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Abstract
Outliers can seriously distort the results of statistical analyses and thus threaten the valid-
ity of structural equation models. As a remedy, this article introduces a robust variant of 
Partial Least Squares Path Modeling (PLS) and consistent Partial Least Squares (PLSc) 
called robust PLS and robust PLSc, respectively, which are robust against distortion 
caused by outliers. Consequently, robust PLS/PLSc allows to estimate structural mod-
els containing constructs modeled as composites and common factors even if empirical 
data are contaminated by outliers. A Monte Carlo simulation with various population 
models, sample sizes, and extents of outliers shows that robust PLS/PLSc can deal with 
outlier shares of up to 50% without distorting the estimates. The simulation also shows 
that robust PLS/PLSc should always be preferred over its traditional counterparts if the 
data contain outliers. To demonstrate the relevance for empirical research, robust PLSc 
is applied to two empirical examples drawn from the extant literature.
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1  Introduction

Structural equation modeling (SEM) is a popular psychometric method in social 
and behavioral sciences. Its ability to operationalize abstract concepts, estimate 
their relationships, and take into account measurement errors makes it a frequently 
applied tool for answering various types of research questions (Bollen 1989).
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In general, two kinds of SEM estimators can be distinguished. On one hand, 
covariance-based estimators, such as the Maximum-Likelihood (Jöreskog 
1970) and the Generalized Least Squares estimator (Browne 1974), minimize 
the discrepancy between the empirical and the model-implied indicator vari-
ance–covariance matrix to obtain the model parameter estimates. On the other 
hand, variance-based (VB) estimators, such as Generalized Structured Compo-
nent Analysis (Hwang and Takane 2004) and Generalized Canonical Correlation 
Analysis (Kettenring 1971), first build proxies for the constructs as linear combi-
nations of the indicators and, subsequently, estimate the model parameters.

Among VB estimators, Partial Least Squares Path Modeling (PLS, Wold 1975) 
is one of the most often applied and thoroughly studied estimators. Its perfor-
mance has been investigated for various population models, for normally and 
non-normally distributed data and in comparison to other estimators (Dijkstra and 
Henseler 2015a; Hair et al. 2017b; Sarstedt et al. 2016; Takane and Hwang 2018). 
Moreover, in empirical research, PLS has been used across a variety of fields, 
such as Marketing (Hair et  al. 2012), Information Systems (Marcoulides and 
Saunders 2006), Finance (Avkiran et  al. 2018), Family Business (Sarstedt et  al. 
2014), Human Resources (Ringle et al forthcoming), and Tourism (Müller et al. 
2018).

Over the last several years, PLS has undergone numerous enhancements. In its 
current form, known as consistent Partial Least Squares (PLSc), it consistently esti-
mates linear and non-linear structural models containing both composites and com-
mon factors (Dijkstra and Schermelleh-Engel 2014; Dijkstra and Henseler 2015b). 
Moreover, it can estimate models containing hierarchical constructs (Becker et  al. 
2012; Fassott et al. 2016; Van Riel et al. 2017), deal with ordinal categorical indica-
tors (Schuberth et al. 2018b) and correlated measurement errors within a block of 
indicators (Rademaker et  al. 2019), and can be employed as an estimator in Con-
firmatory Composite Analysis (Schuberth et al. 2018a). In addition to model esti-
mation, PLS can be used in multigroup comparisons (Klesel et  al. 2019; Sarstedt 
et al. 2011) and to reveal unobserved heterogeneity (Becker et al. 2013; Ringle et al. 
2014). Furthermore, the fit of models estimated by PLS can be assessed in two ways: 
first, by measures of fit, such as the standardized root-mean-square residual (SRMR, 
Henseler et al. 2014), and second by bootstrap-based tests of the overall model fit 
(Dijkstra and Henseler 2015a). A recent overview of the methodological research on 
PLS is provided by Khan et al. (2019).

Despite the numerous enhancements of PLS and suggested guidelines (e.g., 
Henseler et al. 2016; Rigdon 2016; Benitez et al in press), handling outliers in the 
context of PLS has been widely neglected, although outliers are often encountered 
in empirical research (Filzmoser 2005). This is not without problems, since PLS and 
many of its enhancements such as PLSc use the Pearson correlation, which is known 
to be very sensitive to outliers (e.g., Boudt et al. 2012). Therefore, ignoring outliers 
is very likely to lead to distorted results and thus to questionable conclusions.
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Outliers are observations that differ significantly from the rest of the data (Grubbs 
1969). Two types of outliers can be distinguished (Niven and Deutsch 2012).1 First, 
outliers can arise completely unsystematic and, therefore, not follow any structure. 
Second, outliers can arise systematically, e.g., from a different population than the 
rest of the observations.

To deal with outliers in empirical research, two approaches are commonly used. 
The first encompasses using robust estimators that are not or are only to a lesser 
extent distorted by outliers. The second entails identifying and manually remov-
ing outliers before the final estimation. The latter is often regarded as the inferior 
approach. First, it cannot be guaranteed that outliers are identified as such, because 
outliers can affect the results in a way that they may not be identified by visualiza-
tion or statistics such as the Mahalanobis distance (Hubert et al. 2008). Second, even 
if outliers can be identified, removing them implies a potential loss of useful infor-
mation (Gideon and Hollister 1987); in addition, for small data sets, reducing the 
effective number of observations reduces statistical power.

In light of this situation, the present paper contributes to the existing SEM lit-
erature by presenting robust versions of PLS. Specifically, we introduce robust Par-
tial Least Squares Path Modeling (robust PLS) and robust consistent Partial Least 
Squares (robust PLSc), which combine the robust covariance estimator Minimum 
Covariance Determinant (MCD) with PLS and PLSc, respectively. Consequently, if 
robust PLS/PLSc are used to estimate structural equation models, outliers do not 
have to be removed manually.

