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Abstract: This paper focuses on how the height of a target can be swiftly estimated using images
acquired by a digital camera installed into moving platforms, such as unmanned aerial vehicles
(UAVs). A pinhole camera model after distortion compensation was considered for this purpose since
it does not need extensive processing nor vanishing lines. The pinhole model has been extensively
employed for similar purposes in past studies but mainly focusing on fixed camera installations.
This study analyzes how to tailor the pinhole model for gimballed cameras mounted into UAVs,
considering camera parameters and flight parameters. Moreover, it indicates a solution that foresees
correcting only a few needed pixels to limit the processing overload. Finally, an extensive analysis
was conducted to define the uncertainty associated with the height estimation. The results of this
analysis highlighted interesting relationships between UAV-to-target relative distance, camera pose,
and height uncertainty that allow practical exploitations of the proposed approach. The model was
tested with real data in both controlled and uncontrolled environments, the results confirmed the
suitability of the proposed method and outcomes of the uncertainty analysis. Finally, this research
can open consumer UAVs to innovative applications for urban surveillance.

Keywords: remote surveillance; target height; UAV; pinhole model; image distortion compensation;
uncertainty analysis

1. Introduction

Unmanned Aerial Vehicles (UAV), which have been employed for more than two decades
for military activities, are nowadays widely used for civil applications as well [1]. In particular,
non-coaxial multi-rotors with weight below 4 kg are often used to complement or, in some cases, even
replace fixed video cameras for monitoring and surveillance activities [2,3]. In fact, UAVs can bring a
very relevant added value compared with static installations: the possibility to transport and orienting
the camera as needed, allowing us to perform pre-established survey paths or even follow a specific
target, if needed [4]. These kinds of devices are especially used in urban areas due to their rapidness of
deployment and safety, compared with larger UAVs.

Remote surveillance or monitoring activities may often require estimating the height of a target via
image analysis. The target could be a tree for example, in order to monitor its growing for agricultural
purposes [4], or a building, to follow construction developments, etc. However, as we may expect,
remote height estimation from image analysis is very often needed to define the exact stature of human
beings. This is required to support activities such as the identification of a person of interest [5].
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There is a significant amount of studies in the literature dedicated to obtaining a person’s body height
from video footage, but, almost the totality of them considered data collected by static surveillance
cameras. In some cases, vanishing lines in the scene and a reference height in the scene is required to
define the height of the target (see for example [6–9]). Other authors have proposed to estimate the
height of a person standing on a floor considering a pinhole camera model after camera calibration
and image distortion compensation [10].

The widely used approach of using vanishing lines with a reference object present in the scene
for height estimation has relevant setbacks: defining vanishing lines and reference objects may not
be always possible in an image. On the other hand, the pinhole model does not require vanishing
lines [11] and therefore is deemed very suitable for UAV operations [12]. Photogrammetric techniques
require having either a double camera pointing at the same target or acquiring at least two images
from different orientations of a (static) feature. LiDAR data needs to be acquired by devices installed in
aircraft specifically designated for this kind of survey technique. In some studies related to human
beings, machine learning approaches are applied to images acquired by a UAV [13].

This paper focuses on how the height of a feature standing vertically from the ground can be
measured with a “regular” payload for lightweight UAVs, which is a daylight electro-optical camera
installed into steerable gimbals. The goal is to estimate the height using a single image. Moreover,
since in specific surveillance activities there might be a need for quick decision making during the
flight, the proposed method foresees to perform the computation swiftly, to obtain results in real-time
whenever needed or possible. Surveillance activities are conducted between 10/15 m until 120 m
distance (to keep the visual line of sight with the UAV). However, considering that consumer-level
UAV does not usually have cameras with approximation capacities (zoom), the max distance from the
target considered in this study is around 50 m.

The approach foresees a correction to remove lens distortion before applying a pinhole camera
model [14]. Since the correction of an entire image may be time-consuming, the approach here
described would require correcting just those pixels that define the top and the bottom of the target
feature. The selection of those pixels could be done automatically although, in this contribute, this was
done manually to avoid possible false results. Selected pixels should be normalized to a dimensionless
image, corrected using specific correction parameters and, finally, denormalized to compute the
corrected pixel coordinates to be used in further calculations for height estimation. On the other hand,
the image orientation requires the determination of intrinsic camera parameters, such as the focal
length, and extrinsic camera parameters, such as the camera position and orientation in the object
space [15].

The proposed approach does not require intensive computing because it is based on trigonometric
calculations according to the pinhole model and requires correcting the distortion only for a very
limited number of pixels. It is therefore deemed suitable for real-time applications if the parameters
required for the calculation are also available in real-time. This paper discusses when this can be
performed, taking into account the availability of required parameters (pitch angle, number of pixels
panning the feature in the image plane, and camera-to-target distance) in real case scenarios.

Although performing image metrology using UAVs is not novel, this paper presents one of the
very first attempts to estimate target height using the pinhole model after distortion compensation
with a gimballed camera mounted into a moving platform such as a UAV. Only fixed cameras were
considered in past studies. Differently to previous studies dedicated to the remote estimation of target
height, where only fixed cameras were considered, this study takes into account that the position of the
camera is given by positional systems (like GPS), while orientation is given by Euler angles measured
by gyroscopes. The problem of retrieving the height of a target must be formulated to consider realistic
UAV operational scenarios, considering that the activities may be conducted outdoor (e.g., urban areas)
where the elevation and scene content is rapidly changing.

Since angles and, especially, the measurements to establish the position of the UAV (and the
camera) might be affected by relevant uncertainties that may influence the correctness of the estimation,
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a detailed uncertainty analysis was conducted to better explore the practical limits of the approach.
Moreover, this analysis defines how the initial accuracy of the parameters required in the calculation
may impact the final estimation and reinforce the validation conducted with real data.

Finally, the procedure was tested with real data collected with a regular-market lightweight
quadcopter. A measuring pole of known length, standing vertically from the ground was used as a
target for the acquisition of several still images taken from different positions. For each shot, the height
of the target was calculated considering the proposed procedure and compared with the real height of
the pole to assess the uncertainty of the estimations.

2. Methods

The first part of this section describes the basic principles of the pinhole model for computer
vision and processes for lens distortion compensation. After that, computer vision techniques were
applied to deal with cameras installed into UAVs. The last part of this section presents and describes
the method to estimate the target height from still oblique images acquired with cameras installed
into UAVs.

2.1. Pinhole Camera Model and Computer Vision

In computer vision, cameras are usually modeled with the pinhole camera model [14]. The model is
inspired by the simplest camera, where the light from an object enters through a small hole (the pinhole).
This model considers a central projection, using the optical center of the camera and an image plane
(that is perpendicular to the camera’s optical axis, see Figure 1). In the physical camera, a mirror image
is formed behind the camera center but, often, the image plane is represented in front of the camera
center. The pinhole camera model represents every 3D world point P (expressed by world coordinates
xp, yp, zp) by the intersection between the image plane and the camera ray line that connects the optical
center with the world point P (this intersection is called the image point, noted with I in Figure 1).

