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ABSTRACT 

Social media and customer review websites have changed the way the tourism sector is managed.  

Social media has become a new source of information, due to the large amount of UGC / e-Wom 

generated by consumers  An information that is "available" but at the same time noisy and of great 

volume, which makes it difficult to access and analyze. This study investigates and verifies the 

possibility of using data present in content reviews of a Content Web Site Review - TripAdivsor - to 

generate actionable information for a Destination Management Organization. With a focus on negative 

reviews, tourist attractions of Lisbon  and using the “R code” and its packages, the study shows that 

with the correct technique chosen and the action of an intelligence analyst, data can be extracted and 

provide substrate for actions, strategy and intelligence generation – which is Social Media Intelligence. 

The findings prove that the flood of web 2.0 data can serve as a source of intelligence for the 

Destination Management Organization (DMO). By monitoring sites like TripAdvisor, a DMO can hear 

what tourists talk about attractions and thereby generate insights for intelligence and strategy actions. 

A DMO can even, analyzing this data, make your attractions more desirable, and even act in adverse 

situations, reducing risky situations. 

 

 

KEYWORDS 

Destination Management Organization; Monitoring; Social Media Intelligence; Tourism; 

TripAdvisor . 
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1- INTRODUCTION 

With the growth in social media (SM) usage in recent years, people have the opportunity to 

share their ideas, feedback, opinions, and interests more than ever. As a result, according to 

several authors, like Agichtein, Castillo, Donato, Gionis, and Mishne (2008) and Patin , Pitta,  and 

Quinones (2012), social media has become a new source of information. From the data 

generated by several other consumers who have already used a particular product or service, 

other interested consumers have the opportunity to get to know the product better, its positive 

and negative aspects, to obtain more updated, reliable and relaxed information, thus reducing 

the risks and possibility of regret (Gretzel & Purifoy, 2008). 

Besides that, Web 2.0 provided for consumers a new communication platform similar to that of 

the word of mouth that also empowers consumers- social media networks - and changing the 

way information is being produced, transferred, and consumed (Bindra, Kandawal, Singh & 

Khan, 2012). 

Gretzel (2006) brings an interesting point of view when he states that the media allow to tell 

stories on a "24/7" basis, reinforcing even more its ubiquity. Social media (SM)  also removed 

spatial and time constraints that were inherent in traditional methods of communications 

provided online tools that enable one to many sharing of multimedia content and employ easy 

to use interfaces that will allow even non-specialists to share and connect. In addition to 

interactivity and communication, due to the characteristics and functionalities of SM, these can 

also be extremely useful tools and assume an essential role in the management, strategic 

planning, development, and promotion, as well as offer opportunities for innovation processes. 

The broad adoption of social media by users has generated an exponential increase in data and 

content that offer, although not in full, opportunities to be treated and transformed into 

information and knowledge for organizations.  

Newton (2008) states that Information and Communication Technology (ICT) is fundamental to 

the competitive organizational strategy. As SM was provided by the evolution and progress of 

ICTs, they can be fundamental as a source of information for generating strategies. The 

knowledge provided by the extraction of information from social media can increasingly be 

recognized as essential to the competitive advantage of any organization. 

It can be added several factors to explain why social media data can generate value for 

companies: 

- A significant amount of information associated with customers, competitors, industries, and 

technology can be gathered from social media. 

- the rapid growth of social media users around the world allows organizations to access a wide 

range of consumer thoughts easily, opinions, and behaviors on time (Chen, Chiang, & Storey, 

2012); 
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Regardless of all the possibilities and benefits of social media as a source of information, the 

unstructured nature and volume of this information, which is distributed across a variety of 

social media sources, make the task of extracting useful information a challenge (Dai, Kakkonen, 

& Sutinen,2011). 

Agarwal and Ylliasi (2010) argue that different issues affect the quality of social media data. The 

exponential growth of SM data can also create the problem of information overload, and finally, 

the use of slang, which is sometimes intensified within the cultural context, is another challenge 

to extract meaningful information (Töllinen, Järvinen, & Karjaluoto,2012). To summarize, SM 

data is not structured and of uncertain credibility, and this requires special treatment to make 

them meaningful and ready for business use. 

However, monitoring, storing, analyzing, and transforming information automatically into 

organized knowledge is considered difficult because of the large and complex amount of 

information and data on many different social media platforms that cannot be discovered or 

easily identified using conventional database management systems, and therefore require the 

use and creation of tools, new methods and scientific techniques for collecting and analyzing 

social media data, which are still scarce (Stiegltiz & Dang-Xuan, 2012). 

It is important to emphasize that the monitoring of social media content should not be restricted 

to metrics and the collection of information and experiences of users. They need to be 

interpreted, analyzed, and studied to obtain relevant information, identify opportunities, 

failures, needs, expectations, experiences, desires, and critiques of users and consumers 

(potential and real). 

Information and knowledge can be obtained from data through techniques of interpretation, 

annotation, classification, grouping, summarization, among others, allowing the association and 

correlation of other information, many of them being part of a set of techniques, tools, 

procedures, and algorithms known as Data Mining (Santos, 2009). So, data mining becomes an 

essential tool for collecting information, especially from the accumulation of material posted on 

social networking sites and content on the Internet (Chen et al., 2012). As a consequence, it is 

imperative to look for data collection alternatives that allow for cost reduction and assistance 

in monitoring the impact of the activity. 

 A successful organization should have the ability to monitor the external environment, capture 

and analyze all available information (e.g., customer reviews, product and service reviews), 

generate intelligence and identify what happened and try to predict which may occur in the 

future. As many companies are unfamiliar with social media as a source of information to 

monitor the business environment (Dai et al., 2011) and there is also a lack of sufficient 

understanding of the social media mining process, the proposal would be to show how data 

social media obtained through monitoring can serve as a substrate for generating Intelligence. 

The advent of Web 2.0, mainly in the format of media and social networks, has caused significant 

changes and transformations in tourism, especially about the production of content by users 
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and the sharing of information and content between users and consumers, gaining popularity 

among online activities of travellers (Xiang & Gretzel, 2010). 

Concomitantly, the Internet's interactivity, customization, and vast information resources 

provided tailored search and content to users, being able to cover almost any personal 

preference. As a natural consequence, the Web became one of the most effective means for 

potential tourists to search for information (Werthner & Klein, 1999). 

When tourists decide to travel, they find difficulties when assessing the quality provided if they 

have not visited these locations before (Kim, Lehto, & Morrison, 2007). Tourism products are 

experiential - intangible and even impossible to be physically evaluated before purchase. As a 

result, their purchases are considered risky, and information-intensive in terms of their decision-

making process (Mcintosh, Goelder & Ritchie, 1995). Although they are experienced products 

related to tourism, tourist attractions have fewer characteristics that can be made tangible. So, 

in the case of tourist attractions, reviews play a vital role because attractions cannot be assessed 

by some standard aspects, such as hotels and restaurants. 

Tourism organizations – Destination Management Organization can take advantage of the vast 

amount of information generated on websites, such as TripAdvisor, to generate intelligence and 

analyze what customers are talking about their destinations. 

TripAdvisor is one of the most recognizable consumer-generated content sites or consumer 

review websites (CRW). Consumer review websites (CRW) are social media applications that 

enable users to upload product-related reviews and ratings. TripAdvisor, among the leading 

CRWs, hosts more than 630 million reviews for more than 7 million businesses and has 455 

million unique monthly visitors (TripAdvisor 2017). Researchers have already recognized 

TripAdvisor as being the most famous such site among tourists (Xiang & Gretzel, 2010). 

In order to focus on research, we narrow our field of study for the Destination Management 

Organization (DMO) – VisitLisboa (THE LISBON TOURISM ASSOCIATION) - a nonprofit Private 

Association. It is the Regional Tourism Promotion Agency for the Region of Lisbon since 2004, 

maintaining international tourism promotion as its main activity. 

Why choose Tourism Sector? Because the tourism sector in Portugal is responsible for 20% of 

employees and 17,8% of the Gross Domestic Product - GDP (WTTC 2018), that is an important 

generator of employment, income, and wealth. 

Thus, it becomes a rich source of data for satisfaction analysis with destinations and tourism 

products. Another important feature is that it enables methodologies for extracting data and 

transforming it into essential information to assist public and private managers in decision-

making. 

Since the advent of the media, Tourism and Hospitality have been revolutionary industries for 

the adoption of online criticism as a means to get feedback from customers (Lehto, Park, Park, 

& Lehto, 2007). However, how does DMO use these reviews? 
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The big question - important to repeat - is: despite this large amount of data, how can 

organizations turn it into actionable information and knowledge?  

I - How can DMO - VisitLisboa conduct media monitoring to capture and analyze media data? 

II - How can DMO - VisitLisboa identify the strengths and weaknesses of tourist attractions using 

media information? Would it be possible to identify the strengths and weaknesses of a DMO's 

attractions and position them effectively in the market using media information? 

And to help answer these questions, we will focus on negative comments. Several authors 

(Knowles, 2019; Faed & Forbes, 2010; Patel, 2018; Krause, 2018; Gin, 2016) state that through 

the analysis of negative comments the company can perceive problems previously hidden, learn 

more and improve faster. 

In addition to answering the previous questions, we aim to create a social media intelligence 

framework to support a DMO to use external intelligence derived from monitoring social media, 

specific to your business, to improve service quality, innovation and decision- making. 

The present study aims to link the monitoring of social networks to generate actionable 

information - intelligence for a DMO. The first is linked to the area of communication and 

advertising and the second is more linked to the hospitality sector. Almost nothing addresses 

the issue of tourist attractions, points that define a destination, and consequently the work of a 

DMO. We believe that through the use of them we will be able to acquire more relevant 

information that may lead to a more forceful and effective action by DMO VisitLisboa. 
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2 - LITERATURE REVIEW 

Systematic literature reviews are a key component of much academic research. The systematic 

literature review has been carried out in several different phases to overcome some of the 

weaknesses and limitations of traditional literature reviews. Firstly, we identified the research 

question(s)/objective and identified relevant literature. Literature was selected based on their 

relevance to online reviews in the hospitality and tourism fields. Secondly, we made decisions 

about what research to include OR  exclude. 

Much of the work in the area –  as searched on B-on, Web of Science, and Google Scholar-

utilizing the words “TripAdvisor ” and “social media mining ” and “destination management 

organization “ or “DMO” or “ destination marketing organization” is concerned with two 

aspects: generating content and analyzing content. The first is linked to the area of 

communication and advertising and the second is linked to the hotel and hospitality industry. 

This the search in Web of Science: 

TS=(social media mining AND TripAdvisor AND sentiment analysis AND social media intelligence 

AND destination management organization OR DMO or destination marketing organization) – 

2008 to 2020. 

Refined in:  HOSPITALITY LEISURE SPORT TOURISM OR MANAGEMENT OR BUSINESS OR 

COMPUTER SCIENCE INTERDISCIPLINARY APPLICATIONS OR SOCIAL SCIENCES 

INTERDISCIPLINARY ) AND SOURCES : ( TOURISM MANAGEMENT OR ADVANCES IN HOSPITALITY 

AND TOURISM RESEARCH AHTR OR JOURNAL OF DESTINATION MARKETING MANAGEMENT OR 

JOURNAL OF TRAVEL RESEARCH OR JOURNAL OF TRAVEL TOURISM MARKETING OR CURRENT 

ISSUES IN TOURISM OR INTERNATIONAL JOURNAL OF TOURISM RESEARCH OR INTERNATIONAL 

JOURNAL OF CONTEMPORARY HOSPITALITY MANAGEMENT OR INTERNATIONAL JOURNAL OF 

TOURISM CITIES OR TOURISM AND HOSPITALITY RESEARCH OR TOURISM MANAGEMENT 

STUDIES OR JOURNAL OF SUSTAINABLE TOURISM OR JOURNAL OF TOURISM FUTURES OR 

WORLDWIDE HOSPITALITY AND TOURISM THEMES OR ANNALS OF TOURISM RESEARCH OR ASIA 

PACIFIC JOURNAL OF TOURISM RESEARCH OR TOURISM MANAGEMENT PERSPECTIVES OR 

SCANDINAVIAN JOURNAL OF HOSPITALITY AND TOURISM OR INTERNATIONAL JOURNAL OF 

CULTURE TOURISM AND HOSPITALITY RESEARCH OR JOURNAL OF HOSPITALITY TOURISM 

RESEARCH OR TOURISM RECREATION RESEARCH OR INFORMATION TECHNOLOGY TOURISM OR 

JOURNAL OF HOSPITALITY MARKETING MANAGEMENT OR JOURNAL OF TOURISM AND SERVICES 

OR TOURISM REVIEW OR MARKETING AND MANAGEMENT OF INNOVATIONS OR PROCEEDINGS 

OF THE INTERNATIONAL CONFERENCE ON TOURISM RESEARCH ICTR 2018 OR INFORMATION 

AND COMMUNICATION TECHNOLOGIES IN TOURISM 2010 OR JOURNAL OF HOSPITALITY AND 

TOURISM MANAGEMENT OR TOURISM ANALYSIS ). 

After stipulating the parameters seen above, we had 540 results. 

To analyze them initially, we used the Vosviewer software version 1.6.14. VOSviewer is a popular 

freely available software tool for visualizing bibliometric networks. The functionality of the 

VOSviewer is especially useful for displaying large bibliometric maps in an easy-to-interpret way. 

To interpret the results of  Vosviewer map is important to focus on two major things  : 
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 -  Size of the circle or word -The larger a term, the higher the frequency of occurrence of the 

term  

-  Distance:  In general, the smaller the distance between two terms, the higher the relatedness 

of the terms, as measured by co-occurrences. 

 

 

Figure1 -   A - Map of results keywords from Web of Science   B - Density of the terms  

First of all, is possible to see (fig.1A)seven clusters of words from the search. Through the size of 

the circles or the words, it can be seen that the most prominent and frequent items are Social 

Media, Tourism, and Management. 

According to the figure above (fig.1B), is possible to state that both the terms TripAdvisor and 

Strategies are low in color density, which shows the low frequency of these keywords in 

bibliographic research. It is important to deepen the analysis and for that, we will check the main 

keywords related to this work: TripAdvisor, Social Media Mining, Strategy, Destination 

Management Organization / DMO and check their position on the map and the strength of their 

links. 

 

Figure 2-    A – TripAdvisor and links                                         B - Text Mining and Links 
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As already shown in figure 2A, we can see that the term TripAdvisor is peripheral in relation to 

the center of the map, which shows us that it is still a little-explored topic. The strongest links 

are Tourism and Destination Image. 

