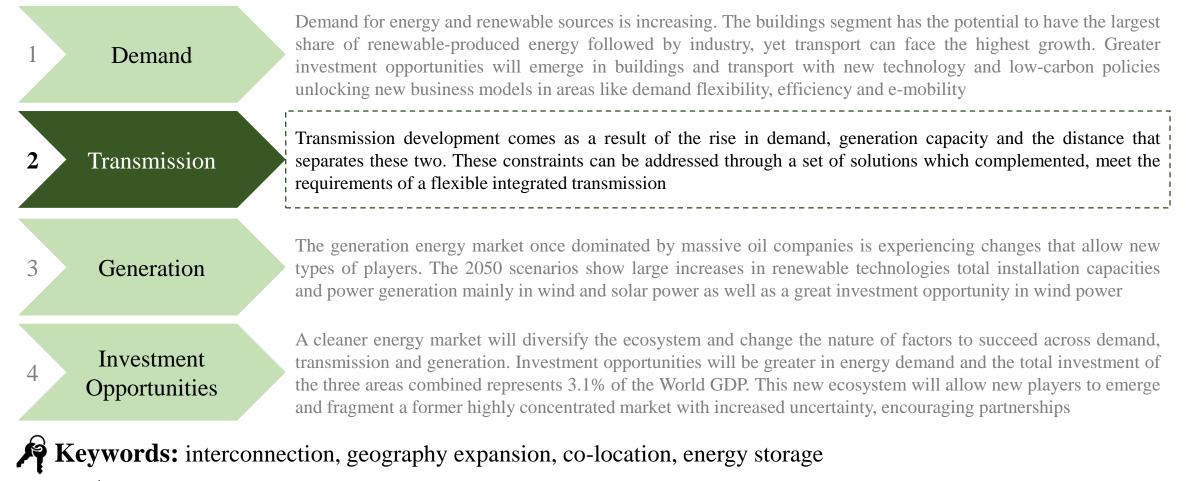
A Work Project, presented as part of the requirements for the Award of a Master's degree in Economics / Finance / Management from the Nova School of Business and Economics.

### Market research on energy transmission regarding sustainable energy transition

33257 – José Miguel Alves Sabino de Carvalho Farinha


Work project carried out under the supervision of: Professor Miguel Pita



06-01-2020

# In light of a sustainable energy transition, what are the key changes across the multiple sectors and what opportunities will emerge?

#### **E** Abstract



This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209), POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209) and POR Norte (Social Sciences DataLab, Project 22209).

#### **Executive Summary: Transmission**

| 2.1<br>Intro                  | ent<br>2.1.2 The 'Duck Curve' represents a challenge of solar energy as it creates grid flexibility problems and leads to waste<br>Interconnection is the main solution for intermittency which must be complemented with solid investments in diversification and storage<br>• Exploiting the fact the levels of irradiation are stronger near the equator and when it is summer in the North Hemisphere it is winter in the South                                                                                                                                                                                                                   |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2.2<br>Prominent<br>Solutions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                               | <ul> <li>As RE share increases, ensuring cost-effective and reliable integration changes flexibility requirements</li> <li>Transmission capacity in EU has the potential to increase fourfold, with year 2025 possibly being a critical year regarding investment</li> <li>China has achieved significant progress in reducing curtailment rates and is set to improve even more with the new additions</li> <li>To achieve higher proportions, actions in system operation, RE deployment and flexible resource planning are required</li> </ul>                                                                                                     |  |  |
|                               | <ul> <li>There is huge potential for wind diversification in Norway and for co-location, particularly in Germany, UK and Ireland</li> <li>Geography expansion and co-location are effective in reducing intermittency's impact and in delivering cost savings</li> <li>Complement scalability with spatial planning, promote joint ventures and pursuit the optimal mix in order to reduce intermittency's impact</li> </ul>                                                                                                                                                                                                                          |  |  |
|                               | <ul> <li>Pumped Storage Plant represents 94% of global capacity, stationary storage is gaining share and EVs are becoming a flexibility tool</li> <li>Prosumers with batteries demand less from a centralized grid potential for 59% decrease in ramp rate and a 14% peak load reduction</li> <li>Combining RE and storage through the investment in policies, regulation and education is the obvious solution to minimize curtailment</li> </ul>                                                                                                                                                                                                    |  |  |
| 2.3<br>Investment             | Market still dominated by big players but as the generation capacity increases new players and ambitious projects can arise<br>2.3.1 Desertec dreams about supplying the world's energy demand through Africa's desert<br>2.3.2 Supernode's technology can cut in half the transmission costs with twice the power and the cable distance with only 25% of the cables<br>2.3.3 Battery saved consumers \$34m in its first year of operation and those savings will grow when the 50% expansion is completed in 2020<br>2.3.4 Investments can potentially increase 100% in EU and storage's share is perceived to grow significantly in the optimistic |  |  |

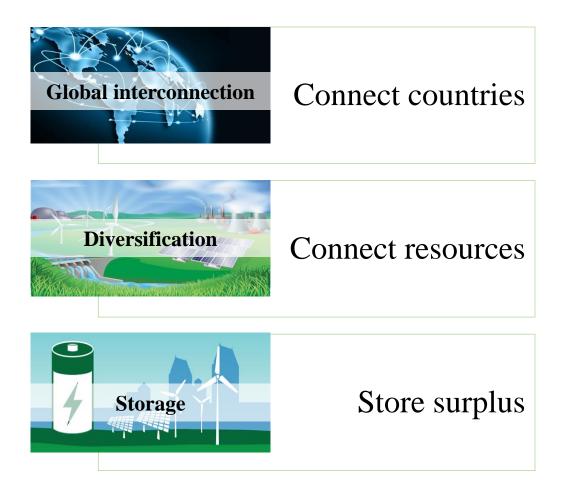


#### Demand is increasing and we are confronted with intermittency as a consequence of RE

Energy transmission's drivers



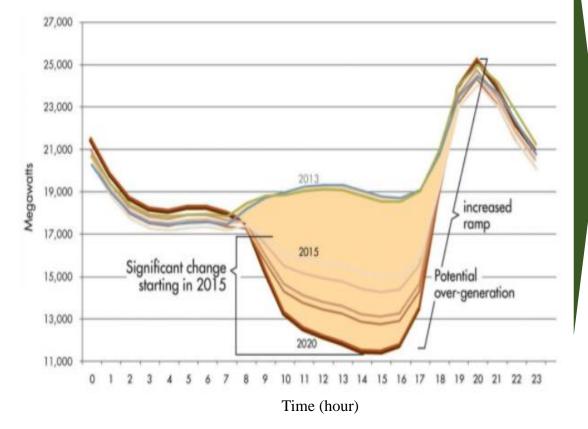
Global **population** and **new consumers** growth (EVs) increase demand for energy