The remainder of the paper is structured as follows. Section  2 develops robust 
PLS/PLSc as a combination of PLS/PLSc with the robust MCD estimator of covari-
ances. Sections 3 and 4 present the setup of our Monte Carlo simulation to assess 
the efficacy of robust PLS/PLSc and the corresponding results. Section 5 demon-
strates the performance of robust PLS/PLSc by two empirical examples. Finally, the 
paper is concluded in Sect. 6 with a discussion of findings, conclusions, and an out-
look on future research.

2 � Developing robust partial least squares path modeling

Originally, PLS was developed by Wold (1975) to analyze high-dimensional data in 
a low-structure environment. PLS is capable of emulating several of Kettenring ’s 
(1971) approaches to Generalized Canonical Correlation Analysis (Tenenhaus et al. 
2005). However, while, traditionally, it only consistently estimates structural mod-
els containing composites (Dijkstra 2017),2 in its current form, known as PLSc, it 
is capable of consistently estimating structural models containing both composites 
and common factors (Dijkstra and Henseler 2015b). The following section presents 

1  It is noted that extant literature provides various taxonomy descriptions of outliers (e.g., Sarstedt and 
Mooi 2014).
2  It is noted that in the context of PLS, only Mode B consistently estimates composite models (Dijkstra 
2017).
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PLS and its consistent version expressed in terms of the correlation matrix of the 
observed variables.

2.1 � Partial least squares path modeling

Consider k standardized observed variables for J constructs, each of which belongs 
to one construct only. The n observations of the standardized observed variables 
belonging to the jth construct are stored in the data matrix Xj of dimension (n × kj) , 
such that 

∑J

j=1
kj = k . The empirical correlation matrix of these observed variables 

is denoted by Sjj . To ensure the identification of the weights, they need to be normal-
ized. This normalization is typically done by fixing the variance of each proxy to 
one, i.e., ŵ(0)�

j
Sjjŵ

(0)

j
= 1 . Typically, unit weights are used as starting weights for the 

iterative PLS algorithm. To obtain the weights to build the proxies, the iterative PLS 
algorithm performs the following three steps in each iteration (l).

In the first step, outer proxies for the construct are built by the observed variables 
as follows:

The weights are scaled in each iteration by 
(
ŵ
(l)�

j
Sjjŵ

(l)

j

)−
1

2 . Consequently, the proxy 
�̂j has zero mean and unit variance.

In the second step, inner proxies for the constructs are built by the outer proxies 
of the previous step:

There are three different ways of calculating the inner weight e(l)
jj�

 , all of which yield 
similar results (Noonan and Wold 1982): centroid, factorial, and the path weighting 
scheme. The factorial scheme calculates the inner weight e(l)

jj�
 as follows:3

The resulting inner proxy �̃j is scaled to have unit variance again.
In the third step of each iteration, new outer weights ŵ(l+1)

j
 are calculated.4 Using 

Mode A, the new outer weights (correlation weights) are calculated as the scaled 
correlations of the inner proxy �̃(l)

j
 and its corresponding observed variables Xj:

(1)�̂
(l)

j
= Xjŵ

(l)

j
.

(2)�̃
(l)

j
=

J∑

j�=1

e
(l)

jj�
�̂
(l)

j�
.

(3)e
(l)

jj�
=

{
cov(�̂

(l)

j
, �̂

(l)

j�
), if 𝜂j and 𝜂j� are adjacent

0 otherwise.

3  For more details on the other weighting schemes, see, e.g., Tenenhaus et al. (2005).
4  In the following, we only consider Mode A and Mode B. Mode C, which is a combination of Modes A 
and B, is not considered here (Dijkstra 1985).
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Using Mode B, the new outer weights (regression weights) are the scaled estimates 
from a multiple regression of the inner proxy �̃(l)

j
 on its corresponding observed 

variables:

The final weights are obtained when the new weights ŵ(l+1)

j
 and the previous weights 

ŵ
(l)

j
 do not change significantly; otherwise, the algorithm starts again from Step 1, 

building outer proxies with the new weights. Subsequently, the final weight esti-
mates ŵj are used to build the final proxies �̂j:

Loading estimates are obtained as correlations of the final proxies and their observed 
variables. The path coefficients are estimated by Ordinary Least Squares (OLS) 
according to the structural model.

2.2 � Consistent partial least squares

For models containing common factors, it is well known that the estimates are only 
consistent at large, i.e., the parameter estimates converge in probability only to their 
population values when the number of observations and the number of indicators tend 
to infinity (Wold 1982).

To overcome this shortcoming, Dijkstra and Henseler (2015b) developed PLSc. 
PLSc applies a correction for attenuation to consistently estimate factor loadings and 
path coefficients among common factors. The consistent factor loading estimates of 
indicators’ block j can be obtained as follows:

The correction factor ĉj is obtained by the following equation:

To obtain consistent path coefficient estimates, the correlation estimates among the 
proxies need to be corrected for attenuation to consistently estimate the construct 
correlations:

(4)ŵ
(l+1)

j
∝

J∑

j�=1

ejj�Sjj� ŵ
(l)

j�
with ŵ

(l+1)�

j
Sjjŵ

(l+1)

j
= 1.

(5)ŵ
(l+1)

j
∝ S

−1
jj

J∑

j�=1

e
(l)

jj�
Sjj� ŵ

(l)

j�
with ŵ

(l+1)�

j
Sjjŵ

(l+1)

j
= 1.

(6)�̂j = Xjŵj.

(7)�̂j = ĉjŵj.

(8)ĉj =

√√√√√
ŵ
�
j

(
Sjj − diag(Sjj)

)
ŵj

ŵ
�
j

(
ŵjŵ

�
j
− diag

(
ŵjŵ

�
j

))
ŵj

.
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Here, Q̂j =
√

ĉjŵj
�
ŵj is the reliability estimate. In case of composites, typically, no 

correction for attenuation is applied, i.e., Q̂j is set to 1 if the jth construct is modeled 
as a composite. Finally, based on the consistently estimated construct correlations, 
the path coefficients are estimated by OLS for recursive structural models and by 
two-stage least squares for non-recursive structural models.