The term “text mining” (fig.2B) is also peripheral and has stronger links to Tourism, Social Media, 

Impact, Satisfaction, and UGC – User Generated Content. As will be shown in the paper, the 

techniques of text mining, social media mining and sentiment analysis have been developing a 

lot and will make it possible to extract unstructured texts and transform them into structured 

and analyzed regarding sentiment. 

 

Figure 3-        A – Social Media and Links                         B - Strategies and Links 

The term “social media” belongs to the blue cluster, where it has stronger links with “Tourism”, 

“Management”, “Marketing Tools” and “Communication” (fig.3A) . 

The term “strategies”, also belonging to the blue cluster, has the strongest connections social 

media, destination marketing, tourism, communication, DMOs and destination management. 

The focus of this term is closer to the issue of Marketing or Communication than a strategic 

process for the entire DMO (fig. 3B). 

A survey was also carried out using the B-on website (https://eds.a.ebscohost.com/) with the 

following terms “social media mining tourism AND TripAdvisor reviews AND TripAdvisor AND 

sentiment analysis” and the following: 

Journals: - tourism management perspective  - international journal of tourism research  - 

international journal of information management- tourism review - Cornell hospitality quarterly 

- worldwide hospitality & tourism themes  - online information review  - journal of hospitality & 

tourism technology  - journal of travel & tourism marketing  - journal of hospitality marketing & 

management  - international journal of contemporary hospitality management - journal of travel 

research  - information technology & tourism - sustainability 

Subjects: - Tourist attractions: - social networks: - hospitality  - data analysis - text mining - 

natural language processing  - opinion mining - consumers' reviews – TripAdvisor  - strategic 

planning - content analysis  - tourism—management  - hospitality industry  - data mining  - online 

reviews - big data - sentiment analysis  - tourism - social media 

The search returned 87 articles that were also analyzed via VosViewer. 

https://eds.a.ebscohost.com/
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Figure 4 -  A  – social media mining tourism AND TripAdvisor reviews AND TripAdvisor AND sentiment 

analysis      B – TripAdvisor and links 

The figure above (fig.4A) shows the 3 clusters of keywords. It is important to note that the term 

“attraction” does not appear and only the terms “hospitality” or “hotels” are highlighted. This 

means that maybe  there is a lack of the use of “attraction” as an object of research. 

The keyword "TripAdvisor" has participants in its cluster the terms "sentiment analysis", "social 

media", "natural language processing", "user-generated content" and "hospitality". In a nearby 

cluster, we have hotels and the hospitality industry, reinforcing the issue of the focus of most 

papers on hotels and not on tourist attractions (fig.4B). 

 

Figure 5 – Sentiment Analysis and links 

Figure 5 shows the cluster of which “sentiment analysis” is part. Despite not being part of the 

initial search terms in B-on, it appears prominently, which means the term is frequently used in 

the keywords of the papers. 

Another B-on survey was conducted with the bellow-designated parameters and returned only 

five texts  - none with the effective use of negative reviews as an information source. The 

reason for choosing negative online reviews will be discussed later in this work. This search 

returned six papers. 

TS=(social media mining AND TripAdvisor AND negative reviews)Tempo stipulate: 2008-

2020. Índices: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC. 
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Finally, we used PRISMA - a systematic review based on the “preferred reporting items for 

systematic reviews and meta-analyses” in an effort to systematically evaluate the quality and 

quantity of tourism research. 

All  findings were exported to the RefWorks reference management software for more analysis. 

After the removal of duplicate references, the remaining 594 records were analyzed according 

to the literature selection criteria. To continue the analysis - the abstracts were read first, and 

the full text of the articles was evaluated when further analysis was required. In addition, the 

studieswere discarded due to the methodological analysis technique used, as well as articles 

that did not have a sufficient focus on tourism  were similarly eliminated. The screening process 

resulted in 128 records.The texts were carefully reviewed for eligibility in the final analysis. Only 

20 studies were identified as eligible.  

Figure 6 describes the number of studies analyzed and excluded at different stages of the 

literature review. The flow chart of the reports was in accordance with the PRISMA statement 

with some adjustments (Moher, Liberatti,Telzlaff & Altman, 2009). 

 

Figure 6 – PRISMA – Adapted from Moher et al. (2009) 

From all the research carried out, we selected texts and works that could adhere more to the 

theme of the work and stipulated 20 of them to highlight, based on keywords and findings – 

Amadio and Procaccino (2016); Berezina, Bilgihan, Cobanoglu and Okumus (2015); Buhalis and 

Foerste (2015); Chang,  Ku and Chen (2019); Dai, Sutinen and Kakkonen (2010); Dey, Haque, 

Khurdiya and  Shroff (2011) ; Dickinger and  Mazanec (2015); Franzoni and Bonera (2019); Gémar 

and Jiménez-Quintero(2014); Hu, Zhang, Gao, and Bose (2019); Leung, Law,van Hoof and Buhalis 

(2013); Moro, Rita and Coelho (2017); Marine-Roig and Clavé(2015); Schuckert,Liu and Law 

(2015); Sheehan,Vargas-Sánchez, Presenza and Abbate (2016); Taecharungroj and 

Mathayomchan (2019); Thomaz Biz, Bettoni and Pavan, (2015); Thomaz, Biz, Bettoni,  Mendes-
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Filho and  Buhalis (2017) ; Tsao, Chen, Lin and Ma (2019); Vecchio, Mele, Ndou and Secundo 

(2018). All the findings and keywords of these texts are available in Appendix  I. 

Now we can discuss the research gap  - a research question or problem which has not been 

answered appropriately or at all in a given field of study. A research gap also implies a lack of 

empirical studies, either from a certain theoretical perspective and or methodological approach. 

Based on the maps generated by Vosviewer, in all the works read, it can be said that USING THE 

TRIPADVISOR TO MONITOR AND GENERATE INTELLIGENCE FOR A DMO -  focus Negative 

Reviews is an unexplored topic and with the right tools, we believe it can be effective, as we will 

show in the evolution of this work. This is a topic that may fill the study gap. This article aims to 

contribute to the discussion on DMOs, suggesting a shift from the prevailing view (as oriented 

towards marketing) to a new one, based on the interpretation of the DMO as an intelligent 

agent. 

To continue the literature review, we define important terms related to our theme based on 

concepts extracted from the bibliographic researches carried out: Web and Tourism, User 

Generated  Content , e-WOM , Consumer Review Website  (CRW), TripAdvisor (TA), Monitoring 

Social Media in Tourism, Negative Online Reviews, Data Mining, Natural Language Processing, 

Sentiment Analysis, Social Media Mining  (SMM), Destination Management Organization (DMO) 

and Social Media Intelligence. 

2.1 - WEB 2.0 , TOURISM AND UGC/ e-WOM 

Web 2.0 has enabled customers to have a stronger capacity and impact on “information 

production and distribution” (Xiang & Gretzel, 2010) than companies provide, since all can be 

transformed into creators and/or recipients of content (Buhalis & Law, 2008; Xiang & Gretzel, 

2010).  

The Internet, and in particular Web 2.0, provides consumers with a new communication 

platform similar to word of mouth that also empowers consumers (Pan, MacLaurin, & Crotts, 

2007). The traditional WOM (word of mouth) has been reinforced with the electronic WOM (e-

WOM). Verhagen, Nauta and Feldberg (2013) defined e-WOM as any positive or negative 

comments made by potential, current or former customers regarding a brand, product or service 

that is available to other customers and/or organizations through the Internet. Mendes, Matos 

& Valle, 2012; Rezabakhsh, Bornemann, Hansen and Schrader (2006) state that eWOM 

(electronic word-of-mouth, i.e. analyses, evaluations, online recommendations) is increasingly 

being used by consumers to share their experiences about a product or service. 
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Figure 7- Percentage of global internet user who posts reviews online – SOURCE – STATISTA 2017 

 

Table 1 – Trust online reviews – Source: Statista 2017  

Besides the e-WOM, there are other similar terms used, such as digital word of mouth, user- 

created content and user- generated content (UGC). Although some authors (Thao, & Shurong, 

2020) make a slight distinction between e-WOM and UGC, for the purposes of this work we will 

assume as similar. 

Web 2.0 and UGC have been, and probably will be, increasingly changing the way people search, 

find, read, collect, share, develop, and consume information (Sigala, 2014). Interesting is the 

definition of UGC by Blackshaw and Nazzaro (2006) - UGC is “a mixture of facts and opinion, 

impression, and feeling, founded and unfounded, experiences, and even rumors”. 

The content generated and shared among users ends up arousing desires, expectations, and 

perceptions in other users. They also end up influencing the decision-making process for the 

purchase of products, since they allow potential consumers to gain the desired knowledge from 
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different sources, as well as benefit from the experiences of obtaining information and 

advantages for their own experience (Yoo & Gretzel, 2008b, Roque, Fernandes, & Raposo, 2012). 

These analyses are seen as reducing risk for buyers (Yoo & Gretzel, 2008a). Buyers want to read 

about previous buyers' experiences with a product or a service without having to try it 

themselves, and by seeing them as references, consumer actions are influenced. 

Logically, the advent of Web 2.0 has caused significant changes and transformations in Tourism, 

especially with regard to the production of content by users and the sharing of information and 

content between users and consumers, gaining popularity among online activities of travelers 

(Xiang & Gretzel, 2010). As a result, social networks are becoming increasingly important in 

travel planning, mainly due to their role as vital sources of information that provide access to 

other travelers' experiences (Chung & Buhalis, 2008). 

Because it is “vital” for tourists, Goldenberg, Libai, and Muller(2001) stress that other 

consumers' word-of-mouth influence the decision-making processes of other consumers, in this 

case tourists. 

One of the main problems tourists face when deciding to travel is assessing the quality of places 

they have never seen before (Kim et al., 2007). Since they are considered "intangible products", 

vacation travel can be considered complex due to the experimental nature of the vacation 

product, involving risks and therefore requiring extensive information research (Sirakaya & 

Woodside, 2005). According to Chung and Buhalis (2008), consumers look for information from 

a variety of sources, with social networks being the most widely used to minimize the risks of 

making wrong travel decisions (Leung, Schuskert ,& Yeung, 2013).  

In seeking information, consumers rely on other travelers' experiences as a means to increase 

reliability and reduce uncertainty and increase the usefulness of exchange (Litvin, Goldsmith & 

Pan, 2008; Yoo, Lee, & Gretzel, 2007; Fotis, Buhalis & Rossides, 2012). Thus, data from other 

consumers who have already experienced the specific product, and are willing to provide 

information, is considered the most preferred and influential source in the context of travel-

related decision-making (Crotts, 1999).Gretzel and Yoo (2008) point out, although the analyses 

provided by other travelers are often considered by readers to be more up-to-date, enjoyable 

and reliable than the information provided by travel service providers. 

Therefore, the information is more critical and the need for information research becomes even 

more intense (Bronner & de Hoog, 2013; Mudambi & Schuff, 2010; Pan, MacLaurin, & Crotts, 

2007).  

The technological advance of information and communication, with the consequent changes in 

values and lifestyles, has led to the emergence of new customers for tourism products. The new 

customers for tourism products are those who are more informed, more independent, more 

individualistic, and more involved (Gretzel, Fesenmaier & O'Leary -2006; Buhalis, Costa, & Ford, 

2006). Thus, it may be crucial to identify the most relevant new sources of information to 

consider, both for monitoring and for creating advertising content (Munar & Jacobsen, 2014). 

Thus, with the advent of “Travel 2.0”, the tourism industry has become an information intensive 
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industry, as it allows travelers to easily access information through the Internet (Qu & Lee, 

2011). 

Most studies on social networks in tourism are focused on the consumer, suggesting that the 

use of social networks by travelers or the influence of social networks on tourist behavior has 

been studied frequently (Denizci, Kucukusta, & Liu, 2016). 

 Litvin et al. (2008) concluded that if a tourist is recognized by his online peers as experienced 

and reliable, his opinions can have a significant influence on purchasing decisions made by 

travelers to other tourist destinations. Thus, these comments become valuable commercial 

assets, i.e. e-WOM, are valued by their peers. 

In addition, Zhu and Zhang (2006) stressed that comments generated by online users are useful 

for both consumers and online retailers. Similarly, Dellarocas (2003) indicated that online word-

of-mouth could have important implications for managers in terms of brand building, product 

development, and quality assurance.  

However, in the context of tourism, the impact of online consumer criticism on the performance 

of tourism businesses remains largely unknown. Vermeulen and Seegers (2009) conducted an 

experimental study with 168 participants to determine the impact of online criticism on 

travelers' attitudes towards hotels and revealed that exposure to online criticism has raised 

awareness in hotels and that positive criticism has improved travelers' attitudes towards hotels. 

Despite all the influence of the content review on tourists, how can one infer the importance of 

commenting on tourist information and how the industry has been handling this wealth of data? 

2.2 - CONSUMER REVIEW WEBSITE (CRW) AND TRIPADVISOR 

Consumer review websites (CRW) are social media applications that enable users to upload 

product or service-related reviews and ratings. CRW can offer a wide range of features, such as  

uploading comments or even  pictures. 

Generally, exist two main categories of CRW sites: sites with open systems, where consumers 

can go onto the website and post a review, and closed systems, where only a confirmed buyer 

of the product or service can submit a review. 

There are several sites linked to CRW, but some of the best known are linked to tourism and 

hospitality. Consumer reviews were found to be used throughout the stages of the travel 

planning process, increasing travelers' confidence about decision-making, reducing risk, and 

assisting trip planning, mainly in accommodation selection (Gretzel&Yoo,2008). CRW is not the 

only source of information in the pre-trip stage, but also in the post-trip stage focusing on the 

motives that drive travelers to post reviews (Papathanassis & Knolle,2011). 

TripAdvisor (TA) is one of the most recognizable consumer-generated content sites or consumer 

review websites (CRW).  TA  is a CRW  dedicated to tourism, and hospitality social media have 

grown tremendously in the last decade, with the advent of interactive Web 2.0 technologies 

(Hays, Page, & Buhalis 2013; Munar, Gyimóthy & Cai 2013; Xiang & Gretzel 2010).  
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Figure 8  – Leading Travel destination websites USA 2016 – Source: Statista 

As seen in figure 11, Tripadvisor is a present clear leader (Munar et al. 2013; O'Connor 2010). 

The interactive capacity of the platform enables users from virtually all over the globe to engage 

in a range of communicative activities such as information searches, rating products, and 

services, and initiating and participating in tourism-related discussions (Litvin et al.,2008; 

O'Connor 2010). 

 

Figure 9- Number of user reviews and opinions on TA 2014-2018– Source: Statista 

In August 2018, the number of unique visitors was 455 million, 702 million reviews and opinions, 

and the number of attractions was nearly 1 million (Statista 2017). With this scale of user’s 

reviews and opinions, Tripadvisor offered the most comprehensive platform for investigating 

tourism social media communities. 