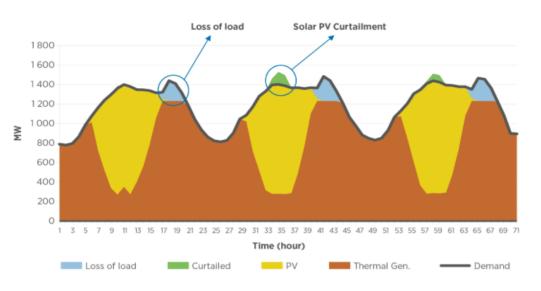

Low cost of RE, intermittency and increasing distances between generation and consumption



Creates need for **infrastructure** that delivers


#### Solutions



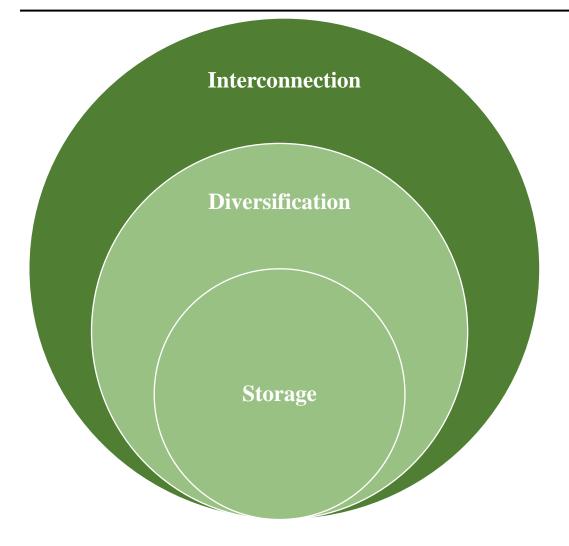



### The 'Duck Curve' represents a challenge of solar energy as it creates grid flexibility problems and leads to waste

### **Output ends just as demand peaks** leading to ramp up 1. Energy load throughout the day, (2013-20;MW; 24h)



#### Solar curtailment at mid-day and loss of load destabilize S/D




2. Energy Supply and demand throughout the day, (MW; 24h)

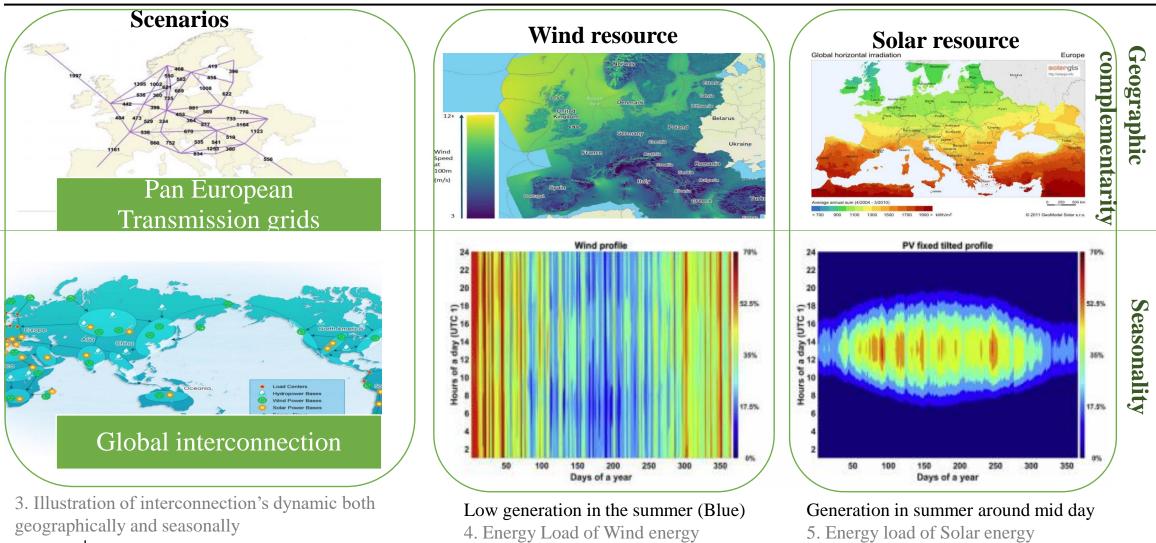
#### Hidden costs

- Power plant capacity on stand by (typically natural gas)
- Economic Profitability: nuclear and power plants must run around the clock
- Wind and solar energy curtailment

### Interconnection is the main solution for intermittency which must be complemented with solid investments in diversification and storage



#### **Flexible Integrated Transmission**


- Investments in interconnecting transmission systems increased significantly in 2017, as annual line-kms tripled from 2016
- High-voltage permits energy to travel longer
   distances at low losses and connection of remote energy sources
- Digital smart-control allow technologies to



operate at higher capacity and improve management of interconnection among regions and countries



Exploiting the fact the levels of irradiation are stronger near the equator and when it is summer in the North Hemisphere is winter in the South