2.3 � Selecting a robust correlation

As illustrated, PLS and PLSc can both be expressed in terms of the correlation 
matrix of observed variables. For this purpose, typically, the Pearson correlation 
estimates are used. However, it is well known in the literature that the Pearson cor-
relation is highly sensitive to outliers (e.g., Abdullah 1990). Hence, a single outlier 
can cause distorted correlation estimates and, therefore, distorted PLS/PLSc results. 
To overcome this shortcoming, we propose to replace the Pearson correlation by 
robust correlation estimates. Similar was already proposed for covariance-based 
estimators (e.g., Yuan and Bentler 1998a, b).

The existing literature provides a variety of correlation estimators that are robust 
against unsystematic outlier. Table 1 presents an overview of several robust correla-
tion estimators and their asymptotic breakdown points. The Breakdown Point (BP) 
of an estimator is used to judge its robustness against unsystematic outliers and, 
thus, indicates the minimum share of outliers in a data set that yields a breakdown of 
the estimate, i.e., a distortion of the estimate caused by random/unsystematic outli-
ers (Donoho and Huber 1983). Formally, the BP of an estimator T can be described 
as follows:

with T(X) being the estimate based on the sample X which is not contaminated by 
outliers and T(X∗) being the estimate based on the sample X∗ which is contaminated 
by outliers of share � . Usually, an estimator with a higher asymptotic BP is pre-
ferred, as it is more robust, i.e., less prone to outlier’s distortion, than an estima-
tor with a lower asymptotic BP. In addition to ranking various estimators by their 
asymptotic BPs, the estimators can be distinguished by their approach to obtaining 
the correlation estimate: using robust estimates in the Pearson correlation, using 
non-parametric correlation estimates, using regression-based correlations, and per-
forming an iterative procedure that estimates the correlation matrix using the cor-
relation of a subsample that satisfies a predefined condition.

To protect the Pearson correlation from being distorted by outliers, robust 
moment estimates can be used for the calculation of correlation. For instance, 
the mean and standard deviation can be replaced by, respectively, the median and 
the median absolute deviation (Falk 1998), or variances and covariances can be 

(9)�cor(𝜂j, 𝜂j� ) =
ŵ
�
j
Sjj�ŵj�

Q̂jQ̂j�

.

BP = inf{� ∶ sup|T(X∗) − T(X)| = ∞},
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estimated based on a winsorized or trimmed data set (Gnanadesikan and Ketten-
ring 1972). In addition to the Pearson correlation, robust non-parametric estima-
tors such as Spearman’s, Kendall’s or the Gaussian rank correlation can be used 
(Boudt et al. 2012). Regression weights that indicate if an observation is regarded 
as an outlier can also be applied to weight the variances and covariances in the 
Pearson correlation (Abdullah 1990). Finally, iterative algorithms, such as the 
Minimum Covariance Determinant (MCD) and the Minimum Volume Ellipsoid 
(MVE) estimator, can be used to select a representative subsample unaffected by 
outliers for the calculation of the covariance and the standard deviations.

Among all considered approaches, the MCD estimator is a promising candidate 
for developing a robust version of PLS and PLSc. Although both MVE and MCD 
estimators have an asymptotic BP of 50%, which is the highest BP, an estimator 
can have and is much larger than the asymptotic BP of 0% of the Pearson correla-
tion; in contrast to the MVE estimator, the MCD estimator is asymptotically nor-
mally distributed. Moreover, robust estimates based on the MCD are more pre-
cise (Butler et  al. 1993; Gnanadesikan and Kettenring 1972) and a closed-form 
expression of the standard error exists (Rousseeuw 1985).

The MCD estimator estimates the variance–covariance matrix of a sample X 
of dimension n × k as the variance–covariance matrix of a subsample of dimen-
sion h × k with the smallest positive determinant. To identify this subsample, the-

oretically, the variance–covariance matrices of 
(
n

h

)
 different subsamples have to 

be estimated. The choice of h also determines the asymptotic BP of the MCD 
estimator. A maximum asymptotic BP of 50% is reached if h = (n + k + 1)∕2 ; oth-
erwise, it will be smaller (Rousseeuw 1985).

The rationale behind the MCD estimator can be given by considering two random 
variables, each with n observations. While the Pearson correlation is based on all 
n observations to estimate the correlation, the MCD estimator calculates the vari-
ances and the covariance based on a subsample containing only h observations. The 
h observations are determined by the ellipse with the smallest area containing the h 
observations. Similarly, it is done in case of more than two variables; the subsample 
is determined by the ellipsoid with smallest volume containing the h observations. 
In general, the MCD estimator finds the confidence ellipsoid to a certain confidence 
level with the minimum volume to determine the variances and covariances.

To reduce the computational effort of calculating the MCD estimator, a fast algo-
rithm has been developed that considers only a fraction of all potential subsamples 
(Rousseeuw and Driessen 1999). The fast MCD algorithm is an iterative procedure. 
In each iteration (l), the algorithm applies the following three steps to a subsample 
H

(l) of sample X consisting of h observations and k variables:

–	 Calculate the Mahalanobis distance d(l)
i

 for every observation xi of X : 

where x̄(l) is the sample mean, and S(l) is the variance–covariance matrix of the 
subsample H(l).

(10)d
(l)

i
=

√(
xi − x̄

(l)
)�
S
(l)−1

(
xi − x̄

(l)
)

i = 1,… , n,
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–	 Create the new subsample H(l+1) consisting of the observations corresponding to 
the h smallest distances.