According to Munar et al. (2013), TA aims to promote social interaction in the tourism industry, 

encouraging users to share their experiences with the various hospitality fields. This network 

has created a voting utility system regarding opinions already expressed. It can be seen as merit- 

and skill-based recognition of users and reference to other travelers concerning the expressed 

opinions. 
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Tripadvisor's architecture allows two primary forms of interactive user platforms, namely, 

reviews and discussion forums. Based on the information given by TA, new topics are posted 

every day to the TripAdvisor forums, and, further, more than 90 percent of questions posted to 

TripAdvisor's English-speaking forums are replied to by other travelers within 24 hours. TA's fact 

sheet explains that forums enable members to ask for and share their opinions, advice, and 

experiences in interactive discussions with the community.  

In particular, as seen in literature review,  there is a lack of research in tourism studies on how 

DMOs or attractions can use content reviews with a focus on improving management. 

The interaction between users on TripAdvisor generates an extensive database of attractions 

and tourist destinations, turning the site into a reference for information on the web. User 

reviews and opinions on TripAdvisor not only have quantitative elements (ratings, number of 

comments, etc.), but also qualitative information, allowing a DMO, for example, to identify what 

tourists are saying about the attractions and, in the event of receiving a negative rating, to 

correct their flaws more quickly and efficiently. For Torres (2013), if the reviews of these 

customers are processed efficiently, they can allow companies to improve the quality of their 

products and services, turning this information into a great asset for those who manage it. 

Extracting data from TripAdvisor is crucial, as it helps to capture constantly expanding user-

generated content, which can be used by the travel and hospitality industry. These contents, 

once processed, can serve to understand product/service evaluations, feedback, complaints, 

and be a source for brand monitoring, brand analysis, competition analysis, trend observation, 

and much more. 

The Tourist destination, with capital as a critical protagonist of the planned experience, lived 

and remembered, is not considered by TripAdvisor as a "valuable" subject. While it is true that 

we can review the attractions (“Torre de Belém”, “Mosteiro dos Jerónimos”, “Praça do 

Comércio”, “Tram 28” and “Castelo de S. Jorge”), as tourists cannot give a rating to Lisbon or 

Portugal.  

Therefore, it is pertinent to know the perception that tourists have of each of these attractions. 

And while these agencies use various studies and analyses to determine the positioning of their 

tourism brand, the fact remains that there are still few cases of DMOs using online reputation 

tools for what is said in forums, social networks, and CRW. 

2.3 -MONITORING SOCIAL MEDIA IN TOURISM 

The significant adoption of social media by individuals and organizations has resulted in a wealth 

of data and information that, when treated and analyzed, offers opportunities to be 

transformed into knowledge for organizations. That has resulted in the need for organizations 

to monitor the content, as well as the performance and results of strategies adopted in social 

media (He, Zha, & Li 2013). 

According to Zeng, Li, and Duan (2012), monitoring in social media is a strategy that aims to 

extract relevant information from unstructured content, requiring continuous monitoring and 

refinement of information to achieve good results. 

Paine (2011) points out that organizations invest resources in communicating and relating to 

consumers and states that social media monitoring provides opportunities to listen to 
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consumers and, consequently, to better communicate with them. Silva (2012) adds that 

monitoring on social media is the act of transforming data into knowledge. 

He et al. (2013) also claim that content mining in social media has become a critical need for 

organizations and aims for further analysis and also supports and facilitates decision- making. 

Concerning tourism, social media monitoring offers opportunities to identify tourists' opinions 

and feelings about destinations, services, and tourist attractions, monitor events, and everyday 

situations to identify weaknesses, strengths, opportunities and critical situations using this 

information to help in the management of the tourist destination, to define priorities, direct 

investments, create public policies, training courses, redefine marketing strategies and promote 

tourism, positioning, among others. All of this information collected and monitored in social 

media can be used strategically to achieve the stated objectives, identify what is working and 

define the next actions of marketing, planning, and management of the tourist destination. 

Although many tourism organizations already recognize the importance of using social media as 

a source of information, communication, and interaction, it is necessary to establish the needs 

and methods of use (Munar, 2012). 

Munar (2012) also presents that managers can monitor trends and perceptions of tourists about 

a particular tourist destination, identify the increase or decrease of their interest in relation to 

specific tourist attractions or types of tourism, identify positive reports and stories published by 

users about the destination to use them in advertising campaigns and marketing strategies and 

even identify and examine negative content for destination quality management. 

Besides, identifying negative and positive opinions in social media can help organizations in their 

strategies for change and strategy creation, users and customers to decide on the purchase of a 

product, service or destination for their vacations and government organizations to improve 

services, launch campaigns, among others (Ku & Chen, 2007).  

However, through the use of automated computing techniques for data mining, it is possible to 

develop applications to collect and extract useful information and knowledge from many textual 

documents - such as in social media - in order to subsidize the process decision of an 

organization (Silva, 2012; He et al., 2013). 

Among the techniques that have been investigated to extract information and knowledge in SM, 

data mining techniques and content analysis have been highlighted by providing resources to 

analyze large complex and dynamic textual data sets, characteristics of social media (Santos, 

2009). 

A point to highligh is that is  many organizations are not familiar with using and analyzing social 

media to gain competitive intelligence and further claim that organizations do not have enough 

knowledge of the data mining process in social media (Dai et al., 2011). 

2.4-SOCIAL MEDIA – CRW - TRIPADVISOR AS A SOURCE OF INFORMATION 

The broad adoption of social media by users has generated an exponential increase in data and 

content that offer, although not in full, opportunities to be treated and transformed into 

information and knowledge for organizations. 



17 
 

Schukert, Liu, and  Law  (2015) highlight the ease of use of online analysis by customers and thus 

generate a considerable mass of data. With websites and web 2.0, writing an online review is a 

more common way to comment on your satisfaction and rate a site or service. That way, 

expressing feelings or filing a complaint is just a click away. 

Young (2016) clarifies that “customer feedback data is simply too valuable and powerful to 

ignore”. 

Overall, Young (2016) says that once a company begins to leverage this information and use it 

to make crucial decisions, it can improve its performance, from customer retention to improved 

products and services. 

 For businesses, using information from an online customer review can provide: 

- Improvement of the decision-making – Several authors state that customer feedback data 

provides company managers with a wealth of pertinent information that can improve decision-

making (Chen at al.,2012; Devika & Surendran, 2013; Young,2016). For them, extracting data 

from shared information on SM has become an indispensable tool that helps managers of 

companies and organizations during the decision-making process. 

- Improvement of the company's staff - is the point that emphasizes Pantelidis (2010). 

- Support for strategic planning – Moe and  Schweidel  (2014) also see opportunity in using online 

opinions. For them, with this information, organizations can better discover valuable ideas 

hidden in social networks, and use them to nurture their strategy. 

Young (2016)  goes further and states that the analysis of this information can even highlight 

and show the possibility of opportunities and growth in some areas. 

As noted, online reviews/feedback provide a real and fast channel for assessing additional 

information on service delivery, quality, and customer demand, specifically from negative 

reviews with low ratings and grades, as they are more likely to reflect real problems. 

Given the fact that all competing organizations have equal chances of accessing the same 

information from their external environment, the company's ability to exploit intelligence seems 

to be more important than finding and collecting it (Rollins, Bellenger, & Jonhston, 2011). 

Although the information on TripAdvisor is available for everyone to read, it becomes impossible 

for a single person to read all of them. It is a big data problem, which can only be solved with 

the use of computational techniques, in addition to the use of data mining, text mining and 

sentiment analysis tools. 

2.5 - WHY NEGATIVE ONLINE REVIEWS? 

Bill Gates said: “Your most unhappy customers are your greatest source of learning” (Gates & 

Hemingway, 1999).                                    

If we follow this statement and choose the negative online reviews of Lisbon attractions for the 

data source and intelligence generation for DMO Visit Lisboa? 
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Faed and Forbes (2010) state there is a growing recognition that negative customer feedback 

can be regarded as a strategic tool in companies. 

Patel (2018) affirms that negative feedback is an opportunity to improve. It’s difficult to get 

customers to complete surveys. That means that getting voluntary feedback is invaluable. It can 

help you uncover and resolve key consumer pain points. This, in turn, can help a business grow. 

If you dig deeper into those reviews, you will be able to find actual business ideas. Customer 

complaints are a powerful tool to uncover internal problems on time and fix them before they 

go out of control. 

Krause (2018) corroborates this view and adds: “If you want to improve customer service, 

monitoring negative sentiment comments can inform the right solution to solve the problem.” 

Gin (2016) points out that there are several actions that every organization can take to extract 

as much value as possible from negative feedback: 

1. Create competitive intelligence - when reviewing evaluations, especially negative ones, the 

organization can get a sense of how its products and services compare to competitors and see 

if customers have similar complaints. It is important to also make a careful analysis of your 

competitors, as this can also help you determine your weaknesses and opportunities to win over 

your customers. 

2 - Benchmark performance in relation to the sector - Direct customer feedback can be a great 

way to shape the evolution of the products and services that the organization provides. And 

while big changes in products and services can be expensive, small changes in the service 

process can make a big difference in defining customer expectations and increasing satisfaction. 

3-Making customer service aware of frequent customer complaints and how to deal with them 

can be fundamental to retain customers. The formalization of this process, creating a simple 

cycle of training and feedback for the team, can have a significant impact on the image and the 

result of the business. 

4- Look for improvements. This is true for most data-driven companies, but as changes are made 

to your training, products, services and marketing, carefully monitor how it affects your 

comments. 

2.6 - DATA MINING CONCEPTS 

Data mining is a multidisciplinary subject and, therefore, the definitions about the term vary 

according to the field of action of the authors being: statistics, machine learning, artificial 

intelligence, pattern recognition, database and storage systems data retrieval, information 

retrieval, visualization, high-performance computing algorithms and several other application 

domains (Han, Kambe, & Pei, 2012). 

Barbier and Liu (2011) argue that the primary goal of data mining is to find new information in 

a data set that is hidden or latent and that data mining can help individuals and organizations 

better understand large data sets. 



19 
 

Furthermore, it is essential to emphasize that due to the emergence and advances of new 

information and communication technologies (ICT) such as the Internet and social media, data 

are currently represented in different types and formats such as unstructured, spatial and 

temporal, multimedia, text, web, social media, among others. Thus, data mining technologies 

were adapted to exploit this data (Rezende, 2003). That has resulted in several other new 

processes and variations of data mining, such as Text Mining, Web Mining, Web Content Mining, 

Social Media Mining, Opinion Mining, Sentiment Mining, among others. 

For the development of this dissertation, the focus will be Web Content Mining, Opinion Mining, 

Sentiment Mining, and Social Media Mining. 

Han et. al  (2012) define Web Content Mining as “the process of extracting knowledge of the 

content of documents and their metadata”. 

This approach mainly covers the extraction of knowledge of the content of textual documents 

(text pages, HTML or other formats, emails, mailing lists, user groups, blogs, etc.) as well as 

multimedia data mining on the Web (images, videos, and audios) using or not associated textual 

data (Santos 2009; Han et al.,  2012). 

According to Ahmad (2013), the data available on the web are classified as: structured, semi-

structured, and unstructured. In TripAdvisor reviews, we consider UNSTRUCTURED DATA. 

Unstructured data is the data in the form of standard text documents and is related to text 

mining, natural language processing, machine learning, and web-question-answering. 

The growing use of the Internet and social media has given researchers a new and growing 

source of data on human behavior, and every interaction of users like the use of search engines, 

media, and social networks generate data that allow them to document and analyze the online 

behavior of users. Therefore, the “social web” and content mining in social media began to 

attract and receive the attention of several researchers (Han et al., 2012; Kapland & Haelenlein, 

2010). 

Although most of this data remains inaccessible to researchers, some services such as Google, 

Twitter, Facebook, and others allow access to behavioral data through application programming 

interfaces (APIs) and other data such as publications or comments on commercial platforms are 

publicly available and can be retrieved by automated scripts (Jungheer & Jurgens, 2013). 

Malik and Rizvi (2011) state that there are several ways to extract digital information from social 

web sites, but these authors highlight three outstanding ways: web usage mining, semantic 

annotation, and web scraping. 

Devika and Surendran (2013) simply define web scraping as “web data extraction is the reverse 

process of page generation”. For Mitchell (2015), Web Scraping consists in developing and 

running a script to efficiently download web pages’ contents and to extract the needed 

information. 

The main advantage of this method is that it allows unstructured web data, usually in HTML 

format, to be transformed into a well-structured database that can be parsed (Vargiu & Urru, 

2012). 



20 
 

Marres and Weltevrede (2013)  detail that the scraping process consists of a series of steps in 

which the formatted data is extracted from an “informative mess.” In their words, “scraping is 

building a chain from the relatively unformed mass of online data to formatted information, and 

along that chain, relatively raw textual data is progressively removed from its useless elements 

and formatted to produce a dataset usable and well-ordered”. 

But, to extract information and make the analysis whether the opinion is positive, negative, or 

neutral, it is necessary to use Natural Language Processing (NLP) and Opinion Mining (OM) or 

Sentiment Analysis (SA). 

Kahn, Baharudin, Khan, and Ullah(2014) define Natural Language Processing(NPL) as a set of 

computational techniques for parsing natural language texts that allow computers to 

understand human language. From this, it is only natural that NLP has been used for social media 

analysis because it allows computers to process data, like unstructured texts collected from 

social media applications. Syeda, Shiraz, Naqvi, Parkinson, and Bamford (2017) state that NLP is 

characterized as a challenging problem in the area of extensive social data. Finally, while 

language is one of the most natural things for humans to learn, language ambiguity is what 

makes natural language processing a difficult problem for computers to master. 

Opinion Mining (OM) or Sentiment Analysis (SA) can be the core technology behind many social 

media monitoring systems and trend analysis applications. 

Ohbe, Ozono, and Shintani (2017) describe sentiment analysis as a class of NPL, text analysis, 

and statistics. The purpose of this analysis is to find the feeling of the text by classifying it as 

positive, negative, or neutral. In social media, sentiment analysis has several uses. For example, 

this analysis can be applied to identify the feelings of tourists about a specialized service, or even 

as it was met by the marketing and customer service department, which results in finding out if 

consumers are satisfied or dissatisfied with a product (Povoda, Burget, Dutta & Sengar, 2017).   