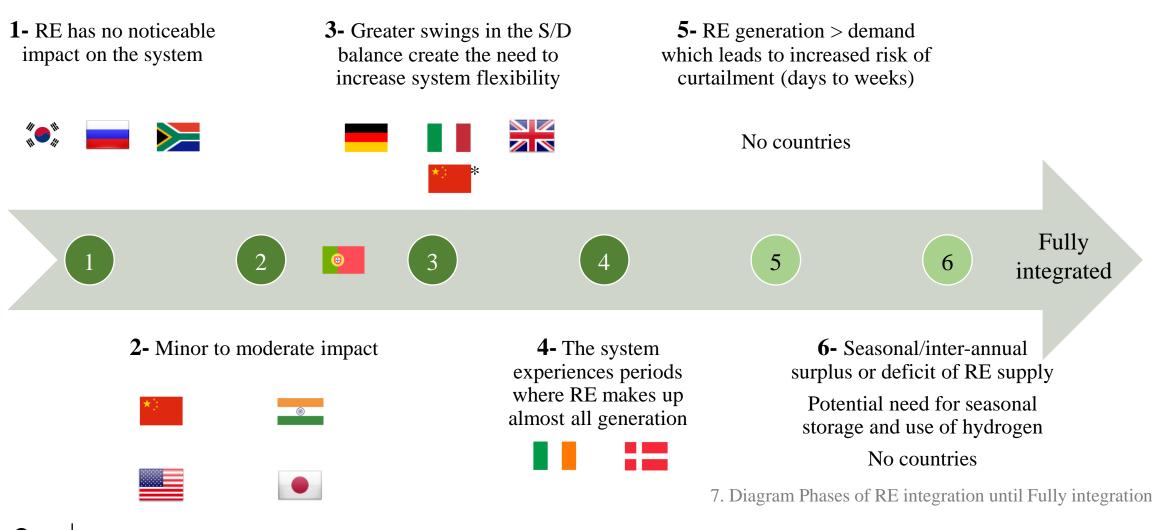




5. Source: Child et al. 2019

6

#### **Diversification could be deployed through the connection of geographies and sources**

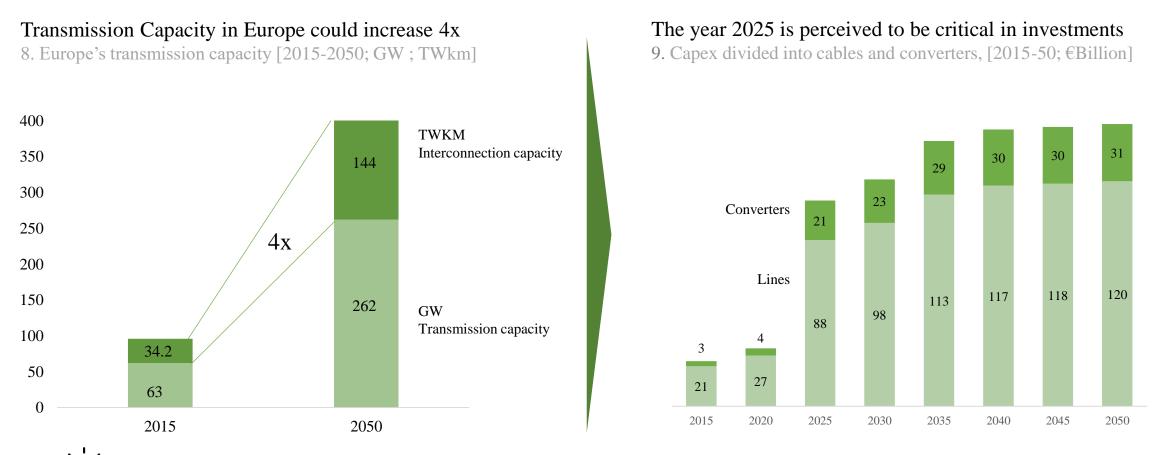

| Strategy | Geography Expansion                                                                                                                                    | <b>Co-location</b>                                                                                                                                           |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Premise  | Do not put your all your<br>eggs in the same basket                                                                                                    | Better together: Combine<br>wind with solar                                                                                                                  |  |
| Argument | <ul> <li>Wind speed correlation<br/>among sites decreases</li> <li>Probability that all sites<br/>experience the same<br/>wind regime drops</li> </ul> | <ul> <li>Wind is consistent at night and sun is consistent during the day</li> <li>Re-utilization of existing infrastructure (foundations, roads)</li> </ul> |  |
| Result   | Behavior similar to a single<br>farm, with steady wind<br>speed and thus, steady<br>delivery of wind                                                   | Power generation around<br>the clock and amortization<br>of fixed costs                                                                                      |  |



6. Image of geography expansion and supernode connection



### As RE share increases, ensuring cost-effective and reliable integration changes flexibility requirements such as transmission assets, storage and synthetic fuels




Source: IEA 2019

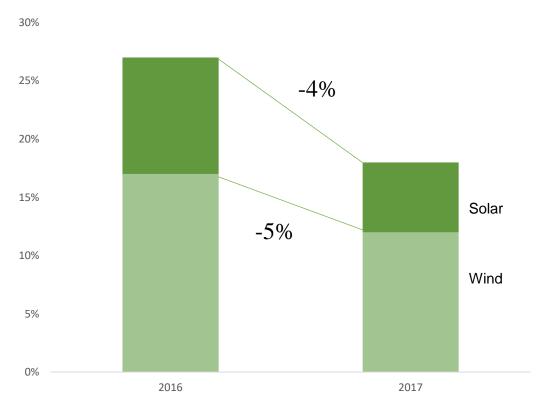
Source: Expresso 2019

\* Only Chinese provinces Gansu and Qinghai

### Transmission capacity in EU has the potential to increase fourfold, with year 2025 possibly being a critical year regarding investment

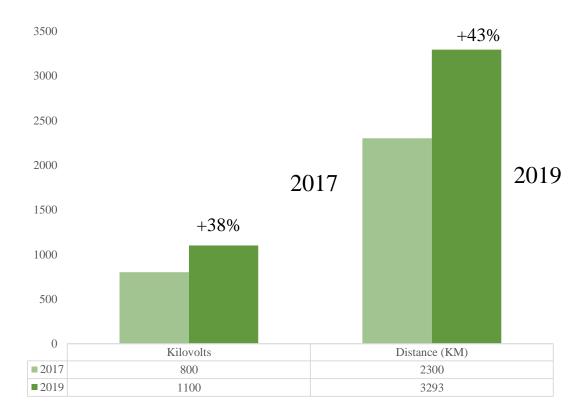


)- In 2025, the expectation is that a significant increase in new solar and wind capacity will create excess electricity, hence the big jump in transmission capacity in that year




**■** 2.2.1 Interconnection - Quantitative China

#### China has achieved significant progress in reducing curtailment rates due to transmission enhancement and is set to improve even more with the new additions