–	 Return S(l) if the determinant of S(l+1) equals the determinant of S(l) or zero; oth-
erwise, start from the beginning.

Since det(S(l)) ≥ det(S(l+1)) and det(S(1)) ≥ det(S(2)) ≥ det(S(3))… is a non-negative 
sequence, the convergence of this procedure is guaranteed (Rousseeuw and Driessen 
1999). Once the iterative procedure has converged, the procedure is repeated several 
times for different initial subsamples H(1).

The initial subsample H(1) is chosen as follows: first, a random subsample H(0) of 
size k + 1 of X is drawn. If det(S(0)) = 0 , which is not desirable, further observations 
of X are added to H(0) until det(S(0)) > 0 , where S(0) = cov(H(0)) . Second, the initial 
distances d(0)

i
 are calculated based on the mean vector and the variance–covariance 

matrix of H(0) , see Eq. 10. Finally, the initial subsample H(1) consists of the observa-
tions belonging to the h smallest distances d(0)

i
.

Figure 1 illustrates the difference between the Pearson correlation and the MCD 
estimator for a normally distributed data set with 300 observations, where 20% of 
observations are replaced by randomly generated outliers. The population correla-
tion is set to 0.5. As shown, the estimate of the Pearson correlation is strongly dis-
torted by the outliers, while the MCD correlation estimate is robust against outliers 
and thus very close to the population correlation.

Fig. 1   Difference between the MCD and Pearson correlation
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2.4 � Robust partial least squares path modeling and robust consistent partial 
least squares

To deal with outliers in samples without manually removing them before the esti-
mation, we propose modifications of PLS and PLSc called robust PLS and robust 
PLSc, respectively. In contrast to traditional PLS and its consistent version using 
the Pearson correlation, the proposed robust counterparts use the MCD correlation 
estimate as input to the PLS algorithm. As a consequence, the steps of the PLS algo-
rithm and the principle of PLSc of correcting for attenuation remain unaffected. Fig-
ure 2 contrasts robust PLS and PLSc with their traditional counterparts.

As shown in Fig. 2, the only difference between robust PLS/PLSc and its tradi-
tional counterparts is the input of the estimation. The subsequent steps remain unaf-
fected, and thus, robust PLS/PLSc can be easily implemented in most common soft-
ware packages. However, due to the iterative algorithm, robust PLS/PLSc are more 
computationally intensive than their traditional counterparts that are based on the 
Pearson correlation.

Fig. 2   Conceptual differences of traditional and robust PLS/PLSc
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3 � Computational experiments using Monte Carlo simulation

The purpose of our Monte Carlo simulation is twofold: first, we examined the 
behavior of PLS and PLSc in case of unsystematic outlier. Although the reliance 
of traditional PLS/PLSc on Pearson correlation implies that outliers would be an 
issue, there is no empirical evidence so far of whether the results of traditional PLS/
PLSc are affected by outliers and, if so, how strong the effect is. Second, we were 
interested in the efficacy of robust PLS/PLSc. More concretely, we investigated the 
convergence behavior, bias, and efficiency of robust PLS/PLSc, and compared them 
to their traditional counterparts.

The experimental design was full factorial and we varied the following experi-
mental conditions:5

–	 concept operationalization (all constructs are specified either as composites or 
common factors),

–	 sample size ( n = 100 , 300, and 500), and
–	 share of outliers ( 0% , 5% , 10% , 20% , 40% , and 50%).

3.1 � Population models

To assess whether the type of construct, i.e., composite or common factor, affects 
the estimators’ performance, we considered two different population models.

3.1.1 � Population model with three common factors

The first population model consists of three common factors and has the following 
structural model:

where �21 = 0.5 , �31 = 0.3 , and �32 = 0.0 . As Fig. 3 depicts, each block of three indi-
cators loads on one factor with the following population loadings: 0.9, 0.8, and 0.7 
for �1 ; 0.7, 0.7, and 0.7 for �2 ; and 0.8, 0.8, and 0.7 for �3.

(11)�2 = �21�1 + �2

(12)�3 = �31�1 + �32�2 + �3,

5  In addition, three other conditions were examined. First, it was examined whether the model complex-
ity had an influence on the results by including a model containing 5 constructs and 20 indicators. In 
doing so, all constructs were either specified as composites or as common factors. Second, we investi-
gated the estimators’ performance in case that only a fraction of the observed variables, i.e., two indica-
tors, are contaminated by outliers. Third, we examined the estimators’ performance in case of systematic 
outliers. In doing so, the outliers were drawn from the univariate continuous uniform distribution with 
lower bound 2 and upper bound 5 representing a situation where respondents always score high. Since 
the results are very similar to the results presented, these conditions are not explained in detail in the 
paper. For the results as well as further information on both conditions, we refer to the Supplementary 
Material.
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All structural and measurement errors are mutually independent and the common 
factors are assumed to be independent of measurement errors. The indicators’ popu-
lation correlation matrix is given by the following:

Σ =





x11 x12 x13 x21 x22 x23 x31 x32 x33

1.000

0.720 1.000

0.630 0.560 1.000

0.315 0.280 0.245 1.000

0.315 0.280 0.245 0.490 1.000

0.315 0.280 0.245 0.490 0.490 1.000

0.216 0.192 0.168 0.084 0.084 0.084 1.000

0.216 0.192 0.168 0.084 0.084 0.084 0.640 1.000

0.189 0.168 0.147 0.074 0.074 0.074 0.560 0.560 1.000





(13)

x11 x12 x13 x21 x22 x23 x31 x32 x33

η1 η2 η3

ε11 ε12 ε13 ε21 ε22 ε23 ε31 ε32 ε33

ζ2 ζ3

λx12 = .8
λx11 = .9 λx13 = .7

λx22 = .7
λx21 = .7 λx23 = .7

λx32 = .8
λx31 = .8 λx33 = .7

γ21 = .5 γ32 = .0

γ31 = .3

Fig. 3   Population model containing three common factors

x11 x12 x13 x21 x22 x23 x31 x32 x33

η1 η2 η3

ζ1 ζ2

wx12 = .4
wx11 = .6 wx13 = .2

wx22 = .5
wx21 = .3 wx23 = .6

wx32 = .5
wx31 = .4 wx33 = .5

γ21 = .5 γ32 = .0

γ31 = .3

.5

.5

.5 .2

.0

.4 .25

.4

.16

Fig. 4   Population model containing three composites
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3.1.2 � Population model with three composites

