are 566 features from the first part and 33 features from the third part, which were

analyzed to choose the ones that are relevant.
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Complexes
’1a9n’, ’1blx’, ’1brs’, ’1dj7’, ’1dlf’, ’1fbv’, ’1fm0’, ’1fr2’, ’1fxw’, ’1h59’,
’1i8l’, ’1iar’, ’1jat’,’1jkg’, ’1k5n’, ’1ki1’, ’1krl’, ’1ksh’, ’1m9x’, ’1mbx’,

’1npe’, ’1nvp’, ’1o7n’, ’1oph’, ’1oqm’, ’1pau’, ’1pvh’, ’1pxv’, ’1qav’, ’1sb2’,
’1spp’, ’1sq2’, ’1stf’, ’1sv0’, ’1syx’, ’1t0p’, ’1ta3’, ’1tdq’, ’1tnr’, ’1tue’, ’1uad’,
’1ugh’, ’1us7’, ’1uuz’, ’1uw4’, ’1v74’, ’1wmh’, ’1wqj’, ’1xg2’, ’1yvb’, ’1zt2’,

’2a1j’, ’2a5t’, ’2aw2’, ’2bcg’, ’2bov’, ’2c35’, ’2d5r’, ’2fhz’, ’2gmi’,’2grr’,
’2gwf’, ’2hrk’, ’2ido’, ’2ik8’, ’2j9u’, ’2jki’, ’2npt’, ’2oxg’, ’2p7v’, ’2pqa’, ’2qby’,

’2qkl’, ’2r25’, ’2rex’, ’2uy7’, ’2v5q’, ’2v8s’, ’2vdw’, ’2w2x’, ’2wbw’, ’2wd5’,
’2wjz’, ’2wmp’, ’2x9a’, ’2xg4’, ’2xxm’, ’2y9m’, ’2y9w’, ’2yho’, ’2z3q’, ’2z8v’,

’2za4’, ’2zae’, ’3aa0’, ’3aev’, ’3aqb’, ’3b08’, ’3byy’, ’3c7k’, ’3cip’, ’3cki’,
’3d3c’, ’3dbx’, ’3dgc’, ’3dlq’, ’3e33’, ’3eo9’, ’3f6q’,’3fmo’, ’3fpn’, ’3g5y’, ’3g9a’,
’3gcg’, ’3gtu’, ’3h2u’, ’3h6s’, ’3h7h’, ’3hct’, ’3iey’, ’3ijs’, ’3jv6’,’3k1i’, ’3k2m’,

’3kcp’, ’3kf6’, ’3kf8’, ’3kz1’, ’3lxr’, ’3m18’, ’3mc0’, ’3mcb’, ’3mdy’, ’3n4i’,
’3o0g’, ’3o2q’, ’3oed’, ’3oq3’, ’3p9w’, ’3ph0’, ’3qb4’, ’3qbt’, ’3qdr’,

’3qhy’, ’3s97’, ’3soh’, ’3sxu’, ’3tdu’, ’3tgx’, ’3u1j’, ’3u82’, ’3ulr’,
’3v96’, ’3zyj’

Table 3.1: The complexes used in this dissertation extracted from Dockground

3.2.2 Data Preprocessing

Since the data necessary to be used in the algorithms originates from various sources

there is a need to collect and preprocess all of the information necessary to the creation of

the dataset. As stated in [16], almost all contacts are made by the residues in the complex

that are in the surface. Using the BioPython library, the residues that are present in the

surface can be collected by their ASA value and stored for the next steps. The value of

ASA used as a threshold to define if a residue is in the surface or interior for the purpose

of this dissertation is 30%.

The next step is to find the residues on the surface of both complexes that are

close to each other. In [63] it is mentioned that the contacts between residues can be at

maximum 8 angstroms. There are going to be tested distances of 2, 4, 6 and 8 to better

compare how the distance influences the classifier predictions. The residues neighbours

considered are also only in the surface of the complex and as what happens with the

distance of contacts. A range of values between 2 and 6 angstroms are used and there are

several different distances used to define the neighbourhood of residues of the residue in

contact.