Curtailment rates have dropped in solar and wind have dropped 4% and 5%

10. Curtailment rates, Wind and solar



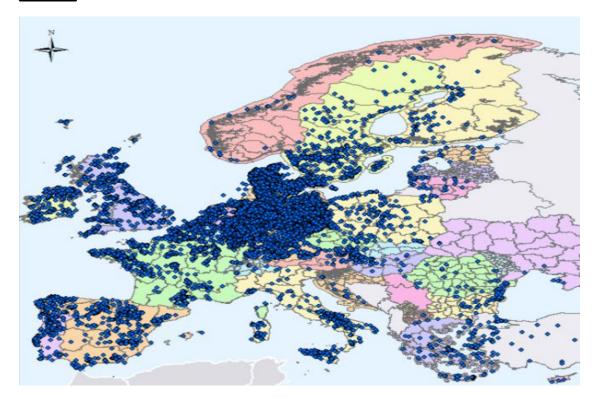
World record grid line has 38% more voltage going through a distance 43% longer than the Gansu – Hunan

11. Chinese Grid milestones, kv and Km



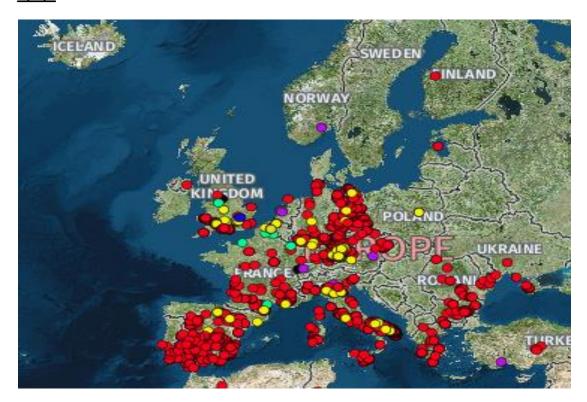


### In order for interconnection to achieve higher proportions, actions in system operation, VRE deployment and flexible resource planning are required


| Maximize Asset<br>contribution           | <ul> <li>Advanced RE forecasting</li> <li>Dynamic spot electricity market</li> <li>Elaborate policies to establish friendly cross border energy trade</li> </ul>  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System-friendly<br>VRE deployment        | <ul> <li>Ensure full system services capabilities for large renewable energy plants</li> <li>Expansion of geographical areas in which S/D are balanced</li> </ul> |
| بی ب | <ul> <li>Digitalization and DER (EVs and storage) constitute new options to balance S/D</li> <li>Large scale networks to smooth seasonal variability</li> </ul>   |



#### There is huge potential for wind geographic expansion in Norway and for co-location, particularly in Germany, UK and Ireland

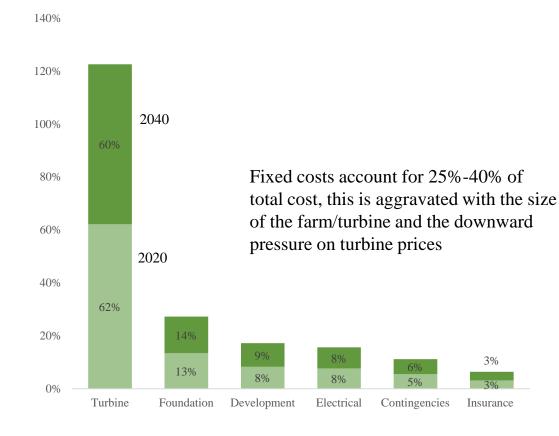



Germany and Denmark are fully exploit 12. European wind farms map in 2016





South is significantly populated with solar 13. European solar farms map in 2016




Countries with smaller concentration of wind farms such as Norway, Sweden and Finland have potential to diversify spatially whereas France, Iberia and the UK could diversify through co-location

### **Geography Expansion (1) and Co-location (2) are effective in reducing intermittency's impact and in delivering cost savings**

### Set-up and fixed costs account for ~40% which makes it difficult to dilute

14. Installations costs of a small wind farm (16MW)



#### Generation hours increase with the number of sites

15. N° hours of wind energy production in function of n° farms



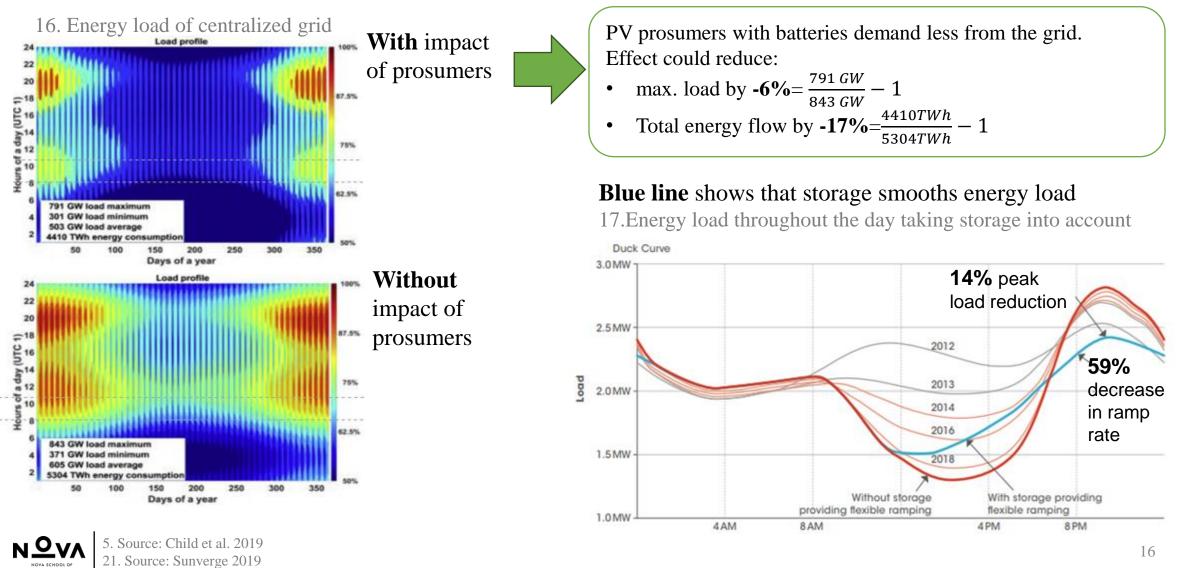


Variance of the Supply side decreases as probability of all sites experience the same wind regime drops

#### 2- Co-location: Better together

Pairing 2 sources can deliver significant investment and operating savings of up to 16% (AECOM 2016)