Figure 1. Graphical representation: a 3D world point P is projected onto a 2D image plane on point I.
(Source: Personal collection, adapted from [10]).
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The pinhole camera projection can be described by the following linear model [10].


µi
νi
1

 = K[RT]


xp

yp
zp

1

. (1)

K is the calibration matrix [14], defined as follows:

=


αµ γ µ0
0 αν ν0

0 0 1

. (2)

αµ and αν represent the focal length expressed in pixels. µ0 and ν0 are the coordinates of the
image center expressed in pixels, with origin in the upper left corner (see Figure 1). γ is the skew
coefficient between the x and y axes, this latter parameter is very often 0.

The focal length, (which can be here considered as the distance between the image plane and
the optical center) can be also expressed in metric terms (e.g., mm instead of pixels) considering the
following expressions [14]:

Fx = aµ
Wµ

wµ
(3)

Fy = aν
Wν

wν
, (4)

wµ and wν are, respectively, the image width and length expressed in pixels, Wµ is the width
and Wν the length of the camera sensor expressed in world units (e.g., mm). Usually, Fx and Fy have
the same value, although they may differ due to several reasons such as flaws in the digital camera
sensor or when the lens compresses a widescreen scene into a standard-sized sensor. R and T in (1) are
the rotation and translation matrices of the camera, respectively, in relation to the world coordinate
system. These include the extrinsic parameters which define the so-called “camera pose”. [RT] is a
3 × 4 matrix composed of the three columns of the rotation matrix R and the translation vector T as the
fourth column. Image and object points are represented in this model in homogeneous coordinates.

R is defined in this case by the angles around the axes (X, Y and Z) of the world coordinate system
needed for rotating the image coordinate system axes in order to get them coincident (or parallel) with
the world coordinate system axes. In the case of rotation around the X-axis by an angle θx, the rotation
matrix Rx is given by (5) [14]:

Rx =


1 0 0
0 cos(θx) − sin(θx)

0 sin(θx) cos(θx)

. (5)

Rotations by θy and θz about the Y and Z axes can be written as:

Ry =


cos

(
θy

)
0 sin

(
θy

)
0 1 0

− sin
(
θy

)
0 cos

(
θy

)
 (6)

Rz =


cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

. (7)
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A rotation R about any arbitrary axis can be written in terms of successive rotations about the X, Y
and Z axes, using the matrix multiplication shown in (8). In this formulation θx, θy and θz are the
Euler angles.

R = RzRyRx. (8)

T is expressed by a 3-dimensional vector that defines the position of the camera against the origin
of the world coordinate system. Scaling does not take place in the definition of the camera pose.
Enlarging the focal length or sensor size would provide the scaling. The next section describes the lens
distortion effects and procedures for their correction.

2.2. Lens Distorsion and Compensation

The pinhole model does not consider that real lenses may produce several different non-linear
distortions. The major defects in cameras are the radial distortion, caused by light refraction differences
along with the spherical shape of the lens. Other distortions, like the tangential distortion, which is
generated when the lens is not parallel to the imaging sensor or when several component lenses are
not aligned over the same axis, have minor relevance in quality objectives and will not be considered
in this study. The radial distortions can usually be classified as either barrel distortions or pincushion
distortions (Figure 2), which are quadratic, meaning they increase as the square of the distance from
the center.

Figure 2. Effect of barrel and pincushion distortions (Source: Personal collection, adapted from [16]).

Removing a distortion means obtaining an undistorted image point, which can be considered as
projected by an ideal pinhole camera, from a distorted image point. The simplest way to model the
radial distortion is with a shift applied to the pixel coordinates [16]. The radial shift of coordinates
modifies only the distance of every pixel from the image center. Let r represent the observed distance
(distorted image coordinates from the center) and rcorr the distance of the undistorted image coordinates
from the center. The observed distance for a point I (µi νi), in the image (see Figure 1) can be calculated
as follows [16]:

r =
√
(µi − µ0 )

2 + (νi − ν0)
2. (9)

With these notations, the function that can be used to remove lens distortion is [16]:

rcorr = f (r) (10)

However, before applying the compensation function f (r) we need to underline that the model
would be useless if images with the same distortion, but different resolutions would have different
distortion parameters. Therefore, all pixels should be normalized to a dimensionless frame, so that the
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image resolution is not important. In the dimensionless frame, the diagonal radius of the image is
always 1, and the lens center is (0; 0) [16].

The formula to transform the pixel coordinates to dimensionless coordinates is the following [16]:

(
pµ
pν

)
=

 (µi − µ0 )/
√(wµ

2

)2
+

(
wν
2

)2

(νi − ν0)/
√(wµ

2

)2
+

(
wν
2

)2

, (11)

pµ and pν are the dimensionless pixel coordinates and wµ, wν are the image width and height
in pixels.

The dimensionless coordinates defined in (11) can be used to calculate a normalized distance rp

considering the formula given in (9). rp can be then used to approximate the normalized rcorr with its
Taylor expansion [16]:

rcorr = rp + κ1rp
3 + κ2rp

5 + κ3rp
7, (12)

κi are the radial distortion coefficients. The “perfect” approximation would be a polynomial
of infinite degree; however for the purpose of this project, because the target is always centered in
the image center (see Section 2.5) the radial distortion does not affect the measured pixels as much
as if the measurements would be made at longer radial distances, as Figure 2 illustrates. Therefore,
considering just κ1 in (12) is deemed enough for this analysis. rcorr calculated with (12). needs to be
denormalized to obtain the undistorted µi−corr and νi−corr image coordinates for the image under study.

2.3. Elements to Consider When Dealing with Cameras Installed into UAVs Operating Outdoor

Several elements need to be taken into due consideration when operating outdoor with cameras
installed into UAVs:

• The camera is usually fitted into steerable gimbals, which may have the freedom to move around
one, two, or even three axes (which would be formalistically called one-gimbal, two-gimbal or
three-gimbal configurations, [1]). In those cases where the gimbal has limited degrees of freedom,
further steering capacity for the camera must be provided by the UAV itself via flight rotations.

• The parameters required for the transformation from world coordinate system to camera coordinate
system (extrinsic parameters) can be obtained from positioning measurements (latitude, longitude,
and elevation) and Euler angles (yaw, pitch, and roll). Regular GPS receivers, which are not
subject to enhancements such as differential positioning, may be affected by a relevant positional
error, especially in elevation. On the other hand, the orientation angles are measured by
sensitive gyroscopes, gyroscopes usually have good relative accuracy, although the absolute
instantaneous orientation angles may be affected by an accumulated error due to drift unless
adequately compensated. Positioning systems, gyroscopes and accelerometers are used by the
Inertial Measurement Unit (IMU) which are essential components for the guidance and control of
UAVs [1].