Khan et al.  (2014) reaffirm that sentiment analysis is not a perfect science, mainly when applied 

to the unstructured texts that predominate in social networks. Human language is complex, so 

teaching a machine to detect all the variations of language and communication mentioned 

above is a complicated process and is, even more, to be performed automatically. It is difficult 

to determine how it will evolve in the future, although there is a general belief that this analysis, 

using machine learning, artificial intelligence, and neural networks, goes beyond the 

classification of texts on a positive and negative one-dimensional scale. 

In recent years, the list of challenges related to the analysis of feelings has increased (subjectivity 

rating, a summary of opinions, recovery of opinions, etc.). Therefore, the implementation of 

sentiment analysis techniques to extract sources of opinion is crucial to understand the failures 

and assets of the tourist service. Through web platforms like TripAdvisor, tourists can openly 

describe their experiences and thus affect a company's viability. Consequently, the 

implementation of sentiment analysis techniques to extract sources of opinion is crucial to 

understand the failures and assets of the tourist service. 
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2.7- SOCIAL MEDIA MINING (SMM) 

WEB 2.0 and social media make available an avalanche of data for companies and organizations. 

What may be there is a lack of ability to extract them, but those who have them are collecting 

data at a rate never found before through web sources. 

Hebert, Anderson, Olinsky, and Hardin (2014) define Social Media Mining SMM as “the process 

of extracting useful or actionable knowledge from this user-generated data on a large scale in 

the field of social media”. Thus, for them SMM “is the process of representing, analyzing and 

extracting actionable patterns from social media data”. These authors claim that the media 

mining process is at the point of convergence between social media and big data. 

Crooks, Croitoru, Stefanidi, and Radzikowski (2012) show that Mining in Social Media consists of 

three general steps: i) extraction of data from social media providers and servers through 

application programming interfaces (APIs); and iii) data analysis to extract information of 

interest. 

Although many tools and sites allow the execution of SMM phases, in most cases, the demand 

for strategic information has a high degree of specificity that the generalization of the available 

standards is not enough, requiring the development of customized systems (Crooks et al., 2012). 

To fulfilment this demand, SMM’s techniques and tools for collecting, sharing, investigating and 

viewing social media data have been widely explored and developed (Tang & Yang, 2012).  

Given the enormous volume and dynamic nature of content in continuously generated social 

media, automatically collecting and identifying emerging themes of interest amid the vibration 

of constant conversations and interactions between users is pointed out by several authors as 

one of the main challenges in the SMM process. 

Paine (2011) also emphasizes content collection as the most challenging phase of the process 

since SMM's services and software do not guarantee data integrity. 

The main characteristics of social media data are large volume, dynamic and noisy (Zeng et al., 

2012). This type of data is inherently noisy and the use of emoticons, of multiple meaning, 

without a strong semantic connection, typos, spelling errors and abbreviations, as well as recent 

slang are the most common noises and often represent unwanted data items.  As a result, Zeng 

el al.(2012) claim that this content requires continuous monitoring and refinement of 

information to achieve good results. 

These types of noise often cause the algorithms to lose patterns in the data, and may not reflect 

the accuracy of the extracted data. 

It is worth mentioning that obtaining relevant content and information on social media is a 

major research challenge (Dai et al.,2011)  and requires filtering, semantic grouping of content, 

markup and content mining techniques (Dai et al., 2011). In the same way, Coutinho, Lang, & 

Mitschang (2013) highlight the challenge of monitored terms presenting multiple meanings, 

which makes a challenge to recover unwanted messages for analysis, and essential terms for 

the analysis may be lost to the large data set. 
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So, the task of finding relevant information on the Internet is tough and often becomes a 

frustrating experience due to the heterogeneity and lack of data structure of the Web and social 

media. 

Zafarani, Abbasi, and  Liu  (2014) warn differently from other authors about the system that will 

perform the SMM - it is called the “noise removal fallacy.” For a successful data-mining exercise 

is vital to do extensive data preprocessing and noise removal. At this point, they warn that blind 

noise removal does not occur as it can make the problem indicated in the big data paradox 

worse, because removal can also eliminate valuable information. 

2.8 - DESTINATION MANAGEMENT ORGANIZATION 

The World Tourism Organization (UNWTO 2016) defines DMO as the leading organizational 

entity which may encompass the various authorities, stakeholders, and professionals and 

facilitates tourism sector partnerships towards a collective destination vision. 

Destination Management Organizations (DMO) are responsible for the planning, management, 

promotion, and development of the tourist activity in their respective destinations. For them, is 

fundamental that know about the environment, clients, and respective reviews about 

attractions at the destination.  

A study conducted by Parra-López et al. (2011) suggests that it is of great importance for a DMO 

to pay close attention to their clients’ needs for information in the social media so that they can 

respond actively and favor the perception of functional benefits.  

It is also crucial for DMO the recognition tourists' images of a tourist destination identify their 

strengths and weaknesses (Chen & Uysal, 2002) and to position them efficiently in the market 

(Pike & Ryan, 2004).  

Through surveys or by monitoring and researching a CRW social media TripAdvisor, as proposed 

in this thesis, a DMO can know what customers are thinking and pointing out tourist destinations 

and even monitor the main competitors of tourist destinations. 

Research reveals that DMOs use social media primarily in the areas of marketing, management, 

communication, and product distribution (Leung, Law, van Hoof, & Buhalis, 2013; Leung et al., 

2013). Indeed, several studies focusing on different tourism contexts (e.g., hotels, airlines, travel 

agencies) have found that social media is actively used as a marketing tool in the industry 

(Denizci Guillet et al., 2016; Leung et al., 2013).   

However, many organizations simply transfer their existing marketing activities onto social 

media platforms, rather than exploiting the transformational potential of social media. Denizci 

Guillet et al. (2016) found that most of them utilized social media mainly for disseminating and 

receiving information. A similar pattern of results was found for travel agencies, airlines (Leung 

et al., 2013) and DMOs (Hays et al., 2013) indicating that tourism organizations, regardless of 

their type, are still in the experimental stage of utilizing social media as a marketing tool.  

In this way, the DMOs use the information for digital marketing and not to generate information 

and, consequently, strategic intelligence. And in this regard the proposal of this thesis - to 

generate actionable information from social media data. 
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3. METHODOLOGY 

This topic highlights the methodology on which this study was based to collect, organize, and 

analyze data, as well as the presentation of research results and the justification for this 

approach.  In line with this, the chapter points out how the research approaches and methods 

chosen were used to help solve research questions and answer them. So, the research strategy 

is an information-gathering approach to accurately answer the research question. 

First, we will be following the principle of that phrase - according to IBM Big Data expert Jeff 

Jonas: you need to let the data “talk to you” (Mayer-Schönberger & Cukier, 2017).   

Data is an important part of the research to do the analysis. Primary and secondary data were 

of equal importance for the study. According to Social Media Research Group (2016), mining 

social media can provide qualitative (sentiment, opinion)  data, and quantitive (frequency of 

words, number of reviews) data. D'Orazio (2013) goes further and highlights that social media 

can be considered "qualitative data on a quantitative scale". 

As seen, our proposal is, based on content reviews on TripAdvisor, to generate intelligence for 

a DMO. Pan and Li (2011) reinforce our proposal by making two important statements - the 

review of customer content that is available on travel blogs can be richer in content and is more 

detailed than based on questionnaire surveys. For them, moreover, using interview methods 

may not capture emotional experiences correctly. 

The capacity to discover information hidden in these huge data and act on that knowledge is 

increasingly important nowadays (Kantardzic, 2011). Consequently, new forms to collect and 

analyze data should be considered. Text mining is an example and will be used in this work. 

Therefore, the study will be based on a combination of quantitative and qualitative analytical 

research methods, focused on textual analysis of TripAdvisor content where the UGC is 

displayed, using a combination of automatic coding methods that support data mining and meet 

the objectives of the research. 

Because it is a free program and with a large number of packages available, both for mining and 

sentiment analysis, R will be used. 

The research will be based on the use of the R language to monitor the site Tripadvisor - Lisbon 

attractions. 

In Chapter 5  we will detail the method and the code will be available in the Appendix II. 
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4-SOCIAL MEDIA INTELLIGENCE AND PROPOSAL PROCESS 

The term Social Media Intelligence was coined by Omand, Bartlell, and Miller at Demos, in 

London 2012. They created the term for the Centre of Analysis of Social Media (CASM). They 

defined Social Media Intelligence (SOCMINT) as “intelligence derived from social media”. 

For Norton-Taylor (2012) Social Media Intelligence (SOCMINT)  is the process of identification, 

validation, collection, and analyzing data and information from social media using intrusive and 

non-intrusive methods, with the aim of developing products.  The purpose of SOCMINT is to be 

able to reduce the “unknown” that comes within any decision- making.  

Zeng et al. (2010) identified several key challenges currently face social media intelligence. First, 

social media intelligence research calls for highly integrated multidisciplinary research.  Another 

issue is social media intelligence research requires well-articulated and clearly defined 

performance measures because much of it must be conducted in application settings with an 

aim to support decisions. Finally, from a pure modeling and decision-making perspective, social 

media intelligence represents a unique class of problems with the need for efficient data-driven, 

dynamic decision-making, uncertainty and subjective risk analysis, and modeling and 

optimization over large dynamic networks. 

Ross, McGowan, and Styge (2012) pointed out that managers should consider SOCMINT 

activities as a formal regular business process to empowers themselves to anticipate and face 

future challenges, enhance their capability and ability to maintain a competitive edge over their 

competitors. 

Chen et al. (2012) and He et al. (2013) agree and state that social media competitive intelligence 

can help organizations to realize the strengths and weaknesses of their products and services, 

enhance business effectiveness, and to improve customer satisfaction. 

Starting from the data-information-intelligence-knowledge, the SOCMINT framework can be 

created. First, data with context equals information, information with meaning can be 

intelligence, and intelligence with experience generates knowledge. It reflects the qualitative 

changes from data to knowledge. Intelligence and/or knowledge are the basis for making 

decisions, and they must be a useful format to meet strategic needs for enterprises. 

To acquire data from TripAdvisor, web scraping, and social media mining will be carried out. 

After extraction via R language, opinion mining and sentiment analysis will be performed. At 

that moment, we will have the information. 

    

Figure 10 – Cycle Data – Information – Intelligence - Knowledge 
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For the transition from information to intelligence and knowledge, the presence of the 

intelligence analyst is still necessary. Analysis- the result of the action of the analyst – is an 

essential step, which includes analysis of collected data to identify patterns, relationships, or 

anomalies in it. It involves interpreting and translating the collected raw data into “actionable 

intelligence” (Miller, 2001). Several authors affirm that this is where “true” intelligence is 

created, that is converting information into usable intelligence on which strategic and tactical 

decisions may be made (Gilad, 2003; Kahaner, 1996; Prescott, Miller & Professionals,2001; 

Herring, 1999). 

Although technology plays a vital role in SOCMINT, according to Bose (2008) non-computerized 

methods are still required to transform the data into actionable intelligence. Many analysis 

software packages can produce graphs and conceptual models, but in the end, human judgment 

is needed to put these analysis products in meaningful contexts and to create actionable 

intelligence. Wurman (2001) shows the importance of contextualizing information, by stating 

that a fact is only understood within the context of an idea and that due to its subjectivity, there 

is no way to achieve a precision absolute in terms of information. So, for now, only the human 

analyst can do this, despite all the advances in Artificial Intelligence. 

Töllinen et al. (2012) find that traditional person-controlled research is required to create a deep 

understanding of social media data.  

To generate the complete Social Media Intelligence Process, it is important to use some 

concepts from Competitive Intelligence. 

As seen, to use and make sense of the information obtained from social media sites, companies 

need to analyze it and turn it into actionable insights, that is intelligence (Tej Adidam,  Banerjee, 

& Shukla, 2012; Dishman & Calof, 2008). Tej Adidam et al. (2012) also observe that the analysis 

of information to convert it into the right type of intelligence is one of the most challenging and 

critical in this process. Dai et al. (2011) emphasize that to gain competitive power, to be 

effective, in the rapid analysis of social media content is extremely important. 

To facilitate this process of identifying needs, Herring (1999) suggests the use of the KIT (Key 

Intelligence Topics) or Fundamental Topics of Intelligence process. This process is part of the 

first phase of the Intelligence cycle, Planning, being a facilitating guide in the first moment of 

implantation of CI in a company. 

The process, through questionnaires and interviews, helps to identify and prioritize the 

intelligence needs of the organization's managers. 

Thus, for the use of social networks as a source of Competitive Intelligence, the process can be 

started with the KIT. 

The results of KIT interviews generate a focus on conducting the CI's operation in the 

organization, and allows those responsible to determine the resources needed to meet the 

company's fundamental intelligence needs. 

Herring (1999) suggests framing KIT questionnaires into three functional categories: 1)Strategic 

decisions and actions; 2) Early Warning Topics; 3)Description of the main actors. 
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Adapting the KIT suggested by Herring (1999) “Decisions and strategic actions” we can have the 

following topics:- Which tourist attraction to monitor? What do they say about the attraction?  

What keywords represent those UGC? 

The KIT functional category “Early Warning Topics” provides protection against surprises or 

threats, but can also generate opportunities. It also generates the possibility of making 

contingency plans, which can be implemented when the fears and concerns gathered in the 

questionnaires materialize. 

The KIT functional category “Description of the Main Actors” reflects the managerial need to 

know the main players in the market (customers, suppliers, and mainly competitors), generating 

a frame of reference and profile for each of them. 

As topics in the KIT “Description of the Main Actors”, supported by Herring's proposal (1999), 

the organization has the focus of study: 

-Identify new customers, needs and interests and how competitors are serving through 

TripAdvisor UGC  posts; 

-Opinions, attitudes, and perceptions of customers and competitors about the value of the 

tourist attractions in Lisbon.  

Cook and Cook (2000) proposed a model for the implementation of a Competitive Intelligence 

project, facilitated with the use of KITs in the formulation of questions. Based on this proposal, 

it is possible to integrate the question of information search in social media as a source of 

Competitive Intelligence - SOCMINT. 

 

Figure 11 -  SOCIAL MEDIA INTELLIGENCE CYCLE FOR VISIT LISBON-SOCMINT  
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5- MINING TRIPADVISOR 

Using the SOCMINT framework applied to the present work,  the steps proposed by him were 

followed. 

To choose the scraping focus, we used KIT techniques. According to the results of the 

questionnaire and how the focus is on the DMO Visit Lisboa, we searched the content reviews 

on TripAdvisor related to Attractions. The choice of attractions was given by the number of 

ratings / TripAdvisor ranking/public and not private attraction. So, we scrapped the UGCs linked 

to the following tourist attractions in Lisboa: “TORRE DE BELÉM”- Belém Tower, “MOSTEIRO 

DOS JERÓNIMOS”-Jerónimos Monastery,  “PRAÇA DO COMÉRCIO”- Commerce Square, 

“ELÉCTRICO 28”- Tram28, and “CASTELO DE SÃO JORGE”-S. George  Castle. 

