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Refinement Kinds

Type-Safe Programming with Practical Type-Level Computation
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This work introduces the novel concept of kind refinement, which we develop in the context of an explicitly

polymorphic ML-like language with type-level computation. Just as type refinements embed rich specifications

bymeans of comprehension principles expressed by predicates over values in the type domain, kind refinements

provide rich kind specifications by means of predicates over types in the kind domain. By leveraging our

powerful refinement kind discipline, types in our language are not just used to statically classify program

expressions and values, but also conveniently manipulated as tree-like data structures, with their kinds refined

by logical constraints on such structures. Remarkably, the resulting typing and kinding disciplines allow for

powerful forms of type reflection, ad-hoc polymorphism and type-directed meta-programming, which are

often found in modern software development, but not typically expressible in a type-safe manner in general

purpose languages. We validate our approach both formally and pragmatically by establishing the standard

meta-theoretical results of type safety and via a prototype implementation of a kind checker, type checker

and interpreter for our language.
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1 INTRODUCTION

Current software development practices increasingly rely onmany forms of automation, often based
on tools that generate code from various types of specifications, leveraging the various reflection
and meta-programming facilities that modern programming languages provide. A simple example
would be a function that given any record type would produce a factory of mutable instances of the
given record type. As a more involved and useful example consider a code generator that given as
input an XML database schema, produces all the code needed to create and manipulate a database
instance of such schema with some appropriate database connector.

Automated code generation, domain specific languages, and meta-programming are increasingly
becoming productivity drivers for the software industry, while also making programming more
accessible to non-experts, and, more generally, increasing the level of abstraction expressible in
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131:2 Luís Caires and Bernardo Toninho

languages and tools for program construction. Meta-programming is better supported by so-called
dynamic languages and related frameworks, such as Ruby and Ruby on Rails, JavaScript and Node.js,
but is also present in static languages such as Java, Scala, Go and F#, that provide support for
reflection and other facilities, allowing both code and types to be manipulated as data by programs.
Unfortunately, meta-programming constructs and idioms aggressively challenge the safety

guarantees of static typing, which becomes especially problematic given that meta-programs are
notoriously hard to test for correctness. This challenge is then the key motivation for our paper,
which introduces for the first time the concept of refinement kinds and illustrates how the associated
discipline cleanly supports static type checking of type-level reflection, parametric and ad-hoc
polymorphism, which can all be combined to implement interesting meta-programming idioms.

Refinement kinds are a natural transposition of the well-known concept of refinement types (of
values) [Bengtson et al. 2011; Rondon et al. 2008; Vazou et al. 2013] to the realm of kinds (of types).
Several systems of refinement types have been proposed in the literature, generally motivated
as a pragmatic compromise between usability and the expressiveness of full-fledged dependent
types, which require proof objects to be explicitly constructed by programmers. Our work aims to
show that the arguably natural notion of introducing refinements in the kind structure allows us to
cleanly support sophisticated statically typed meta-programming concepts, which we illustrate
in the context of a higher-order polymorphic λ-calculus with imperative constructs, chosen as
a convenient representative for languages with higher-order store. Moreover, by leveraging the
stratification between types and kinds, our design shows that arguably advanced type-level features
can be integrated into a general purpose language without the need to fundamentally alter the
language’s type system and its associated rules.
Just as refinement types support expressive type specifications by comprehension principles

expressed by predicates over values in the type domains (typically implemented by SMT decidable
Floyd-Hoare assertions [Rushby et al. 1998]), refinement kinds support rich and flexible kind
specifications by means of comprehension principles expressed by predicates over types in the kind
domains. They also naturally give rise to a notion of subkinding by entailment in the refinement
logic. For example, we introduce a least upper bound kind for each kind, from which more concrete
kinds and types may be defined by refinement, adding an unusual degree of plasticity to subkinding.

Crucially, types in our language may be reflectively manipulated as first-class (abstract-syntax)
labelled trees (cf. XML data), both statically and at runtime. Moreover, the deduction of relevant
structural properties of such tree representations of types is amenable to rather efficient imple-
mentation, unlike properties on the typical value domains (e.g., integers, arrays) manipulated by
mainstream languages, and easier to automate using off-the-shelf SMT solvers (e.g. [Barrett et al.
2011; de Moura and Bjùrner 2008]). Remarkably, even if types in our system can essentially be
manipulated by type-level functions and operators as abstract-syntax trees, our system statically
ensures the sound inhabitation of the outcomes of type-level computations by the associated
program-level terms, enforcing type safety. This allows our language to express challenging reflec-
tion idioms in a type-safe way, that we have no clear perspective on how to cleanly and effectively
embed in extant type theories in a fully automated way.
To make the design of our framework more concrete, we briefly detail our treatment of record

types. Usually, a record type is represented by a tuple of label-and-type pairs, subject to the
constraint that all the labels must be pairwise distinct (e.g. see [Harper and Pierce 1991]). In order
to support more effective manipulation of record types by type-level functions, record types in our
theory are represented by values of a list-like data structure: the record type constructors are the
type of empty records ⟨⟩ and the łconsž cell ⟨L : T ⟩@R, which constructs the record type obtained
by adding a field declaration ⟨L : T ⟩ to the record type R.
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The record type destructors are functions headLabel(R), headType(R) and tail(R), which apply
to any non-empty record type R. As will be shown later, the more usual record field projection
operator r .L and record type field projection operator T .L are definable in our language using
suitable meta-programs. In our system, record labels (cf. names) are type and term-level first-class
values of kind Nm. Record types also have their own kind, dubbed Rec. As we will see, our theory
provides a range of basic kinds that specialize the kind of all types Type via subkinding, which can
be further specialized via kind refinement.
For example, we may define the record type Person ≜ ⟨name : String⟩@⟨aдe : Int⟩@⟨⟩, which

we conveniently abbreviate by ⟨name : String; age : Int⟩. We then have that headLabel(Person) =
name, headType(Person) = String and tail(Person) = ⟨age : Int⟩@⟨⟩. The kinding of the ⟨L :
T ⟩@R type constructor may be clarified in the following type-level function addFieldType:

addFieldType :: Πl ::Nm.Πt ::Type.Πr ::{s::Rec | l < lab(s)}. Rec
addFieldType ≜ λl ::Nm.λt ::Type.λr ::{s::Rec | l < lab(s)}.⟨l : t⟩@r

The addFieldType type-level function takes a label l , a type t and any record type r that does not
contain label l , and returns the expected extended record type of kind Rec. Notice that the kind of all
record types that do not contain label l is represented by the refinement kind {s::Rec | l < lab(s)}.
A refinement kind in our system is noted {t ::K | φ(t)}, where K is a bas kind, and the logical

formula φ(t) expresses a constraint on the type t that inhabits K . As in refinement type systems
[Bengtson et al. 2011; Swamy et al. 2011; Vazou et al. 2014], our underlying logic of refinements
includes a (decidable) theory for the various finite tree-like data types used to schematically
represent type specifications, as is the case of our record-types-as-lists, function-types-as-pairs
(i.e. a pair of a domain and an image type), and so on. The kind refinement rule is thus expressed by

Γ |= φ{T /t} Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)

where Γ |= φ denotes entailment in the refinement logic. Basic formulas of our refinement logic
include propositional logic, equality, and some useful predicates and functions on types, including
the primitive type constructors and destructors, such as lab(R) (record label set), L ∈ S (label set
membership), S#S ′ (label set apartness), R@S (concatenation), dom(F ) (function domain selector).
Interestingly, given the presence of equality in refinements, it is always possible to define for any
type T of kind K a precise singleton kind of the form {t :: K | t = T }. As another simple example,
consider the kind Auto of automorphisms, defined as {t :: Fun | dom(t) = img(t)}.

A use of the type-level function addFieldType given above is, for instance, the definition of the
following term-level polymorphic record extension function

addField : ∀l ::Nm.∀t ::Type.∀r ::{s::Rec | l < lab(s)}.t → r → addFieldType l t r
addField ≜ Λl ::Nm.Λt ::Type.Λr ::{s::Rec | l < lab(s)}.λx :t .λy:r .⟨l = x⟩@y

The addField function takes a label l , a type t , a record type r that does not contain label l , and
values of types t and r , respectively, returning a record of type addFieldType l t r .

The type-level and term-level functions addFieldType and addField respectively illustrate some of
the key insights of our type theory, namely the use of types and their refined kinds as specifications
that can be manipulated as tree-like structures by programs in a fully type-safe way. For instance,
the following judgment, expressing the correspondence between the term-level computation
addField l t r x y and the type-level computation addFieldType l t r , is derivable:

l :Nm, t :Type, r :{s::Rec | l < lab(s)},x :t ,y:r ⊢ addField l t r x y : addFieldType l t r
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An instance of this judgement yields:

⊢ addField name String ⟨aдe : Int⟩ łjackž ⟨aдe = 20⟩ : addFieldType name String ⟨aдe : Int⟩

Noting that ⟨age : Int⟩ :: {s::Rec | name < lab(s)} is derivable since name < lab(⟨age : Int⟩) is
provable in the refinement logic, we have the following term and type-level evaluations:

(addField name String ⟨aдe : Int⟩ łjackž ⟨aдe = 20⟩) →∗ ⟨name = łjackž; age = 20⟩

(addFieldType name String ⟨aдe : Int⟩) ≡ ⟨name : String; age : Int⟩

Using the available refinement principles, our system can also derive the following more precise
kinding for the type addFieldType l t r :

l :Nm, t :Type, r :{s::Rec | l < lab(s)} ⊢ addFieldType l t r :: {s::Rec | s = ⟨l : t⟩@r }

Contributions. We summarise the main contributions of this work:

• We illustrate the concept of refinement kinds, showing how it supports the flexible and clean
definition of statically typed meta-programs through several examples (Section 2).

• We technically develop our refinement kind system (Section 3), targeting a polymorphic
λ-calculus (Section 4) with records, references, collections and supporting type-level compu-
tation over types of all kinds, thus capturing the essence of an ML-like language.

• We establish the key meta-theoretical result (Section 5) of type safety through type unicity,
type preservation and progress (Theorems 5.5, 5.6 and 5.8, respectively).

• We report on our implementation of a prototype kind and type-checker for our theory
(Section 6), which validates our examples and the overall feasibility of our approach.

• We give a detailed overview of related work (Section 7), and offer some concluding remarks
and discussion of future work (Section 8).

A companion technical report [Caires and Toninho 2019] lists omitted definitions of the type
theory, its semantics and proof outlines.

2 PROGRAMMING WITH REFINEMENT KINDS

Before delving into the technical intricacies of our theory in Section 3 and beyond, we illustrate the
various features and expressiveness of our theory through a series of examples that showcase how
our language supports challenging (from a static typing perspective) meta-programming idioms.
GeneratingMutable Records. We begin with a simple higher-order meta-program that computes
a łgeneratorž for mutable records from a specification of its representation type, expressed as an
arbitrary record type. Consider the following definition of the (recursive) function genConstr:

genConstr ≜ ΛS ::{r ::Rec | ¬empty(r )}.ΛV ::{v ::Rec | lab(v)#lab(S)}.λv :V .
λx :headType(S).if ¬empty(tail(S)) then

genConstr tail(S) ⟨headLabel(S) : ref headType(S)⟩@V ⟨headLabel(S) = ref x⟩@v

else ⟨headLabel(S) = ref x⟩@v

Given a non-empty record type S , function genConstr returns a constructor function for a mutable
record whose fields are specified by S . We use a pragmatic notation to express recursive definitions
(coinciding with that of our implementation), which in our formal core language is represented by
an explicit structural recursion construct. Parameters V and v are accumulating parameters that
track intermediate types, values and a disjointness invariant on those types during computation
(for simplicity, we generate the record fields in reverse order).