### Complement scalability with spatial planning, promote joint ventures and pursuit the optimal mix of technologies and size in order to reduce intermittency's impact


| ار<br>⊻.<br>Scale Economies              | <ul> <li>Scalability: Large rotor diameters and higher hub heights have higher yields</li> <li>Promote joint ventures to reduce O&amp;M inefficiencies (E.g EDP and Engie)</li> <li>Exploit hub grid connections</li> </ul> |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scope<br>Economies                       | <ul> <li>Utilization of existing infrastructure</li> <li>Retrofit existing wind farms with solar capacity</li> <li>Opportunities to shared infrastructure: Storage facilities and water treatment plants</li> </ul>         |
| <b>إ</b> الي<br>محمد<br>Mix optimization | <ul> <li>Spatial planning to ensure ROE</li> <li>Optimal combination of technologies and size</li> <li>Smart Grids: Improve interoperability and interaction with different geographies</li> </ul>                          |

#### Pumped Storage Plant is very much embedded globally, small scale stationary storage is gaining share and EVs are becoming a flexibility tool

| Pumped Storage Plants                                                                                                                                                    | Prosumers and utility scale storage                                                                                                                                                                                                              | Vehicle to Grid (V2G)                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Use surplus of wind energy at night<br/>to refill the upper reservoir</li> <li>Accounts for over 94% of installed<br/>global energy storage capacity</li> </ul> | <ul> <li>Li-ion batteries represent 90% of total capacity of large scale storage</li> <li>BTM battery with rooftop is expected to match utility scale as costs fell by 80% between 2010-17</li> <li>Record deployment in 2018 of 8GWh</li> </ul> | <ul> <li>EV as decentralised storage</li> <li>Current ratio of EVs to fuel is 1/250</li> <li>Highly segmented (wealthy owners)</li> <li>EVs' price expected to match fuel cars by 2023</li> </ul>                                                                                           |
| • China, Japan and USA hold the                                                                                                                                          | Hydrogen                                                                                                                                                                                                                                         | Demand response from EVs                                                                                                                                                                                                                                                                    |
| <ul> <li>majority of its capacity</li> <li>9000 GWh globally</li> <li>Great degree of flexibility</li> <li>Constrained by Geophysical features</li> </ul>                | <ul> <li>Water electrolysis deployment: valued at \$20-\$30M/ year</li> <li>Last project installed was 10 MW in 2018 (need to scale up)</li> <li>Larger projects of 100 MW announced in Europe</li> <li>20 MW under construction</li> </ul>      | <ul> <li>Smart charging strategies that shift the time of day that EVs draw electricity from the grid</li> <li>Leading pilots in Netherlands, Germany and California</li> <li>If demand response for the full EV fleet today, 2 GW of flexibility would be immediately available</li> </ul> |



#### **Prosumers could reduce load by 6% and energy flow by 17% while storage solutions could** mean a 59% decrease in ramp rate and a 14% peak load reduction



#### Combining RE and storage is the obvious solution to minimize curtailment and smooth the duck curve through the investment in policies, regulation and education

| Prosumers/Utility<br>scale storage | <ul> <li>Reducing upfront costs and the economic viability gap (subsidies)</li> <li>Regulation that enable revenue streams for storage providers</li> <li>Deploy storage as a solution to reduce overall investments in network reinforcement</li> </ul>                      |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>E</b><br>Hydrogen               | <ul> <li>Path to cost reductions and competitiveness is unclear, governments play crucial role</li> <li>Multilateral initiatives can help share knowledge and leverage spillovers benefits</li> <li>Hydrogen in the gas grid (re-use already built infrastructure)</li> </ul> |
| V2G                                | <ul> <li>Allow discharge power back to the grid (bidirectional flow)</li> <li>Demand response: Automatic regulation and efficient planning based on routine</li> <li>Establish funding for pilot projects and disseminating knowledge</li> </ul>                              |



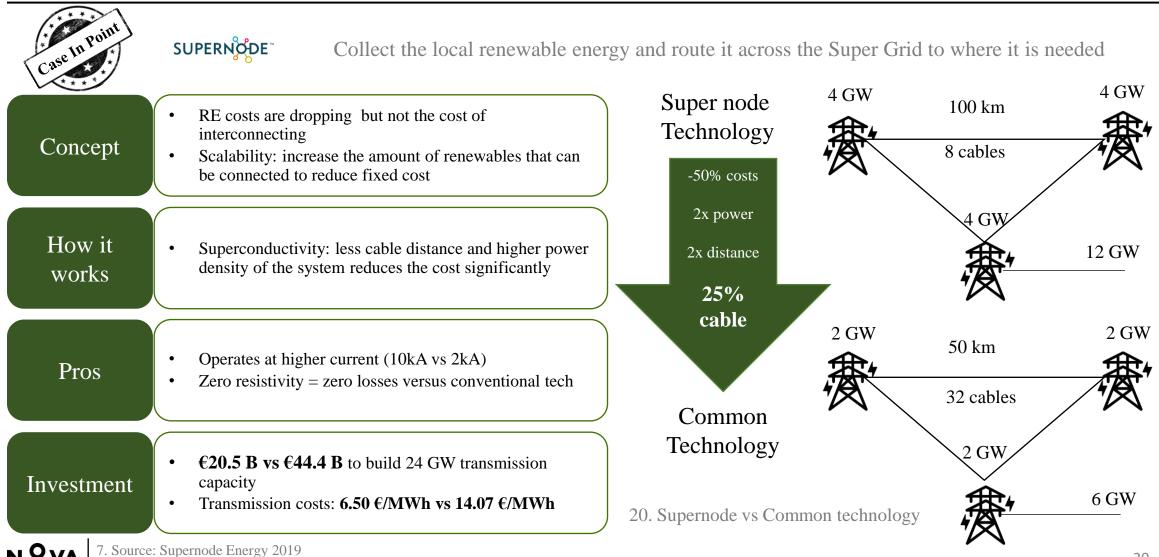
# Market still dominated by big players but as the generation capacity increases new players and ambitious projects can arise as long as the Trilemma is satisfied

- Most countries have a single Transmission
   System operator (TSO) in charge of the transport of energy
- High capital intensive business requirements promotes industrial conglomerates (e.g Siemens)
- Increase in generation capacity, creates the need for expansion and interconnection of remote areas