Now that the contacts and their respective neighbourhoods are selected, the next

step is to find the corresponding features for each of them. The first features that are used

are the ones from AAindex3 and each feature has a corresponding value for each type

of contact. There are 33 features that were added to each contact. The second type of

features are the ones from AAindex1 and these have a value associated with each residue.

There are 566 existing features, but since many of them are only valid for certain cases,

like Helix termination parameter at position j-2,j-1,j and repetitions in the indices as result
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Figure 3.2: Representation of the surface residues of a protein. The light blue residues
represent the surface. This image was taken from the A chain from protein 1a9n with the
help of the Swiss PDB Viewer.

of different experiments, the number of features utilizes will have to be trim down. After

this step the number of features are 97 and each of them are used twice for each contact

since each contact is represented by two residues resulting in 194 features for each contact.

Additionally the minimum, maximum and mean values of each of the AAindex1 are used

in each neighbourhood of each of the contacts residues performing more 582 features.

The last type of features are performed by an algorithm developed that simply returns the

number of different types of residues for each complex and each neighbourhood of the

contacts. Considering that there are twenty types of amino acids, at least for the purpose

of this dissertation, each contact will have eighty additional features for each contact, 20

for each contact residue and 20 to each contact residue neighbourhood. In the end each

contact will have a total of 695 distinct features.

For each contact it is added a label designating the name of the protein at which

the contact belong. These are useful in the next steps for analyzing the data. These steps

result in a .csv file with each row representing a contact and the columns representing

the features extracted in the previous steps. The labels that serve to distinguish the true

contacts from the false will be simply the value of 1 to the true contacts and 0 for the

false ones.
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3.3 Dataset Splits

To have unbiased results, 10 complexes, chosen at random, were left out of the training

of the dimensionality reduction algorithms, and are going to be saved to the classifier

test. These complexes we used in the classifier for the test part. This step leaves out 146

complexes. From these 146 complexes 100 are used to train the dimensionality reduction

algorithms and after they are trained the 46 complexes that were left out are going to be

the test set for these algorithms. After the test set has had is features reduced, these 46

complexes are going to be the training set for the classifier and the 10 complexes that

were saved in the beginning are the validation set for the classifier, after having their

features reduced as well.

3.4 Algorithms

In this section it will be discussed the machine learning and deep learning algorithms

used in this work. There are in each one the principal algorithm and others that are used

to create a baseline for comparison.

One matter before the algorithms is the necessity of using scaling methods. Consid-

ering the different scales of the features, one should experiment with scaling methods to

try to increase the algorithms performance.

The scaling method used in this dissertation, standardization, results in features

rescaled so that they have the properties of a normal distribution with the mean equal to

zero and the standard deviation equal to one. The formula to calculate this rescalling is:

z =
x −µ
σ

where µ is the mean and σ is the standard deviation.

One important note about rescalling methods is that there are no guaranties that

the performance of the algorithms will increase or even decrease in some cases.

3.4.1 Dimensionality Reduction

The first algorithm to be analyzed is the autoencoder. As explained in section 2.2.5,

an autoencoder is a type of neural network that tries to copy the input to an output and

retrieving the middle layer of nodes that has a reduced number of features. As it happens

in most machine learning algorithms, the autoencoders have hyperparameters that have

to be tuned, in this case namely:

• Code size

• Number of hidden layers

• Loss function

• Activation function

• Optimizer
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• Epochs

Each and everyone of this hyperparameters contribute for the final result of the

autoencoder and as such they have to be experimented on to be optimized. The most

common way to perform hyperparameter optimization is trough grid search, which is

a exhaustive search of a manually specified subset of the hyperparameter space. The

subsets of hyperparameters values can be found in ??.

These subsets of values were chosen after a few tests to check how the algorithm

handles the datasets with these hyperparameters. Other hyperparameters were excluded

since they did not show significant difference in the final results. The code size after

passing the value of 5 did not reduce the value of lossiness between the input and the

output in more than 0.01% and started to negatively influence the classifier performance.

The number of hidden layers falls off in the same category with values above 6 also not

interfering with the final loss results in a meaningful way.

The other hyperparameters, including, the loss function, activation function and

optimizer were chosen after consulting the available ones in the Tensorflow framework,

and excluding the ones with functionalities more suitable for other types of data. At least

two values for each hyperparameter were chosen so it can be possible to compare various

baselines for further inspection.