The second population model illustrated in Fig. 4 is similar to the first, but all com-
mon factors are replaced by composites. The composites are built as follows: 
�1 = x

�
1
w
x1

 with w�
x1
= (0.6, 0.4, 0.2) ; �2 = x

�
2
w
x2

 with w�
x2
= (0.3, 0.5, 0.6) ; and 

�3 = x
�
3
w
x3

 with w�
x3
= (0.4, 0.5, 0.5).

The indicators’ population correlation matrix has the following form:6

3.2 � Sample size

Although the asymptotic BP of MCD equals 50% (Rousseeuw 1985), its finite sam-
ple behavior in the context of the PLS algorithm needs to be examined. Therefore, 
we varied the sample size from 100 to 300 and 500 observations. For an increasing 
sample size, we expect almost no effect on the behavior of robust PLS and PLSc 
except that standard errors of their estimates decrease, i.e., the estimates become 
more accurate.

3.3 � Outlier share in the data sets

To assess the robustness of our proposed estimator and to investigate the perfor-
mance of PLS and PLSc in case of randomly distributed outliers, we varied the out-
lier share in the data sets from 0 to 50% with the intermediate levels of 5%, 10%, 
20%, and 40%. We deliberately included a share of 0% to investigate whether robust 
PLS and PLSc perform comparably to their non-robust counterparts if outliers are 
absent. In this case, we would expect the traditional versions of PLS/PLSc to out-
perform our proposed modifications as they are based on the Pearson correlation 
which is known to be asymptotically efficient under normality (Anderson and Olkin 

Σ =





x11 x12 x13 x21 x22 x23 x31 x32 x33

1.000

0.500 1.000

0.500 0.500 1.000

0.180 0.160 0.140 1.000

0.360 0.320 0.280 0.200 1.000

0.360 0.320 0.280 0.000 0.400 1.000

0.196 0.174 0.152 0.044 0.087 0.087 1.000

0.184 0.163 0.143 0.041 0.082 0.082 0.250 1.000

0.200 0.178 0.155 0.044 0.089 0.089 0.400 0.160 1.000





(14)

6  All correlations were rounded to three decimal places.
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1985). As the share of outliers increases, we expect an increasing distortion in PLS 
and PLSc estimates. In contrast, due to the MCD estimator’s asymptotic BP of 50%, 
we expect robust PLS/PLSc to be hardly affected by outliers unless the asymptotic 
BP is reached.

3.4 � Data generation and analysis

The simulation was carried out in the statistical programming environment R (R 
Development Core Team 2018). The data sets without outliers were drawn from the 
multivariate normal distribution using the function mvrnorm from the MASS pack-
age (Venables and Ripley 2002). The outliers were randomly drawn from the uni-
variate continuous uniform distribution with the lower bound of − 10 and the upper 
bound of 10 using the function runif from the stats package (R Core Team 2018). To 
contaminate the data sets with outliers, the last observations of each data set were 
replaced by those. The MCD correlation estimates were calculated by the cov.rob 
function from the MASS package (Venables and Ripley 2002). PLS and PLSc as 
well as the estimates of our proposed robust versions were obtained using the func-
tion csem from the cSEM (Rademaker and Schuberth 2018) package.7 The inner 
weights were obtained by the factorial scheme and the indicator weights in case 
common factors were calculated by Mode A and in case of composites by Mode B.

Although we considered the number of inadmissible solutions, the presented final 
results are based on 1000 admissible estimations per estimator for each condition, 
i.e., the inadmissible solutions were excluded and replaced by proper ones. To assess 
the performance of the different estimators, we consider the empirical smoothed 
density of the deviations of a parameter estimate from its population value. The 
range of the density represents the accuracy of an estimator, i.e., the fatter the tails 
are, the less precise the estimator. A narrow symmetric density with a mode at zero 
is desired, as it indicates an unbiased estimator with a small standard error.

4 � Results

This section presents the results of our Monte Carlo simulation. Due to the large 
number of results, we report only a representative part of the results. In doing so, we 
only consider some of the model parameters, since the results are very similar for all 
parameters. The complete results are given in the Supplementary Material.8

4.1 � Model with three common factors

This section shows the result for the population model consisting of three common 
factors. Figure 5 shows the performance of robust PLSc for various sample sizes and 

8  Figures of the other investigated conditions as well as statistics on the other estimates are provided by 
the contact author upon request.

7  Since the cSEM package is currently under development, the results for PLS and PLSc were validated 
by ADANCO (Henseler 2017) and SmartPLS (Ringle et al. 2015).
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outlier shares when all indicators are affected by unsystematic outlier. For clarity, 
only the two path coefficients �21 and �32 and the factor loading �13 are considered. 
The results for the other parameters are similar.

As illustrated, the outlier share does not affect the parameter estimates of robust 
PLSc. On average, all estimates are close to their population value. Only when the 
proportion of outliers reaches 50%, the estimates will be clearly distorted. Moreover, 
the results are similar for larger sample sizes, except that the estimates become more 
accurate.

Figure  6 compares the estimates of robust and traditional PLSc. Since their 
results are very similar across various sample sizes, the results are only shown for a 
sample size of 300 observations. Moreover, as the results for robust PLSc are almost 
unaffected by the share of outliers, only the results for outlier shares of 0% , 5% , 40% , 
and 50% are considered.