Intuitively, and recovering the record type Person from above, genConstr Person ⟨⟩ ⟨⟩ evaluates
to a value equivalent to λx :String.λy:Int.⟨age = ref y; name = ref x⟩.
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Notice that function genConstr accepts any non-empty record type S , and proceeds by re-
cursion on the structure of S , as a list of label-type pairs. The parameter S holds the types of
the fields still pending for addition to the final record type, parameter V holds the types of the
fields already added to the final record type, and v holds the already built mutable record value.
To properly call genConstr, we łinitializež V with ⟨⟩ (i.e. the empty record type), and v to ⟨⟩.
Moreover, the refined kind of V specifies the label apartness constraint needed to type check
the recursive call of genConstr, in particular, given lab(V )#lab(S), we can automatically deduce
that headLabel(S) < lab(V ), needed to kind check ⟨headLabel(S) : ref headType(S)⟩@V ; and
lab(⟨headLabel(S) : ref headType(S)⟩@V )#lab(tail(S)), required to kind and type check the recur-
sive call. In our language, genConstr can be typed as follows:

genConstr : ∀S ::{r ::Rec | ¬empty(r )}.∀V ::{v ::Rec | lab(v)#lab(S)}.V → (GType S V )

where GType is the (recursive) type-level function such that

GType :: ΠS ::{r ::Rec | ¬empty(r )}.ΠV ::{v ::Rec | lab(v)#lab(S)}. Fun
GType ≜

λS ::{r ::Rec | ¬empty(r )}.
λV ::{v ::Rec | lab(v)#lab(S)}.
headType(S) → if ¬empty(tail(S)) then

GType tail(S) ⟨headLabel(S) : ref headType(S)⟩@V else

⟨headLabel(S) : ref headType(S)⟩@V

We can see that, in general, the type-level application GType ⟨L1 : T1; ...;Ln : Tn⟩ ⟨⟩ computes the
type T1 → ...→ Tn → ⟨Ln : ref Tn ; ...;L1 : ref T1⟩. In particular, we have

genConstr Person ⟨⟩ ⟨⟩ : String → Int → ⟨age = ref Int; name = ref String⟩

From Record Types to XML Tables. As a second example, we develop a generic function
MkTable that generates an XML table for any record type, inspired by the example in Section 2.2
of [Chlipala 2010], but where refinement kinds allow for extreme simplicity. We first introduce an
auxiliary type-level Map function, that computes the record type obtained from a record type R by
applying a type transformation G (of higher-order kind) to the type of each field of R.

Map :: ΠG::(ΠX :: Type. Type).ΠR::Rec. {r :: Rec | lab(r ) = lab(R)}

Map ≜ λG::(ΠX :: Type. Type).λR::Rec.
if ¬empty(R) then ⟨headLabel(R) : G headType(R)⟩@(Map G tail(R)) else ⟨⟩

The logical constraint lab(r ) = lab(R) expresses that the result of Map G R has exactly the same
labels as record type R. This implies that headLabel(R) < lab(Map G tail(R)) in the recursive call,
thus allowing the łconsž to be well-kinded. We now define:

XForm :: Πt :: Type. Type
XForm ≜ λt ::Type.⟨tag : String; toStr : t → String⟩

MkTableType :: Πr ::Rec.{r :: Rec | lab(r ) = lab(R)}

MkTableType ≜ λr ::Rec.Map XForm r

MkTable : ∀R::Rec.(MkTableType R) → R → String
MkTable ≜ ΛR::Rec.λM :MkTableType R.λr :R.

if ¬empty(R) then
ł<tr><th>” +M .recHeadLabel(M).tag + ł</th><td>”+

M .recHeadLabel(M).toStr r .recHeadLabel(M) + ł</td></tr>”+

MkTable tail(R) recTail(M) recTail(r ) else ł”
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131:6 Luís Caires and Bernardo Toninho

It is instructive to discuss why and how this code is well-typed, witnessing the expressiveness of
refinement kinds, despite their conceptual simplicity (which can be judged by the arguably parsimo-
nious nature of the definitions above). Let us first consider the expressionM .recHeadLabel(M).tag.
Notice that, by declaration, R::Rec and r :R. However, the expression under consideration is to
be typed under the assumption that ¬empty(R), which is added to the current set of refinement
assumptions while typing the then branch. Using TT for the type of M , since MkTableType R ::

{r ::Rec | lab(r ) = lab(R)}, by refinement we have that lab(TT ) = lab(R) and thus ¬empty(TT ),
allowing recHeadLabel(M) to be defined. SinceM : MkTableType R we have

(MkTableType R) ≡ (Map XForm R) ≡ ⟨headLabel(R) : XForm headType(R)⟩@(Map G tail(R))

We thus derive headLabel(TT ) ≡ headLabel(R). Then

headType(MkTableType R)≡XForm headType(R)≡ ⟨tag : String; toStr : headType(R) → String⟩

Hence M .headLabel(M).tag : String. By a similar reasoning, we conclude r .recHeadLabel(M) :

headType(R). In Section 3 we show how refinements and equalities derived therein are integrated
into typing and kinding. Moreover, in Section 6 we detail how refinements can be represented and
discharged via SMT solvers in order to make fully precise the reasoning sketched above.
Generating Getters and Setters. As a final introductory example, we develop a generic function
MkMut that generates a getter/setter wrapper for any mutable record (i.e. a record where all its
fields are of reference type). We first define the auxiliary type-level MutableRec function, that
returns the mutable record type obtained from a record type R in terms of Map:

MutableRec :: ΠR :: Rec. {r :: Rec | lab(r ) = lab(R)}

MutableRec ≜ Map (λr ::Type.ref r )

We then define the auxiliary type-level SetGet function, that returns the record type that exposes
the getter/setter interface generated from record type R:

SetGetRec :: ΠR :: Rec. {r :: Rec | lab(r ) = set++lab(R) ∪ дet++lab(R)}
SetGetRec ≜ λR::Rec.

if ¬empty(R) then
⟨дet++headLabel(R) : 1 → headType(R)⟩@

⟨set++headLabel(R) : headType(R) → 1⟩@

SetGetRec tail(R)
else ⟨⟩

Here, n++m denotes the name obtained by appending n to m, and n++S denotes the label set

obtained from S by prefixing every label in S with name n. The function SetGet is well kinded since
the refinement kind constraints imply that the resulting getter/setter interface type is well formed
(i.e. all labels distinct). We can finally depict the type and code of the MkMut function:

MkMut :: ∀R :: Rec.MutableRec R → SetGetRec R
MkMut ≜ ΛR::Rec.

λr :MutableRec R.
if ¬empty(R) then
⟨дet++headLabel(R) = λx :1.!(r .recHeadLabel(R))⟩@

⟨set++headLabel(R) = λx :headType(R).r .recHeadLabel(R) := x⟩@

MkMut tail(R) recTail(r )
else ⟨⟩
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For example, assuming r : MutableRec Person we have thatMkMut Person r computes a record
equivalent to:

⟨дetname = λx :1.!(r .name);

setname = λx :String.r .name := x ;
дetaдe = λx :1.!(r .aдe);

setaдe = λx :Int.r .aдe := x⟩

where (MkMut Person r ) : SetGetRec Person.

3 A TYPE THEORYWITH KIND REFINEMENTS

Having given an informal overview of the various features and expressiveness of our theory, we
now formally develop our theory of refinement kinds, targeting an ML-like functional language
with a higher-order store and the appropriate reference types, collections (i.e. lists) and records.
The typing and kinding systems rely on type-level functions (from types to types) and a novel form
of subkinding and kind refinements. We first address our particular form of (sub)kinding, types and
the type-level operations enabled by this fine-grained view of kinds, addressing kind refinements
and their interaction with types and type-level functions in Section 3.1.

Given that kinds are classifiers for types, we introduce a separate kind for each of the key type
constructs of the language. Thus, we have a kind for records, Rec, which classifies record types; a
kind Col, for collection types; a kind Fun, for function types; a kind Ref, for reference types; a kind
GenK for polymorphic function types (whose type parameter is of kind K); and, a kind Nm for
labels in record types (and records). All of these are specialisations (i.e. subkinds) of the kind Type.
We writeK for any such kind. The language of types (a type-level λ-calculus) provides constructors
for the types described above, but crucially also introduces type destructors that allow us to inspect
the structure of types of a given kind and, in combination with type-level functions and structural
type-recursion, enable a form of typed meta-programming. Indeed, our type language is essentially
one of (inductive) structures and their various constructors and destructors (and basic data types
such as Bool and 1). The syntax of types and kinds is given in Figure 1.
Record Types. Our notion of record type, as introduced in Section 2, is essentially a type-level list
of pairs of labels and types which maintains the invariant that all labels in a record must be distinct.
We thus have the type of empty records ⟨⟩, and the constructor ⟨L : T ⟩@R, which given a record
type R that does not contain the label L, generates a record type that is an extension of R with the
label L associated with type T . Record types are associated with three destructors: headLabel(T ),
which projects the label of the head of the record T (when seen as a list); headType(T ) which
produces the type at the head of the record T ; and tail(T ) which produces the tail of the record T
(i.e. drops its first label and type pair). As we will see (Example 3.1), since our type-level λ-calculus
allows for structural recursion, we can define a suitable record projection type construct in terms
of these lower-level primitives.
Function Types and Polymorphism. Functions between terms of type T and S are typed by
the usual T → S . Given a function type T , we can inspect its domain and image via the destructors
dom(T ) and img(T ), respectively.
Polymorphic function types are represented by ∀t ::K .T (with t bound in T , as usual). Note

that the kind annotation for the type variable t allows us to express not only general parametric
polymorphic functions (by specifying the kind as Type) but also a form of sub-kind polymorphism,
since we can restrict the kind of t to a specific kind such as Ref or Fun, or to a refined kind. For
instance, we can specify the type ∀t ::Fun.t → dom(t) → img(t) of functions that, given a function
type t , a function of such a type and a value in its domain produce a value in its image (i.e. the type
of function application).
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131:8 Luís Caires and Bernardo Toninho

Kinds K ,K ′ ::= K | {t ::K | φ} | Πt :K .K ′ Refinement Kinds
K ::= Rec | Col | Fun | Ref | Nm Basic Kinds

| Type | GenK

Types T , S,R ::= t | λt ::K .T | T S Type-level Functions
| µF : (Πt :K .K ′).λt ::K .T Structural Recursion
| ∀t ::K .T Polymorphism
| L | ⟨⟩ | ⟨L : T ⟩@S Record Type constructors
| headLabel(T ) | headType(T ) Record Type destructors
| tail(T )

| T⋆ | colOf(T ) Collection Types
| ref T | refOf(T ) Reference Types
| T → S | dom(T ) | img(T ) Function Types
| if T :: K as t ⇒ S elseU Kind Case
| if φ thenT else S Property Test
| Bool | 1 | . . . Basic Data Types

Extended Types T ,S ::= T | lab(T ) | T++S

Refinements φ,ψ ::= φ ⊃ ψ | φ ∧ψ | . . . Propositional Logic
| empty(T ) Empty Record Test
| T = S Equality
| T ∈ S Label Set Membership
| T #S Label Set Apartness

Fig. 1. Syntax of Kinds, Types and Refinements

Collections and References. The type of collections of elements of typeT is written asT⋆, with
the associated type destructor colOf(T ), which projects out the type of the collection elements.
Similarly, reference types ref T are bundled with a destructor refOf(T ) which determines the type
of the referenced elements.
Kind Test. Just as many programming languages have a type case construct [Abadi et al. 1991]
that allows for the runtime testing of the type of a given expression, our λ-calculus of types has
a kind case construct, if T :: K as t ⇒ S elseU , which checks the kind of type T against kind K ,
computing to type S if the kinds match and to U otherwise. Coupled with a term-level analogue,
this enables ad-hoc polymorphism, allowing us to express non-parametric polymorphic functions.