Rules of the game: must fulfill one of the aspects of the trilemma

| Affordability   | • Bulk transfer and high-voltages minimizes costs and losses within long distances |
|-----------------|------------------------------------------------------------------------------------|
| Sustainability: | • Curtailment reduction through path creation towards demand and storage SUPERNODE |
| Reliability:    | • Decentralized storage increases flexibility                                      |

#### **18. Dynamic between players**




#### Desertec dreams about supplying the world's energy demand through Africa's desert

| Case In Point   | FOUNDATION                                                                                                                                                                                      | North Africa and Middle East combined with renewable<br>ources to Central Europe                    |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Concept         | <ul> <li>Large-scale solar and wind energy can be developed in the deserts of North Africa and Middle East</li> <li>Cheap energy source outweighs the transision costs</li> </ul>               | DESERTEC-EUMENA         Image: Concentrating Solar Power         Image: Concentrating Postovultaits |
| How it<br>works | <ul> <li>Solar energy is concentrated by means of mirrors to heat water</li> <li>Steam is used to drive generation turbines</li> <li>HVDC lines up to 3000 km (2-3% losses / 1000km)</li> </ul> |                                                                                                     |
| Pros            | <ul> <li>Heat is easily stored without losses</li> <li>Response to fluctuations allows greater use of intermittent resources</li> </ul>                                                         | CSP collector areas<br>for electricity<br>more 2009<br>DID-15 3003                                  |
| Investment      | <ul> <li>Total investment would range between €400B- €480B</li> <li>Transmission costs could account for 11% of total cost</li> <li>20 or more HVDC cables (€1B each)</li> </ul>                | 19.Illustration of the ideal Desertec set-up                                                        |
| NUX 24. Sour    | ce: DESERTEC Foundation 2019<br>ce: New Internationalist 2019                                                                                                                                   | 19                                                                                                  |

 
 NOVA SCHOOL OF BUSINESS & ECONOMICS
 25. Source: Hirschhausen et al. 2019

#### Supernode's technology can cut in half the transmission costs with twice the power and the cable distance with only 25% of the cables

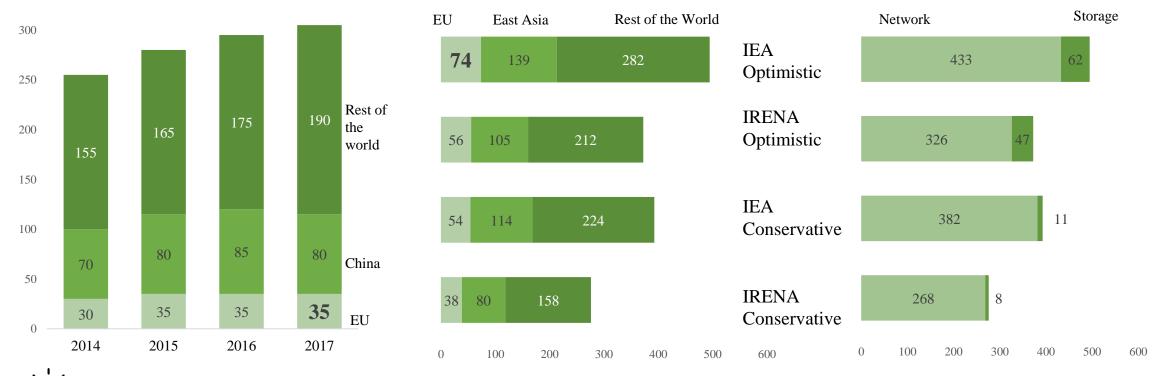


### Battery saved consumers \$34m in its first year of operation and those savings will grow when the 50% expansion is completed in 2020

| Case In Point   | TELE Electric car manufacturer which de                                                                                                                                                                                               | veloped a battery that stabilizes the Australian grid |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Concept         | <ul> <li>Australia has been deploying wind and solar generation<br/>at a record pace</li> <li>Led to exposure of grid destabilization and need for a<br/>storage solution</li> </ul>                                                  |                                                       |
| How it<br>works | <ul> <li>Battery is paired to the Hornsdale windfarm</li> <li>100 MW capacity and plan to expand 50%</li> <li>129 MWh which is enough to supply about 30k homes for 1 hour and \$34m in savings in the 1<sup>st</sup> year</li> </ul> |                                                       |
| Pros            | <ul> <li>Provided grid reliability</li> <li>Rapid and precise frequency regulation</li> <li>Reduced energy costs</li> <li>Successful integration of RE into the grid</li> </ul>                                                       |                                                       |
| Investment      | <ul> <li>Intention to expand the battery by 50% to 150 MW</li> <li>Australian Federal Government of RE commited \$8 m</li> <li>South Australian government will commit \$3m / year for 5 years</li> </ul>                             | 21. 100 MW battery in Hornsdale Site                  |

N S C Source: Tintalierar Times NOVA SCHOOL OF DUSINESS & ECONOMICS 20. Source: Toscano 2019

#### Investments can potentially twofold in EU and storage's share is perceived to grow significantly in the optimistic


#### Investments have grown modestly 22. Annual investments in electricity networks 23. Average yearly investments by [2014-2017, \$B]

EU is roughly half of East Asia

**Region** [2050, \$B]

#### Storage changes drastically

24. Average yearly investments by **Scope** [2050;\$B]



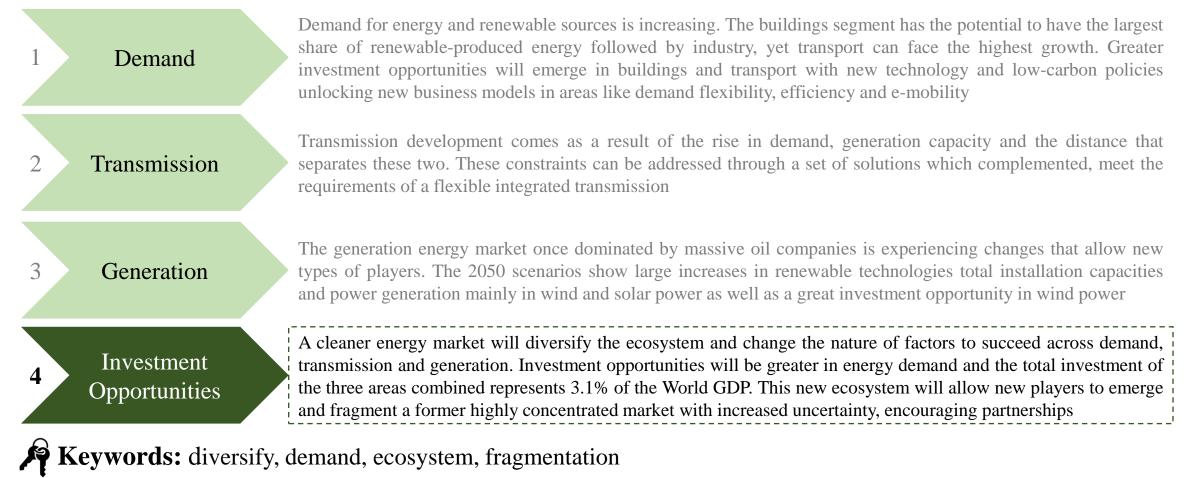
In the optimistic scenario there is a greater need to have EU balanced with China in terms of infrastructure, ergo a higher growth level in investments is predicted as EU is currently falling behind