It was made a comparison between Jun / Jul / Aug 18 and the entire review period on TripAdvisor 

– so it was chosen the form every period because of its broader scope. 

This kind of semiautomated analysis, according to Költringer & Dickinger (2015), comes from the 

domains of data mining and natural language processing and includes four steps: (1) data 

preparation and preprocessing, (2) keyword analysis (meaningful words), (3) sentiment analysis, 

and (4) information enhancement.  

For scrapping, mining, cleaning and analyzing the data from TripAdvisor we use “R Language” 

and its package . 

All English language-based reviews collected from TripAdvisor were pre-processed using two 

basic procedures: tokenization and stop words removal. Tokenization is a form of lexical analysis 

whereby a stream of text is broken up into words, phrases, or other meaningful elements called 

tokens. In this study, each review was broken up into a vector of unigram-based tokens.  Stop 

words are words that do not contribute to the meanings of the text and are usually filtered out 

before the processing of natural language data.  

The unsupervised approach to SM analysis does not require prior training to classify the data, as 

only input data (X) is used. The lexicon-based method is a popular unsupervised method for 

determining the polarity and semantic orientation of SM statements that involves predefining 

lexicons of positive and negative words and phrases (Taboada, Brooke, Tofiloski, Voll,  & Stede, 

2011; Turney,2001). The vast majority of the hospitality and tourism studies apply an 

unsupervised approach of sentiment identification to investigate attributes and sentiments of 

SM data. 

Lexicon-based was chosen as a technique to be used to automatically classify texts. It is based 

on their sentiment approaches consist in calculating the polarity of a text by accounting the 

semantic polarity of words or phrases included in the document (Taboada et al., 2011). They 

require a dictionary of words annotated with sentiment-polarity.  

As the objective of this work is to generate intelligence and negative reviews were chosen as a 

focus, the choice of sentiment emotion lexicon was crucial. Thus, after analyzing several lexicon 

sentiment applications, the ‘NRC Sentiment and Emotion Lexicons’ was chosen. This lexicon 

categorizes words in a binary fashion (“yes”/“no”) into categories of  emotions, like positive, 

negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.  

https://www.sciencedirect.com/science/article/pii/S0952197618302252?via%3Dihub#b57
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According to the National Research Council Canada - NRCC (2019) the NRC Sentiment and 

Emotion Lexicons is a collection of seven lexicons, among which stand out: 

- Word-Emotion Association (with more than 14,000 unigrams/words and 25,000-word senses), 

- Hashtag Emotion (more than 16,000 unigrams /words),  

- Emoticon (more than  62,000 unigrams 677,000 bigrams), 

- Emoticon Affirmative Context and Emoticon Negated Context, with more than 45.000 unigrams 

and 240.000  bigrams in Affirmative contexts and more than 9.00 unigrams and 34.000 bigrams 

in Negative Contexts.  

These lexicons were developed with a wide range of applications in mind and can be used in 

various contexts, including what we will use, which is  Sentiment Analysis. Each lexicon has a list 

of words and their associations with certain categories of interest, such as emotions (joy, 

sadness, fear, etc.), feelings (positive and negative), or even colors related to the feelings. 

The NRC gives the general  sentiment  of each sentence and the result of the analysis can score 

a real value between -∞ (most negative) to ∞ (most positive). 
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6- RESULTS- REVIEWS  FROM TRIPADVISOR  

In this work was performed text analysis of the publicly available review data posted on Trip 

Advisor for five principal tourist attraction  of  Lisbon Portugal. For testing purposes, we carried 

out two UGC data mining: one taking into account the months of June / July and August and the 

other taking into account the first entry existing in each attraction until 31st August 2018. For 

the purposes of results, we present the second option . 

ATTRACTIONS REVIEWS SCRAPED 

CASTELO DE S. JORGE              8747 

MOSTEIRO  DOS 

JERÓNIMOS 

             7075 

PRAÇA DO COMÉRCIO              3155 

TORRE DE BELÉM               3052  

ELÉCTRICO 28               6192 

 

Table 2 – Attractions and Reviews Scrapped 

It was scraped  a total of  28221 partial entries of reviews from TripAdvisor’s website  in english 

using R and analyzed them.  

Such volume of unstructured textual data is tough to acquire in a tidy format. In this project, we 

scraped the reviews using the Selector Gadget and the Rvest package. The initial starting points 

are  the following  5 URLs : 

Castelo de São Jorge  ‘https://www.tripadvisor.in/Attraction_Review-g189158-d195107-

Reviews-Castelo_de_S_Jorge-Lisbon_Lisbon_District_Central_Portugal.html’ ;  Mosteiro dos 

Jerónimos ‘https://www.tripadvisor.in/Attraction_Review-g189158-d195318-Reviews-

Mosteiro_dos_Jeronimos-Lisbon_Lisbon_District_Central_Portugal.html’; Praça do Comércio 

https://www.tripadvisor.in/Attraction_Review-g189158-d199878-Reviews-

Praca_do_Comercio_Terreiro_do_Paco-Lisbon_Lisbon_District_Central_Portugal.html’; Torre 

de Belém ‘https://www.tripadvisor.in/Attraction_Review-g189158-d524074-Reviews-

Torre_de_Belem-Lisbon_Lisbon_District_Central_Portugal.html’ and Eléctrico 28  

‘https://www.tripadvisor.in/Attraction_Review-g189158-d262792-Reviews-Tram_28-

Lisbon_Lisbon_District_Central_Portugal.html. 

To carry out the work, we did the scraping and data mining of each of the attractions separately. 

We applied the following script to everyone. 

Using Selector Gadget extension on chrome, we obtained the CSS selector for the partial entries 

of the reviews. Using the Rvest package in R, we scraped the textual information contained 

within the corresponding HTML tags in this URL, which only contained 5 reviews. 

URL <- 'https://www.tripadvisor.in/Attraction_Review-g189158-d195107- 

Reviews-Castelo_de_S_Jorge-Lisbon_Lisbon_District_Central_Portugal.html' 

html <- read_html(url) 

https://www.tripadvisor.in/Attraction_Review-g189158-d195107-Reviews-Castelo_de_S_Jorge-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d195107-Reviews-Castelo_de_S_Jorge-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d195318-Reviews-Mosteiro_dos_Jeronimos-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d195318-Reviews-Mosteiro_dos_Jeronimos-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d199878-Reviews-Praca_do_Comercio_Terreiro_do_Paco-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d199878-Reviews-Praca_do_Comercio_Terreiro_do_Paco-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d524074-Reviews-Torre_de_Belem-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d524074-Reviews-Torre_de_Belem-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d262792-Reviews-Tram_28-Lisbon_Lisbon_District_Central_Portugal.html
https://www.tripadvisor.in/Attraction_Review-g189158-d262792-Reviews-Tram_28-Lisbon_Lisbon_District_Central_Portugal.html
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review_count<-html%>% 

  html_nodes('.pagination-details')%>% 

  html_text() 

review_count <- strsplit(review_count,'of')[[1]][2] 

review_count <- gsub('reviews','',review_count) 

review_count <- as.numeric(gsub(',','',review_count)) 

reviews<-html%>% 

  html_nodes('.partial_entry')%>% 

  html_text() 

num <- seq(5,review_count,5) 

The next challenge was to scrape all reviews in a programmable and reproducible manner 

without opening each URL explicitly. After some investigation of the various URLs of the review 

pages, we  identified a pattern. The number following the characters “OR” in the URL increments 

by 5 each time we move from page n to page n+1. Using this information – it was able to write 

code that loops over all pages and scrape all available reviews. 

for (i in 1:length(num)){ 

  revurl <- paste0('https://www.tripadvisor.in/Attraction_Review-g189158-d195107-Reviews- 

                   or',num[i],'-Castelo_de_S_Jorge-Lisbon_Lisbon_District_Central_Portugal.html') 

  html<- read_html(revurl) 

  reviewed <- html%>% 

    html_nodes('.partial_entry')%>% 

    html_text() 

  reviews <- c(reviews,reviewed) } 

write.csv(data.frame(reviews=reviews),'reviews2.csv',row.names = F) 

Once the content reviews of each attraction were extracted, the packages removed stop words 

and other characters without evaluated significance. 

From that moment, through the TidyText and Syuzhet packages,   we used the lexcom NRC to 

perform the Sentiment Analysis. 

With the extraction and treatment of the data, we obtained the content reviews ratings and 

made the manual verification of the results. From each attraction, we remove 20 ratings and 

check if the result of the sentiment analysis was correct. Here are some examples: 

Examples of reviews and classification  

Review sentiment 

“We went on a tramway with two young children but very disappointed Too many people and 

we couldnt see anything so waste of time in my opinion We will try different one tomorrow.” 

-1.462 

“I would have probably liked the tram ride very much but unfortunately our tram broke down 

on the second stop Which meant we either had to walk back and wait in line again or to wait 

for another tram at this tram stop and to...” 

-1.191 

“A great place with great views but 8.50 is a bit too much. Take the time to explore the small 

Moorish streets around the castle” 

-0.8164 
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“Wasnt worth the money. Nice view but thats it I wish I would have spent this time doing 

something worthwhile. It was a barren castle that you couldnt get out of Nothing to see.” 

-0.8095 

“Great views of Lisbon Really beautiful surroundings all very well maintained Well worth a visit 

highly recommended” 

 2.023 

“Stunning monastery queues but well worth the wait stunning from the outside and even more 

inside well worth a visit..” 

 1.984 

“Brilliant visit to castle getting there on hop on hop off bus and tram back to the city centre. 

Very interesting excellent well informed guide made visit really interesting including walking 

the castle walls Need a dry day or very slippery underfoot cafes and shops inside castle and 

several... 

 1.595 

“Lovely place lots of variety different shopsgreat atmosphere we really enjoyed exploring great 

architecture really enjoyed ourselves lots to see...” 

___________________________________________________________________________ 

 1.561 

Continuing with the work of analysis, we researched the frequency of words and also the 

bigrams - which could indicate points of attention. 

To check the programming result, viewing results such as word cloud or frequency of 

negative/positive words can show if there are any discrepant results. In this way, a visualization 

is a powerful tool for investigation, even when working with unstructured data. Helps to detect 

anomalies in the analysis. If a positive word appears in the negative word cloud, you can revisit 

the code and correct it. And it is also a quick attention tool that facilitates the performance of 

the intelligence/data analyst. 

Commonly occurring words in Negative Reviews 

 

Figure  12 – Word of Clouds – Words in Negative Reviews- Castelo de São Jorge 

With the creation of a cloud of common negative words that occur in Castelo de S. Jorge's 

criticisms, some inferences can be made immediately. What can be seen is that many people 

found the attraction crowded, expensive, disappointing, irregular, steep and with difficult 

access. 
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What are the most common negative bigrams? 

 

Figure 13  – Word of Cloud – Most Common Negative Bigrams- Castelo de São Jorge 

According to the proposed methodology, actionable information would be created from content 

negative reviews, that is, the results presented were focused on problems and complaints. 

From this extracted information, an intelligence analyst could supply the management of 

suggestions for actions - aiming to improve the quality of service and the attractiveness of the 

tourist spot. 

In order to facilitate the analyst's work and also to visually show the predominance of feelings 

present in content reviews, we created two graphics – to be used in a possible dashboard: 

- A- the first shows the predominant score of feelings - On the X- axis we have the emotions and 

on the Y- axis the weighted average of the strength of each emotion (from 0 to 8  – according to 

the values returned by the NRC);  

- B- the second shows us the density of feeling present in the set of content reviews, which can 

be positive or negative. 

 

Figure 14 -       A- Sentiment Score         B- Sentiment X Density - Castelo de S. Jorge 

A trained analyst will be able to understand the indication of sentiments  (positive, negative or 

neutral) and the predominance and strength of the associated emotions.  
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To facilitate the work of the analyst, we first suggest that all the so-called “negative emotions” 

as well as the negative sentiment  have the graphic representation in red - providing a visual 

sign of the situation. 

We suggest the following workflow for the analyst: 

 

 

 

 

Figure 15  – Workflow for the intelligence analyst. 

In the following topics we will have a simulation of the analysis of the work to be done from the 

data collected. 

For the figure 14 -as seen above the overall sentiment of this attraction is skewed towards the 

positive side with the mean sentiment occuring at around 0.2. This means that the sentiment of 

a majority of reviews has been on a positive side. 

6.1- Analysis of the data obtained and generation of intelligence - information in action 

6.1.1-“ Castelo de S. Jorge” 

Part of the data regarding the Castelo de São Jorge was presented in the previous section, but 

served, together with the reviews with more negative notes and more frequently, to support 

the creation of actionable information. 

Examples of reviews classified as negative 

Review sentiment 

“Beautiful castle but too many tourists Take your time for the walls its getting really 

jammed during the day.” 

-1.032 

“A great place with great views but 8.50 is a bit too much. Take the time to explore the 

small Moorish streets around the castle” 

-0.8164 

“Wasnt worth the money. Nice view but thats it I wish I would have spent this time doing 

something worthwhile. It was a barren castle that you couldnt get out of Nothing to see.” 

-0.8095 

“Its worth going there to see the views of Lisbon and it has a good atmosphere. However 

I wish residents in Portugal could go free as we stop taking our visitors there as we have 

to pay every time.Surely enough money would be made more.” 

-0.7467 

___________________________________________________________________________ 

Possible Actiontable Information 

While being busy and crowded means that lots of people are visiting the castle and that it is very 

popular, it also means that sometimes it could be too crowded for anyone to enjoy it properly. 

So based on this text analysis, the most significant insight that we can take away is that the 

management needs to implement some crowd control strategies such as setting a limit on the 

Choose a tourist 

attraction and review 

period and runs the R 

code 

 

Verify  

WordClouds of 

words, bigramas  

and charts 

Check the worst 

feeling ratings and 

identifies reviews 

Suggest actions to 
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maximum number of people who can enter the monastery at any given point of time. Similarly, 

tickets could be sold in advance to get an estimate of the footfalls on any given day. 

Another key insight that we gained was that people found the visit to this castle expensive. This 

could be rectified by offering discounts on ticket sales from time to time. Similarly, a flat discount 

can be given to those books their tickets in advance and lastly, maybe the ticket to the 

monastery can be included in some sort of combinatory day pass that will allow tourists to visit 

other places as well. 

Other critical bigrams include uneven steps, people getting lost, and a steep climb. All of these 

can be addressed by taking the appropriate action, such as implementing tour guides and 

signposts while also renovating the pathway to the castle. 