3.1 Type-Level Functions and Refinements

The language of types that we have introduced up to this point essentially consists of tree-like
structures with their various constructors and destructors. As we havementioned, our type language
is actually a λ-calculus for the manipulation of such structures and so includes functions from
types to types, λt ::K .T , and their respective application, written T S . We also include a type-level
structural recursion operator µF : (Πt :K .K ′).λt ::K .T , which allows us to define recursive type
functions from kind K to K ′. While written as a fixpoint operator, we syntactically enforce that
recursive calls must always take structurally smaller arguments to ensure well-foundedness.

Type-level functions are dependently kinded, with kind Πt :K .K ′ (i.e. the kind of the image type in
a type λ-abstraction can refer to its type argument), where the dependencies manifest themselves in
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kind refinements. Just as the concept of type refinements allow for rich type specifications through
the integration of predicates over values of a given type in the type structure, our notion of kind
refinements integrate predicates over types in the kind structure, enabling the kinding system to
specify and enforce logical constraints on the structure of types.

A kind refinement, written {t ::K | φ}, where K is a basic kind, and φ is a logical formula (with t
bound in φ), characterises typesT of kindK such that the property φ holds ofT (i.e. φ{T /t} is true).
The language of properties φ can refer to the syntax of types, extended with a refinement-level
notion of label set of a (record) type, lab(T ), and a notion of label set concatenation, T++S, where
T is such an extended type. Refinements φ,ψ consist of propositional logic formulae, (logical)
equality, T = S, an empty record predicate empty(T ), and basic label set predicates and such as
label inclusion (T ∈ S) and set apartness (T #S). The intended target logic is a typed first-order
logic with uninterpreted functions, finite sets, inductive datatypes and equality [Barrett et al. 2011].
While such theories are in general undecidable, the state-of-the-art in SMT solving [Bansal et al.
2018; Reynolds et al. 2013] procedures can be applied to effectively cover the automated reasoning
needed in our work.

Such an extension already provides a significant boost in expressiveness: By using logical equality
in the refinement formula we can immediately represent singleton kinds such as {t ::Fun | img(t) =

Bool}, the kind of function types whose image is of Bool type. Moreover, by combining kind
refinements and type-level functions, we can express non-trivial type transformations in a fully
typed (or kinded) way. For instance consider the following:

dropField ≜ λl ::Nm.µF : (Πt :{r ::Rec | l ∈ lab(r )}. {r ::Rec | l < lab(r )}).λt ::{r ::Rec | l ∈ lab(r )}.

if headLabel(t) = l then tail(t) else ⟨headLabel(t) : headType(t)⟩@(F (tail(t)))

The function dropField above takes label l and a record type with a field labelled by l and removes
the corresponding field and type pair from the record type (recall that lab(r ) denotes the refinement-
level set of labels of r ). Such a function combines structural recursion (where tail(t) is correctly
deemed as structurally smaller than t ) with our type-level refinement test, if φ thenT else S . We
note that the well-kindedness of such a function relies on the ability to derive that, when the record
label headLabel(t) is not l , since we know that l must be in t , tail(t) is a record type containing l .
This kind of reasoning is easily decided using SMT-based techniques [Barrett et al. 2011].

3.2 Kinding and Type Equality

Having introduced the key components of our kind and type language, we now detail the kinding
and type equality rules of our theory, making precise the various intuitions of previous sections.

The kinding judgment is written Γ ⊢ T :: K , denoting that type T has kind K under the assump-
tions in the context Γ. Contexts contain assumptions of the form t :K , x :T and φ ś t stands for a type
of kind K , x stands for a term of type T and refinement φ is assumed to hold, respectively. Kinding
relies on a context well-formedness judgment, written Γ ⊢, a kind well-formedness judgment
Γ ⊢ K , subkinding judgment Γ ⊢ K ≤ K ′ and the refinement well-formedness and entailment
judgments, Γ ⊢ φ and Γ |= φ. Context well-formedness simply checks that all types, kinds and
refinements in Γ are well-formed. Kind well-formedness is defined in the standard way, relying on
refinement well-formedness (see [Caires and Toninho 2019]), which requires that formulae and
types in refinements be well-formed. Subkinding codifies the informal reasoning from the start of
this section, specifying that all basic kinds are a specialization of Type; and captures equality of
kinds. Kind equality, written Γ ⊢ K ≡ K ′, identifies definitionally equal kinds, which due to the
presence of kind refinements requires reasoning about logically equivalent refinements. We define
equality between K and K ′ by requiring K ≤ K ′ and K ′ ≤ K .
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We now introduce the key kinding rules for the various types in our theory and their associated
definitional equality rules. The type equality judgment is written Γ |= T ≡ S :: K , denoting that T
and S are equal types of kind K .
Refinements and Type Properties. A kind refinement is introduced by the rule (kref) below.
Given a type T of kind K and a valid property φ of T , we are justified in stating that T is of kind
{t ::K | φ}.

Γ |= φ{T /t} Γ ⊢ T :: K

Γ ⊢ T :: {t ::K | φ}
(kref)

Γ ⊢ φ Valid(JΓK ⇒ JφK)

Γ |= φ
(entails)

Rule (entails) specifies that a refinement formula is satisfiable if it is well-formed (i.e., a syntactically
well-formed boolean expression which may include equalities on terms of basic kind) and if the
representation of the context Γ and the refinement φ as an implicational formula is SMT-valid. The
context and refinement representation is discussed in Section 6.

Crucially, since we rely on an underlying logic with inductive types (which includes constructor
and destructor equality reasoning), refinements can specify the shape of the refined types. For
instance, the expected β-equivalence reasoning for records allows us to derive ⟨ℓ : Bool →

Bool⟩@⟨⟩ :: {t ::Rec | headType(t) = Bool → Bool}. In general, we provide an equality elimination
rule for refinements (r-eqelim), internalizing such equalities in definitional equality of our theory:

Γ ⊢ T :: {t ::K | t = S} Γ ⊢ S :: K

Γ |= T ≡ S :: K
(r-eqelim)

These principles become particularly interesting when reasoning from refinements that appear
in type variables. For instance, the type ∀t ::{ f :Fun | dom(f ) = Bool ∧ img(f ) = Bool}.t → Bool
can be used to type the term Λt ::{ f :Fun | dom(f ) = Bool∧ img(f ) = Bool}.λf :t .(f true), where Λ
is the binder for polymorphic functions, as usual. Crucially, typing (and kinding) exploits not only
the fact that we know that the type variable t stands for a function type, but also that the domain
and image are the type Bool, which then warrants the application of f to a boolean in order to
produce a boolean, despite the basic kinding information only specifying that f is of function kind.
This style of reasoning, which is not readily available even in powerful type theories such as that
of Coq [CoqDevelopmentTeam 2004], is akin to that of a setting with singleton kinds [Stone and
Harper 2006].
As we have shown in Section 2, properties can also be tested in types through a conditional

construct if φ thenT else S . Provided that the property φ is well-formed, if T is of kind K assuming
φ and S of kind K assuming ¬φ, then the conditional test is well-kinded, as specified by the rule
(k-ite). The equality principles for the property test rely on validity of the specified property (with
a degenerate case where both branches are equal types). We note that Γ,φ ⊢ T :: K can effectively
be represented as Γ,x : {_ | φ} ⊢ T :: K where x is fresh. This representation encodes φ in the
context through a łdummyž refinement that simply asserts the property.

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ S :: K

Γ ⊢ if φ thenT else S :: K
(k-ite)

Γ |= φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T1 :: K
(eq-iteT)

Γ |= ¬φ Γ,φ ⊢ T1 :: K Γ,¬φ ⊢ T2 :: K

Γ |= if φ thenT1 elseT2 ≡ T2 :: K
(eq-iteE)

Γ ⊢ φ Γ,φ ⊢ T :: K Γ,¬φ ⊢ T :: K

Γ |= if φ thenT elseT ≡ T :: K
(eq-iteEq)

Type Functions and Function Types. The rules that govern kinding and equality of type-level
functions consist of the standard rules plus the extensionality principles of [Stone and Harper 2006]
(to streamline the presentation, we omit the congruence rules for equality):

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 131. Publication date: October 2019.



Refinement Kinds 131:11

Γ ⊢ K Γ, t :K ⊢ T :: K ′

Γ ⊢ λt ::K .T :: Πt :K .K ′
(k-fun)

Γ ⊢ T :: Πt :K .K ′
Γ ⊢ S :: K

Γ ⊢ T S :: K ′{S/t}
(k-app)

Γ ⊢ T :: Πt :K1.K3

Γ, t :K1 ⊢ T t :: K2 x < f v(T )

Γ ⊢ T :: Πt :K1.K2
(k-ext)

Γ ⊢ S :: Πt :K1.K3 Γ ⊢ T :: Πt :K1.K4

Γ, t :K1 ⊢ S t ≡ T t :: K2

Γ ⊢ S ≡ T :: Πt :K1.K2
(eq-funext)

Γ, t :K ⊢ T :: K ′
Γ ⊢ S :: K

Γ |= (λt ::K .T ) S ≡ T {S/t} :: K ′{S/t}
(eq-funapp)

Rules (k-ext) and (eq-funext) allow for basic extensionality principles on type-level functions.
The former states that an η-like typing rule, where a type T that is a type-level function from K1 to
K3 can be seen as a type-level function from K1 to K2 if T applied to a fresh variable of type K1

can derive a type of kind K2. Rule (eq-funext) is the analogous rule for type equality. We note
that such rules, although they allow us to equate types such as λt ::{s:Type | t = Bool → Bool}.t
and λt ::{s:Type | t = Bool → Bool}.Bool → Bool, they do not disturb the decidability of kinding
or equality [Stone and Harper 2006].
Structural recursive functions, defined via a fixpoint construct, are defined by:

Γ, F :Πt :K .K ′
, t :K ⊢ T :: K ′ structural(T , F , t)

Γ ⊢ µF : (Πt :K .K ′).λt ::K .T :: Πt :K .K ′
(k-fix)

(eq-fixunf)

Γ, t :K1 ⊢ K2 Γ, F :Πt :K1.K2, t :K1 ⊢ T :: K2 Γ ⊢ S :: K1 structural(T , F , t)

Γ |= (µF : (Πt :K1.K2).λt ::K1.T ) S ≡ T {S/t}{(µF : (Πt :K1.K2).λt ::K1.T )/F } :: K2{S/t}

