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Abstract
This work project aims at supporting managers in explaining and predicting sales of specific

products based on a devised methodology. Product sales time series were analysed and

processed in order to select the best model type: explanatory models (through ordinary least

squares method), univariate models (Box Jenkins methodology) or dynamic models mixing up

the two previous approaches. An automatic procedure to put the methodology in practice was

implemented using Python, due to the huge amount of product sales to be modelled. The

process was tested using data from more than 1500 products from Beiersdorf Lisbon. For the

sake of confidentiality, the names of the products were modified. The most accurate models are

described and analyzed. 
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Introduction

The importance of a sales explanatory model
Explanatory models have always been essential tools to business decision makers. Living in a

world in constant change due to the speed at which information flows represents a difficult

challenge to managers that are forced to make decisions on a day to day basis and therefore to

adjust their core strategies. Simultaneously these managers are pressed to increase revenues and

to be competitive against more flexible companies with a worldwide scale. 

The ability to explain the behavior of sales through external factors can contribute to a better

understanding of the right strategy to follow. Sales models support managers with information

on what action to take if some uncontrollable parameters change. For example, there are some

products whose sales to client A will drop when another client B opens a new store (mind that

Beiersdorf assumes retailers as clients and not the final customer). On the other hand, sales to

client A increase when products are in promotion price. Therefore, when Beiersdorf learns that

client B is going to open a new store, it can prepare to set this product in promotion price, to

offset the negative impact on the products sales. This is important to the extent that the model

can support managers when making strategic decisions across different areas of the company -

advertising, point of sale activation, promotion prices, financial investments, among others. 

Additionally, explanatory models, when sufficiently accurate, can be used to make predictions.

Having a sales forecasting model is an increasing helpful tool to predict the business

performance in the upcoming months. Moreover, not only can it support plans of action and

growth across the aforementioned areas of the company but also it assists companies supply in

meeting the changing demand. 



Company Overview
Beiersdorf is a German multinational company founded in 1882. Today it has 20,000 employees

and more than 160 affiliates worldwide (Beiersdorf, 2019). The company is divided into two

segments: Consumer Business Segment and Tesa Business Segment. The Consumer

Business segment main focus is on skin and body care markets. Their international brand

portfolio remains relevant and specific needs and wishes from customers are satisfied through

constant innovations and by staying close to the consumers. Tesa Business segment has

worked as an independent unit since 2001, offering superior and reliable technology within high

quality products. Focused on innovation, Tesa is one of the world’s leading manufacturers of

self-adhesive product solutions for industrial customers and consumers. 

The main goal and focus of Beiersdorf is to make people feel good in their skin. Aiming to

become the number one skin care company in the world, Beiersdorf caters every sort of

customer need and operates in different markets - mass market, dermo cosmetics, and premium.

In the current economic context, competition is particularly significant, which demands

constant investments in Research and Development (R&D) and improvement of new and

existing products as well as processes. In many countries, its brands and specially NIVEA are

perceived to be local because of the development of skin care products according to the

country’s specific needs. For this purpose, besides the R&D Center in Hamburg, Beiersdorf has

Regional Development Laboratories in Mexico, China and India. 

Besides NIVEA, Beiersdorf's most important brand (Beiersdorf, 2019), the other brands present

in Portugal are Eucerin, Hansaplast, Labello, Atrix, Fuss Frisch and Harmony. For the

context of this thesis, NIVEA will be the only brand apprised.

Literature Review
This section presents a summary of the research conducted not only about explanatory and sales

forecasting models, but also on how to implement these methods in Python. Traditional

forecasting methods include not only multiple linear regression but also time series models,



which use historical data to forecast and explain the behavior of the dependent variable. Among

the time series methods, such as the Naive method, average method, exponential smoothing,

Holt’s linear and exponential trend method, damped or seasonal trend methods, the most

common ones are the moving averages, ARMA (Autoregressive Moving Average), and

ARIMA (Autoregressive Integrated Moving Average). These have been previously used to

forecast a wide range of matters. In a study from Bentley College (Weisang and Awazu, 2014),

they proposed the application of an ARIMA to forecast the USD/EUR exchange rate. Whereas

in a paper from the School of Science of Xi'dian University the same model was used to predict

real‐time rain‐induced attenuation (Radio Science, 2013). Furthermore, literature on forecasting

methods such as Forecasting: principles and practice (Hyndman and Athanasopoulos, 2014),