• The intrinsic parameters must be known. For those cases where the UAV camera specs are not
available, the intrinsic parameters (image principal point, focal length, and skew and distortion
coefficients) can be retrieved using a calibration procedure [17] provided, for example, by computer
vision open libraries such as OpenCV [18]. Intrinsic parameters can also be obtained from a
bundle adjustment of regular photo coverage with highly convergent images [19].

• In UAV surveillance activities, the camera is usually centered and kept over the target of interest.
Nowadays, this is normally performed automatically by detection and tracking algorithms [18].
Moreover, when UAV’s gimbal is fitted with a laser range finder, the distances are measured on
the center of the image (these devices are normally aligned to the camera center ray line). Thus,
where the topography may rapidly change (like in outdoor activities), only the distance to a
centered target can be correctly measured. Taking into account all these elements, the procedure
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described in this paper has been developed considering a vertical target located in the center of
the image.

• Each still image acquired by the UAV is usually accompanied by a set of cameras and UAV flight
information, stored as metadata. The amount of information stored varies from system to system.
Advanced imaging equipment may provide a complete set of metadata in Key-Length-Value (KLV)
format in accordance with Motion Imagery Standards Board (MISB) standards [20]. Lightweight
UAV available in the regular market are not always fitted with such advanced devices but,
very often, are capable to store a minimum set of metadata, which includes on-board positioning
coordinates, flight orientation and camera orientation.

• Advanced UAV imaging systems are also fitted with laser range finders, which are capable of
measuring the instantaneous camera-to-target distance and store this information as metadata.

The following section describes in detail the application of the pinhole model for computer vision
analysis and its parameters.

2.4. On-Board Sensor and Data Analysis for Height Estimation

Large UAVs, which are also called MALEs (Medium Altitude Long Endurance [21]), are usually
fitted with three-gimbaled advanced imaging systems and accurate positioning systems resorting also
to differential positioning techniques for higher accuracy. These systems are calibrated and capable to
perform transformations in real-time and embed the instantaneous camera pose, and other information
(such as Field of View (FOV), image footprint projected on the ground, and measured slant range
(when available)) into the acquired video stream using the KLV encoding protocols, in accordance to
military standards [22].

On the other hand, non-military lightweight UAVs available in the regular market are not always
fitted with advanced imaging systems and very accurate positioning systems. For example, the DJI
Phantom 4 PRO (a widely diffused multi-rotor platform of 1.388 kg, used to collect data for the
testing of the approach described in this paper, see Section 3. Results) is not capable to generate KLV
embedded metadata but it can generate ancillary tags in Exchangeable Image File Format (EXIF) of
still images which provide, among other information, the position of the aircraft, aircraft orientation
and camera orientation at the moment of the acquisition of the still image. DJI Phantom 4 PRO
has a GPS/GLONASS positioning system [23]. The actual uncertainty of this positioning system
after refinement with accelerometric info provided by the IMU is ±0.5 m vertically and ±1.5 m
horizontally [23]. The camera of this UAV has a pivoted support (one-gimbal) with a single degree
of freedom around the Y axis (pitch angle, see Figure 3). Angular values are measured with an
uncertainty of ±0.02◦ [23]. However, this angular accuracy refers to the gimbal zero reference. Thus,
in real case scenarios, the uncertainty associated with Euler angles could be slightly higher. Although
not specified in any available technical documentation, considering the available information of this
UAV, it is here assumed that the transformations employed to provide the information in the EXIF
tags are the following: (a) the translation defined by the positioning coordinates of the UAV body,
(b) rotation based on Euler angles of the body followed by (c) a 1D rotation of the camera (pitch angle).
Therefore, the position of the camera when dealing with DJI Phantom 4 PRO can be defined by UAV
body positional location (coordinates) while the orientation is given by a yaw angle defined by flight
orientation, a pitch angle defined by camera orientation and a roll angle defined by flight orientation.
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Figure 3. Axis and Euler angles for the case of DJI Phantom 4 PRO (Source: Personal collection,
adapted from [23]).

The camera sensor is a 1” Complementary Metal-Oxide Semiconductor (CMOS) of 20 MP effective
pixels with 5472 × 3648 pixels resolution and 13.2 mm × 8.8 mm size, lens focal length of 8.8 mm with
no optical zoom and diagonal FOV of 84◦ [23].

Assuming a lightweight UAV, like the one described in Figure 3, a feature standing vertically on
the ground, for example, a pole, that the UAV has a heading (yaw angle) and pitch angle appropriate to
point to the target and a Roll angle equal to zero, the situation graphically represented in Figure 4 occurs.

Figure 4. Graphical representation of a lightweight unmanned aerial vehicle (UAV) pointing to a
vertical pole (a) with a roll angle equal to zero. In (b) the image plane is represented in orthogonal view
(as it would appear on a screen) (source: personal collection). Please note that (a) is a perspective view,
please refer to (b) to visualize the image plane without distortion.

Point µ0,ν0 in Figure 4b is the image center, which is obtained, as already described, by the
intersection between the image plane and the optical axis (see Figure 4a). The optical axis is centered
on the target, not necessarily to the midpoint but to any point of the pole. The Image Point I is given
by the intersection of the camera ray line that connects the tip (highest point) of the pole with the
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camera center. This point is expressed by the image coordinates µi,νi while r̂i represents the distance
from the image center, more specifically, to the principal point. Moreover, r̂i is a distorted value that
needs to be compensated to obtain the distance ri−corr of the ideal undistorted image. The procedure to
obtain such undistorted distance was already discussed in the previous paragraph (see (12)). Similarly,
Image Point J is the intersection of the image plane with the ray line that connects the bottom of
the pole (lowest point) with the camera center. The point is expressed by the image coordinates
µj,νj while r̂ j represents the distance from the image center that needs to be compensated to get rj−corr,
the undistorted distance from the center of the ideal undistorted image. The line I–J in the image plane
is the projected height of the pole expressed in pixels in the image plane. Considering now the case
when the roll angle is different than zero graphically represented in Figure 5.

Figure 5. Graphical representation of a lightweight UAV pointing to a vertical pole (a) with roll angle
different than zero. Orthogonal view of the image plane (b) with the representation of the pole and
indication of the roll angle (source: personal collection). Please note that (a) is a perspective view,
please refer to (b) to visualize the image plane without distortion.