The predicate structural(T , F , t) enforces that calls of F in T must take arguments that are struc-
turally smaller than t (i.e. the arguments must be syntactically equal to t applied to a destructor).
More precisely, the predicate structural(T , F , t) holds iff all occurrences of F in T are applied to
terms smaller than t , where the notion of size is given by elim(t) < t , where elim(t) stands for
an appropriate destructor applied to t (e.g., if t is of kind Fun then dom(t) < t ). The equality rule
allows for the appropriate unfolding of the recursion to take place. Naturally, the implementation
of this rule follows the standard lazy unfolding approach to recursive definitions.
Polymorphic function types are assigned kind GenK :

Γ ⊢ K Γ, t :K ⊢ T :: K

Γ ⊢ ∀t ::K .T :: GenK
(k-∀)

Our manipulation of function types as essentially a pair of types (a domain type and an image type)
gives rise to the following kinding and equalities:

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ ⊢ T → S :: Fun
(k-fun)

Γ ⊢ T :: Fun

Γ ⊢ dom(T ) :: Type
(k-dom)

Γ ⊢ T :: Fun

Γ ⊢ img(T ) :: Type
(k-codom)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= dom(T → S) ≡ T :: Type
(eq-dom)

Γ ⊢ T :: K Γ ⊢ S :: K ′

Γ |= img(T → S) ≡ S :: Type
(eq-img)
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Records and Labels. The kinding rules that govern record type constructors and field labels are:

(k-recnil)

Γ ⊢

Γ ⊢ ⟨⟩ :: Rec

(k-reccons)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ ⊢ ⟨L : T ⟩@S :: Rec

(k-label)

Γ ⊢ ℓ ∈ N

Γ ⊢ ℓ :: Nm

(k-hdt)

Γ ⊢ T :: {t ::Rec | ¬empty(t)}

Γ ⊢ headType(T ) :: Type

(k-hdl)

Γ ⊢ T :: {t ::Rec | ¬empty(t)}

Γ ⊢ headLabel(T ) :: Nm

(k-tail)

Γ ⊢ T :: {t ::Rec | ¬empty(t)}

Γ ⊢ tail(T ) :: Rec

The rule for non-empty records requires that the tail S of the record type must not contain the
field label L. The rules for the various destructors require that the record be non-empty, projecting
out the appropriate data. The equality principles for the three destructors are fairly straightforward,
projecting out the appropriate record type component, provided the record is well-kinded.

(eq-headlabel)

Γ ⊢ L :: Nm Γ ⊢ T :: K

Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= headLabel(⟨L : T ⟩@S) ≡ L :: Nm

(eq-headtype)

Γ ⊢ L :: Nm Γ ⊢ T :: K

Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= headType(⟨L : T ⟩@S) ≡ T :: Type

(eq-tail)

Γ ⊢ L :: Nm Γ ⊢ T :: K Γ ⊢ S :: {t : Rec | L < lab(t)}

Γ |= tail(⟨L : T ⟩@S) ≡ S :: Rec

Collections andReference Types. At the level of kinding, there is virtually no difference between
a collection and a reference type. They both denote a structure that łwrapsž a single type (the type
of the collection elements for the former and the type of the referenced values in the latter). Thus,
the respective destructor simply unwraps the underlying type.

(k-col)

Γ ⊢ T :: K

Γ ⊢ T⋆ :: Col

(k-ref)

Γ ⊢ T :: Col

Γ ⊢ refOf(T ) :: K

(eq-col)

Γ ⊢ T :: K

Γ |= colOf(T⋆) ≡ T :: Type

(eq-ref)

Γ ⊢ T :: K

Γ |= refOf(ref T ) ≡ T :: Type

Conversion and Subkinding. As we have informally described earlier, our theory of kinds is
predicated on the idea that we can distinguish between the different specialized types at the kind
level. For instance, the kind of record types Rec is a specialisation of Type, the kind of all types, and
similarly for the other type-level base constructs of the theory. We formalise this via a subkinding
relation, which also internalises kind equality, and the corresponding subsumption rule:

Γ ⊢ T :: K Γ ⊢ K ≤ K ′

Γ ⊢ T :: K ′
(K-sub)

Γ ⊢ K ≤ K ′
Γ ⊢ K ′ ≤ K

Γ ⊢ K ≡ K ′
(sub-eq)

Γ ⊢

Γ ⊢ K ≤ Type
(sub-type)

Γ ⊢ K Γ, t :K ⊢ φ

Γ ⊢ {t ::K | φ} ≤ K
(sub-refkind)

Γ ⊢ K ≤ K ′
Γ, t :K ′ |= φ ⇒ φ ′

Γ ⊢ {t ::K | φ} ≤ {t ::K ′ | φ ′}
(sub-ref)

Rule (sub-refkind) specifies that a refined kind is always a subkind of its unrefined variant. Rule
(sub-ref) allows for subkinding between refined kinds, by requiring that the basic kind respects
subkinding and that the refinement of the more precise kind implies that of the more general one.
Kind Case and Bottom. The kind case type-level mechanism is kinded in a natural way (rule
(k-kcase)), accounting for the case where the kind of type T matches the specified kind K ′ with
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type S and with typeU otherwise.

Γ ⊢ K Γ ⊢ T :: K ′′
Γ, t :K ⊢ S :: K ′

Γ ⊢ U :: K ′

Γ ⊢ if T :: K as t ⇒ S elseU :: K ′
(k-kcase)

Γ |= ⊥ Γ ⊢ K

Γ ⊢ ⊥ :: K
(k-bot)

Our treatment of ⊥ allows for ⊥ to be of any (well-formed) kind, provided one can conclude ⊥
is valid. The associated equality principles implement the kind case by testing the specified kind
against the derivable kind of type T . When ⊥ is provable from Γ then we can derive any equality
via rule (eq-bot).

Γ ⊢ T :: K Γ, t :K ⊢ S :: K ′
Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ S{T /t} :: K ′
(eq-kcaseT)

Γ |= ⊥ Γ ⊢ T :: K

Γ |= ⊥ ≡ T :: K
(eq-bot)

Γ ⊢ T :: K0 Γ ⊢ K0 . K Γ, t :K ⊢ S :: K ′
Γ ⊢ U :: K ′

Γ |= if T :: K as t ⇒ S elseU ≡ U :: K ′
(eq-kcaseF)

Example 3.1 (Representing Record Field Selection in types and values). With the development
presented up to this point we can implement the more usual record selection operator T .L, where
T is a record type and L is a field label of T . We represent such a construct as a type-level function
that given some L :: Nm produces a recursive type-function that essentially iterates over a type
record of kind {r ::Rec | ℓ ∈ lab(r )}:

λL::Nm.µF : (Πt :{r ::Rec | L ∈ lab(r )}. Type).λt ::{r ::Rec | L ∈ lab(r )}.

if headLabel(t) = L then headType(t) else F (tail(t)) :: ΠL : Nm.Πt : {r ::Rec | L ∈ lab(r )}.Type

The function iteratively tests the label at the head of the record against L, producing the type at the
head of the record on a match and recurring otherwise. It is instructive to consider the kinding for
the property test construct (let Γ0 be L:Nm, F :Πt :{r ::Rec | L ∈ lab(r )}.Type, t :{r :Rec | L ∈ lab(r )}):

Γ0 ⊢ headLabel(t) = L D E

Γ0 ⊢ if headLabel(t) = L then headType(t) else F (tail(t)) :: Type
(k-ite)

where D is a derivation of Γ0, headLabel(t) = L ⊢ headType(t) :: Type and E is a derivation of

Γ0,¬(headLabel(t) = L) ⊢ F (tail(t)) :: Type. To show that headLabel(t) = L is well-formed we must
be able to derive t :: {r ::Rec | ¬empty(r )} from t :: {r ::Rec | L ∈ lab(r )}, which is achieved
via subkinding, by appealing to entailment in our underlying theory (see Section 6). Similarly,
the derivation E requires the ability to conclude that tail(t) :: {r ::Rec | L ∈ lab(r )}, using the
information that t :: {r ::Rec | L ∈ lab(r )} and ¬(headLabel(t) = L), which is also a valid entailment.

Example 3.2 (Generic Pairing of Objects). The following example consists of an object (imple-
mented as a record of methods) combinator Pairer which takes two object types X and Y and
for every method that X and Y have in common, PairerX Y contains a method with the same
name and domain types, but where the return type is a pair of the two original return types. This
practical example is inspired by an example found in Huang and Smaragdakis [2008], which uses
pattern-based nested reflection in the context of Java.
We first define a Pair type constructor as a type-level function that takes two types X and Y as

argument and produces a two-element record, where the label fst denotes the first element of the
pair (of type X ) and the label snd denotes the second element of the pair (of type Y ):

Pair :: ΠX ::Type.ΠY ::Type.{r :: Rec | φ}
Pair ≜ λX ::Type.λY ::Type.⟨fst : X ⟩@⟨snd : Y ⟩@⟨⟩
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φ ≜ headLabel(r ) = fst ∧ headType(r ) = X ∧ headLabel(tail(r )) = snd ∧ headType(tail(r )) = Y

For the sake of conciseness, we make use of a predicate isObj on record types which holds if a
record is a record of functions (i.e. object methods). For simplicity we assume that methods are
functions of exactly one argument.
We now define a Pairer type-level function which takes two object types X and Y to produce

a new object type which contains the same methods of X and Y , but where the methods that X
and Y have in common (i.e. methods with the same name and same argument types) have as result
type the pairing of the two original return types.

Pairer :: ΠX :: {r :: Rec | isObj(r )}.ΠY :: {r :: Rec | isObj(r )}.{r :: Rec | isObj(r )}
Pairer ≜ λX :: {r :: Rec | isObj(r )}.λY :: {r :: Rec | isObj(r )}.

if ¬empty(X ) ∧ ¬empty(Y ) then
(if headLabel(X ) ∈ lab(Y ) ∧ dom(Y .headLabel(X )) = dom(headType(X )) then

⟨headLabel(X ) : dom(headType(X )) →

Pair (img(headType(X ))) (img(Y .headLabel(X )))⟩@Helper
else ⟨headLabel(X ) : headType(X )⟩@Helper)

else

if ¬empty(X ) thenX elseY

Helper = if (headLabel(Y ) ∈ lab(X ) ∧ dom(X .headLabel(Y )) = dom(headType(Y )) ∧

headLabel(X ) , headLabel(Y )) then

⟨headLabel(Y ) : dom(headType(Y )) →

Pair (img(X .headLabel(Y ))) (img(headType(Y )))⟩@

dropField(headLabel(Y ),Pairer (tail(X )) (dropField(headLabel(X ), tail(Y ))))
else Pairer (tail(X )) (dropField(headLabel(X ),Y ))

The Pairer function above proceeds recursively over the records X and Y . When Y is empty, the
function returns X since there is nothing left to pair, and similarly for when X is empty. When
neither X or Y are empty, we test whether the head label of X is in the label set of Y with a
matching domain type, if not, then there is no pairing to be done with the method at the head of
X and the resulting record copies the method signature from X . If the conditional holds, then we
produce a function type with the appropriate domain and where the image is the pairing of the
two image types. In both cases (to ease with the formating) the tail of the record is defined by a
Helper definition.