The number of epochs will be stipulated as 50 since in the early tests all the models

stopped before that because of one feature of the Tensorflow library that allow to stop the

run when the decrease of the loss does not change the output in a significant way, which

for the purpose of this dissertation is 0.01%.

Hyperparameter Subset of Values
Code Size 2, ..., 5
Number of Hidden Layers 2, ..., 6
Loss Function Mean Squared Error, Poisson
Activation Function Elu, Exponential
Optimizer Adadelta, Stochastic Gradient Descent

Table 3.2: Hyperparameter List

To train the autoencoder, only the correct contacts from the 100 complexes men-

tioned in section 3.3 are used since the purpose of the autoencoder is to extract mean-

ingful features from the data. If the incorrect contacts are used to train the autoencoder

there is a possibility that the algorithm will adjust to the wrong data which can decrease

the performance of the results which is a less favorable scenario to test in the latter steps.

Each run of the autoencoder is cross validated where the type of cross validation is

the k-fold which has a value k of 10, which is a common value for this types of algorithms.

This cross validation step helps to choose the best configuration of hyperparameters for

the models while trying to reduce the ovefitting of the data. The model is trained and has

it performance checked by analyzing the loss with the cross validation set.
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The machine used to run all of these test is a Intel Core i7-4790 with 3.60 GHz, 16GB

of DDR3 1600MHz Ram and a NVIDIA GForce 980Ti with 6GB of dedicated memory.

Using the CUDA drivers available for the NVIDIA graphic cards, one can use the GPU

for increase the time performance of the job in a significant way with the Tensorflow

framework.

After training and validating the models with cross-validation, the next step is to

reduce the features from the 46 complexes that are used to train the classifier as well the

10 complexes that are used to train and validate the classifier, respectively. Both of them

are saved in 2 separate .csv files. These results are showed and discussed in chapter 4.

To add another baseline algorithm for comparison with the autoencoder, a PCA

algorithm is tested with the datasets. The algorithm was not be implemented but it is

going to be imported from the scikit library that has a well documented code for easiness of

development. As explained in section 2.2.2 the number of components that is adjusted in

this algorithm is in function of the percentage of variance that are chosen to be preserved

so it can be better compared with the results from the autoencoder and the use of the

covarince matrix and correlation matrix.

In practice using the correlation matrix is the same as standardizing the data, so

the datasets will also be tested with the data standardized to a more complete test. The

chosen variance to be preserved is tested with the values 0.7, 0.9 and 0.95 to achieve a

well supported experiment.

As it happens with the autoencoder the training set for the PCA is the 100 com-

plexes for the training which is cross-validated with k-fold, where k is equal to 10. After

training, the 46 complexes for the classifier training and the 10 complexes for the classi-

fier validation are reduced. Both of them are saved in 2 separate .csv files as it happens in

the autoencoder case. The results of this algorithm will also be shown in chapter 4.

3.4.2 Classification

After the step involving the reduction of the datasets dimensionality, there is a need to

test the resulting datasets. For this purpose it is used a classifier to analyze if the extracted

features are a good representation of the contacts, which are implied if it can correctly

classify the correct and incorrect contacts.

The one chosen is the Gaussian Naive Bayes which is used to extrapolate how good

of a representation the generated datasets are.

The training set used are the 46 complexes mentioned in section 3.3, and after

training the classifier with it, the models that had the best performance are used with

the set of 10 complexes that had its features reduced as well is used as the validation set

for the classifier. Unlike the training, the separation between the correct contacts and

the incorrect ones uses a ratio of around 1:30 to better simulate what happens in real

life where there is much more incorrect contacts than correct ones. For each test it is
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presented a confusion matrix and the ROC curve graph to better analyze the classifier

performance for the different tests using the set of 10 complexes that were left out.

Like the PCA algorithm this classifier will not be implemented but is imported from

the scikit library. The results will be shown and discussed in chapter 4.
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4
Results

This section contains the results of the algorithms used in chapter 3. They will be

presented the same way that were tested to show the logic behind them. After each test a

discussion will also be presented.

4.1 Data Statistics

Before the results of the machine learning algorithms it is valuable to analyze certain

statistics of the data utilized to feed them.