When the roll angle is different than zero, the line IR-JR, which is the representation of the pole
in the image plane, will not appear as parallel to the ν axis, as in the case before, but rotated by an
angle equal to the Roll angle itself, as it is possible to infer from (5). As mentioned above, the observed
distances (respectively r̂Ri and r̂Rj) must be compensated to obtain the distances rRi −corr and rRj−corr of
the ideal undistorted image.

The method assumes that the distances r̂Ri and r̂Rj are input data, that can be measured directly
on the image or derived from an automatic point detection algorithm yielding the image coordinates
of the endpoints of the pole. Direct measuring will have the drawback of the need for postprocessing,
contradicting the aim of near real-time results, but it will be more precise. The automatic way has
always the disadvantage of retrieving false results, especially when the contrast between object and
background is not well defined. The same can be said when the object does not have sharp contours.
For testing the uncertainty of the method, we decided to opt for the more reliable direct measuring,
but in the future, an adequate automatic algorithm shall be developed/adopted in order to automatize
the workflow as far as possible.

The next paragraph describes how to estimate the height of a target standing vertically (pole)
considering the elements discussed so far in this paper. As an example, we can use a lightweight UAV
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like the DJI Phantom 4 PRO but the approach can be extended to any imaging system installed in
steerable moving platforms.

2.5. Estimating Target Height with a Camera Fitted into UAVs

The approach proposed in this study for the estimation of target height using a camera fitted into
UAVs foresees the UAV pointing at the target, as depicted in Figures 2 and 3, starting with the case
when the roll is zero (see Figure 6).

Figure 6. Perspective view of a lightweight UAV pointing to a vertical target (pole) (a). Orthogonal
view of the same scene with descriptions (b) (source: personal collection).

The pitch angle, which can be also identified with θy, see (7) is a known value, while the angles α,
β, φ, γ are not originally known but they can be retrieved using simple trigonometric calculations:

α = tan−1
( r j−corr

F

)
(13)

β = 90−
(
θy + α

)
(14)

φ = tan−1
( ri−corr

F

)
(15)

γ = ( φ+ β+ α), (16)

where ri−corr can be calculated considering (12). in the previous paragraph starting from the observed
ri in the image plane (see Figure 6). Similarly, r j−corr refers to the point J (see also Figure 4). F is the
focal length, which was defined by (3) and (4) (assumed here for simplicity that F = Fν = Fµ).

V in Figure 6 is the vertical distance between the base of the target and the camera center, while H
is the horizontal distance between the target and the camera center. H and V are not related at all to the
topography, as is possible to infer from Figure 6 because H and V depend on the relative height and
horizontal distance between the UAV and the target foot. If the coordinates of the target are known, then
H and V are also known since the positioning coordinates of the camera are available (see Section 2.3.
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Cameras installed into UAVs). The positional uncertainty and how it will impact the estimation of the
target height will be treated later in this paper, but, since it is much more practical to handle horizontal
distances, using a GIS (Geographic Information System (GIS), for example, than vertical elevations and
because we want to reduce the number of parameters for the model (possible source of error), V is
always calculated in function of H, as defined in (17) below.

V = H tan(90− β). (17)

The angles α , β , φ , γ are now known, as well as the pitch angle, V and H. These elements can
be used to calculate the height of the target using triangle similarity. In fact, P (see Figure 6) can be
calculated as follow:

P = V tan(α+ β+ φ), (18)

p is the horizontal distance between the base of the target and the camera ray that passes through
the tip (highest point) of the target, which can be calculated as follow:

p = P−H. (19)

Finally, the height of the target can be calculated by (20):

Height o f the Target = p tan(90− γ). (20)

As already mentioned, the horizontal distance between the target and the camera center can be
determined if the coordinates of the target are known. In practice, this could be the case only when
dealing with immobile features like light poles, trees or buildings. If the position of the target is not
known, as it may happen for moving targets like humans, vehicles, etc., the best solution would
be using a device (like a laser range finder) to measure the instantaneous camera-to-target distance
(slant range) [24], as required by dedicated military standards for UAV metadata sets [25]. As already
mentioned, advanced imaging systems are very often fitted with such devices, and the instantaneous
distance measurements can be stored in the KLV metadata set [21] and transferred in real-time to the
ground controller [22].

Slant range is a distance is aligned with the optical axis of the camera (see Figure 6) and can be
used to calculate the horizontal distance H using the following formula:

H = Slant Range Distance ∗ sin(90− Pitch angle). (21)

It is important to highlight that also the slant range distances measured by laser range finders
are affected by a certain error that must be considered during the estimation of the target height.
For example, an error of ±0.3 m along the slant range when the horizontal camera-to-target distance is
20 m and the pitch angle is 30◦ will result in a horizontal error of ±0.26 m.

Let us now analyze the case in which the roll angle is different from zero: in this case, as already
discussed (see Figure 5), the points I and J are not located along the υ axis passing on the center of the
image. In other words, a vertical feature will appear as “tilted” in the image on an angle equal to roll.
However, as it is possible to infer from (8) and as graphically represented in Figure 7, I and J are in the
same (vertical) plane of the pitch angle. Thus, the approach presented in this paper does not need to
consider the roll angle for the calculation of the target height. In this case, it is necessary to perform a
distortion correction to obtain ri−corr and r j−corr and use these parameters in the formulas previously
described (see (13)and (15)).
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Figure 7. Perspective view of the image plane with visualization of the I and J, representing respectively
the top and the bottom of the pole in the image plane (source: personal collection).

As previously discussed, the camera-to-target horizontal distance (H) is a required parameter in
the calculations. If the target is moving (like a person), a laser range finder should be preferably used
because it can measure the instantaneous slant range, from which we can derive H (the horizontal
distance between the camera and the target). These devices are usually fitted only in larger UAVs, but we
believe it is important to analyze this option in our paper. Regular-market UAVs (like DJI Phantom used
in the field test of the paper) do not normally have such devices, but H can be calculated considering the
coordinates of the target and the coordinates of the UAV. If the target is a fixed feature, like an electrical
pole or a tree, then it is most probably visible in reference ortho-photo maps or topographic maps,
where it is possible to retrieve its coordinates (even public available geo-webservices such as Google
Earth can be used for this purpose). If the target is not fixed (therefore moving, like a human), then it
is necessary to find its coordinates when the image was taken. This is not an easy task, but practical
experience has shown that, especially in urban areas, the image can be taken when the target is located
over a recognizable marker on the ground (like road markings) or feature (like a building corner).
The coordinates of this marker or feature, which can be once again retrieved from available maps or
geo web-services, can be used to indirectly obtain the horizontal target-to-camera distance.

2.6. Uncertainty Analysis

Assuming an accurate correction of image distortion, the relevant sources of error may come from:
the horizontal camera-to-target distance, the number of pixels spanning the target from the image
center toward the top and/or bottom, and angular measures.