The Helper definition tests whether the head label of Y is in X with matching domain types, but
is not the first label of X (which is handled in the previous test). If the condition holds, then we
must include the head method of Y with the appropriately paired image type. The recursive call
to Pairer makes use of the dropField type-level function, which removes a record entry, to ensure
that the head label of X is removed from the tail of Y and that the head label of Y is removed from
the result of the recursive call. When the condition does not hold we simply recurse on the tail of
X and on Y with the method labelled by headLabel(X ) removed.

4 A PROGRAMMING LANGUAGEWITH KIND REFINEMENTS

Having covered the key details of kinding and type equality, we introduce the syntax and typing
for our programming language per se, capturing the essence of an ML-style functional language
with a higher-order store, the syntax of which is given in Figure 2. Most constructs are standard.

We highlight the treatment of records, mirroring that of record types, as heterogeneous lists of
(pairs of) field labels and terms equipped with the appropriate destructors. Collections are built
from the empty collection ε and the concatenation of an element M with a collection N , M :: N ,
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Terms M,N ::= x | λx :T .M | M N Functions
| Λt ::K .M | M[T ] Type Abstraction and Application
| ⟨⟩ | ⟨ℓ = M⟩@N | recTail(M)

| recHeadLabel(M) | recHeadTerm(M) Records
| ⋄ Unit Element
| if M thenN1 elseN2

| true | false Booleans
| if φ thenM elseN Property Test
| if T :: K as t ⇒ M elseN Kind Case
| ε | M :: N

| caseM of (ε ⇒ N1 | x ::xs ⇒ N2) Collections
| ref M | !M | M := N | l References
| µF :T .M Recursion

Fig. 2. Syntax of Terms

with the usual case analysis caseM of (ε ⇒ N1 | x ::xs ⇒ N2) that reduces to N1 whenM evaluates
to the empty collection and to N2 otherwise, where x is instantiated with the head of the collection
and xs with its tail. We allow for recursive terms via a fixpoint construct µF :T .M , noting that since
there are no type dependencies, non-termination in the term language does not affect the overall
soundness of the development. We also mirror the type-level property test and kind case constructs
in the term language as if φ thenM elseN and if T :: K as t ⇒ M elseN , respectively. As we have
initially stated, our language has general higher-order references, represented with the constructs
ref M , !M andM := N , which create a reference toM , dereference a referenceM and assign N to
the referenceM , respectively. As usual in languages with a store, we use l to stand for the runtime
values of memory locations.

The typing rules for the language are given in Figure 3. The typing judgment is written as
Γ ⊢S M : T , where S is a location typing environment. We write Γ; S ⊢ to state that S is a valid
mapping from locations to well-kinded types, according to the typing context Γ. Notably, despite
the fairly advanced type-level features, the typing rules are virtually unchanged when compared to
those of a language in the ML family.
In fact, the advanced kinding and type equality features manifest themselves in typing via the

(conv) conversion rule, (kindcase) and the (⟨⟩I2) record formation rule ś this further reveals a
potential strength of our approach, since it allows for a clean integration of powerful type-level
reasoning and meta-programming without dramatically changing the surface-level language. For
instance, the following term is well-typed:

⊢ Λs:Type.Λt :{ f ::Fun | dom(f ) = s ∧ img(f ) = Bool}.
λx :t .λy:s .(x y) : ∀s:Type.∀t ::{ f ::Fun | dom(f ) = s ∧ img(f ) = Bool}.t → s → Bool

Despite not knowing the exact form of the function type that is to be instantiated for t , by refining
its domain and image types we can derive that t = s → Bool and give a type to applications of
terms of type t correctly. Note that this is in contrast with what happens in dependent type theories
such as Agda [Norell 2007] or that of Coq [CoqDevelopmentTeam 2004]), where the leveraging of
dependent types, explicit equality proofs and equality elimination would be needed to provide an
łequivalentlyž typed term.
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(var)

(x :T ) ∈ Γ Γ; S ⊢ Γ ⊢

Γ ⊢S x : T

(1I)

Γ ⊢

Γ ⊢ ⋄ : 1

(→I)

Γ ⊢S T :: Type Γ,x :T ⊢S M : U

Γ ⊢S λx :T .M : T → U

(→E)

Γ ⊢S M : T → S Γ ⊢S N : T

Γ ⊢S M N : S

(∀I)

Γ ⊢ K Γ, t :K ⊢S M : T

Γ ⊢S Λt ::K .M : ∀t ::K .T

(∀E)

Γ ⊢S M : ∀t :: K .S Γ ⊢ T :: K

Γ ⊢S M[T ] : S{T /t}

(⟨⟩I1)

Γ ⊢ Γ; S ⊢

Γ ⊢S ⟨⟩ : ⟨⟩

(⟨⟩I2)

Γ ⊢S L :: Nm Γ ⊢S M : T1 Γ ⊢ T2 :: {t ::Rec | L < lab(t)} Γ ⊢S N : T2

Γ ⊢S ⟨L = M⟩@N : ⟨L : T1⟩@T2

(reclabel)

Γ ⊢S M : ⟨L : T ⟩@U

Γ ⊢S recHeadLabel(M) : L

(recterm)

Γ ⊢S M : ⟨L : T ⟩@U

Γ ⊢S recHeadTerm(M) : T

(rectail)

Γ ⊢S M : ⟨L : T ⟩@U

Γ ⊢S tail(M) : U

(true)

Γ ⊢ Γ; S ⊢

Γ ⊢S true : Bool

(false)

Γ ⊢ Γ; S ⊢

Γ ⊢S false : Bool

(bool-ite)

Γ ⊢S M : Bool Γ ⊢S N1 : T Γ ⊢S N2 : T

Γ ⊢S if M thenN1 elseN2 : T

(emp)

Γ ⊢ T :: Type Γ; S ⊢

Γ ⊢S ε : T
⋆

(cons)

Γ ⊢S M : T Γ ⊢S N : T⋆

Γ ⊢S M :: N : T⋆

(case)

Γ ⊢S M : T⋆
Γ ⊢ N1 : S Γ,x :T ,xs:T⋆ ⊢ N2 : S

Γ ⊢S caseM of (ε ⇒ N1 | x ::xs ⇒ N2) : S

(loc)

Γ ⊢ Γ; S ⊢ S(l) = T

Γ ⊢S l : ref T

(ref)

Γ ⊢S M : T

Γ ⊢S ref M : ref T

(deref)

Γ ⊢S M : ref T

Γ ⊢S !M : T

(assign)

Γ ⊢S M : ref T Γ ⊢S N : T

Γ ⊢S M := N : 1

(prop-ite)

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2

(kindcase)

Γ ⊢ T :: K ′
Γ ⊢ K Γ, t :K ⊢S M : U Γ ⊢S N : U

Γ ⊢S if T :: K as t ⇒ M elseN : U

(conv)

Γ ⊢S M : U Γ |= U ≡ T :: Type

Γ ⊢S M : T

(fix)

Γ, F : T ⊢S M : T

Γ ⊢S µF :T .M : T

Fig. 3. Typing Rules

We also highlight the typing of the property test term construct,

Γ ⊢ φ Γ,φ ⊢S M : T1 Γ,¬φ ⊢S N : T2

Γ ⊢S if φ thenM elseN : if φ thenT1 elseT2
(prop-ite)

which types the term if φ thenM elseN with the type if φ thenT1 elseT2 and thus allows for a
conditional branching where the types of the branches differ. Rule (kindcase) mirrors the equivalent
rule for the type-level kind case, typing the term if T :: K as t ⇒ M elseN with the type U of
both M and N but testing the kind of type T against K . Such a construct enables us to define
non-parametric polymorphic functions, and introduce forms of ad-hoc polymorphism. For instance,
we can derive the following:

Λs::Type.λx :s .if s :: Ref as t ⇒ (if refOf(t) = Int then !x else 0) else 0 : ∀s::Type.s → Int
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The function above takes a type s , a term x of that type and, if s is of kind Ref such that s is a
reference type for integers (note the use of reflection using destructor refOf(−) on type s), returns
!x , otherwise simply returns 0. The typing exploits the equality rule for the property test where
both branches are the same type.
Finally, the type conversion rule (conv) allows us to coerce between equal types, allowing for

type-level computation to manifest itself in the typing of terms.

Example 4.1 (Record Selection). Using the record selection type of Example 3.1 we can construct
a term-level analogue of record selection. Given a label L and a termM of type T of kind {r ::Rec |
L ∈ lab(r )}, we define the record selection constructM .L as (for conciseness, let R = {r ::Rec | L ∈

lab(r )}):

M .L ≜ ΛL :: Nm.µF :∀t :: R .t → (t .L).Λt :: R .λx :t .

if headLabel(t) = L then recHeadTerm(x) else F [tail(t)](tail(x)))[L][T ]M

such thatM .L : T .L. The typing requires crucial use of type conversion to allow for the unfolding
of the recursive type function to take place (let Γ0 be L : Nm, F :∀t :: R.t → (t .L),x :T ):

(conv)

D Γ0 |= (if headLabel(T ) = L then headType(T ) else tail(T ).L) ≡ T .L :: Type

Γ0 ⊢ if headLabel(T ) = L then recHeadTerm(x) else F [tail(T )](tail(x)) : T .L

with D a derivation of

Γ0 ⊢ if (headLabel(T ) = L) then recHeadTerm(x) else F [tail(T )](tail(x)) : T0

where T0 is if (headLabel(T ) = L) then headType(T ) else tail(T ).L, requiring a similar appeal to
logical entailment to that of Example 3.1. Specifically, in the then branch we must show that
Γ0, headLabel(T ) = L ⊢ recHeadTerm(x) : headType(T ), which is derivable from x :T and x :

⟨headLabel(T ) : headType(T )⟩@tail(T ) ś the latter following from type conversion due to the
refinement L ∈ T allowing us to establish ¬empty(T ) ś via typing rule (recterm).
The else branch requires showing that Γ0,¬headLabel(T ) = L ⊢ F [tail(T )](tail(x)) : tail(T ).L,

which is derivable from F : ∀t :: R .t → (t .L) and x :T as follows: tail(T ) :: R follows from
¬headLabel(T ) = L and T :: R (see Section 6), thus F [tail(T )] : tail(T ) → tail(T ).L. Since tail(x) :
tail(T ) from x : T and x : ⟨headLabel(T ) : headType(T )⟩@tail(T ) via rule (rectail), we conclude
using the application rule. Thus, combining the type and term-level record projection constructs
we have that the following is admissible:

Γ ⊢ L :: Nm Γ ⊢ M : T Γ ⊢ T :: {r ::Rec | L ∈ lab(r )}

Γ ⊢ M .L : T .L

Example 4.2 (Generic Object Pairing). We now produce the term-level implementation of Ex-
ample 3.2, which takes two objects x and y of types X and Y and produces a new object of type
PairerX Y . We first define a constructor for pairs, PCons:

PCons : ∀X :: Type.∀Y :: Type.X → Y → PairX Y
PCons ≜ ΛX :: Type.ΛY :: Type.λx :X .λy:Y .⟨fst = x , snd = y⟩
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We now define the pair-object constructor, which makes use of Pairer in its typing and of
term-level record projection and record field removal in its definition:

ObjPair : ∀X :: {r :: Rec | isObj(r )}.∀Y :: {r :: Rec | isObj(r )}.X → Y → PairerX Y
ObjPair ≜ ΛX :: {r :: Rec | isObj(r )}.ΛY :: {r :: Rec | isObj(r )}.λx :X .λy:Y .

if ¬empty(X ) ∧ ¬empty(Y ) then
(if headLabel(X ) ∈ lab(Y ) ∧ dom(Y .headLabel(X )) = dom(headType(X )) then

⟨recHeadLabel(x) = λz:dom(headType(X )).