Table 4.1 shows the number of contacts by distance and also the number of true

and false contacts. A quick analysis shows that the majority of contacts is around 6 and

8 angstroms. The number of false contacts are similar to the positives since for each

complex only a near native where the true contacts are localized and a decoy where the

false contacts are localized.

Figure 4.1 shows the different numbers of types of residues in the contacts by

contact distance for the correct contacts. As it can be observed the percentage of residues

by distance does not change in a significant way.

Contact Distance True Contacts False Contacts Total
2 735 779 1514
4 4068 3969 8037
6 5642 5604 11246
8 10685 10656 21341

Table 4.1: Number of contacts

As it can be observed in table 4.1, the number of data points per class stayed in

the vicinity of 50% for the correct and incorrect contacts. This is good news since an
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Figure 4.1: Number of different residues performing the contacts by distance of contact

unbalanced dataset can be harmful for the classifier training, leading to more incorrect

predictions to the majority class, or the class with more data points.

4.2 Classification

The results of the classifier in relation to the datasets is presented in this section, di-

vided by the datasets of the complexes without reduction, the datasets of the complexes

that were reduced by the PCA algorithm and the datasets of the complexes reduced by

the implemented autoencoder, for comparison and discussion.

This classification algorithm was used to distinguish between the correct and incor-

rect residue contacts that happen between residues of different chains.

In this classification part only 56 complexes are used, where the 46 complexes in

chapter 3 that were the test set from the autoencoders are used as the training set of the

classifier and the 10 complexes that were left out in the beginning of the dataset split are

used as validation to select the best autoencoder. The results presented in this chapter, the

confusion matrices and the ROC curves, are based on this validation set of 10 complexes.

4.2.1 Without Reduction

To compare the results of the reduced datasets it is a good idea to analyze first how

well the classifier deals with the raw data first. A broad search was made first to see
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how well the classification goes with the different parameters of contact distance and

neighbourhood distance. The first ones to be compared are the datasets with 8 angstroms

of distance between contacts. The results of the tests used in this dataset are present in

table 4.2, table 4.3 and in figure 4.2.

Dataset True Positive True Negative
Predicted Positive 12 / 13 195 / 220
Predicted Negative 38 / 37 468 / 555

Table 4.2: Confusion Matrix results of the rescaling, the first value of each box being the
not rescaled dataset and the second, the rescaled dataset

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Not Rescaled 0.2400 0.7059 0.0580 0.6732 0.0934

Rescaled 0.2600 0.7161 0.0558 0.6885 0.0919

Table 4.3: Test results of the rescaling

The results on table 4.2 and table 4.3 show no significant difference between the

rescaled and not rescaled features of the different datasets.

Figure 4.2: Roc curve and Auc score of the rescaling on the datasets without reduction

Both ROC curves showed in figure 4.2 are very close to the 45 degree line which
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demonstrates that there is almost no predictive value from both tests. Both tests show

that it is better guessing at random the correct contacts than using the dataset without

any kind of dimensionality reduction.

The proposed hypothesis is that the classifier is overfitting derived of the large

number of features it has. After comparing the train error and the test error from the not

rescaled dataset there is reason to believe that this was the case since the metrics for the

training were much better than those from the test. The training error metrics can be

consulted in table 4.4.

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Training metrics 0.5172 0.7320 0.6343 0.6303 0.5698

Table 4.4: Test results of the training metrics of the not rescaled dataset

Next to test was the influence in using the neighbourhood features in the results. To

inquiry this, a test with the datasets with 8 angstroms of contact distance and a neighbour-

hood radius of 2 and 6 angstroms, and another one where the neighbourhood features

are not considered. The results can be consulted in table 4.5, table 4.2 and figure 4.3.

Dataset True Positive True Negative
Predicted Positive 30 / 43 / 14 399 / 543 / 225
Predicted Negative 20 / 7 / 36 237 / 151 / 744

Table 4.5: Confusion Matrix of the test results, each box has three values which are
respectively no neighbourhood, neighbourhood distance of 2 and neighbourhood distance
of 6

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Neig 0 0.6000 0.3726 0.0699 0.3892 0.1253
Neig 2 0.8600 0.2176 0.0734 0.2608 0.1352
Neig 6 0.2800 0.7678 0.0586 0.7439 0.0969

Table 4.6: Test results of the neighbourhood

As it can be observed in table 4.5 and table 4.6, the best metrics calculated are not in

the dataset without data from the neighbourhood, which may imply the neighbourhood of

the contacts are not so important for this. With low neighbourhood distance the classifier

can find more correct contacts but as the distance increases it can find less and less. The

opposite thing happens with the incorrect contacts.