For samples without outliers, both approaches yield similar estimates, but PLSc 
produces slightly smaller standard errors. However, while robust PLSc estimates 
show almost no distortion until the asymptotic BP of 50% of the MCD estimator is 
reached, traditional PLSc estimates are already distorted for a small outlier share. 
This distortion increases if the outlier share is increased.

Fig. 5   Performance of robust PLSc
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4.2 � Population model with three composites

In the following, the results for the population model consisting of three composites 
are shown. To preserve clarity, only the results for the two path coefficients �21 and 
�32 and the weight w13 are reported. However, the results for the other parameters are 
similar. Figure 7 illustrates the performance of robust PLS.

Similar to the model with three common factors, the outlier share has almost no 
effect on the performance of robust PLS. Only when the share of outliers reaches 
50%, the estimates are significantly distorted. On average, the robust estimates are 
very close to their population value; for an increasing sample size, the estimates 
becomes more precise.

Figure 8 compares the performance of robust PLS and that of its original version 
for various shares of outliers. Since the results are very similar across the considered 
sample sizes, the results for 300 observations are representative of the results for other 
sample sizes. Moreover, robust PLS behaves similarly for different outlier shares; 
therefore, only the results for outlier shares of 0%, 5%, 40%, and 50% are shown.

In the case of no outliers, the two estimators yield similar estimates, but PLS 
results in slightly smaller standard errors. While robust PLS shows a distortion only 
at the share of 50% of outliers, traditional PLS estimates are already distorted at 
the outlier share of 5%. As the outlier share increases, the PLS estimates become 

Fig. 6   Comparison of robust and traditional PLSc for n = 300
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increasingly distorted, and in case of outlier share of 10% or above, the estimates 
even show a bimodal distribution.

4.3 � Inadmissible solutions

Figures  9,  and 10 illustrate the share of inadmissible solutions until 1000 proper 
solutions were reached for the models with three common factors and three com-
posites. An inadmissible solution is defined as estimation for which the PLS algo-
rithm does not converge, at least one standardized loading or one construct reliabil-
ity of greater than 1 is produced, or for which the construct correlation matrix or the 
model-implied indicator’s correlation matrix is not positive semi-definite.

Figure  9 shows the shares of inadmissible solutions for the model containing 
three common factors. The largest number of inadmissible solutions is produced by 
PLSc based on the Pearson correlation.9 In this case, neither the sample size nor 

Fig. 7   Performance of robust PLS

9  In addition, to examine whether the large number of inadmissible solutions is a PLSc-specific problem, 
we estimated the model with three common factors, 100 observations and 20% outlier by Maximum-
Likelihood using the sem function of the lavaan package (Rosseel 2012). As a result, we observed a simi-
lar share of inadmissible solutions.
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the share of outliers significantly influences the share of inadmissible solutions. In 
contrast, robust PLSc produces fewer inadmissible solutions than does traditional 
PLSc in every condition except for samples without outliers. Although robust PLSc 
produces numerous inadmissible solutions in case of 100 observations, its results 
improve for samples of size 300 and 500. Robust PLSc only produces a large num-
ber of inadmissible solutions for 50% of outliers in the sample.

Fig. 8   Comparison of robust and traditional PLS for n = 300

Fig. 9   Occurrence of inadmissible solutions for the model containing three common factors
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Figure 10 shows the share of inadmissible solutions for the model consisting of 
three composites. In general, the share of inadmissible solutions is lower than that 
for the model with three common factors. While almost no inadmissible solutions 
are produced by robust PLS, except in case of the outlier share of 50%, the share of 
inadmissible solutions of PLS is substantial when outliers are present and is almost 
unaffected by the sample size and the outlier share. However, in case of no outliers, 
almost no inadmissible solutions are produced by PLS.

5 � Empirical examples

In this section, we illustrate the relevance of robust PLS/PLSc for empirical 
research. In doing so, we adopt the Corporate Reputation Model adapted from Hair 
et al. (2017a) and evaluate the influence of an incorrectly prepared data set on the 
estimation results. In addition, using the open- and closed-book data set from Mar-
dia et  al. (1979), we compare the results of robust PLSc to those obtained by the 
robust covariance-based estimator suggested by Yuan and Bentler (1998a).

5.1 � Example: corporate reputation

The Corporate Reputation Model explains customer satisfaction (CUSA) and cus-
tomer loyalty (CUSL) by corporate reputation. Corporate reputation is measured 
using the following two dimensions: (i) company’s competence (COMP) which 
represents the cognitive evaluation of the company, and (ii) company’s likeability 
(LIKE) which captures the affective judgments. Furthermore, the following four 
theoretical concepts predict the two dimensions of corporate reputation: (i) social 
responsibility (CSOR), (ii) quality of company’s products and customer orientation 
(QUAL), (iii) economic and managerial performance (PERF), and (iv) company’s 
attractiveness (ATTR).

The concepts CSOR, PERF, QUAL, and ATTR are modeled as composites, while 
the concepts LIKE, COMP, CUSA, and CUSL are modeled as common factors. In 

Fig. 10   Occurrence of inadmissible solutions for the model containing three composites
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total, 31 observed variables are used for the concept’s operationalization. Each indi-
cator is measured on a 7-point scale ranging from 1 to 7. The data set is publicly 
available and comprises 344 observations per indicator including 8 observations 
with missing values in at least one indicator coded as − 99 (SmartPLS 2019).

The conceptual model is illustrated in Fig. 11. To preserve clarity, we omit the 
measurement and structural errors as well as the correlations among the indicators. 
For detailed information about the underlying theory and the used questionnaire, it 
is referred to Hair et al. (2017a).