PCons (recHeadTerm(x) z) (y.recHeadLabel(x) z)⟩@PHelper
else ⟨recHeadLabel(x) = recHeadTerm(x)⟩@PHelper)

else

if ¬empty(X ) thenx elsey

PHelper = if (headLabel(Y ) ∈ lab(X ) ∧ dom(X .headLabel(Y )) = dom(headType(Y )) ∧

headLabel(X ) , headLabel(Y )) then

⟨recHeadLabel(y) = λz:dom(headType(Y )).

PCons (x .recHeadLabel(y) z) (recHeadTerm(y) z)⟩@

dropField(recHeadLabel(y),ObjPair (tail(x)) (dropField(recHeadLabel(x), tail(y))))
else ObjPair (tail(x)) (dropField(recHeadLabel(x),y))

The structure of the code follows that of the Pairer definition. The key point is the new method
construction, where we define a function that takes a value z in the domain of the head type of one
of the records and pairs up the result of applying the corresponding methods of x and y to z.

5 OPERATIONAL SEMANTICS AND METATHEORY

We now formulate the operational semantics of our language and develop the standard type safety
results in terms of uniqueness of types, type preservation and progress.

Since the programming language includes a higher-order store, we formulate its semantics in a
(small-step) store-based reduction semantics. Recalling that the syntax of the language includes the
runtime representation of store locations l , we represent the store (H ,H ′) as a finite map from labels
l to values v . Given that kinding and refinement information is needed at runtime for the property
and kind test constructs, we tacitly thread a typing environment in the reduction semantics.
Moreover, since types in our language are themselves structured objects with computational

significance, we make use of a type reduction relation, written T → T ′, defined as a call-by-value
reduction semantics on types when seen as a λ-calculus. It is convenient to define a notion of type
value, denoted by Tv , Sv and given by the following grammar:

Tv , Sv ::= λt ::K .T | ∀t ::K .T | ℓ | ⟨⟩ | ⟨ℓ : Tv ⟩@Sv | Tv
⋆ | ref Tv | Tv → Sv | ⊥ | Bool | 1 | t

We note that it follows from the literature on Fω and related systems that type reduction is
strongly normalizing [Giménez 1998; Norell 2007; Pierce 2002; Stone and Harper 2000]. The values
of the term language are defined by the grammar:

v,v ′ ::= true | false | ⟨⟩ | ⟨ℓ = v⟩@v ′ | λx :Tv .M | Λt ::K .M | v :: v ′ | ε | l

Values consist of the booleans true and false (extensions to other basic data types are straightforward
as usual); the empty record ⟨⟩; the non-empty record that assigns fields to values, ⟨ℓ = v⟩@v ′; the
empty collection, ε , and the non-empty collection of values,v :: v ′; as well as type and λ-abstraction.
For convenience of notation we write ⟨ℓ1 : T1, . . . , ℓn : Tn⟩ for ⟨ℓ1 : T1⟩@ . . .@⟨ℓn : Tn⟩@⟨⟩, and
similarly ⟨ℓ1 = M1, . . . , ℓn = Mn⟩ for ⟨ℓ1 = M1⟩@ · · ·@⟨ℓn = Mn⟩@⟨⟩.
The operational semantics is defined in terms of the judgment ⟨H ;M⟩ −→ ⟨H ′;M ′⟩, indicating

that term M with store H reduces to M ′, resulting in the store H ′. For conciseness, we omit
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congruence rules such as:

⟨H ;M⟩ −→ ⟨H ′;M ′⟩

⟨H ; ⟨ℓ = M⟩@N ⟩ −→ ⟨H ′; ⟨ℓ = M ′⟩@N ⟩
(R-RecConsL)

where the record field labelled by ℓ is evaluated (and the resulting modifications in store H to H ′

are propagated accordingly). The reduction rules enforce a call-by-value, left-to-right evaluation
order and are listed in Figure 4 (note that we require types occurring in an active position to be
first reduced to a type value, following the call-by-value discipline). We refer the reader to [Caires
and Toninho 2019] for the complete set of rules.
The three rules for the record destructors project the appropriate record element as needed.

Treatment of references is also standard, with rule (R-RefV) creating a new location l in the store
which then stores value v; rule (R-DerefV) querying the store for the contents of location l ; and
rule for (R-AssignV) replacing the contents of location l with v and returning v . Rules (R-PropT)
and (R-PropF) are the only ones that appeal to the entailment relation for refinements, making use
of the running environment Γ which is threaded through the reduction rules straightforwardly.
Similarly, rules (R-KindL) and (R-KindR)mimic the equality rules of the kind case construct, testing
the kind of type T against K .

5.1 Metatheory

We now develop the main metatheoretical results of type preservation, progress and uniqueness
of kinding and typing. We begin by noting that types and their kinding system are essentially as
complex as a type theory with singletons [Stone and Harper 2000, 2006]. Theories of singleton
kinds essentially amount to Fω [Girard 1986] with kind dependencies and a fairly powerful but
decidable definitional equality. This is analogous to our development, but where singletons are
replaced by kind refinements and the additional logical reasoning on said refinements, and the type
language includes additional primitives to manipulate types as data. Notably, when we consider
terms and their typing there is no significant added complexity since our typing rules are essentially
those of an ML-style, quotiented by a more intricate notion of type equality.
In the remainder of this section we write Γ ⊢ J to stand for a typing, kinding, entailment or

equality judgment as appropriate. Since entailment is defined by appealing to SMT-validity, we
require some basic soundness assumptions on the entailment relation, which we list below.

Postulate 5.1 (Assumed Properties of Entailment).

Substitution: If Γ ⊢ T :: K and Γ, t :K , Γ′ |= φ then Γ, Γ′{T /k} |= φ{T /t};

Weakening: If Γ |= φ then Γ
′ |= φ where Γ ⊆ Γ

′;

Functionality: If Γ |= T ≡ S :: K and Γ, t : K , Γ′ ⊢ φ then Γ |= φ{T /t} ⇔ φ{S/t}.

Soundness: If Valid(JΓK ⇒ JφK), then JΓK ⇒ JφK is valid; If Valid(JΓK ⇒ JφK) answers nega-
tively, then it is not the case that ¬(JΓK ⇒ JφK) is valid.

The general structure of the development is as follows: we first establish basic structural properties
of substitution (Lemma 5.1) and weakening, which we can then use to show that we can apply
type and kind conversion inside contexts (Lemma 5.2), which then can be used to show a so-called
validity property for equality (Theorem 5.3), stating that equality derivations only manipulate
well-formed objects (from which kind preservation ś Lemma 5.4 ś follows).

Lemma 5.1 (Substitution).

(a) If Γ ⊢ T :: K and Γ, t :K , Γ′ ⊢ J then Γ, Γ′{T /t} ⊢ J{T /t}.

(b) If Γ ⊢ M : T and Γ,x :T , Γ′ ⊢ N : S then Γ, Γ′ ⊢ N {M/x} : S .
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(R-RecHdLabV)

⟨H ; recHeadLabel(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ; ℓ⟩

(R-RecHdValV)

⟨H ; recHeadTerm(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v⟩

(R-RecTailV)

⟨H ; recTail(⟨ℓ = v⟩@v ′)⟩ −→ ⟨H ;v ′⟩

(R-RefV)

l < dom(H )

⟨H ; ref v⟩ −→ ⟨H [l 7→ v]; l⟩

(R-DerefV)

H (l) = v

⟨H ; !l⟩ −→ ⟨H ;v⟩

(R-AssignV)

⟨H ; l := v⟩ −→ ⟨H [l 7→ v];⋄⟩

(R-PropT)

Γ |= φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;M⟩

(R-PropF)

Γ |= ¬φ

⟨H ; if φ thenM elseN ⟩ −→ ⟨H ;N ⟩

(R-IfT)

⟨H ; if true thenM elseN ⟩ −→ ⟨H ;M⟩

(R-IfF)

⟨H ; if false thenM elseN ⟩ −→ ⟨H ;N ⟩

(R-Fix)

⟨H ; µF :T .M⟩ −→ ⟨H ;M{µF :T .M/F }⟩

(R-TAppTRed)

T → T ′

⟨H ; (Λt ::K .M)[T ]⟩ −→ ⟨H ; (Λt ::K .M)[T ′]⟩

(R-TApp)

⟨H ; (Λt ::K .M)[Tv ]⟩ −→ ⟨H ;M{Tv/t}⟩

(R-AppV)

⟨H ; (λx : Tv .M)v⟩ −→ ⟨H ;M{v/x}⟩

(R-ColCaseEmp)

⟨H ; case ε of (ε ⇒ N1 | x ::xs ⇒ N2)⟩ −→ ⟨H ;N1⟩

(R-ColCaseCons)

⟨H ; casev :: vs of (ε ⇒ N1 | x ::xs ⇒ N2)⟩ −→ ⟨H ;N2{v/x ,vs/xs}⟩

(R-KindTRed)

T −→ T ′

⟨H ; if T :: K as t ⇒ M elseN ⟩ −→ ⟨H ; if T ′ :: K as t ⇒ M elseN ⟩

(R-KindL)

Γ ⊢ Tv :: K

⟨H ; if Tv :: K as t ⇒ M elseN ⟩ −→ ⟨H ;M{T /t}⟩

(R-KindR)

Γ ⊢ Tv :: K0 Γ ⊢ K0 . K

⟨H ; if Tv :: K as t ⇒ M elseN ⟩ −→ ⟨H ;N ⟩

Fig. 4. Operational Semantics (Excerpt)

Lemma 5.2 (Context Conversion).

(a) Let Γ,x :T ⊢ and Γ ⊢ T ′ :: K . If Γ,x :T ⊢ J and Γ |= T ≡ T ′ :: K then Γ,x :T ′ ⊢ J .

(b) Let Γ, t :K ⊢ and Γ ⊢ K ′. If Γ, t :K ⊢ J and Γ ⊢ K ≤ K ′ then Γ, t :K ′ ⊢ J .

Theorem 5.3 (Validity for Eqality).

(a) If Γ ⊢ K ≤ K ′ and Γ ⊢ then Γ ⊢ K and Γ ⊢ K ′.
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(b) If Γ |= T ≡ T ′ :: K and Γ ⊢ then Γ ⊢ K , Γ ⊢ T :: K and Γ ⊢ T ′ :: K .

(c) If Γ |= ψ ⇔ φ and Γ ⊢ then Γ ⊢ ψ and Γ ⊢ φ

Lemma 5.4 (Kind Preservation). If Γ ⊢ T :: K and T → T ′ then Γ ⊢ T ′ :: K .