The ROC curve from figure 4.3 shows that the data about the neighbourhood is

included lifts up the classifier performance. The difference between the two distances of

the neighbourhood does not seem to make significant difference, but they are going to

be tested after the dimensionality reduction step to find if they will do more significant

difference after that.
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Figure 4.3: Roc curve and Auc score of the neighbourhood distances on the datasets
without reduction

The next test made was to see if contacts with fewer distance between the residues

may contribute for the predictability abilities of the classifier. This test used 2, 4, 6 and

8 angstroms as distance to test this. Table 4.7 and figure 4.4 shows the results of this

test. Since this test has different number of total contacts to each contact distance, the

confusion matrix table is not included.

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Contact 2 0.7200 0.3640 0.1722 0.4193 0.2780
Contact 4 0.5600 0.3922 0.1657 0.4220 0.2557
Contact 6 0.7000 0.2370 0.1452 0.3094 0.2405
Contact 8 0.6400 0.2587 0.0448 0.2784 0.0838

Table 4.7: Test results of the contact distance

Table 4.7 shows that increasing the contact distance considered makes the classifier

performance go down. This implies that it is more difficult to judge contacts with large

distance than it is to judge contacts with smaller distances.

Figure 4.4 confirms the results from table 4.7, showing that the contacts from bigger

distances are more difficult to predict than the others.

In a general way the results of the classification of these datasets were not the most
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Figure 4.4: Roc curve and Auc score of the contact distances on the datasets without
reduction

promising, but that was to be expected since so many features are involved which can

influence the results of the classifier.

Having analyzed the results without reduction, they will be tested against the re-

sults from the dimensionality reduction algorithms to see how much of a improvement

they can have on the datasets results.

4.2.2 PCA Reduction

The first results for constructing a baseline to compare to the autoencoder implemented

are the ones from the PCA algorithm. First the results and comparisons between the tests

of this algorithms are going to be shown and discussed and after that a comparison and

discussion between these results and the results from the datasets without reduction.

The first test is to see if the difference between the distance of the contacts would

affect the classification. This test used a distance of 2, 4, 6 and 8 angstroms to better

evaluate the predictability power of the classifier. The results of this test are in table 4.8

and figure 4.5. Since this test has different number of total contacts to each contact

distance, the confusion matrix table is not included.

Table 4.8 shows that the more distance that exists between contacts, in similarity

with the results from the datasets without reduction in table 4.7, the lesser the perfor-

mance of the classifier. Although the number of correct contacts does increase as the

distance increases as well. Figure 4.5 supports the ROC curves and the AUC values from

table 4.8
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Dataset Sensitivity Specificity Precision Accuracy F1 Score
Contact 2 0.6000 0.5422 0.2083 0.5518 0.3093
Contact 4 0.6400 0.3285 0.1468 0.3761 0.2388
Contact 6 0.7000 0.2702 0.1080 0.3184 0.1872
Contact 8 0.8000 0.2382 0.0738 0.2779 0.1351

Table 4.8: Test results of the contact distance

Figure 4.5: Roc curve and Auc score of the contact distances on the datasets reduced from
PCA

The second test is to check the neighbourhood influence the results in any man-

ner. To inquiry this, a test with the datasets with 8 angstroms of contact distance and a

neighbourhood radius of 2 and 6 angstroms, and another one where the neighbourhood

features are not considered, are presented in table 4.10, table 4.9 and figure 4.6.

Dataset True Positive True Negative
Predicted Positive 26 / 39 / 21 262 / 436 / 257
Predicted Negative 24 / 11 / 29 422 / 184 / 307

Table 4.9: Confusion Matrix of the test results. Each box has three values representing a
neighbourhood distance of 0, 2 and 6 angstroms

As noticed in table 4.9 and table 4.10, the use of no data belonging to the neighbour-

hood is beneficial to the classification capabilities of the classifier where, as the results

in table 4.6, the only metric that is increasing as the neighbourhood distance increases is

the sensitivity.