Introduction to time series and forecasting (Brockwell and Davis, 2016) and A course in time

series analysis (Peña, Tiao and Tsay 2001) served as a drive to use this method, since they

describe the ARIMA as a simple and powerful model. In recent years, researchers have been

developing systems to forecast sales through machine learning, as it was done at Istanbul

University (Kilimci, Akyuz, Uysal, Akyokus, Uysal, Atak Bulbul and Ekmis 2019). To the

extent of this thesis, a half-automatic methodology was developed in Python based on several

articles published by Raphael Bubolz Larrosa (Towards Data Science, 2019), Sangarshanan

(Towards Data Science, 2018), Kostas Hatalis (Data Science Central, 2018). The code is used

as a tool to help modeling all product sales and therefore it requires the user to analyze graphs

as well as statistical tests. The implementation of the code required constant assistance of online

forums such as Stack overflow, GitHub and from the Pyhton libraries documentations.

Data description and model proposals
Beiersdorf company provided a data set with 1668 time series for more than 500 different

products sales for three different clients. For each product category information was provided

on the promo intensity (percentage of sales in promotion price), market penetration and market

share of NIVEA and its main competitors. The media plan for each product along the past five

years was also made available. Additionally, information was given about the number of stores



of each client for the last five years. External data on social and economic factors in Portugal

(Pordata 2018) were collected, based on research performed on the company's financial reports

(Beiersdorf, 2019) and industry analysis (Essays UK, 2018). These were the following:

Consumption by households in the economic territory as % of GDP, GDP growth rate,

Unemployment rate per gender, average monthly wage per gender and guests in tourist

accommodations per 100 inhabitants. 

Three different types of models were proposed to define product sales  of a given product 

 in month   to client  , as will be explained

further. Foremost, the following variables were defined as:

, a continuous variable that represents the promo intensity per product category , per

brand , per month 

, a continuous variable that represents the market penetration per product category ,

per brand , per client  per trimester 

, a continuous variable that represents the market share per product category , per brand 

, per month 

, a binary variable 1 if product  is on TV advertisement in month  and 0 otherwise.

, a discrete variable representing the number of stores of client , of type  in month 

, a continuous variable representing external factor  in year . 

The significance of these variables on the sales of each product was determined by developing a

Multiple Regression model. For the sake of simplicity, a variable  will be used to represent

the sum of all the factors previously presented, that is .

The product sales that can be modeled through a linear regression model, are given by the

following equation:
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Where  is the y-intercept and  is the regression coeficient of each . The determination of

the values for the coeficients  is done through the ordinary least squares (OLS) method. The

best-fit model will be the one that minimizes the sum of squared differences between the

observed and fitted values of product sales. Therefore, the coefficients are given by 

. Although the OLS gives the best-fit model, there is still the need to verify its

overall significance and check if no redundant parameters are being considered. For these

purposes an F-test must be performed and t-tests for each variable are also required. When there

is not enough evidence to reject the null hypothesis of a t-test, it means that either this

parameter is not required to explain the sales of the product or that it is correlated to one of the

other variables. In order to analyze which of the latter situations is the case, a computation of

the variance inflation factor (VIF) should take place. Then, the parameter with the highest VIF

is removed from the model. 

In case that the variables above have no added value when it comes to the description of the

product sales, an univariate model can be applied. An auto regressive integrated moving

average method (ARIMA) aims to describe the dependent variable's current behavior through

linear relationships with their past values. An ARIMA model is composed of two parts. First,

there is the integrated (I) factor ,  which represents the order of differencing

required to make the series stationary. Since this type of model works as a linear regression that

takes its own previous values as regressors, these need to be independent from each other,

which is not the case in non-stationary time series. The second constituent of the ARIMA is the

ARMA, which can in turn be divided into two components, the AR and MA. The

autoregressive (AR) element  expresses the correlation between the sales current value and

one or more of its past values. Meaning that, for instance,  is 1 at month , then the sales are

correlated to its value at month . On the other hand, the moving average (MA) component 

 captures the duration of the impact that a shock has on the time series. In particular, if  is 1 in

month  it means that the current value of the product sales time series is correlated with the

error of month . The values of  and  can be estimated through the analysis of the time

series autocorrelation function (ACF) and partial autocorrelation function (PACF). The value of

β0 βq Fj

βj

= ( −βj Sj Ŝ j)2
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(p)

p t

t − 1

q q

t

t − 1 p q



 can be found in a PACF correlogram: the first lags that are significant (above the sifnicance

line) will be the order of the . The same can be done to the value of  using the ACF plot,

which shows the number of MA terms required to remove any autocorrelation from the series

(David Abugaber, 2019). 