6.1.2- “Mosteiro dos Jerónimos” 

 

Figure 16 -              A- Sentiment Score                               B - Sentiment X Density 

As seen above, the overall sentiment of this attraction is skewed towards the positive side, with 

the mean sentiment occurring at around 0.3. This means that the sentiment of a majority of 

reviews has been on a positive side. 

Examples of reviews classified as negative 

Review sentiment 

“Very interesting visit but would be difficult for those with mobility issues due to the 

uneven stone pavements..” 

-1.251 

“Lovely building but hopeless crowding Pity but go somewhere else there are plenty of 

old churches in Lisbon…” 

-0.7953 

“A must do if in Lisbon.Must add to your list of gotta see The size alone of the Monastery 

amazed us Could have spent more time looking but crowded…” 

-0.7929 

“Architecturally this is stunning but didnt find it a particularly comfy ride too many 

overtones of too many people who suffered guess Wouldn’t rush back here on a return 

visit to Lisbon there is plenty more to see... 

 _______________________________________________________________________ 

-0.7139 
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Commonly occurring words and bigrams  in Negative Reviews 

              

Figure17   A-  Word of Clouds – Words                          B - Negative  Bigrams  

Here it can be seen a word cloud of the common negative words occurring in the reviews for 

Mosteiro dos Jeronimos. Immediately what can be seen is that plenty of people found the 

attraction crowded, expensive, disappointing, confusing, and imposing. 

  What descriptive monograms are the most commonly used in all reviews? 

 

Figure 18 - Word’s frequency 

Possible Actiontable Information 

Based on this text analysis, the most significant insight that we can take away is that the 

management needs to implement some crowd control strategies such as setting a limit on the 

maximum number of people who can enter the monastery at any given point of time. Similarly, 

tickets could be sold in advance to get an estimate of the footfalls on any given day. 

Another key insight that we gained was that people found the visit to this monastery expensive. 

This could be rectified by offering discounts on ticket sales from time to time. Similarly, a flat 

discount can be given to those book their tickets in advance and lastly, maybe the ticket to the 
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monastery can be included in some sort of combinatory day pass that will allow tourists to visit 

other places as well. 

 6.1.3- “Praça do Comércio”  

 

Figure 19 -         A- Sentiment Score                                   B- Sentiment X Density 

As seen above the overall sentiment of this attraction is skewed towards the positive side with 

the mean sentiment occurring at around 0.15. This means that the sentiment of a majority of 

reviews has been on a positive side. 

Examples of reviews classified as negative 

Review sentiment 

“Too many hawkers of useless hype goodies for kids too many pushy waiters almost 

shoving you on a chair in their restaurant That being said the praca offers you a great 

walk and view on the Tagus estuary.” 

-0.8225 

“But spoiled but cheap eateries and down scale shops a real pity that it has not been 

maintained in the tradition We passed by and then avoided the area.” 

-0.7428 

“This area is loaded with tourists bakeries and restaurants Lots of touts trying to get you 

in their establishments We never eat on this street as per the reviews most places are 

below average and are tourist traps.” 

-0.6327 

“This area of the city is beautiful but attracts too many tourists So youd probably want 

to get out of there ASAP Especially annoying are those drug dealers that try to offer their 

stuff to you on every corner The best part of it all...” 

-0.6081 

__________________________________________________________________ 

 

 

 

 

 

 

 



37 
 

Commonly occurring words and bigrams  Negative Reviews 

              

Figure 20     A-  Word of Clouds – Words                          B - Negative  Bigrams  

The figures give us quickly the following information: what can be seen is that some people 

described their experience as negative, expensive, imposing, difficult. 

What descriptive monograms are the most commonly used in all reviews? 

 

Figure 21   -  Word’s frequency 

Possible Actiontable Information 

The biggest insight that we can take away is that the management needs to implement some 

crowd control strategies. Another key insight that we gained was that people found the visit to 

this square expensive. Similarly, plenty of tourists described the attraction as a tourist trap. 

These kinds of things can be addressed by taking appropriate measures. The cafes and 

restaurants have been described as expensive as well. 
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6.1.4-  “Torre de Belém”  

 

Figure 22 -     A- Sentiment Score         B- Sentiment X Density 

As seen above the overall sentiment of this attraction is skewed towards the positive side with 

the mean sentiment occuring at around 0.2. This means that the sentiment of a majority of 

reviews has been on a positive side. 

Examples of reviews classified as negative 

Review sentiment 

“It is a beholding site but the vendors were very annoying and quite aggressive in trying 

to sell their products with you Hope the municipality will do something about these 

aggressive type of selling as it is quite alarming.” 

-1.175 

“Its very beautiful but unfortunately there were way too many people on the line as you 

can see on my picture so we didnt get to see what inside the tower if you plan to go in to 

the tower try to arrive earlier.” 

-1.048 

“It has a long line and the stairs too narrow and disordered to go up and down they have 

something like traffic lights but not properly working need better sync There are too 

many places better in Lisboa.” 

-0.9916 

“ much crowded... Oh My God!!!! Also there was a lot of crowd to catch the bus We 

waited 1 hour to get into our bus..” 
-0.947 

___________________________________________________________________ 
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Commonly occurring words and bigrams in Negative Reviews 

  

Figure 23 -            A-  Word of Clouds – Words                          B - Negative  Bigrams  

The figure 23 A and B  give us quickly the following information: what can be seen is that plenty 

of people found the attraction crowded, expensive, cramped, steep, and difficult. 

What descriptive monograms are the most commonly used in all reviews? 

 

Figure 24 -   Word’s frequency 

Possible Actiontable Information 

Plenty of reviews suggest that the tourist shouldn’t be bothered about going inside this 

attraction and that it may be a waste of time. Similarly, crowd control also seems like a 

significant problem. Another key insight that we gained was that people found the visit to this 

attraction is too expensive. This could be rectified by offering discounts on ticket sales from time 

to time. Similarly, a flat discount can be given to those book their tickets in advance and lastly 
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maybe the ticket to the tower can be included in some sort of combinatory day pass that will 

allow tourists to visit other places as well. Another detailed point was the “limited time” . 

Because it is a small traction, it could in summer have the time extended to 2 hours, because it 

would allow a beautiful view of the Tagus at sunset. 

 

6.1.5 - Tram 28 /Eléctrico 28 

 

Figure 25  -         A- Sentiment Score                                                        B- Sentiment X Density 

As seen above, the overall sentiment of this attraction is skewed towards the positive side with 

the mean sentiment occurring at around 0.1. This means that the sentiment of a majority of 

reviews has been on a positive side. 

   

Examples of reviews classified as negative 

Review Sentiment 

“We went on a tramway with two young children but very disappointed Too many people 

and we couldnt see anything so waste of time in my opinion We will try different one 

tomorrow.” 

-1.462 

“I would have probably liked the tram ride very much but unfortunately our tram broke 

down on the second stop Which meant we either had to walk back and wait in line again 

or to wait for another tram at this tram stop and to...” 

-1.191 

“Iconic and charming but simply too crowded Something should change I wish I could 

have come at dawn but impossible on this stopover,” 

-1.152 

“We returned from castle to city centre extremely busy, but one of experiences you 

should have while in Lisbon but word of caution jam packed seats full standing room only 

for a very bumpy ride warned by some Lisbon residents on tram 28 to watch...” 

-0.9912 

__________________________________________________________________ 
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Commonly occurring words and bigrams in  Negative Reviews 

            

Figure 26  -       A-  Word of Clouds – Words                          B - Negative  Bigrams  

Here we see a word cloud of the common negative words occurring in the reviews for Tram 28, 

Lisbon Portugal. Immediately what can be seen is that some people described their experience 

as crowded, bumpy, uncomfortable, steep, slow and even a “tourist trap”. 

What descriptive monograms are the most commonly used in all reviews? 

 

Figure 27 -  Word’s frequency 

Possible Actiontable Information 

Two terms define Tram 28 - crowded and with little security . Being crowded means that many 

people visit the streetcar and that it is very popular, it also means that sometimes it can be too 

crowded for anyone to enjoy it properly. So, based on this text analysis, the biggest perception 

we can get is that management needs to implement some crowd control strategies. Another key 

perception we obtained was that people considered visiting this streetcar unsafe, as many 

analyses contained words such as "stolen" and "careful". Similarly, many tourists described the 

attraction as a tourist trap. This kind of thing can be approached by taking appropriate measures 

such as increasing the frequency of trams, as well as the presence of security guards 
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7- CONCLUSION 

Social media and customer review websites have changed the way the tourism and sector is 
managed.  According several authors (Agichtein et al. 2008; Patin at al. 2012) social media has 
become a new source of information. An information that is "available" but at the same time 
noisy and of great volume. There reside some difficulties - that to be transposed involve 
technique, processing and analysis. 

Some authors cite the difficulties of obtaining information from this "mess"  of data (Agarwal & 
Ylliasi, 2010; Töllinen et al. 2012) , which can be overcome in part with the correct technique. 
Others highlight that social media analytics is a vital tool that must be used to innovate decision 
support (Senecal & Nantel, 2004) and Young (2016) goes so far as to claim that “customer 
feedback data is simply too valuable and too powerful to be ignored”. 

Given the difficulties and focused on the possibilities, we continue on our work. 

One of our concerns was to see if the theme  : USING THE TRIPADVISOR TO MONITOR AND 
GENERATE INTELLIGENCE FOR A DMO -  focus Negative Reviews  had already been explored. 
As seen in the Literature Review and after extensive searches in databases such as Web os 
Science , Ebscohost and even Google Scholar , we verified that it - in the way it was proposed 
has no similar . We also used the PRISMA method and the VosViewer software to support the 
results obtained.  

So, we  found that the choice of the topic was unprecedented: the use of negative UGC made 
from existing attractions on TripAdvisor as a source of information for  management and 
decision support. 

After this first phase, we looked for the answers to the research questions: how can 
organizations turn it into actionable information and knowledge?  

I - How can DMO - VisitLisboa conduct media monitoring to capture and analyze media data? 

II - How can DMO - VisitLisboa identify the strengths and weaknesses of tourist attractions using 
media information? Would it be possible to identify the strengths and weaknesses of a DMO's 
attractions and position them effectively in the market using media information. 

Before answering them, we would like to comment on some factors that have helped us. 

Two choices that helped us have more accurate results - due to the focus generated.First, it is 
the attractions that make the destination visited, as verified in the literature review. The tourist 
attraction is one of the most important elements of the tourist destination and infers a critical 
factor for the success rate of tourism management.  Second, the choice of negative evaluations, 
in addition to showing us faster data, showed us many insights to improve the quality processes 
in serving tourists and even in the attractiveness of tourist objects. 

Third, we were able to suggest a framework for Social Media Intelligence and we were able to 
apply it in the process of extracting data from TripAdvisor and generating actionable information 
– intelligence . 

The use of the KIT Questionnaire, proposed in the SOCMINT framework (figure 15), facilitated 
the choice of the subject to be addressed and helped in the implementation of the research. 

Regarding the choice of the R language as a way of performing data mining (scraping-
tokenization-sentiment analysis), it proved to be effective. Mainly because it is a free tool and 
with a great offer of packages, mainly in the areas of Natural Language Processing and Sentiment 
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Analysis. The possibilities of generating word clouds and graphics also facilitated the process of 
analyzing the results and quickly viewing the problems. 

Corroborating the views of Bose (2008) and Wurman (2001), we also believe ( nowaday)  that 
the action of a person as an intelligence analyst can still do the job more accurately, although 
slower, than with the use of Artificial Intelligence. 

Now we can answer the questions. In order to transform data (even in Big Data and social media) 
into information, we were able to prove that the use of the code and its packages enabled the 
extraction, cleaning and selection of data and facilitated the analyst's work to generate 
actionable information. 

The use of R and the extraction of more than 28 thousand e-Wom in the chosen period answer 
question I - we were able to evaluate (through the program) all e-Wom and thus monitor all the 
chosen attractions. Full details are available in Chapter 6. 

As for question II, we were able to assess the associated word clouds and bigrams to verify the 
weaknesses of each attraction. In this way, the supposed analyst could generate suggestions for 
improvement and correction. More details are also available in Chapter 6. 

We see from the results obtained that Litvin et al. (2008) were right in stating that the e-WOM 
can be a substantial source of strategic information to be used for the development of a series 
of business strategies. We believe that once the suggested actionable information is 
implemented, a DMO  can understand the experience of the visitors   and achieve increased 
visitor satisfaction through improved visitor experience, problem solving, competitive strategy 
analysis, as well as monitoring the image and reputation of a tourist attraction, and 
consequently, of a city. 

8 –LIMITATIONS, MANAGERIAL IMPLICATIONS AND RECOMMENDATIONS FOR FUTURE 
WORKS  

Limitations 

Both theoretical and practical aspects can be addressed in the limitations and recommendations 
for future work. 

We can highlight at least  five  limitations: 

- the use of TripAdivisor as a source of information. Although it is the most important CRW linked 
to tourism, there are other representatives that could be used as reference; 

- limitations of sentiment analysis still exist and an intelligence analyst can check the consistency 
of the results from the application of the code; 

- the use of the R code/program - Python or any other program could be used, as well as 
dedicated software as an import and treat the data. There are several tools, like RapidMiner, 
WebSites Scraper, Import.io, Octoparse and WebHarvy. We tried to use these last two for 
comparison purposes, but the result was far short of the extraction possibility we achieved using 
the "R”. 

- the use of the Lexicon NRC present in the packages available in the "R", such as "Affin" and 
"Bing". 
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- the language - The English language can be considered “universal”, , but in the case of Lisbon, 
other languages such as Spanish , French and Portuguese are important participants in the 
existing e-Wom in TripAdvisor. 

Despite these limitations, we were able to answer the research questions and carry out a work 
with a different scope than has been usual in research involving the tourist industry. 

Managerial  Implications and Suggestions 

First, we suggest the use of the social media intelligence process (figure 11), which can be 
adapted to any industry that has its products and services subject to social media analysis 

Secondly, the whole process of extraction and analysis can be done by a computer program, but 
for now, as we understand it, the existence of an intelligence analyst can transform this 
extraction into a high-value, actionable information product. 

Third, we suggest that the extracted information can be divided into future suggestions for 
short, medium and long term actions, according to its content. 

A fourth suggestion would be to use the proposed framework with the use of the KIT (Herring 
1999) to benchmark competitors, which can be, in the case of tourism, the main attractions of 
another city and how consumers are evaluating them. Or you can compare the results obtained 
from the analysis of your products/services against the competitor present in another  CRW. 

And finally, a fifth suggestion - using Social Media Intelligence - by looking for qualitative and 
quantitative data directly from the consumer, with good software or program and an 
experienced analyst, a company can listen to the market with much faster and less expense than 
a traditional Market Research. 