Figure 4.6 shows similar results, where the ROC curve and AUC values have a
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Dataset Sensitivity Specificity Precision Accuracy F1 Score
Neig 0 0.5200 0.6170 0.0903 0.6104 0.1538
Neig 2 0.7800 0.2958 0.0818 0.3318 0.1480
Neig 6 0.4200 0.5443 0.0755 0.5342 0.1280

Table 4.10: Test results of the neighbourhood

Figure 4.6: Roc curve and Auc score of the neighbourhood distances on the datasets
reduced from PCA

decrease of value as the distance increases.

The third test is to review the influence of the variance retained by the PCA algo-

rithm. To test this, a dataset with 8 angstroms of contact distance and 6 angstroms of

neighbourhood distance will be tested with a preserved variance of 70%, 90% and 95%.

The results of this test can be consulted in table 4.11, table 4.12 and figure 4.7.

Dataset True Positive True Negative
Predicted Positive 31 / 23 / 18 271 / 275 / 390
Predicted Negative 19 / 27 / 32 488 / 408 / 472

Table 4.11: Confusion Matrix of the test results. Each box has three values representing
the PCA preserved variance of 0.7, 0.9 and 0.95

After reviewing the results in table 4.11 and table 4.12 it can be concluded that there

is a increase in the results as the preserved variance decreases. Below 70% of preserved

variance the values of the metrics begin to decrease as well.

Figure 4.7 shows a decrease of the AUC values as the preserved variance increases,

as it happens with the results of table 4.12.
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Dataset Sensitivity Specificity Precision Accuracy F1 Score
0.7 0.6200 0.6430 0.1026 0.6415 0.1761
0.9 0.4600 0.5974 0.0772 0.5880 0.1322

0.95 0.3600 0.5476 0.0441 0.5373 0.0786

Table 4.12: Test results of the preserved variance

Figure 4.7: Roc curve and Auc score of the PCA preserved variance on the datasets
reduced from PCA

Now that the comparisons between the reduced datasets are done, the last test is to

compare the results of these datasets with the results from the datasets without reduction.

To compare both, a test with contact distance of 8 angstroms and neighbourhood radius

of 6 angstroms from both are presented in table 4.13, table 4.14 and figure 4.8.

Dataset True Positive True Negative
Predicted Positive 9 / 19 107 / 174
Predicted Negative 41 / 31 483 / 430

Table 4.13: Confusion Matrix of the test results. Each box has two values representing
the dataset without reduction and the dataset from PCA, respectively

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Without

Reduction
0.1800 0.8186 0.0776 0.7688 0.1084

PCA 0.3800 0.7119 0.0984 0.6865 0.1564

Table 4.14: Test results of the comparison between PCA and datasets without reduction

As it can be observed in table 4.13 and table 4.14 the results of applying PCA to

the datasets have a positive effect in the classifier performance. The only downside is the
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Figure 4.8: Roc curve and Auc score of the PCA dataset vs the dataset without reduction

specificity and the accuracy that decrease by around 10% each.

4.2.3 Autoencoder Reduction

With baselines, reduced and not reduced, already processed and analyzed, it is time

to compare them to the implemented algorithm and the focus of this dissertation. First

it is necessary to compare the models to observe how the different parameters and hy-

perparameters influence the results of the classifier. The initial test will be to verify if

the distance between contacts are a factor to the predictability of the classifier. To assess

that, a test containing datasets with distances of contact of 2, 4, 6 and 8 angstroms and a

neighbourhood radius of 2 angstroms was made with the results present in table 4.15 and

figure 4.9. Since this test has different number of total contacts to each contact distance,

the confusion matrix table is not included.

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Contact 2 0.2400 0.7911 0.0759 0.7543 0.1154
Contact 4 0.1800 0.7783 0.0625 0.7329 0.0928
Contact 6 0.3600 0.6179 0.0933 0.5925 0.1481
Contact 8 0.2000 0.8208 0.0855 0.7728 0.1198

Table 4.15: Test results of the contact distance

As it can be observed in table 4.15, there is a slight increase of the classifier perfor-

mance as more distant contacts are being considered. Figure 4.9 shows also this increase,
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Figure 4.9: Roc curve and Auc score of the contact distance datasets on the datasets
reduced from the autoencoder

except for the contacts at 2 angstroms of distance which are slightly better than the 4 and

6 angstroms contact distance datasets.