28. Source: IRENA 2019 29. Source: IEA 2018

A Work Project, presented as part of the requirements for the Award of a Master's degree in Economics / Finance / Management from the Nova School of Business and Economics.

# **Investment Opportunities**

33135 – Pedro Miguel Galhano da Cruz 33257 – José Miguel Alves Sabino De Carvalho Farinha 33878 – Bruno Alexandre Link


Work project carried out under the supervision of: Professor Miguel Pita



06-01-2020

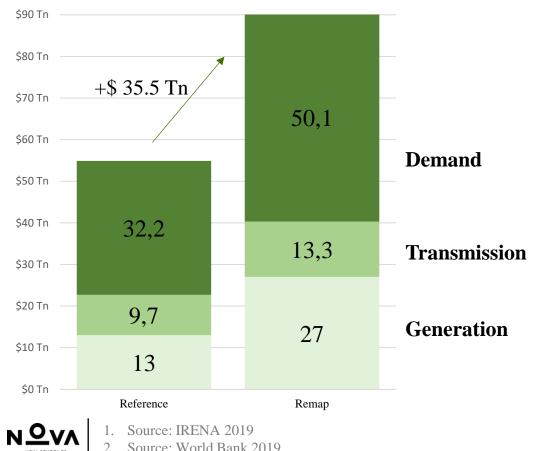
# In light of a sustainable energy transition, what are the key changes across the multiple sectors and what opportunities will emerge?

#### **E** Abstract



This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209), POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209) and POR Norte (Social Sciences DataLab, Project 22209).

# A cleaner energy market will diversify the energy ecosystem and change the nature of plays and factors to succeed across the three main stages of the energy market


|        | Energy Demand                                                                                                                                                                                                                                                                                                                         | Transmission                                                                                                                                                                                                                                        | Generation                                                                                                                                                                                                                                           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nature | <ul> <li>Virtual Power Plants</li> <li>Efficiency<br/>Energetic Consultancy</li> <li>E-Mobility Services</li> </ul>                                                                                                                                                                                                                   | <ul> <li>Grid connection</li> <li>Connect farms</li> <li>Storage</li> </ul>                                                                                                                                                                         | <ul> <li>New plays/players prosolia<br/>energy</li> <li>Innovative<br/>Technologies</li> <li>Hybrid Systems</li> </ul>                                                                                                                               |
| KSFs   | <ul> <li>(F) High initial investments<br/>incentivise partnerships to lower<br/>costs down the line</li> <li>(T) Rapid deployment of smart<br/>meters, smart grids and electric<br/>mobility technology</li> <li>(R) Subsidies to electric<br/>mobility and incentives for<br/>buildings to adopt efficiency<br/>standards</li> </ul> | <ul> <li>(F) Public private partnership<br/>to finance the high costs of<br/>projects such as power storage<br/>batteries</li> <li>(T) Reduce CSP installation<br/>costs</li> <li>(R) International and<br/>intercontinental cooperation</li> </ul> | <ul> <li>(F) Pay-as-you-go: reducing upfront costs for the consumers</li> <li>(T) Smarter Balance-of-System technologies</li> <li>(R) Support regulatory and pricing policies to allow consumers to become prosumers and sell electricity</li> </ul> |



### Investment opportunities will be greater in energy demand, meanwhile total investment per year in the three areas combined represents 3.1% of the World GDP

Regardless from the scenario, **demand** investments will be far superior than the other two and the REmap scenario will require almost \$35.5 Trillion more

Total investment in USD Trillion from 2016-2050 in 2 Scenarios



#### > Demand

Includes efficiency measures deployed across the enduse sectors – buildings, transport and industry Investment per year (Remap): **\$1.47 Trillion** 

#### > Transmission

Includes investments made for transmission and distribution grid extensions as well as storage

Investment per year (Remap): \$391 Billion

#### Generation

Includes investments for the deployment of renewable technologies for power generation such as capacity construction, operation and management

Investment per year (Remap): \$794 Billion



Total combined investment per year = **\$2.655 Trillion** which represents **3.1%** of the **World GDP** (\$85.909 Trillion in 2018)

# The new ecosystem will allow new players to emerge and fragment the former highly concentrated market encouraging partnerships to split risks and costs due to uncertainty



- 1. For the past century, **large players have dominated the energy ecosystem**, funded solely by public markets and governments
- Technology and sustainability concerns are spawning new business models and types of players funded by pension funds and private-equity firms
- 3. This **fragmentation** is diminishing the power of scale to shape markets
- 4. With so many players interacting in different ways and locations, **uncertainty and risk** are higher than ever

#### **2** Recommended Strategy

- Companies should make smaller initial investments and be flexible in adjusting strategies as circumstances change
- Partnerships can help companies splitting the cost and risk of large capital projects under high risk and uncertainty