The Computer-Aided Design (CAD) software Rhinoceros [26] was combined with a spreadsheet
to visually analyze how the aforementioned uncertainties impact the height estimation. In this CAD,
it was possible to create a 3D environment of real planar coordinates and locate in there a UAV (e.g.,
a DJI Phantom 4 PRO) in a desired location and altitude, rotate the camera of the UAV considering
Euler angles (e.g., 30◦ pitch angle), create a target of defined height (e.g., a pole of 1.80 m), and locate
it to a desired distance from the UAV. Moreover, since the pinhole model after distortion correction
is perfectly geometrical, it was also possible to recreate the geometry of the camera (field of view,
image plane, etc.). In this way, we can have all the parameters under control, including the number of
pixels spanning the feature, to simulate different scenarios to analyze the uncertainty.
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Firstly, let us consider the following scenario: a DJI Phantom 4 PRO is looking at a target of 1.80 m,
the laser range finder (this UAV does not have a laser range finder, but we assume it would have
one) measured a slant range distance of 23.1 m from the target (equal to 20 m horizontally), the total
number of pixels spanning the feature for this case would be 248 (see Figure 8a). If the laser range
finder has an uncertainty of ±0.30 m (±0.26 m horizontally), the real horizontal distance of the UAV
to the target must be included between 19.74 m and 20.26 m (see Figure 8b,c). In this case, we could
say that the error associated with the estimated height is ±0.02 m (varying from 1.78 m to 1.82 m as
shown in Figure 8b,c). Moreover, in this case, the difference in elevation between the UAV and the
target is not known because we do not have the coordinates of the target. Let us now consider the
other possible source of error: the number of pixels is miscounted (this can be ideally indicated as error
of collimation, where, basically a camera ray line is not collimating to the top or bottom of the target).
Practical experience has shown that there might be an error of uncertainty of ±3 pixels considering a
simple linear vertical feature like a pole, this uncertainty takes place at the top and at the bottom of the
feature. If the target is more “complex” than a pole (like a person) this uncertainty could be more than
3 pixels. Considering the same situation described above (DJI Phantom 4 PRO looking at a target of
1.80 m, 20 m horizontal distance, 30 deg Pitch), an uncertainty of ±3 pixels at the top generates an error
in the estimation of the height equal to ±0.021 m (see Figure 8d,e where the error is exaggerated to
underline the issue). The same uncertainty at the bottom of the feature generates an error of 0.023 m.
These two errors, although quite similar, should be kept separate because they may vary significantly
for pitch assuming high values.

Figure 8. Case scenario developed in the 3D CAD Rhinoceros where a DJI Phantom 4 PRO is looking at
a target of 1.80 m from a horizontal distance of 20 m. Slant distance is measured through a laser range
finder (a). The error associated with the measured slant range (assumed to be ±0.30 m as an example)
generates uncertainty in the horizontal distance, which lays between 20.26 m and 19.74 m. Keeping
constant the other parameters (pitch angle equal to 30◦ and total pixels equal to 248), the horizontal
uncertainty generates uncertainty in the calculation of height, which lays between 1.82 m (b) and
1.78 m (c). The camera ray line is not collimating to the top or bottom of the target: in other words,
the erroneous value of the distance from the image center measured in pixels that may generate an error
in the estimation of the height of the target. A 3-pixel difference may generate an error of ±0.021 m ((d)
and (e), the error is exaggerated to underline the issue) (source: personal collection).
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According to the statistical propagation of error, these three errors can be combined as follow:

δ =

√
(qreal − qH−err)

2 +
(
qreal − qPixTop−err

)2
+ (qreal − qixBot−err)

2, (22)

where δ denotes the error, qreal is the real height of the target (in this case 1.800 m), qH−err is the calculated
height of the target with uncertainty related to horizontal distance (1.820 m), qPixTop−err is the calculated
height of the target with uncertainty related to the number of pixels toward top (1.821 m), qPixBot−err is
the calculated height of the target with uncertainty related to the number of pixels toward the bottom
(1.823 m). This analysis tells us that, statistically, we should expect an error of ±0.040 m.

The analysis conducted above does not consider the uncertainty associated with angular measures.
The declared angular uncertainty of the Phantom 4 PRO is ±0.02◦ (see Section 2.4) but, as already
explained, this angular accuracy refers to the gimbal zero references. Thus, in real case scenarios,
it is necessary to consider possible uncertainty. In this analysis, an angular uncertainty of ±1◦ is
assumed for the Pitch angle. In the case here under consideration, the H value is calculated considering
the Pitch Angle and the slant range (see (21)). There is a direct dependency between these three
variables. According to the error propagation law, the uncertainty of two multiplied quantities is
equal to the addition of their respective uncertainties (slant range: ±0.30 m and Pitch angle: ±1◦).
This resulting uncertainty associated with the horizontal distance H can be then used to replace
qH−err in (22). The uncertainty of H given by the combination of slant range uncertainty and angular
uncertainty is ±0.32 m which generates, statistically, an error of ±0.05 m when combined with the
other uncertainties (PixTop and PixBot) in Equation (22). Once again, this is valid for pitch equal to
30◦ and H equal to 20 m, which is the most probable scenario for the purpose of this project. In other
conditions, the error will be clearly different and therefore should be recalculated.

Let us now consider a more realistic scenario, by taking into account consumer-level UAVs, such as
DJI Phantom 4 PRO, which is usually not fitted with laser range finders. In this case, we need to take
into account the positional uncertainty of the UAV (the declared horizontal uncertainty of the Phantom
4 PRO is ±1.50 m [26]), the precision of the maps used to get the coordinates of the target (for a map
at 1:4000 scale, we may consider uncertainty of ±1 m [27]), the uncertainty related to the number of
pixels at the top and bottom, and ±1◦ for the Pitch, as seen before. The statistical error generated by
the combination of these uncertainties can be calculated considering (22). To better analyze how the
error may vary in function of the relative position of UAV with respect to the target, 20 cases with a
random position of the UAV (from 5 m to 50 m horizontal distance from the target) and camera pitch
angle (between 5◦ to 75◦) were generated in a spreadsheet and visualized in a 3D CAD. These cases
(artificially created) gave us the possibility to have full control over all the parameters in order to isolate
and analyze each uncertainty and to calculate their combination (δ). The results of this analysis are
reported in Table 1.
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Table 1. The 20 cases with a random position of the UAV generated artificially. The table reports the parameters (pixels upwards and downwards for image center,
pitch angle and horizontal camera-to-target distance) with a target of 1.80 m. The table also reports the calculated height of the target when uncertainties such as
UAV positional uncertainty (1.5 m), target position (1.0 m) and the number of pixels at top and bottom (3 pixels for both). Each uncertainty was isolated and treated
separately to calculate the resulting height. Finally, the table reports also the statistical error obtained using the formula in (22).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pixels upwards (ri) 285 358 206 266 70 122 100 51 113 91 67 95 117 174 149 222 146 85 51 41