The next test was to evaluate how the neighbourhood features influenced the results.

A test comprising of the datasets with contact distance of 8 angstroms and neighbourhood

radius of 2 and 6 angstroms and a dataset without neighbourhood features was tested

and the results can be observed in table 4.16, table 4.17 and figure 4.10.

Dataset True Positive True Negative
Predicted Positive 9 / 33 / 13 127 / 472 / 153
Predicted Negative 41 / 17 / 37 428 / 283 / 443

Table 4.16: Confusion Matrix of the test results. Each box has three values representing a
neighbourhood distance of 0, 2 and 6 angstroms, respectively

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Neig 0 0.1800 0.7712 0.0662 0.7223 0.0968
Neig 2 0.6600 0.3748 0.0653 0.3925 0.1189
Neig 6 0.2600 0.7433 0.0783 0.7059 0.1204

Table 4.17: Test results of the neighbourhood

After analyzing table 4.17 the use of no data from the neighbourhood increases in

about 2 to 3% the specificity and accuracy metrics when compared to the dataset that

uses data from the 6 angstroms neighbourhood radius. The dataset with 2 angstroms of

neighbourhood radius falls short on these metrics but has more sensitivity in relation to

the other two datasets.
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Figure 4.10: Roc curve and Auc score of the neighbourhood distance datasets on the
datasets reduced from the autoencoder

The next test will be against the number of features, or code size, that the autoen-

coder has. To test this the dataset with 8 angstroms of contact distance and 6 angstroms

of neighbourhood radius is going to be reduced to 2, 3, 4 and 5 features to evaluate how

much of the results of the classifier will vary. Table 4.18, table 4.19 and figure 4.11 shows

the results of this test.

Dataset True Positive True Negative
Predicted Positive 18 / 15 / 9 / 9 147 / 114 / 68 / 131
Predicted Negative 32 / 35 / 41 / 41 502 / 846 / 623 / 730

Table 4.18: Confusion Matrix of the test results. Each box has four values representing 2,
3, 4, and 5 features dataset

Dataset Sensitivity Specificity Precision Accuracy F1 Score
2 features 0.3600 0.7735 0.1091 0.7439 0.1674
3 features 0.3000 0.8813 0.1163 0.8525 0.1676
4 features 0.1800 0.9016 0.1169 0.8529 0.1417
5 features 0.1800 0.8479 0.0643 0.8112 0.0947

Table 4.19: Test results of the number of features extracted

As it is shown in table 4.19, there is an increase of the metrics shared between the the

datasets with three and four features. As the other datasets number of features increases

the metrics decrease in a general manner. Figure 4.11 supports those mentioned metrics
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Figure 4.11: Roc curve and Auc score of the number of features datasets on the datasets
reduced from the autoencoder

with the roc curve and auc values being most elevated at the three and four features

datasets.

Now that the results from the autoencoder different parameters were experimented

on, the comparison between the different baselines of the non reduced datasets and the

PCA reduced datasets is the next to be analyzed. The parameters used to best analyze the

different baselines were the 8 angstroms contact distance and the 6 angstroms neighbour-

hood distance from each of the three baselines. The compared result can be observed in

table 4.20, table 4.21 and figure 4.12.

Dataset True Positive True Negative
Predicted Positive 8 / 17 / 19 185 / 280 / 122
Predicted Negative 42 / 33 / 31 392 / 536 / 447

Table 4.20: Confusion Matrix of the test results. Each box has three values representing
the without reduction dataset, PCA dataset and Autoencoder dataset respectively

Dataset Sensitivity Specificity Precision Accuracy F1 Score
Without

Reduction
0.1600 0.6794 0.0415 0.6380 0.0658

PCA 0.3400 0.6569 0.0572 0.6386 0.0980
Autoencoder 0.3800 0.7856 0.1348 0.7528 0.1990