#### **Bibliography Transmission**

- 1. Source: "Power Transmission Lines". 2019. Siemens.Com Global Website. Accessed December. https://new.siemens.com/global/en/products/energy/high-voltage/power-transmission-lines.html.
- 2. Source: Liu, Zhenya. 2015. Global Energy Interconnection. Johnatan Simpson.
- 3. Source: "What'S The Point Of An Electricity Storage Mandate?". 2019. Energy Institute Blog. Accessed December. https://energyathaas.wordpress.com/2013/07/29/whats-the-point-of-anelectricity-storage-mandate/.
- 4. Source: IRENA. 2018. "Power System Flexibility For The Energy Transition, Part 1: Overview For Policy Makers". Abu Dhabi.
- 5. Source: Child, Michael, Claudia Kemfert, Dmitrii Bogdanov, and Christian Breyer. 2019. "Flexible Electricity Generation, Grid Exchange And Storage For The Transition To A 100% Renewable Energy System In Europe". Renewable Energy 139: 80-101. doi:10.1016/j.renene.2019.02.077.
- 6. Source: Delucchi, Mark A., and Mark Z. Jacobson. 2011. "Providing All Global Energy With Wind, Water, And Solar Power, Part II: Reliability, System And Transmission Costs, And Policies". Energy Policy 39 (3): 1170-1190. doi:10.1016/j.enpol.2010.11.045.
- 7. Source: "Supernode 100% Renewable Energy Future". 2019. Supernode.Energy. Accessed December. https://supernode.energy/.
- 8. Source: International Energy Agency. 2019. "China Power System Transformation". Paris. Accessed December. https://www.iea.org/reports/china-power-system-transformation.
- 9. Source: Expresso. 2019. "Von Der Leyen Destaca "Investimento Significativo" Feito Por Portugal Na Ação Climática.", , 2019. Accessed December. https://expresso.pt/internacional/2019-12-18-Von-der-Leyen-destaca-investimento-significativo-feito-por-Portugal-na-acao-climatica.
- 10. Source: "China'S State Grid Corp Crushes Power Transmission Records". 2019. IEEE Spectrum: Technology, Engineering, And Science News. Accessed December. https://spectrum.ieee.org/energywise/energy/the-smarter-grid/chinas-state-grid-corp-crushes-power-transmission-records.
- 11. Source: "Smart Grids Tracking Energy Integration Analysis IEA". 2019. IEA. Accessed December. https://www.iea.org/reports/tracking-energy-integration/smart-grids#abstract.
- 12. Source: "Solar Farms In Europe Map". 2019. Solarenergymaps.Com. Accessed December. https://www.solarenergymaps.com/Europe.html.
- 13. Source: Archer, Cristina L., and Mark Z. Jacobson. 2007. "Supplying Baseload Power And Reducing Transmission Requirements By Interconnecting Wind Farms". Journal Of Applied Meteorology And Climatology 46 (11): 1701-1717. doi:10.1175/2007jamc1538.1.
- 14. Source: Supernode Energy. 2019. "Leading Europe Into An Electrified Future". Supernode Energy. Accessed December. https://supernode.energy/wp-content/uploads/SuperNode-IEA-1.pdf.
- 15. Source: AECOM. 2016. "Co-Location Investigation". AECOM. Accessed December. http://www.aecom.com/au/wp-content/uploads/2016/03/Wind-solar-Co-location-Study-Final.pdf.
- 16. Source: Financial Times. 2019. "European Groups Form Joint Venture For Offshore Wind Power", , 2019. Accessed December. https://www.ft.com/content/b6653176-7bda-11e9-81d2f785092ab560
- 17. Source: International Hydropower Association. 2019. "The World'S Water Battery: Pumped Hydropower Storage And The Clean Energy Transition". Accessed December. https://www.hydropower.org/sites/default/files/publications-docs/the\_worlds\_water\_battery\_-pumped\_storage\_and\_the\_clean\_energy\_transition\_2.pdf
- 18. Source: IRENA. 2019. "Utility-Scale Batteries: Innovation Landscape Brief". Abu Dhabi: International Renewable Energy Agency. https://www.irena.org/-/
- 19. Source: "Tracking Energy Integration Analysis IEA". 2019. IEA. Accessed December. https://www.iea.org/reports/tracking-energy-integration
- 20. Source: Negócios. 2019. "Automóveis Elétricos Vão Custar O Mesmo Que Os De Combustão Já Em 2023", , 2019. Accessed



#### **Bibliography Transmission**

21. Source: "Integrated Energy Storage: An Answer To Addressing The "Duck Curve"? - Sunverge". 2019. Sunverge. Accessed December. http://www.sunverge.com/integrated-energy-storage-an-answer-to-addressing-the-duck-curve/.

22. Source: "ENTSO-E Member Companies". 2019. Entsoe.Eu. Accessed December. https://www.entsoe.eu/about/inside-entsoe/members/.

23. Source: "DESERTEC Foundation – Energy For The Next Billion". 2019. Desertec.Org. Accessed December. https://www.desertec.org/.

24. Source: "Desertec: The Renewable Energy Grab?". 2019. New Internationalist. Accessed December. https://newint.org/features/2015/03/01/desertec-long.

25. Source: Hirschhausen, Christian, Florian Leuthold, Jonas Egerer, Robert Wand, and Gregor Drondorf. 2019. "The Economics Of DESERTEC". Berlin. Accessed December.

http://climatepolicyinitiative.org/wp-content/uploads/2011/12/Hirschhausen-et-al\_The-Economics-of-DESERTEC.pdf.

26. Source: Smyth, Jamie. 2019. "Tesla Set To Make World'S Biggest Battery Even Bigger". Financial Times, 2019. Accessed December. https://www.ft.com/content/aac46900-0a81-11ea-bb52-34c8d9dc6d84.

27. Source: Nick, Toscano. 2019. "Huge Tesla Battery In South Australia Primed For Big Upgrade". The Sydney Morning Herald, , 2019. Accessed December.

https://www.smh.com.au/business/companies/huge-tesla-battery-in-south-australia-primed-for-big-upgrade-20191119-p53byo.html.

28 Source: IRENA. 2019. "Global Energy Transformation: A Roadmap To 2050". Abu Dhabi: International Renewable Energy Agency.

29. Source: IEA. 2018. "World Energy Investments 2018". International Energy Agency.

#### **Investment Opportunities**

1. Source: IRENA. 2019. "Global Energy Transformation: A Roadmap to 2050 (2019 Edition)." Abu Dhabi: International Renewable Energy Agency.

https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition.

2. World Bank. 2019. "Gross Domestic Product 2018." Retrieved from world bank database http://data.worldbank.org/data-catalog/world-development-indicators

3. Source: McKinsey & Company. 2017. "Game Changers in the Energy System Emerging Themes Reshaping the Energy Landscape." Switzerland: WORLD ECONOMIC FORUM