Pixels downwards (rj) 508 132 224.3 101.2 136.8 55.9 51.3 139.50 48 42.9 46.1 57.8 193 524 419 137 92 77 87 28

Pitch angle (degrees) 36.8 49.7 30.5 35.3 14.1 27.8 31.7 6.2 10.9 17.0 23.2 41.5 27.4 19.5 11.4 49.9 37.2 37.2 63.7 72.8

Horizontal distance (H) (m) 5.0 6.0 11.3 12.3 29.7 29.2 31.7 33.9 39.7 45.0 49.1 24.3 16.5 8.1 10.9 7.7 17.6 25.4 9.1 8.3

Real Target Height (m) 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80

Height Estimation
considering uncertainties

UAV pos. Unc. (m) 2.34 2.25 2.04 2.02 1.89 1.90 1.88 1.88 1.87 1.86 1.86 1.91 1.96 2.14 2.04 2.15 1.96 1.91 2.09 2.13

Target pos. Unc. (m) 2.16 2.10 1.96 1.94 1.86 1.86 1.85 1.85 1.84 1.84 1.84 1.87 1.91 2.03 1.96 2.03 1.91 1.87 1.99 2.02

Num. Pix. Top Unc. (m) 1.81 1.81 1.81 1.81 1.82 1.83 1.83 1.83 1.83 1.84 1.85 1.83 1.82 1.81 1.80 1.81 1.82 1.83 1.83 1.88

Num. Pix. Bottom Unc. (m) 1.81 1.81 1.81 1.81 1.83 1.83 1.83 1.83 1.83 1.84 1.85 1.84 1.82 1.81 1.81 1.82 1.83 1.83 1.84 1.89

Angular (◦) 0.05 0.07 0.04 0.04 0.02 0.04 0.04 0.01 0.01 0.02 0.03 0.06 0.05 0.03 0.01 0.08 0.05 0.05 0.13 0.23

Statistical Error 0.65 0.55 0.29 0.26 0.11 0.13 0.11 0.10 0.09 0.09 0.10 0.15 0.20 0.41 0.29 0.43 0.20 0.14 0.38 0.47
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It is interesting to analyze the appearance of the variables (horizontal camera-to-target distance,
number of pixels towards top/bottom, and pitch angle) plotted against the correspondent errors
generated for the calculation of the height (Figure 9). Since the horizontal camera-to-target distance has
two uncertainties associated (UAV positional accuracy and target positional accuracy), this variable was
plotted against those two errors (Figure 9a,b). In both cases, the relationship can be very well correlated
using a negative power function, which tells us that the error is lower when the horizontal distance is
higher. This should not be surprising, because looking at the geometry in Figure 4 (and associated
formulas) it is evident that the same horizontal positional uncertainty of the UAV has a stronger impact
(higher uncertainty in the estimation of the height) when the target is closer. Concerning the number
of pixels (both top and bottom, Figure 9c,d), we can instead notice that the error generally increases
when the number of pixels decreases. This is logical since the number of pixels spanning a feature
decreases with the distance, and the associated error is higher when the target is farther from the
UAV. The angular uncertainty of pitch generates a trend that increases exponentially when the angle
is higher (Figure 9e). Let us now consider the statistical error vs. itch (Figure 9f). Although quite
scattered, Figure 9f shows that the error increases when the angle also increases. Concerning the
number of pixels (in this case, we considered all the pixels for simplicity) Figure 9g shows that the
error increases when the number of pixels also increases. Let us now consider the overall statistical
uncertainty vs. the horizontal distance (Figure 9h): a negative power function relationship can be used
to approximate this distribution (in this case, the function of the regression line is y = 2.7182x−0.905).
This well-predictable behavior is probably due to the strong component of uncertainty related to the
horizontal distance. The error varies from ±0.65 m when the horizontal distance between the UAV and
the target is 5 m, to 0.1 m when the distance is around 50 m. Finally, we should notice that error at
around 50 m (see case 11 in Table 1) is slightly higher than the previous one (case 10). This indicates
that, possibly, there is growth in the error after 50 m due to the uncertainties related to the number of
pixels and pitch (especially for high angles).

Theoretically, the function of the regression curve that approximates the distribution of the
statistical error against H (y = 2.7182x−0.905) could be used to predict quite accurately the uncertainty
of a height estimation at any horizontal distance (since R2 = 0.9849). More practically, we need to take
into account the following: (a) the function is valid for a target of 1.80 m, but in a real case scenario the
height of the target would be clearly not known; (b) in a real case scenario we would not have the exact
horizontal distance but just a distance affected by a certain uncertainty; (c) the function is only valid
for the system (DJI Phantom 4 PRO) and for the conditions considered.

Regarding the first point (a), let us consider Figure 10 where the statistical error has been calculated
for ten different H considering a height of target = 1.60 m, 1.80 m and 2.0 m. A different height of
the target is clearly generating a different distribution of the error but is always well-aligned along a
negative power function. Moreover, the distribution flattens when the horizontal distance is above
15 m.

Regarding point (b) mentioned above, we can use the same rationale: the function of the regression
curve that approximates the distribution of the statistical error against H gets rather flat for values above
15 m to 20 m. Therefore, values of H above 15 m or 20 m, even if affected by uncertainty, can be used in
the equation reported in Figure 9e without introducing a sensible error. Finally, regarding point (c),
we can only say that every case is different: conditions and uncertainties must be carefully considered
and analyzed, because they may generate different errors.

All in all, we can say that in cases as the one described in this study (when the horizontal
uncertainty is constant and brings the highest contribution in terms of uncertainty) the statistical error
has a well predictable distribution (negative power). This behavior can be used to predict a priori the
uncertainty using only the horizontal target-to-camera distance. However, this prediction can be only
used (cautiously) when this distance is above 15 m to 20 m (assuming that the target is a person).
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Figure 9. (a) Error in the estimation of height (obtained as: real target height—height estimation
considering uav positional uncertainty) plotted against H (see Table 1). (b) Error in the estimation of
height (obtained as: real target height—height estimation considering target positional uncertainty)
plotted against H (see Table 1). (c) Error in the estimation of height (obtained as: real target height—
height estimation considering uncertainty number of pixels toward top) plotted against pixels upwards
(see Table 1). (d) Error in the estimation of height (obtained as: real target height—height estimation
considering uncertainty number of pixels toward the bottom) plotted against Pixels downwards
(see tabreftabref:remotesensing-938194-t001). (e) Angular uncertainty plotted against the pitch angle
(see Table 1). (f) Combined statistical error plotted against pitch (see Table 1). (g) Combined statistical
error plotted against the total pixels (pixels downwards + pixels upwards, see Table 1). (h) Combined
statistical error plotted against H (see Table 1).
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Figure 10. Statistical error calculated for a target of 1.60 m, 180 m and 2.0 m for ten different horizontal
camera-to-target distances (on the right). Statistical error plotted against the horizontal camera-to-target
distances (on the left, green circles: target height = 1.60, blue circles: target height = 1.80 m, yellow
circles: target height = 2.0 m).