Table 4.21: Test results of the comparison between PCA, autoencoder and datasets with-
out reduction
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Figure 4.12: Roc curve and Auc score of the datasets without reduction, PCA and autoen-
coder

As noticed in table 4.20, table 4.21 and figure 4.12, the results show that the datasets

reduced achieved better results than the dataset without reduction. The best of the dimen-

sionality reduction algorithms was the autoencoder which had the best metrics all around

and highest value of AUC value. It is probably related with PCA having the restriction

of only having linear transformations that can be applied and the autoencoders having

the ability to use non-linear activation functions, which in some cases can better grasp a

better representation of the data.
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Conclusion and Future Work

5.1 Conclusion and Limitations

With the results presented and discussed, the only thing that is left is to make conclu-

sions about them and the work done about this dissertation.

First and foremost, the results from the test of the autoencoder compared to the

PCA and the datasets that had not its features reduced are promising. Autoencoders

can learn data projections that are more interesting than PCA or other basic techniques.

It also provides a more accurate output when compared to PCA and the not reduced

datasets. This is useful information since this area of proteins interactions is still a hot

topic in the current literature. Autoencoders can help the investigation of these contacts

that participate in these interactions and help perceiving at what level these interactions

occur and what are the most contributing factors involved.

Now it is time to address the limitations. The first limitation is the results of the

number of contacts extracted from the datasets used which, using the maximum contact

distance of 8 angstroms amounts to a total of 21341 contacts including the correct and

false ones. This is an inevitable limitation on every machine learning problem where it is

impossible to precisely estimate the minimum amount of data required for this types of

project. This could had an impact in the results where the dataset does not show enough

variance to construct a very high performance model.

The principal limitation against the results of this dissertation is the method on

which the true contacts were picked, since it was an implemented method based only on

distance of the residues who make them, which, is a simplification of how true contacts

are determined. Not all the contacts chosen as correct were actually correct and it may

have influence the results for the classifier which contributes with human bias since the

labels asserted as correct could not be actually correct. This limitation does not influence
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the false contacts though since all contacts extracted from the decoy models were actually

false.

Nevertheless, the method at which they were picked are approximated with the

methods at which they are considered in the literature, differing in some subtleties, one

example being certain maximum contact distance being 7 angstroms for residues with

some restrictions. The lack of tests with the real contacts from different datasets which

have true contacts in them is a faulty aspect of this dissertation that was not concluded

in time for the delivery.

Another aspect that this dissertation does not address is which features are the most

important for the formation of contacts between the residues. Since the autoencoder is a

black box algorithm in which the lack of transparency difficult the human interpretabil-

ity, it is difficult to evaluate why and how the different features were used. With these

problems analyzed and discussed, the results of the autoencoder, while being certainly

a bit too optimistic, are very promising in these types of problems since they can adjust

well to different type and size of data.

Finally in the state of the art there are more dimensionality reduction algorithms

that those that were used in the experimental work. The Isomap, t-SNE, MDS and the

LTSA algorithms were not considered mostly because of lack of time which makes the

testing under complete.

The author of this dissertation comes from a purely computer science background,

which implies a lack of knowledge in certain aspects of the biochemistry part of this

dissertation. Thus, the complete implementation code will be available online for easiness

of use and review of the community where are experts that can further take the results of

this dissertation.

5.2 Future Work

One of the the limitation presented in the conclusion was the lack of test using true

contacts properly tested with the literature manners. For this, there is a need to imple-

ment algorithms, which, fed by the .pdb files, could pick more accurately the true contacts

from the complexes.

The next work that could be done is the choice of features that were used for this

project, which include the ones used and the ones left out from the AAIndex. Further-

more, features from other sources could also be used to better enrich the datasets.

Since the results from chapter 4 are from the validation set, an improve to this work

is to make a better use of the cross-validation to achieve a better representation of the con-

tacts and after that creating a test set to evaluate the improvment of that representation

which was not possible in this dissertation.

Also, more algorithms for feature extraction mentioned in chapter 2, which have

non linear transformations, should be implemented to create more baselines for compari-

son with the implemented autoencoder to understand better the latent information about
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the contacts.

The last limitation is the lack of tests with real world benchmarks to determine how

much of a improvement or not the extracted features from the autoencoder are comparing

with those benchmarks.
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