Having data available, not extracting it and generating intelligence can lead to serious problems. 
In the case of this work , the Torre de Belém is a typical example of not understanding its clients 
- it went from 685 thousand visitors in 2016 to only 427 thousand visitors in 2019 (source - 
Direcção-Geral do Património Cultural- Portugal), while the other attractions remained with 
small variations . This may have represented a drop in revenue of 1 million euros . 

As a final learning and management suggestion after this work, we would like to address that 
we should not act as if the data available to us were sufficient. With Big Data, we should always 
look for more, because one of the biggest mistakes is a biased sample. Another point to highlight 
is never observe the summarized data and deduce what is happening separately. The ideal is to 
make a more detailed analysis to get a correct view. And have a lot of experience in intelligence 
generation, because an analyst without the right skills may discover that he has "discovered" 
something that is not really in the data. 

Recomendations for Future Works 

Based on the limitations suggested above, future works can be suggested: 

- the comparison of results applying both a program code and a pre-existing program. For 
example, compare the effectiveness of using R with Python , or with a commercial program like 
Import.io or Rapidminer; 

-  the comparison of results of the use of various Lexicons , for example NRC with Affin ; 

- the comparison of results  obtained from the e-Wom analysis of different languages; 

- the comparison of results  of the use of Social Media Mining and traditional Market Research; 
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-  The use of Social Media Intelligence with Artificial Intelligence  in the possible transformation 
of data into actionable information. 



46 
 

REFERENCE 

Agarwal, N., & Ylliasi, Y. (2010). Information quality challenges in social media. The 15th International 

Conference on Information Quality, ICIQ, Little Rock, Arkansas, USA. Retrieved 22 mar. 2019 

from 

https://pdfs.semanticscholar.org/ece8/48ac7435350acdb54a5a661f611f9325cbc1.pdf?_ga=2.

173752547.1503290287.1598872606-1660303863.1596923915 

Agichtein, E., Castillo, C., Donato, D., Gionis, A., & Mishne, G. (2008). Finding high-quality content in 

social media. Proceedings of the International Conference on Web Search and Web Data Mining 

- WSDM 08. https://doi.org/:10.1145/1341531.1341557 

Ahmad, S. (2013). Web Mining Pedagogy: The Theoretical Support. International Journal of Computing. 

Intelligent and Communication Technologies, 2, 17–22. : 

<http://ijcict.com/doc/VOL2_ISSUE2_MAY13/5.pdf> 

Amadio, W. J., & Procaccino, J. D. (2016). Competitive analysis of online reviews using exploratory text 

mining. Tourism and Hospitality Management, 22(2), 193–210. https://doi.org/ 

10.20867/thm.22.2.3 

CRAN Packages By Name. (n.d.). Retrieved from https://cran.r-

project.org/web/packages/available_packages_by_name.html#available-packages-P 

Barbier, G. & Liu, H.(2011) Data mining in social media. In: Social Network Data Analytics. Springer US, 
2011. p. 327-352. 

 
Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2015). Understanding Satisfied and Dissatisfied 

Hotel Customers: Text Mining of Online Hotel Reviews. Journal of Hospitality Marketing & 
Management, 25(1), 1–24.  https://doi.org/10.1080/19368623.2015.983631 

 
Bindra, G. S., Kandawal, K. K., Singh, P. K., & Khana, S. (2012). Tracing Information Flow and Analyzing 

the Effects of Incomplete Data in Social Media. 2012 Fourth International Conference on 
Computational Intelligence, Communication Systems and Networks, Phuket, 2012, pp. 235-240. 
https://doi.org/ 10.1109/CICSyN.2012.51. 

 
Blackshaw, P., & Nazzaro, M. (2006) Consumer-Generated Media (CGM) 101: Word-of-Mouth in the Age 

of the Web-Fortified Consumer. New York: Nielsen. 
 
Bronner, F., & de Hoog, R. (2013). Economizing on vacations: the role of information searching. 

International Journal of Culture, Tourism and Hospitality Research, 7(1), 28–41. 
https://doi.org/10.1108/17506181311301336 

 
Bose, R. (2008). Competitive intelligence process and tools for intelligence analysis. Industrial 

Management & Data Systems, 108(4), 510–528. https://doi.org/10.1108/02635570810868362 
 
Buhalis, D., Costa, C., & Ford, F. (2006). Tourism Business Frontiers. Elsevier Gezondheidszorg. 
               1-273. https://doi.org/10.4324/9780080455914.  
 

https://pdfs.semanticscholar.org/ece8/48ac7435350acdb54a5a661f611f9325cbc1.pdf?_ga=2.173752547.1503290287.1598872606-1660303863.1596923915
https://pdfs.semanticscholar.org/ece8/48ac7435350acdb54a5a661f611f9325cbc1.pdf?_ga=2.173752547.1503290287.1598872606-1660303863.1596923915
http://ijcict.com/doc/VOL2_ISSUE2_MAY13/5.pdf
https://doi.org/10.1108/17506181311301336


47 
 

Buhalis, D., & Law, R. (2008). Progress in information technology and tourism management: 20 years on 
and 10 years after the internet: The state of eTourism research. Tourism Management, 29(4), 
609–623. https://doi.org/10.1016/j.tourman.2008.01.005 

 
Buhalis, D., & Foerste, M. (2015). SoCoMo marketing for travel and tourism: Empowering co-creation of 

value. Journal of Destination Marketing & Management, 4(3), 151–161. 
https://doi.org/10.1016/j.jdmm.2015.04.001 

 
Carson, D., & Sharma, P. (2001). Trends in the use of Internet technologies. World Hospitality and 

Tourism Trends, 2(3), 116–128.  Retrieved 12 sept. 2019 from  
https://www.researchgate.net/publication/261878811_Trends_in_the_Use_of_Internet_Tech
nologies 

 
Chang, Y.-C., Ku, C.-H., & Chen, C.-H. (2019). Social media analytics: Extracting and visualizing Hilton hotel 

ratings and reviews from TripAdvisor. International Journal of Information Management, 48, 
263–279. https://doi.org/ 10.1016/j.ijinfomgt.2017.11.001 

 
Chen, J. S., & Uysal, M. (2002). Market positioning analysis: A hybrid approach. Annals of tourism 

research, 29(4), 987-1003. http://dx.doi.org/10.1016/S0160-7383(02)00003-8 

 
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big 

impact. MIS Quarterly: Management Information Systems, 36(4), 1165-1188. 
https://doi.org/10.2307/41703503 

 
Cheung, M. Y., Luo, C., Sia, C. L., & Chen, H. (2009). The credibility of electronic word-of-mouth: 

Informational and normative determinants of on-line consumer recommendations. 
International Journal of Electronic Commerce, 13(4), 9–38 . https://doi.org/10.2753/jec1086-
4415130402 

 
Chung J.Y.,& Buhalis D. (2008) Web 2.0: A study of online travel community. In: O’Connor P., Höpken W., 
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APPENDIX 

I – PRISMA – Elegible Works – KeyWords and Finding  

Authors  Title  Keywords Findings 

Sheehan et 

al. (2016) 

The Use of 

Intelligence in 

Tourism 

Destination 

Management: 

An Emerging 

Role for DMOs 

Destination 

Management 

Organization; 

knowledge 

agent; 

intelligence; 

stakeholder; 

collaboration 

DMO has evolved from a meaning-centered on 

marketing (i.e. D. Marketing O.) to a meaning-

centered on management (i.e. D Management O). The 

successful DMO of the future will be an intelligent 

agent of the destination that is able to identify, 

engage, and learn from disparate stakeholders both 

within and outside the destination. It must acquire, 

filter, analyze, and prioritize data and information 

from various sources to create knowledge that can be 

used to fulfill its role in destination management. 

DMO must gain knowledge about the competitive 

environment, opportunities and threats, and trends 

that will change the future competitive landscape. 

Dey et al. 

(2011) 

Acquiring 

Competitive 

Intelligence 

from Social 

Media 

Web, 

Competitive 

Intelligence, 

Social Media, 

Decision 

Making. 

This paper discusses methodologies to obtain 

competitive intelligence from different types of web 

resources including social media using a wide array of 

text mining techniques. It provides some results from 

case-studies to show how the gathered information 

can be integrated with structured data and used to 

explain business facts and thereby be adopted for 

future decision making. 

Buhalis 

& Foerste 

(2015) 

 

SoCoMo 

marketing for 

travel and 

tourism: 

Empowering 

co-creation of 

value 

Personalization 

Mobile context-

awareness 

Social media 

marketing 

Mobile 

technologies 

Co-creation 

This paper connects the different concepts of context-

based marketing, social media, and personalization, as 

well as mobile devices. Contextual information is 

increasingly relevant, as big data collected by a wide 

range of sensors in a smart destination provide real-

time information that can influence the tourist 

experience 

The proposed  Social Context Mobile (SoCoMo) 

conceptual model explores the emerging 

opportunities and challenges for all stakeholders. 
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Thomaz et 

al. (2017) 

Content mining 

framework in 

social media: A 

FIFA world cup 

2014 case 

analysis 

Social media, 

Content mining, 

Twitter, Tourist 

services, Brazil 

FIFA world cup 

2014 

This paper proposes a social media content mining 

framework that consists of seven phases. The 

framework is effective to collect relevant content and 

identify popular topics in social media toward strategic 

and operational tourism management. 

Dai, Sutinen 

& Kakkonen 

(2010) 

MinEDec: a 

Decision-

Support Model 

That Combines 

Text-Mining 

Technologies 

with Two 

Competitive 

Intelligence 

Analysis 

Methods 

Decision 

support system, 

competitive 

intelligence, 

text mining, the 

Five Forces 

framework, 

SWOT analysis 

Proposal for the integration of two  Competitive 

Intelligence Analysis ( FFA and SWOT) to monitor and 

analyze the competitive environment of businesses, 

making analysis with various text-mining technologies 

in a decision support model Mining Environment for 

Decisions (MinEDec).  

Thomaz et 

al. (2015) 

Social media 

monitoring 

model to guide 

decision 

making of 

Destination 

Management 

Organization 

DMO, Social 

Media 

Monitoring, 

decision making 

The objective of this study was to present a social 

media monitoring model to support decision making 

by DMO. The proposed model has been tested in the 

pre-period and during the 2014 FIFA World Cup. 

Leung et 

al.(2013) 

Social Media in 

Tourism and 

Hospitality: A 

Literature 

Review 

 Social media, 

Web 2.0, 

journal review, 

tourism 

research, 

hospitality 

research, 

consumers, 

suppliers 

This study reviews and analyzes all social media-

related research articles published in academic 

journals of Tourism and Hospitality from 2007 to 2011. 

This paper details the role of the consumer and social 

media provider. 

Supplier-related studies have concentrated closely on 

promotion, management, and research functions, but 

few discussed product distribution. Research findings 

demonstrate the strategic importance of social media 

for tourism competitiveness. 

Gémar &  

Jiménez-

Quintero 

(2014) 

Text mining 

social media for 

competitive 

analysis 

Competitive 

intelligence, 

social media, 

text mining, 

hotel industry, 

financial 

performance. 

This study used a text-mining tool to analyze the 

primary social media sites,  with a focus on a sample of 

hotels. The dimensions analyzed were sentiments and 

reach. A dependence was found between several 

variables obtained through text mining and financial 

performance. The results indicate that the analysis of 
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social media using these techniques can be a method 

to improve financial performance. 

Franzoni & 
Bonera  
(2019) 

How DMO Can 

Measure the 

Experiences of 

a Large 

Territory 

DMO; 

experiences; 

reviews; 

TripAdvisor; 

methodology; 

descriptive 

analysis; 

sentiment 

analysis; 

content 

analysis. 

Destination Management Organization (DMO) can 

collect useful information to make decisions and take 

action to protect and/or increase the competitiveness 

of the destination. They collected opinions from 

TripAdvisor to find corrective measures to be taken to 

preserve or enhance the interest of a tourist 

destination. They used empirical observation. 

 

Moro et al. 

(2017) 

Stripping 
customers' 
feedback on 
hotels through 
data mining: 
the case of Las 
Vegas Strip 

Customer 

feedback; 

customer 

reviews; online 

reviews; 

knowledge 

extraction; data 

mining; 

modeling; 

sensitivity 

analysis 

This paper presents a data mining approach for 

modeling TripAdvisor scores using reviews published in 

2015 for the 21 hotels located on the Strip, Las Vegas. 

Nineteen quantitative characteristics were used to 

characterize the evaluations, hotels, and customers 

were prepared and used to feed a support vector 

machine to model the score. Sensitivity was applied on 

the model to extract useful knowledge translated into 

the relevance of the resources to the score. It was 

found that seasonality, day of the week, and user 

profile on TripAdvisor influenced the scores. 

Vecchio et 

al. (2018) 

Creating value 
from Social Big 
Data: 
Implications for 
SmartTourism 
Destinations 

Big Data 

Business 

analytics 

Decision 

making 

Smart tourism 

creation Social 

media 

measurement 

The article explores a set of regional tourist 

experiences related to a region of Italy, and through 

the KeyHole tool, it extracts patterns and generates 

opportunities for value creation generated by Big Data 

in tourism.The findings present and discuss evidence in 

terms of improving decision making, creating 

marketing strategies with more personalized offers, 

transparency, and confidence in dialogue with 

customers and stakeholders and the emergence of 

new business models.Finally, implications are 

presented for researchers and professionals interested 

in managing. Big Data exploration in the context of 

information-intensive industries such as Tourism. 

Schuckert 

et al. (2015) 

HOSPITALITY 
AND TOURISM 
ONLINE 
REVIEWS: 
RECENT 
TRENDS AND 
FUTURE 
DIRECTIONS 

Data Mining 

Tourism and 

Hospitality 

Literature 

Review 

This study analyzed articles related to online 
evaluations of tourism and hospitality published in 
academic journals between 2004 and 2013. Based on 
keyword-oriented research and content analysis, 50 
articles were identified as relevant. As a result, it was 
found that more than half of the analyzed articles focus 
on hotels and apply empirical methods based on 
secondary data. Another finding is that Data Mining 
can make up the quantitative part of the search  and 
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may find product defects or service failures among 
numerous online reviews. 

Taecharungr

oj & 

Mathayomch

an (2019) 

Analyzing 
TripAdvisor 
reviews of 
tourist 
attractions in 
Phuket 

Online reviews 

TripAdvisor 

Destination 

marketing 

Destination 

management 

Latent Dirichlet 

allocation Naïve 

Bayes 

This search drew the online reviews present on 
TripAdvisor for tourist attractions, Phuket, Thailand. 
Online assessments were analyzed using two machine 
learning techniques: latent Dirichlet allocation (LDA), 
which helps researchers determine the dimensions of 
each type of attraction, and naive Bayes modeling used 
in the Machine Learning area ( Machine Learning) to 
categorize texts based on the frequency of the words 
used. This research also resulted in two practical tools 
- dimensional salience-valence analysis (DSVA) and 
lexical salience-valence analysis (LSVA) - and used 
them to suggest actions for the Thai DMO. 