3. Results of the Field Data Tests

The procedure to estimate the target height described in the previous section was tested using real
data acquired with a DJI Phantom 4 PRO (see Section 2.3. Cameras installed into UAVs for technical
details regarding this device and camera used). Two separate tests were conducted: a first one realized
in a controlled environment to verify the correctness of the model and a second one, conducted in an
uncontrolled environment outdoor, to assess the uncertainty of this model in a real case scenario with
a target of localized in a known position. DJI Phantom 4 PRO is not fitted with a laser range finder,
therefore, in this study, it was not possible to test the case of moving targets.

3.1. Field Test 1: Validation of the Model

In this first field test, we used as a target, a wooden pole of 180 cm standing vertically from
the ground. The data were acquired in a flat area (an outdoor basketball court, see Figure 11),
the UAV took-off in a perfectly vertical lift from known distances from the pole (3 m, 5 m, 15 m and
20 m) measured using a metric tape. In this way, it was possible to have full control of horizontal
camera-to-target distance. 10 still images were acquired with different camera pitch angles and, in each
acquired image, the principal point was always oriented over the pole (an arbitrary point along the
pole, as defined in Figure 5). Images not properly oriented (a principal point not located over the pole)
were discarded and not used in this study. Camera Pitch angle and flight Roll angle of each image
were extracted from EXIF tags, while the number of pixels spanning upward from image principal
point (ri) and downward (r j) were measured manually on screen. Table 2 provides the details for all
the acquired images.

In Section 2.2, the procedure to obtain a corrected distance from the image center was described.
Such a procedure was applied to each image obtaining the ri−corr (number of corrected pixels from
image center upward to pole’s top point) and r j−corr (number of corrected pixels from image center
downward to pole’s bottom). The total number of pixels spanning the entire pole after distortion
correction (ri−corr + r j−corr) as well as the calculated elevation of the UAV (defined using the formula
(17)) are also reported in Table 2. The Distortion Coefficient to be used for the correction was retrieved
through camera calibration techniques [15] developed with OpenCV via Python programming and
is equal to 0.0275 (this is the k1 coefficient as expressed in the model (12)). Please see Section 2.2 for
further clarification. Considering the good results of this test, errors in pitch and image measurement
of the top and bottom of the target can be considered negligible.

Considering the small errors obtained (root mean square = 0.016 m, standard deviation =

0.015 m) probably due to an unperfect vertical lift of the UAV or angular uncertainty, the model is
considered validated.
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Figure 11. An example of a still image acquired with DJI Phantom 4 PRO with image principal point
(visualized in the picture with a blue cross) located over the pole. The number of pixels spanning
upward (104) and downward (71) from the image principal point were measured manually on screen.
(Source: Personal collection).

Table 2. Data collected during Field Test 1 and results.

DJI39 DJI42 DJI43 DJI49 DJI48 DJI122 DJI126 DJI80 DJI84 DJI89

Pixels upwards (ri) 306 272 158 284 358 179 288 220 108 104

Pixels downwards (rj) 1660 1706 1548 510 760 226 30 107 157 71

Pitch angle (deg) 11.7 11.7 19.3 36.8 20.3 14.7 33.7 2.7 25.8 43.3

Distance (H) (m) 3 3 3 5 5 15 15 20 20 20

Calculated UAV altitude (V) 2.19 2.2 2.7 5.0 3.1 4.9 10.2 1.5 10.8 19.6

Flight Roll Angle (deg) 0.0 1.3 0.9 0.7 2.2 0.6 0.2 2.7 0 2.4

Total number of pixels
(after distortion correction) 1954 1965 1697 794 1117 405 318 327 265 175

RESULTS

Estimated height (m) 1.82 1.84 1.81 1.79 1.82 1.79 1.80 1.79 1.80 1.80

Real Height (m) 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80

Error (m) −0.02 −0.04 −0.01 0.01 −0.02 0.01 0.00 0.01 0.00 0.00

3.2. Field Test 2: Real Case Scenario with a Target of Known Position

In this field test, it was used the same wooden pole of 180 cm standing vertically from the ground
in a position of known coordinates (Lat, Long) retrieved in a digital topographic map at the scale 1:5000
managed in a GIS. 32 still images were acquired with different camera poses (see Tables 3 and 4) and,
in each acquired image, the principal point was always oriented over the pole. All those images not
properly oriented (the principal point not located over the pole) were discarded. The images were
acquired in an open space with good visibility to satellites.
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Table 3. Data and results for the first 16 still images acquired with the lightweight UAV with a Pole of 1.80 m as target.

DJI31 DJI32 DJI34 DJI41 DJ09 DJI12 DJI13 DJI15 DJI17 DJI18 DJI33 DJI35 DJI36 DJI37 DJI125 DJI42

Number of pixels upwards (ri) 355 680 172 151 1358 1352 942 931 592 363 678 150 334 344 154 156

Number of pixels downwards (rj) 1150 164 204 142 49 69 82 92 48 61 160 216 203 514 297 141

Gimbal pitch angle (degrees) 13.7 13.7 5.6 14.8 38.7 38.7 26.4 26.4 16 10.1 13.7 12 17.9 30.6 26.7 14.8

Flight roll angle (degrees) 1.8 0.9 4.2 5.2 0.4 0.8 0.5 0 0.6 0.3 1.2 2.9 3.3 0.8 3.6 1.3

Horizontal distance (H) (m) 4.2 7.9 17.1 21.28 3.6 3.64 6.04 6.17 10.28 14.96 7.95 17.38 11.62 6.04 11.78 21.12

Total number of pixels
(after distortion correction) 1501 843 376 293 1401 1415 1022 1021 639 424 837 366 537 858 451 297

Est. height (m) 1.94 1.87 1.78 1.83 1.77 1.82 1.89 1.93 1.87 1.77 1.87 1.83 1.87 1.98 1.87 1.84

Error (m) 0.14 0.07 −0.02 0.03 −0.03 0.02 0.09 0.13 0.07 −0.03 0.07 0.03 0.07 0.18 0.07 0.04

Table 4. Data and results for the remaining 16 still images acquired with the lightweight UAV with a Pole of 1.80 m as target (continuation of Table 3).