We estimate the model by robust and traditional PLS/PLSc based on the data set 
with and without missing values. Ignoring missing values, i.e., analyzing a data set 

Fig. 11   Corporate reputation model
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containing missing values, represents a situation where a researcher does not inspect 
the data set for missing values a priori to the analysis. Consequently, the missing 
values which are coded as − 99 are treated as actual observations and can, there-
fore, be regarded as outliers, since they are obviously different from the rest of the 
observations. In case of no missing values, the missing values are assumed to be 
completely missing at random and are removed prior to the estimation. As a conse-
quence, they do not pose a threat for the analysis.

To obtain consistent estimates, the model is estimated by PLSc, i.e., mode B is 
applied for composites and mode A with a correction for attenuation is employed 
for common factors. In addition, the factorial weighting scheme is used for inner 
weighting and statistical inferences are based on bootstrap percentile confidence 
intervals employing 999 bootstrap runs. Table 2 presents the path coefficient esti-
mates and their significances.10 

Although PLSc and robust PLSc produce quite similar path coefficient estimates 
in case of the data set containing outliers, there are some noteworthy differences 
leading to contrary interpretations. While PLSc produces a non-significant effect 
with a negative sign of LIKE on CUSA (𝛽 = −0.151) , employing robust PLSc 
results in a clear positive effect (𝛽 = 0.454, f 2 = 0.085) . Moreover, the effect of 
LIKE on CUSL is non-significant under PLSc (𝛽 = 0, 031) indicating no effect; 
robust PLSc produces a moderate positive effect (𝛽 = 0.507, f 2 = 0.237) . In case 

Table 2   Path coefficient 
estimates for the corporate 
reputation model

**Significant on a 1% level; *significant on a 5% level;
◦Significant on a 10% level

With outliers Without outliers

Traditional Robust Traditional Robust

PLSc PLSc PLSc PLSc

QUAL → COMP 0.482** 0.412** 0.486** 0.402**
PERF → COMP 0.345** 0.398** 0.339** 0.388**
CSOR → COMP 0.058 − 0.008 0.060 0.008
ATTR​ → COMP 0.098◦ 0.204* 0.097◦ 0.210*
QUAL → LIKE 0.414** 0.463** 0.413** 0.482**
PERF → LIKE 0.128◦ 0.152 0.127 0.123
CSOR → LIKE 0.197** 0.227* 0.209** 0.204*
ATTR​ → LIKE 0.182** 0.133◦ 0.173* 0.181◦

COMP → CUSA 0.252 0.203 0.033 0.221
LIKE → CUSA − 0.151 0.454* 0.555** 0.449*
COMP → CUSL 0.049 − 0.054 − 0.116 − 0.147
LIKE → CUSL 0.031 0.507** 0.533** 0.601**
CUSA → CUSL 0.698** 0.504** 0.499** 0.497**

10  The estimated weights and factor loadings can be found in Table 4 in the Appendix.
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of no outliers, both estimators lead to similar results with no contradictions in the 
interpretation.

5.2 � Example: open‑ and closed‑book

This section compares the results of robust PLSc to the outlier-robust covariance-
based (robust CB) estimator proposed by Yuan and Bentler (1998a). The latter 
employs M and S estimators to obtain robust estimates for the indicators’ vari-
ance–covariance matrix as input for the maximum-likelihood (ML) estimator. For 
the comparison, we replicate the empirical example in Yuan and Bentler (1998a) 
using the open- and closed-book data set from Mardia et al. (1979).

The data set contains test scores of 88 students on five examinations. The first 
two observable variables (score on Mechanics and Vectors) are linked to the first 
factor (closed-book exam) and the last three observable variables (score on Algebra, 
Analysis, and Statistics) depend on the second factor (open-book exam). For more 
details, see Tanaka et al. (1991).

Table 3 presents the estimated factor correlation (𝜌̂) for the different estimators.
The ML and robust CB estimates are taken from Yuan and Bentler (1998a). 

Since the M and S estimators depend on a weighting factor, the parameter estimates 
depend on that weighting factor, as well. As a consequence, the estimated factor cor-
relation ranges from 0.856 to 0.896 for the robust CB estimator.

In general, the PLSc and the ML estimate and the robust PLSc and the robust 
ML estimates, respectively, are very similar, indicating that robust PLSc performs 
similarly as the robust CB estimator. Moreover, the difference between robust PLSc 
and its traditional counterpart is 0.062, while the difference between the ML estima-
tor and its robust version ranges from 0.038 to 0.078. This is in line with Yuan and 
Bentler ’s conclusion that no extreme influential observations are present in the data 
set leading to similar results for robust and non-robust estimators.

6 � Discussion

Outliers are a major threat to the validity of results of empirical analyses, with VB 
estimators being no exception. Identifying and removing outliers, if practiced at all, 
often entail a set of practical problems. Using methods that are robust against outli-
ers is thus a preferable alternative.

Table 3   Open- and closed-
book example: estimated factor 
correlation

* Depending on the weighting factor, the estimate ranges from 0.856 
to 0.896

Estimator 𝜌̂

PLSc 0.791
ML 0.818
Robust PLSc 0.853
Robust CB estimator [0.856;0.896]∗
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Given the frequent occurrence of outliers in empirical research practice, it appears 
surprising that the behavior of traditional PLS and PLSc has not yet been studied 
under this circumstance. The first important insight from our simulation study is that 
neither traditional PLS nor PLSc is suitable for data sets containing outliers; both 
methods produce distorted estimates when outliers are present. Strikingly, even a 
small number of outliers can greatly distort the results of traditional PLS/PLSc. This 
observation underscores the need for a methodological advancement and highlights 
the relevance of addressing outliers in empirical research using PLS/PLSc.

As a solution, we introduced the robust PLS/PLSc estimators to deal with outli-
ers without the need to manually remove them. The robust PLS/PLSc estimators use 
the MCD estimator as input to the PLS algorithm. This modular construction of the 
new method permits the PLS algorithm and the correction for attenuation applied 
in PLSc to remain untouched and thus allow for an straightforward implementation.