This setup then allows us to show so-called functionality properties of kinding and equality
(see [Caires and Toninho 2019]), stating that substitution is consistent with our theory’s definitional
equality and that definitional equality is compatible with substitution of definitionally equal terms.
With functionality and the previous properties we can then establish the so-called validity

theorem for our theory, which is a general well-formedness property of the judgments of the
language. Validity is crucial in establishing the various type and kind inversion principles (note
that the inversion principles become non-trivial due to the closure of typing and kinding under
equality) necessary to show uniqueness of types and kinds (Theorem 5.5) and type preservation
(Theorem 5.6). Moreover, kinding crucially ensures that all types of refinement kind are such that
the corresponding refinement is SMT-valid.

Theorem 5.5 (Unicity of Types and Kinds).

(1) If Γ ⊢ M : T and Γ ⊢ M : S then Γ |= T ≡ S :: K and Γ ⊢ K ≤ Type.
(2) If Γ ⊢ T :: K and Γ ⊢ T :: K ′ then Γ ⊢ K ≤ K ′ or Γ ⊢ K ′ ≤ K .

In order to state type preservation we first define the usual notion of well-typed store, written
Γ ⊢S H , denoting that for every l in dom(H ) we have that Γ ⊢S l : ref T with · ⊢ H (l) : T . We write
S ⊆ S ′ to denote that S ′ is an extension of S (i.e. it preserves the location typings of S).

Theorem 5.6 (Type Preservation). Let Γ ⊢S M : T and Γ ⊢s H . If ⟨H ;M⟩ −→ ⟨H ′;M ′⟩ then

there exists S ′ such that S ⊆ S ′, Γ ⊢S ′ H
′ and Γ ⊢S ′ M

′ : T .

Finally, progress can be established in a fairly direct manner (relying on a standard notion of
progress for the type reduction relation). The main interesting aspect is that progress relies crucially
on the decidability of entailment due to the term-level and type-level predicate test construct.

Lemma 5.7 (Type Progress). If · ⊢ T :: K then either T is a type value or T → T ′, for some T ′.

Theorem 5.8 (Progress). Let · ⊢S M : T and · ⊢S H . Then either M is a value or there exists S ′

andM ′ such that ⟨H ;M⟩ −→ ⟨H ′;M ′⟩.

6 ALGORITHMIC TYPE CHECKING AND IMPLEMENTATION

This section provides a general description of our practical design choices and OCaml implementa-
tion of the type theory of the previous sections. While a detailed description of the formulation of
our typing and kinding algorithm is not given for the sake of conciseness, we describe the repre-
sentation and entailment of refinements and the implementation strategy for typing, kinding and
equality. From a conceptual point of view, type theories either have a very powerful and undecidable
definitional equality (i.e. extensional type theories) or a limited but decidable definitional equality
(i.e. intensional type theories) [Hofmann 1997]. For instance, the theories underlying Coq and Agda
fall under the latter category, whereas the theory underlying a system such as NuPRL [Constable
et al. 1986] is of the former variety. Languages with refinement types such as Liquid Haskell [Vazou
et al. 2014] and F-Star [Swamy et al. 2011] (or with limited forms of dependent types such as
Dependent ML [Xi 2007]) live somewhere in the middle of the spectrum, effectively equipping types
with a richer notion of definitional equality through refinement predicates but disallowing the full
power of extensional theories (i.e. allowing arbitrary properties to be used as refinements). The
goal of such languages is to allow for non-trivial equalities on types while preserving decidability
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of type-checking, typically off-loading the non-trivial reasoning about entailment of refinement
predicates to some external solver.
Kind Refinements through SMT Solving. Our approach follows in this tradition, and our
system is implemented by offloading validity checks of refinement predicates to the SMT solver
CVC4 [Barrett et al. 2011], embodied by the rule for refinement entailment (and for subkinding
between two refinement kinds):

Γ ⊢ φ Valid(JΓK ⇒ JφK)

Γ |= φ
(entails)

The solver includes first-order theories (with equality) on strings, finite sets and inductive types
(with their associated constructors, destructors and congruence principles), and so allows us to
represent our refinement language in a fairly direct manner. Crucially, since our theory maintains
the distinction between types and terms, we need only represent the type-level constructs of our
theory in the solver.
Types of basic kind are encoded using an inductive type with a constructor and destructor

for each type constructor and destructor in our language, respectively. Labels are represented by
strings (i.e. finite sequences). In this representation, the łtype of all typesž is named Types. Types
of higher-kind are encoded as first-order terms, so they can be encoded adequately in the theory of
the solver. To do this in a general way, we add a function symbol appTyp to the theory that is used
to encode type-level application, effectively implementing defunctionalization [Reynolds 1972].
For instance, if f is a variable of some higher-kinded type, such that some equality on f is present
in refinement formulae, e.g. {x :: K | f (x) = t}, an equation corresponding to appTyp(f ,x) = JtK
will be added to the SMT proof context.

Refinements are encoded as logical formulae that make use of the theory of finite sets in order
to represent reasoning about record label set membership and apartness. We add two auxiliary
functional symbols to the theory: isRec : Types → Bool and lab : Types → Set of String, whose
meaning is given through appropriate defining axioms. The isRec predicate codifies that a given
term (representing a type) is a well-formed record, specifying that it is either the representa-
tion of the empty record or a cons-cell, such that the label at the head of the record does not
occur in the label set of its tail. lab encodes the label set of a record representation, essentially
projecting out its labels accordingly. We can then define apartness of two label sets (formally,
apart : (Set of String, Set of String) → Bool) as the formula that holds iff the intersection of the
two sets is empty. Label concatenation and its lifting to label sets is defined in terms of string
concatenation. The empty record test and its negation is encoded via an equality test to the empty
record and the appropriate negation.

To map types to their representation in the SMT solver we make use of a representation function
J−K on contexts which collects variable names (which will be universally quantified in the resulting
formula) and assumed refinements from the context as a conjunction. Without loss of generality,
we assume that all basic kinds appear at the top level in the context as a refinement, all context
variables are distinct and all bound occurrences of variables are distinct.

J∅K ≜ True
JΓ, t : {x :: K | ϕ(x)}K ≜ JΓK ∧ t : JKK ∧ Jϕ(t)K
JΓ, t : Πs : K .K ′K ≜ JΓK ∧ t : Types
JKK ≜ Types
J{x :: K | ϕ(x)}K ≜ JKK

To simplify the presentation, we overload the J−K notation on contexts, types and kinds. All
basic kinds are translated to the representation type Types. At the level of contexts, type variables
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of basic kind are translated to a declaration of a variable of the appropriate target type and the
refinement is translated straightforwardly making use of the auxiliary predicates defined above. To
represent type variables t of higher-kind we encode them as variables of representation type Types,
such that occurrences of t in refinements are defunctionalized using the technique described above.
Outline of the Algorithm. The main function of our checker takes a term (i.e. an expression
or a type), an expected type or kind (and other auxiliary parameters explained below) and either
raises an exception if the term is ill-typed or ill-kinded, or returns the type or kind of the term. The
returned value is a lower bound of the expected type or kind. The OCaml type signature of the
function is:

val typecheck: termenv -> termenv -> term -> term -> term -> bool -> ihenv -> term

The parameters of (OCaml) type termenv respectively hold the typing and evaluation contexts.
The evaluation context holds bindings between variables and corresponding value bindings, nec-
essary to normalize (open) types during type and kind-checking. The parameters of OCaml type
term are respectively the term to be typed, its expected type, and the expected kind of such type.
The typecheck function is also used to (kind) check types, in which case the three terms hold the
type to be kinded, its expected kind, and the (conventional) well-kinded classifier KindOK constant.
The parameter of type bool is used to approximate whether the typing environment is known to
be inconsistent (used to implement the kinding and typing rules for ⊥), and the parameter of type
ihenv holds the induction environment for recursive types.

The algorithm crucially relies on auxiliary functions to compute normal forms of types using an
evaluation strategy that is confluent and normalizing, and relies on the SMT solver to decide condi-
tional predicates and equality tests. In particular, unfolding of recursive types is only performed
when the recursion argument is equal (up to refinements) to a constructor (see [CoqDevelop-
mentTeam 2004; Giménez 1998]), so that the condition imposed on the rules for recursive types
(decreasing size on the argument on recursive calls) suffices to ensure termination.

We highlight our adopted solution for interleaving type-level computation with type checking
of value terms. When considering a value term for type checking, the algorithm first considers the
structure of the (weak-head normalized) expected type. It then focuses on the structure of the type
if its head term takes the form of a conditional, an application, or a recursive type, and applies
the appropriate typing rule before recursing on the structure of the value term. Recursive types
are handled using the induction environment mentioned above, allowing typing of recursive calls
to be discharged using the appropriate kind declared in the recursive definition, as specified in
the corresponding kinding rule. We illustrate a run of our type checker (and interpreter) on the
concrete syntax for Examples 3.1 and 4.1, implementing record field selection in types and values.

# type

let Proj:: Pi L:: Lab.Pi t:: { r::Rec | L inl labSet(r) }.Type =

fun L::Lab ->

letrec G :: Pi t :: { r :: Rec | L inl labSet(r) }.Type =

fun t :: { r :: Rec | L inl labSet(r) } ->

if (headlb(t) == L) then head(t) else (G (tail(t)))

in G end

in letrec proj : All L::Lab. All t:: { r::Rec | L inl labSet(r) }.(t -> (Proj L t)) =

fun L::Lab -> fun t :: { r::Rec | L inl labSet(r) } -> fun r:t ->

if (headlb(t) == L) then head(r) else (proj L (tail(t)) tail(r))

in

( proj `a [|`b : int, `a:bool|] [`b=5, `a=false] )

end

end;;

- : bool = false
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The type (Proj L t) defines the projection of the type associated with label L in (record type) t,
and (proj L t r) defines the projection of value associated with label with label L in record r (of
type t). Notice the declared kind of Proj and the declared type of proj.
Kinding Algorithm. The implementation of kind checking follows a standard algorithm for type-
checking a λ-calculus with lists, pairs, subtyping and structurally recursive function definitions
[Pierce 2002]. Kinding rules that make use of refinements (e.g., those that manipulate records) and
any instance of subkinding or kind equality in the presence of refinements is discharged via the
encoding into CVC4. Kind-checking (of types) only requires type-level computation to take place
while handling refinements predicates in kinds: those are normalized prior to encoding.
Type Equality. As in most type theories, the crux of our implementation lies in a suitable
implementation of type equality. Since our notion of type equality has flavours of extensionality
(recall the examples of Section 3.2) and is essentially kind sensitive, we make use of the now folklore
equivalence checking algorithms that exploit weak-head normalization and type information [Pierce
2004]. In our setting, we use weak-head normalization of types and exploit kinding information
[Stone andHarper 2000, 2006]. The algorithm alternates betweenweak-head normalization and kind-
oriented equality checking phases. In the former phase, weak-head reduction of types that form a λ-
calculus is used. In the latter phase, extensionality of type-level functions is implemented essentially
by the equivalent of rule (eq-funext) read bottom up and comparisons at basic kinds against
variables of refined kind are offloaded to the SMT solver, implementing extensionality for types of
basic kind (e.g., deriving that t ≡ Bool → Bool if t :: { f :Fun | dom(f ) = Bool ∧ img(f ) = Bool}).
The type checking algorithm itself (which makes use of the type equality algorithm) is mostly
straightforward, since the typing rules of our language are essentially those of an ML-like language.
In terms of our overall approach to type and kind-checking, it follows closely known type-

checking algorithms for related systems and so is clearly sound. Completeness holds relative to the
underlying SMT theories, as is generally the case in related works on SMT-based refinement [Vazou
et al. 2013, 2014]. Our prototype implementation consists of around 5000 lines of OCaml code (not
counting the generated lexer and parser code) which includes parsuning, kind-checking, type-
checking and an interpreter for our system (using the operational semantics of Section 5). The
implementation validates the examples found in the paper. The interaction with the SMT solver to
discharge refinements produces some overheads, but that is mostly due to the unoptimized nature
of our proof-of-concept implementation.