Chang et al. 

(2019) 

Social media 
analytics: 
Extracting and 
visualizing 
Hilton hotel 
ratings and 
reviews from 
TripAdvisor 

Sentiment 

analysis 

Hospitality 

Natural 

language 

processing 

Social media 

analytics Visual 

analytics 

Google trends 

TripAdvisor 

The paper proposes an integrated framework that 
includes data tracker, data pre-processing, 
construction of sentient sensitive trees, convolution 
tree kernel classification, aspect extraction, and 
category detection and visual analysis to gain insights 
into ratings and reviews of hotels. The results achieved 
show that the approach surpasses known methods of 
classifying feelings. 
The analysis revealed that business travelers tend to 
give lower ratings, more often use negative keywords, 
such as "rude", "terrible", "horrible", "broken" and 
"dirty", to express their dissatisfied emotions with the 
hotel stay. Couples tend to give higher ratings. 

Marine-

Roig & 

Clavé 

(2015) 

Research paper 
Tourism 
analytics with 
massive user-
generated 
content: A case 
study of 
Barcelona 

User-generated 

content Smart 

city Smart 

tourism 

destination Big 

data Business 

intelligence 

Through analysis social media - review over 100,000 
online travel reviews (OTRs) and relevant travel blogs 
written in English by tourists who have visited the city 
in the past 10 years, the authors propose a 
methodology that facilitates the collection, cleaning 
and analysis bulk UGC  related to tourism from the 
most appropriate sources. The results obtained help to 
define the transmitted image of the city. It is also used 
to extract business intelligence (BI) from OTRs on the 
main attraction of Barcelona - La Sagrada Família. 

Amadio & 

Procaccino 

(2016) 

COMPETITIVE 
ANALYSIS OF 
ONLINE 
REVIEWS 
USING 
EXPLORATORY 
TEXT MINING 

Text mining, 

Online reviews, 

Competitive 

analysis, Visual 

analytics, 

ReviewMap, 

SWOT 

The study used the text mining/visualization tool, 
ReviewMap intending to extract information in the 
comments written by customers of three competing 
hotels. An application was also 
 a SWOT analysis. The approach was exploratory, 
whose objective was to determine 
Usable competitive intelligence can be found in a 
typical collection of online analytics from a set 
competing hotels. 
 The SWOT analysis provided by the data extraction 
revealed the strengths, weaknesses, opportunities and 
threats revealed several promising competitive actions 
for the hotels in the study. 

Dickinger & 

Mazanec 

(2015) 

Significant word 

items in hotel 

guest reviews: 

A feature 

Text mining, 

Hotel reviews, 

Social media, 

This document shows text mining and provides 
information on reviewing reviews published on 
TripAdvisor. A supervised classification SVM was used, 
especially for high dimension data. This machine 
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extraction 

approach 

 

Quality 

management, 

Support vector 

machine 

identifies keywords that represent the most positive 
and negative reviews. 
 These terms can be used as an early warning system 
by managers to efficiently monitor customers' online 
dialogue with the hotel. 

Hu et al. 

(2019) 

What do hotel 

customers 

complain 

about? Text 

analysis using 

structural topic 

model 

 

Online hotel 

reviews 

Customer 

dissatisfaction 

Structural topic 

model 

Text mining 

Tripadvisor 

This study adopts a new text analysis method of a 
structural topic model to analyze 27,864 hotel reviews 
in New York City. The ability to understand the causes 
of customer complaints is fundamental for hotels to 
improve the quality of service, customer satisfaction. It 
was found that customer complaints vary between 
different categories of hotels. The results indicate that 
complaints from high-end hotel customers are mainly 
related to service problems, while low-cost hotel 
customers are often troubled by problems related to 
facilities. 

Berezina et 

al. (2015) 

Understanding 

Satisfied and 

Dissatisfied 

Hotel 

Customers: 

Text Mining of 

Online Hotel 

Reviews 

 Hotel reviews, 

Text mining, 

User-generated 

content, 

Customer 

satisfaction, 

Dissatisfaction 

The authors made a text mining approach followed and 
online analyzes of satisfied and dissatisfied customers 
were compared. The survey revealed that satisfied 
customers who want to recommend a hotel to others 
refer to intangible aspects of their business more often 
than dissatisfied customers. The study has managerial 
implications related to the understanding of satisfied 
and dissatisfied customers through the use of text 
mining and hotel ratings on review sites. 

Tsao et al. 

(2019) 

The asymmetric 

effect of review 

valence on 

numerical 

rating a 

viewpoint from 

sentiment 

analysis of 

users of 

TripAdvisor 

On line review 

Text Mining 

Asymmetric 

effect 

Brand Strength 

The authors performed a sentiment analysis using text 
mining, extracting a set of data from the TripAdvisor 
website. This study found that there is an asymmetric 
relationship between the valence of the (verbal) 
review and the numerical classification. 
For a stronger brand, the content of negative reviews 
will have a greater impact on numerical ratings than 
the content of positive reviews, while for a weaker 
brand, the content of positive reviews will have a 
greater impact on numerical ratings than the content 
of reviews negative. 

 

II- CODE R for Scrapping and Analysing Attractions in TripAdvisor 

"Text analysis of Mosteiro dos Jeronimos Reviews from Trip Advisor" 

author:"MMAF" 

output :word_document: default   pdf_document: default 

 html_document: default   --- ```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = F,warning = F,message = F,cache = F,fig.align = 'center' ) 
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options(scipen = 999) 

library(rvest) – Easily harvest (Scrape) Web Pages 

library(cowplot) - Streamlined Plot Theme and Plot Annotations for 'ggplot2' 

library(dplyr) - Essential shortcuts for subsetting, summarizing, rearranging, and joining together 

data sets 

library(syuzhet) - Extracts Sentiment and Sentiment-Derived Plot Arcs from Text 

library(sentimentr) - Calculate Text Polarity Sentiment 

library(data.table) - Extension of 'data.frame' 

library(tidytext) - Text Mining using 'dplyr', 'ggplot2', and Other Tidy Tools 

library(tm)- Text Mining Package 

library(wordcloud)- Create Word Clouds 

library(tidyverse) - Simple, Consistent Wrappers for Common String Operations 

library(stringr) - Simple, Consistent Wrappers for Common String Operations 

library(udpipe)- Tokenization, Parts of Speech Tagging, Lemmatization and Dependency Parsing 

with the 'UDPipe' 'NLP' Toolkit 

library(knitr)- A General-Purpose Package for Dynamic Report Generation in R 

library(kableExtra) - Construct Complex Table with 'kable' and Pipe Syntax 

library(webshot) - Take Screenshots of Web Pages 

library(htmlwidgets)- HTML Widgets for R 

library(gridExtra)- Miscellaneous Functions for "Grid" Graphics 

library(ggthemes) - Extra Themes, Scales and Geoms for 'ggplot2' 

library(quanteda) - Quantitative Analysis of Textual Data 

library(topicmodels) - Provides an interface to the C code for Latent Dirichlet Allocation (LDA) 

models and Correlated Topics Models (CTM) by David M. Blei 

library(flextable) - Functions for Tabular Reporting 

library(pander)- An R 'Pandoc' Writer 

'https://www.tripadvisor.in/Attraction_Review-g189158-d195318-Reviews-

Mosteiro_dos_Jeronimos-Lisbon_Lisbon_District_Central_Portugal.html'   
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```{R initial setup, echo = T,eval = F} 

URL <- 'https://www.tripadvisor.in/Attraction_Review-g189158-d195318-Reviews- 

Mosteiro_dos_Jeronimos-Lisbon_Lisbon_District_Central_Portugal.html'   html  

<- read_html(url) 

review_count<-html%>% 

html_nodes('.pagination-details')%>% 

html_text() 

review_count <- strsplit(review_count,'of')[[1]][2] 

review_count <- gsub('reviews','',review_count) 

review_count  <- as.numeric(gsub(',','',review_count)) 

reviews<-html%>% 

html_nodes('.partial_entry')%>% 

html_text() 

num  <- seq(5,review_count,5) 

the URL increments by 5 each time we move from page n to page n+1. Using this information I 

was able to write code that loops over all pages and scrape all available reviews. 

```{R review scraping, eval=F} 

for (i in 1:length(num)){ revurl  

<- paste0('https://www.tripadvisor.in/Attraction_Review-g189158-d195318-Reviews- 

or',num[i],'-Mosteiro_dos_Jeronimos-Lisbon_Lisbon_District_Central_ Portugal.html') 

html <- read_html(revurl) 

reviewed  <- html%>% html_nodes('.partial_entry')%>%  html_text() 

reviews  <- c(reviews,reviewed) } 

write.csv(data.frame(reviews=reviews),'reviews1.csv',row.names = F) 

``` ```{R review filtering} reviews  <- read.csv('reviews1.csv') 

reviews <- gsub("[[:punct:]]", "", reviews$reviews) 

reviews <- reviews[!duplicated(reviews)] 
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``` ```{R}  pander(head(as.data.frame(reviews)),caption = 'Example of scraped reviews',split.cell 

= 120, split.table = Inf) 

``` ```{R,fig.width = 10} 

# Sentimentr 

sentiment  <- sentiment(as.  

sentiment_nrc   <- get_nrc_sentiment(as.character(reviews)) 

sentiment_nrc  <- data.frame(score = colMeans(sentiment_nrc)) 

sentiment_nrc$sentiment  <- row.names(sentiment_nrc) 

sentiment  <- sentiment%>%  group_by(element_id)%>%  

summarise(sentiment=mean(sentiment)) 

reviews_sentiment  

<- data.frame(review = reviews,sentiment)  

p1  <- ggplot(data = sentiment_nrc,aes(x = reorder(sentiment,score),y = score)) + geom_bar(stat 

= 'identity',fill = 'limegreen',alpha = 0.6) + xlab('Sentiment') + theme(axis.text.x = 

element_text(angle = 300)) 

P2 <- ggplot(data = reviews_sentiment,aes(x = sentiment)) + geom_density(fill = 

'limegreen',alpha = 0.6) +xlab('Sentiment') plot_grid(p1,p2,labels = 'AUTO') 

``` ### Examples of reviews classified as negative 

```{R} 

pander(head(reviews_sentiment %>% 

            arrange(sentiment) %>   select(review,sentiment),4),split.cell = 120, split.table = Inf)  

```´ 

### Examples of reviews classified as positive   ```{R} 

pander(head(reviews_sentiment%>%arrange(desc(sentiment))%>  

select(review,sentiment),4),split.cell = 120, split.table = Inf)  

``` To properly explore the textual data, some preprocessing steps must be taken.  These are as 

follows         ```{R}            reviews 

<- tolower(as.character(reviews)) tokenized <- tokens(as.character(reviews), what = 'word', 

remove_number = T,remove_punct = T, remove_symbols = T,remove_hyphens = T)  

tokenized  
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<- tokens_select(tokenized, stopwords(), selection = 'remove') tokenized  

<- tokens_select(tokenized,stop_words,selection = 'remove') 

token_list  <- tokens_ngrams(tokenized,n = 1:2,concatenator = ' ') 

token_list  <- dfm(token_list) 

token_freq  <- textstat_frequency(token_list) 

bigram_freq  <- token_freq[grepl(' ',token_freq$feature),] 

monogram_freq  <- token_freq[!grepl(' ',token_freq$feature),] 

a <- get_sentiment(monogram_freq$feature,method = 'bing') 

b <- get_sentiment(bigram_freq$feature,method = 'bing') 

monogram_freq  <- data.frame(monogram_freq,a) 

bigram_freq  <- data.frame(bigram_freq,b) 

```  ### Commonly occurring words in Negative Review 

```{R} Eng 

<-udpipe_load_model('english-ewt-ud-2.3-181115.udpipe') 

annotations  

<- as.data.frame(udpipe_annotate(eng,unlist(monogram_freq[monogram_freq$frequency 

>=5,1]))) frequent_monograms  <- monogram_freq[monogram_freq$frequency >=5 & a < 0,] 

annotations  <- annotations[annotations$token_id == 1,c(4,8)] 

frequent_monograms  <- merge(frequent_monograms,annotations,by.x = 'feature',by.y = 

'sentence') 

wordcloud(frequent_monograms[,'feature'],frequent_monograms[,'frequency'], 

rotateRatio = 0.6) 

``` ### Commonly occurring words in Positive Reviews 

```{R} annotations  

<-as.data.frame(udpipe_annotate(eng,unlist(monogram_freq[monogram_freq$frequency 

>=50,1]))) 

frequent_monograms  <- monogram_freq[monogram_freq$frequency >=50 & a > 0,] 

Annotations 
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 <- annotations[annotations$token_id == 1,c(4,8)] 

frequent_monograms  <- merge(frequent_monograms,annotations,by.x = 'feature',by.y 

='sentence')wordcloud(frequent_monograms[,'feature'], frequent_monograms[,'frequency'], 

shape = 'circle', rotate Ratio = 0.6) 

``` ### What descriptive monograms are the most commonly used in all reviews? 

```{R} annotated_monograms  <- 

as.data.frame(udpipe_annotate(eng,unlist(monogram_freq$feature))) 

annotated_monograms  <- group_by(annotated_monograms,sentence) %>%slice(1) %>% 

 select(sentence,upos) 

monograms  <- merge(monogram_freq,annotated_monograms,by.x = 'feature',by.y = 

'sentence') 

monograms %>% filter(upos == 'ADJ') %>% arrange(desc(frequency)) %>%top_n(20,frequency) 

%>%ggplot(aes(x = reorder(feature,frequency),y = frequency)) + 

geom_bar(stat = 'identity',fill = 'limegreen') +coord_flip() + theme_base() + xlab('') 

```   ```{R} Bigrams  <- bigram_freq bigrams_positive  <- bigrams[bigrams$b > 0,] 

bigrams_negative  <- bigrams[bigrams$b < 0,] 

``` ## What are the most common negative bigrams? 

```{R} wordcloud(bigrams_negative[bigrams_negative$frequency >= 2,'feature'], 

bigrams_negative[bigrams_negative$frequency >= 2,'frequency']) 

```## What are the most common positive bigrams? 

```{R}wordcloud(bigrams_positive[bigrams_positive$frequency >= 

5,'feature'],bigrams_positive[bigrams_positive$frequency >= 5,'frequency']) 
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