The computational experiment in the form of a Monte Carlo simulation showed 
that both robust PLS and robust PLSc can deal with large shares of unsystematic 
outlier and that their results are hardly affected by the model complexity and the 
number of indicators contaminated by outliers. The proposed method’s estimates 
are almost undistorted for the outlier share of up to 40%. The share of outliers 
would need to reach or exceed 50% of observations for the robust PLS/PLSc to 
break down. This finding is unsurprising, as this level matches the asymptotic 
BP of the employed MCD correlation estimator. Our findings are relatively sta-
ble with regard to outlier extent and model complexity. Even for systematic out-
liers, our Monte Carlo simulation provides first evidence that robust PLS/PLSc 
yield undistorted estimates. However, the BP is slightly lower compared to the 
situation with unsystematic outliers. This is not surprisingly, since the asymp-
totic Breakdown Point of an estimator is defined on basis of randomly generated 
contamination.

Although robust PLSc produces a large number of inadmissible solutions in case 
of small sample sizes, it still produces a smaller number of such solutions than does 
its non-robust counterpart. Furthermore, robust PLS produces only a notable num-
ber of inadmissible solutions for samples with the outlier share of 50%, while its 
traditional counterpart also produces higher numbers of inadmissible results for 
smaller outlier shares. In general, as the sample size increases, the number of inad-
missible results decreases, and as expected, the estimates become more precise.

It is worth noting that if the data do not contain outliers, PLS and PLSc outper-
form their robust counterparts with regard to efficiency, i.e., by producing undis-
torted estimates with smaller standard errors. This finding is unsurprising, because 
the Pearson correlation equals the Maximum-Likelihood correlation estimate under 
normality, which is known to be asymptotically efficient (Anderson and Olkin 
1985). Moreover, the MCD estimator is based only on a fraction of the original data 
set, while the Pearson correlation takes the whole data set into account.

The practical relevance of robust PLS/PLSc in empirical research is demonstrated 
by two empirical examples which additionally emphasize the problem of ignor-
ing outliers. By means of the Corporate Reputation example, it is shown that not 
addressing outliers can affect the sign and magnitude of the estimates, and thus, 
also their statistical significance. This is particular problematic as researchers can 
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draw wrong conclusions when generalizing their results. In addition, the open- and 
closed-book example shows that robust PLSc produces similar results as the robust 
covariance-based estimator suggested by Yuan and Bentler (1998a) providing initial 
evidence that both estimators perform similarly well. While the latter is likely to be 
more efficient in case of pure common factor models as it is based on a maximum-
likelihood estimator, robust PLSc is likely to be advantageous in situations in which 
researchers face models containing both common factors and composites.

Although robust PLS and PLSc produce almost undistorted estimates when the 
outliers arise randomly and initial evidence is obtained that they are robust against 
systematic outliers, future research should investigate the behavior of these estima-
tors in case of outliers that arise from a second population, e.g., from an underly-
ing population that the researcher is unaware of or uninterested in. Moreover, since 
robust PLS and PLSc are outperformed by their traditional counterparts when no 
outliers are present, future research should develop statistical criteria and tests to 
decide whether the influence of outliers is such that the use of a robust method is 
recommendable. Furthermore, the large number of inadmissible solutions produced 
by PLSc if outliers are present, should be investigated. Even though an initial simu-
lation has shown that the large number of inadmissible results is not a PLSc-specific 
problem, future research should examine whether a use of other correction factors 
(Dijkstra 2013) or an empirical Bayes approach (Dijkstra 2018) could improve its 
performance in presence of outliers. It may be fruitful to depart from robust PLS/
PLSc in exploring all these new research directions.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/
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Appendix

Empirical example

See Table 4.

Table 4   Estimated weights and 
factor loadings for the corporate 
reputation model with and 
without missing values

**Significant on a 1% level; *significant on a 5% level;
◦Significant on a 10% level

With missing values Without missing values

Traditional Robust Traditional Robust

PLSc PLSc PLSc PLSc

w
11

0.205** 0.168◦ 0.203** 0.119
w
12

0.038 − 0.020 0.054 − 0.018
w
13

0.102◦ 0.083 0.095 0.084
w
14

− 0.007 0.086 − 0.011 0.097
w
15

0.159** 0.140◦ 0.156** 0.166◦

w
16

0.399** 0.410** 0.398** 0.415**
w
17

0.230** 0.119◦ 0.228** 0.119◦

w
18

0.194** 0.224** 0.205** 0.219**
w
21

0.463** 0.479** 0.463** 0.507**
w
22

0.179** 0.174* 0.171* 0.128*
w
23

0.197** 0.144* 0.188** 0.169*
w
24

0.342** 0.218* 0.351** 0.216*
w
25

0.199** 0.235* 0.201** 0.221*
w
31

0.309** 0.270** 0.275** 0.250*
w
32

0.038 0.031 0.035 0.037
w
33

0.406** 0.349* 0.418** 0.403*
w
34

0.081 0.099 0.095 0.128
w
35

0.413** 0.427** 0.420** 0.366**
w
41

0.419** 0.446** 0.420** 0.449**
w
42

0.199** 0.156* 0.203** 0.175*
w
43

0.655** 0.637** 0.655** 0.622**
�
51

0.792** 0.911** 0.824** 0.915**
�
52

0.679** 0.738** 0.668** 0.736**
�
53

0.715** 0.772** 0.687** 0.776**
�
61

0.859** 0.917** 0.857** 0.920**
�
62

0.755** 0.811** 0.758** 0.823**
�
63

0.749** 0.829** 0.745** 0.823**
�
71

1.000** 1.000** 1.000** 1.000**
�
81

0.009 0.878** 0.788** 0.882**
�
82

0.708** 0.881** 0.849** 0.893**
�
83

0.834** 0.752** 0.739** 0.755**
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