7 RELATED WORK

To the best of our knowledge, ours is the first work to explore the concept of refinement kind and
illustrate their expressiveness as a practical language feature that integrates statically typed meta-
programming features such as type reflection, ad-hoc polymorphism, and type-level computation
which allows us to specify structural properties of function, collection and record types.

The concept of refinement kind is a natural adaptation of the well-known notion of refinement
type [Bengtson et al. 2011; Rondon et al. 2008; Vazou et al. 2013], which effectively extends type
specifications with (SMT decidable) logical assertions. Refinement types have been applied to
various verification domains such as security [Bengtson et al. 2011] or the verification of data-
structures [Kawaguchi et al. 2009; Xi and Pfenning 1998], and are being incorporated in full-fledged
programming languages, e.g., ML [Freeman and Pfenning 1991] Haskell [Vazou et al. 2014], F-Star
[Swamy et al. 2011], JavaScript [Vekris et al. 2016].

With the aim of supporting common meta-programming idioms in the domain of web program-
ming, Chlipala [2010] develops a type system supporting type-level record computation with similar
aims as ours, avoiding type dependency. In our case, we generalize type-level computations to
other types as data, and rely on more amenable explicit type dependency, in the style of System-F
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polymorphism. Therefore, we still avoid the need to pollute programs with proof terms, but through
our development of a principled theory of kind refinements. The idea of expressing constraints (e.g.,
disjointness) on record labels with predicates goes back to [Harper and Pierce 1991]. We note that
our system admits convenient predicates and operators in the refinement logic that are applicable
not just to record types, but also to other types such as function and collection types.

The work of Kiselyov et al. [2004] implements a library of strongly-typed heterogeneous collec-
tions in Haskell via an encoding using the language extensions of multi-parameter type classes
and functional dependencies. Their library includes heterogeneous lists and extensible records,
with a semantics that is akin to that of our record types. Since their development is made on top
of Haskell and its type-class system, they explicitly encode all the necessary type manipulation
(type-level) functions through the type-class system. To do this, they must also encode several
auxiliary type-level data such as type-level natural numbers, type-level booleans, type-level occur-
rence and deletion predicates, to name but a few. To adequately manipulate these types, they also
reify type equality and type unification as explicit type classes. This is in sharp contrast with our
development, which leverages the expressiveness of refinement kinds to produce the same style of
reasoning but with significantly less machinery. We also highlight the work of Leijen and Meijer
[1999], a domain specific embedded compiler for SQL in Haskell by using so-called phantom types,
which follows a related approach.

Morris and McKinna [2019] study a general framework of extensible data types by introducing
a notion of row theory which gives a general account of record concatenation and projection.
Their work is based on a generalization of row types using qualified types that can refer to some
properties of row containment and combination. The ability to express these properties at the
type-level is similar to our work, although we can leverage the more general concept of refinement
kind to easily express programs and structural properties of records that are not definable in their
work: the Map and SetGetRec record transformations from Section 2, the ability to state that a
record does not contain a given label [Gaster and Jones 1996], or the general case of a combinator
that takes two records R1 and R2 and produces a record where each label ℓ is mapped to R1.ℓ → R2.ℓ.
Their work develops an encoding of row theories into System F satisfying coherence. It would be
interesting to explore a similar encoding of our work into a suitable λ-calculus.

Weirich et al. [2013] study an extension to the core language (System FC) of the Glasgow Haskell
Compiler (GHC) with a notion of kind equality proofs, in order to allow type-level computation
in Haskell to refer to kind-level functions. Their development is designed to manipulate explicit
type and kind coercions as part of the core language itself, which have a non-trivial structure (as
required by the various type features and extensions of GHC), and so differs significantly from
our work which is designed to keep type and kind conversion as implicit as possible. However,
their work can be seen as a stepping stone towards the integration of refinement kinds and related
constructs in a general purpose language with an advanced typing system such as Haskell.

Our extension of the concept of refinements to kinds, together with the introduction of primitives
to reflectively manipulate types as data (cf. ASTs) and express constraints on those data also
highlights how kind refinements match fairly well with the programming practice of our time (e.g.,
interface reflection in Java-like languages), contrasting the focus of our work with the goals of other
approaches to meta-programming such as Altenkirch and McBride [2002]; Calcagno et al. [2003].
The work of Altenkirch and McBride takes a dual approach to ours: While we take the stance of
not having a dependently typed language, their work starts from a dependent type theory with
universes and so-called large eliminations and shows how one can encode generic programming
(i.e., the ability to define functions by recursion on the structure of datatypes) by defining an
appropriate universe of types and a coding function. Thus, their general framework is naturally
more expressive than ours, but lacks the general purpose practical programming setting of ours.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 131. Publication date: October 2019.



131:26 Luís Caires and Bernardo Toninho

Thework of Calcagno et al. focuses onmulti-staging in the presence of effects. Staged computation
is a form of meta-programming where program fragments can be safely quoted and executed in
different phases. This form of metaprogramming is fundamentally different from that formulated
in our work, being targeted towards efficiency and optimizations based on safe partial evaluation.

The concept of a statically checked type-case construct was introduced by Abadi et al. [1991]; how-
ever, our refinement kind checking of dynamic type conditionals on types and kinds if φ then e1 else e2
and if T :: K as t ⇒ e1 else e2 greatly extends the precision of type and kind checking, and supports
very flexible forms of statically checked ad-hoc polymorphism, as we have shown.

Some works [Fähndrich et al. 2006; Huang and Smaragdakis 2008; Smaragdakis et al. 2015]
have addressed the challenge of typing specific meta-programming idioms in real-world general
purpose languages such as Java and C# (or significant fragments of those languages). By using the
standard record-based encoding of objects (as done in the examples of Sections 1 and 2), several
of the meta-programming patterns found in their works are representable using our framework
of refinement kinds (e.g., generating constructors, changing field types, generating accessor and
modifier methods). However, since those works target object-oriented languages, they support
OO-specific features that are out of the scope of our work (e.g. inheritance, method visibility),
which does not deal with object orientation concepts but rather with a minimal ML-style language
in order to illustrate the core ideas and their general expressiveness.
We further highlight the recent work of Kazerounian et al. [2019], which addresses arbitrary

type-level computation in Ruby libraries and injects appropriate run-time checks to ensure that
library methods abide by their computed type. Their work allows for arbitrary Ruby functions
to be called during type-level computation and is thus more expressive than our more strictly
stratified framework. Their typing discipline also exploits singleton-like types, that can be used
in the context of database column and table names, to assign precise type signatures to database
query methods (i.e., type-level computations can interact with a database to find the schema of a
table that is then used as part of a type). While we can define types of the form F (T1) → T2, where
the domain type is the result of a computation F on T1, we are restricted to more limited type-level
reasoning, whereas their work is closer to general dependent types. For instance, we can define:

ColRecPreds ≜ λs :: Type.(if s :: Col as t ⇒ (if colOf(t) :: Rec as t ⇒ t else 1) else 1) → Bool

where ColRecPreds is a type-level function that given a type s , provided s is a collection type of
records of some record type, produces the type of predicates on that record type (i.e. a function
from that record type to Bool) and otherwise returns the trivial predicate type (i.e. 1 → Bool, where
1 is the unit type). We can use ColRecPreds to type a program akin to a generic record existence
test in a table (i.e. a collection of records):

exists : ∀C :: Col.C → ColRecPreds(C)
exists ≜ ΛC :: Col.if colOf(C) :: Rec as t ⇒ µF :C → ColRecPreds(C).

λc:C .λx :t .case c of (ε ⇒ false

| r ::rs ⇒ if r = x then true else F (rs)(x))

else λc:C .λx :1.false

The example above contrasts with [Kazerounian et al. 2019], where a related example is formulated
such that the equivalent of our ColRecPreds type-level function actually queries a database for the
appropriate table schema, whereas ColRecPreds can only inspect the łshapež of its type arguments
to obtain the table schema (i.e. the types of records contained in the collection).
Our work shows how the fundamental concept of refinement kinds suggests itself as a gen-

eral type-theoretic principle that accounts for statically checked typeful [Cardelli 1991] meta-
programming, including programs that manipulate types as data, or build types and programs
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from data (e.g., as the type providers of F# [Petricek et al. 2016]) which seems to be out of reach of
existing static type systems. Our language conveniently expresses programs that automatically
generate types and operations from data specifications, while statically ensuring that generated
types satisfy the intended invariants expressed by refinements.

8 CONCLUDING REMARKS

This work introduces the concept of refinement kinds and develops its associated type theory, in
the context of higher-order polymorphic λ-calculus with imperative constructs, several kinds of
datatypes, and type-level computation. The resulting programming language supports static typing
of sophisticated features such as type-level reflection with ad-hoc and parametric polymorphism,
which can be elegantly combined to implement non-trivial meta-programming idioms, as we have
illustrated with several examples. Crucially, the typing system for our language is essentially that
of an ML-like language but with a more intricate notion of type equality and kinding, which are
defined independently from typing.
We have validated our theory by establishing the standard type safety results and by further

developing a prototype implementation for our theory, making use of the SMT solver CVC4 [Barrett
et al. 2011] to discharge the verification of refinements. Our implementation demonstrates the
practicality and effectiveness of our approach, and validates all examples in the paper. Moreover, as
discussed in Section 6, apart from the peculiarities specific to the refinement logic, our implementa-
tion is not significantly more involved than standard algorithms for type-checking system Fω or
those for singleton kinds [Pierce 2002, 2004; Stone and Harper 2000].
There are many interesting avenues of exploration that have been opened by this work: From

a theoretical point-of-view, it would be instructive to study the tension imposed on shallow
embeddings of our system in general dependent type theories such as Coq. After including existential
types, variant types and higher-type imperative state (e.g., the ability to introduce references storing
types at the term-level), which have been left out of this presentation for the sake of focus, it would
be relevant to investigate limited forms of dependent or refinement types. It would be also interesting
to investigate how refinement kinds and stateful types (e.g., typestate or other forms of behavioral
types) may be used to express and type-check invariants on meta-programs with challenging
scenarios of strong updates, e.g., involving changes in representation of abstract data types.
Following the approach of Kazerounian et al. [2019], it would be interesting to study a version

of our theory of refinement kinds that is applied to a real-world dynamically typed language by
inserting run-time checks to ensure methods follow their specified types.
The relationship between our refinement kind system and the notion of type class [Wadler

and Blott 1989], popularised by Haskell [Hall et al. 1996], also warrants further investigation.
Type classes integrate ad-hoc polymorphism with parametric polymorphism by allowing for the
specification of functional interfaces that quantified types must satisfy. In principle, type classes
can be realized by appropriate type-level records of functions and may thus be representable in
our general framework. Finally, to ease the burden on programmers, we plan to investigate how to
integrate our algorithmic system with partial type inference mechanisms.
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