DJI143 DJI144 DJI148 DJI149 DJI150 DJI151 DJI152 DJI153 DJI154 DJI155 DJI156 DJI157 DJI40 DJI43 DJI137

Number of pixels upwards (ri) 207 359 32 83 68 112 241 156 307 339 573 902 254 114 136

Number of pixels downwards (rj) 208 75 86 26 102 90 145 78 304 280 559 211 180 161 33

Gimbal pitch angle (degrees) 38.5 39.4 6.9 16.6 30.4 47.3 20.7 10.7 34.4 34.4 34.5 41.7 22.9 22.4 15.5

Flight roll angle (degrees) 9.6 8.5 5.5 8.6 3.1 3 3.8 5.2 3.3 4.2 2.8 7.1 1.9 1.1 5.6

Horizontal distance (H) (m) 9.51 9.71 54.24 54.49 28.33 15.33 14.85 26.68 7.43 7.3 4.22 4.13 13.38 21.08 37.12

Total number of pixels
(after distortion correction) 415 434 118 109 170 202 386 234 611 619 1132 1111 434 275 169

Est. height (m) 1.79 1.84 1.79 1.79 1.79 1.84 1.78 1.77 1.83 1.81 1.95 1.96 1.86 1.87 1.85

Error (m) −0.01 0.04 −0.01 −0.01 −0.01 0.04 −0.02 −0.03 0.03 0.01 0.15 0.16 0.06 0.07 0.05
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Positional UAV readings (position of the UAV in WGS84 geographic coordinates) and camera
pitch angle of each image were extracted from EXIF tags while the number of pixels spanning upward
from image principal point (ri) and downward (r j) were measured manually on screen. The Lat–Long
coordinates of each image were plotted into a GIS environment along with the position of the reference
pole to measure the horizontal distance (H values, as graphically described in Figure 6).

Besides the description of the relevant parameters used for the calculation, the table reports
the height of the target (Est. height), representing the estimated height of the pole considering the
horizontal distance obtained with the position indicated in the EXIF tags.

The Root Mean Square Error (RMSE) for the images collected during the Field Test 1 is equal to
0.016 m. On the other hand, the RMSE for the images collected during the Field Test 2 is equal to 0.075 m.
In both cases the RMSE was calculated using the error row (real height value—estimated value) for the
two data sets and the adequate formula (23), where xi is the i-th value in the row, x0 is the real value of
the target height and n is the number of measurements (number of photographs measured).

RMSE =

√
1
n

∑
(xi − x0)

2. (23)

As expected, the RMSE of the Field Test 2 is much higher than the other. This is clearly due to the
positional uncertainty of the UAV and the target.

This field test has similar conditions as those discussed in Section 2.6: the UAV positioning
has an uncertainty of ±1.5 m, the uncertainty associated with the position of the target is ±1.0 m,
the uncertainty related to the number of pixels spanning the feature is ±3 pixels at the top and ±3 pixels
at the bottom and uncertainty related to pitch is ±1◦. Therefore, the equation identified in Figure 9e
(y = 2.7182x−0.905) can be used to calculate the uncertainty using H. However, as already discussed,
only for values above 15 m this can be cautiously used. Figure 12 reports the 10 images extracted from
Tables 3 and 4 with H above 15 m and, for each of them, the uncertainty is displayed. These values are
also reported graphically in the same figure. The real height of the target (1.80 m) is included in the
range of each image.

Figure 12. Subset of images with H higher than 15 m (see Tables 3 and 4). For each image, the‘estimated
height and the uncertainty calculated using the function obtained in Figure 9e are reported. The estimated
height and uncertainty are also reported graphically for each image (on the right).

4. Conclusions

The main purpose of this paper is to define how the height of a target can be swiftly estimated
using the pinhole model tailored for gimballed cameras mounted into UAVs. Additionally, it identifies
a minimum set of “required” parameters for the calculations and provides a detailed accuracy analysis
to define the error associated with the estimation.
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The procedure foresees the camera calibration and image distortion compensation before using a
pinhole model to calculate geometrically the vertical length of a feature. A pinhole model was chosen
for this purpose since it does not need extensive processing nor vanishing lines or reference objects
in the scene and, therefore, it is suitable for activities outdoor. The main strengths of this approach
are also simplicity and rapidness. Height estimation does not require double cameras, just a single
still image acquired with an optical camera is enough. This study analyzed how to adapt the pinhole
model for height estimation considering gimballed cameras mounted into UAVs, considering camera
vision and UAV flight parameters. Only a few parameters are required: intrinsic camera parameters,
which are usually provided by the manufacturer but can also be retrieved via camera calibration,
camera pitch angle, usually available in the metadata associated with the acquired images, number of
pixels spanning the feature, which can be measured either manually or automatically using feature
detection algorithms, and, finally, the distance between the camera and the target. This latter parameter
can be obtained by either considering the difference between the UAV and target coordinates or using
a laser range finder if the UAV is fitted with such a device. Consumer-level UAVs generally do not
have laser range finders. Thus, the coordinates of a moving target, like a human, can be only retrieved
if the target is over, or in the immediate proximity of, a recognizable feature, like a building corner or
street marker in urban areas.

The processing for lens distortion compensation, which may be time-consuming if performed
for the entire image, is applied in a fashion that drastically reduces the processing time because it
involves only a very limited number of pixels. In those cases where the counting of the pixels spanning
the feature can be performed automatically and the instantaneous slant range measure is available,
the estimation of the height can be done in real-time due to the limited computational burden required
by this approach.

This paper has also analyzed how the parameters involved in the calculation (horizontal
camera-to-target distance and number of pixels spanning the target in the image plane) are affecting
the overall uncertainty. The analysis indeed highlighted a fact: the error generated by the combination
of uncertainties described above has a well predictable behavior when plotted against the horizontal
target-to-camera distance. The effect of the error in H may decrease with increasing H; moreover, as H
increases, the number of pixels decreases, and error associated with the counting of the number of
pixels increases. The uncertainty analysis has shown that the overall error in the determination of the
target height has a flat behavior between 15/25 m and 50 m, while for a greater distance the error may
rise again. This indication is clearly true for the conditions considered in this study which are the most
probable scenario. Moreover, this was also confirmed by real data collected with the UAV DJI Phantom
4 PRO. Values collected for the validation of the method, both in a controlled environment and in an
outdoor environment, were nevertheless much better than the estimated uncertainty. Based on the
test field results, we can say that the uncertainty of the presented target height determination method
using a DJI Phantom 4 Pro is ±0.075 m. We also underline that DJI Phantom 4 PRO is a valid device
but, still, a consumer-level UAV with tangible limitations for surveillance purposes, especially in terms
of the positioning system and metadata availability.

In future developments, a more performant UAV (in terms of positional accuracy) should be
considered to reduce the uncertainty related to UAV positional error. Moreover, the possibility to
use existing or ad hoc ground markers in urban environments to enhance the likelihood to indirectly
retrieve the position of mobile targets should be further explored.
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