Subsequently, the product sales will be defined as follows.

Where  is the differencing operator. Moreover,  is the AR polynomial, and 

is the MA polynomial and can be defined as .  and  are the orders of the

autoregressive and the moving average components, respectively. 

Additionally, when the time series are seasonal, there are other components that can be included

in the ARIMA model to represent this, becoming a seasonal auto regressive integrated moving

average (SARIMA) model. The additional seasonal terms  are similar to the non-

seasonal parts of the model, although in this case the values backshift a seasonal period instead

of an immediate period before. For instance, a  means that the

sales of the current month are correlated to the sales of one year (12 months) ago. Thus, the

seasonal part of the model can simply be added to the ARIMA equation, as follows.

Where  is the seasonal polynomial.  and  are the orders of

the seasonal auto regressive and seasonal moving average, respectively. Whereas  is the

differencing order required to make the seasonal component stationary. Note that .

Despite the considerable quality of both the multilple regression and the ARIMA univariate

models, when considered independently, it is possible that significant information is being

ignored. The multiple regression does not take into acount historical values, whereas the

ARIMA univariate does not consider external factors. A simple approach to tackle this issue is
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to combine the two methods in a dynamic model. In practice, the methodology to estimate the

ARIMA/SARIMA factors values is the same as for the univariate model. However, once

explanatory variables are added, some past values might become redundant, or even not

significant at all. Hence, t-tests need to be performed to all regressors to make sure that both

explanatory and past values are all adding value to the model. Thus, the product sales which can

only be described by a dynamic model will be given by the following equation.

Methodology
A preliminary graphical analysis was performed along with expertise discussions with the

company decision makers. At this stage, some data were removed from the dataset. The

database provided included products that have been already discontinued, and obviously there is

no interest in analyzing such products. Likewise, products which were introduced in the

Portuguese market less than 5 years ago were discarded since there is not enough information to

perform any type of analysis. The data cleaning resulted in a dataset with over 300 products

(over 100 products per client). Due to this large number of products, after a preliminary analysis

to assess the likelihood of generating new information with the available methods, the

following methodology was implemented using Python:

1. Product time series graphical analysis. Should it be absolutely clear from the graph of the

time series that this product is seasonal (Fig 2), move on directly to a dynamic model, step

6. Otherwise (Fig 1), follow step 2.
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2. Build four sets of data for the product in question, which consider each possible

transformation to the variables of the model: Lin-Lin; Lin-Log; Log-Lin; Log-Log (DEV,

2019). This was done as an attempt to transform highly skewed data into a more

normalized variable, in order to make it better interpretable: using a log base of 10, a

change of one on the log scale is equivalent to a product of ten on the original data.

3. Explanatory model approach.

3.1. For each product sales establish explanatory linear models, starting with the most

correlated explanatory variable and adding new ones with the criteria that maximizes the

adjusted r-squared (Hyndman and Athanasopoulos 2014, 3.2).

3.2. Analise the residuals in order to ensure that the assumptions of the regression model

are satisfied. Evaluate if there is a pattern in the scatter plot of the residuals against the

fitted values and assess if the residuals follow an approximately normal distribution

(Hyndman and Athanasopoulos 2014, 5.3).

3.3. Perform an F-test to check the overall significance of the model.

3.4. Perform t-tests to check the individual significance of the explanatory variables.

3.5. Compute the Variance Inflating Factor (VIF) to check for multicollinearity. Remove

the parameter with the highest VIF and for which the null hypothesis was rejected in the t-

test. Start over until all the parameters are significant.

4. Assessing the accuracy of the model to understand if a different one should be used.



If the sales product linear model:

4.1. is non significant or r-squared<0.4 (Robert Nau, 2019) an ARIMA/SARIMA approach

(5.) shall be followed.

4.2. seems to be significant but the residuals present an autocorrelated pattern (Fig. 3) a

dynamic model approach (6.) shall be followed.

4.3. or if the time series graph clearly shows seasonality (Fig 2), a dynamic approach (6.)

shall be followed.

5. Univariate model approach

5.1. Correlogram analysis (Fig. 4) and Augmented Dickey Fuller test to evaluate

stationarity of the dependent variable (Towards Data Science, 2018). The series need to be

stationary to apply an auto regressive method, because this is a linear regression model that

uses past values of the dependent variable as explanatory variables (Data Science Central,

2018). Therefore, they need to be uncorrelated and independent from each other, which

happends only in series that are stationary. Hence, if the series is not stationary, compute a

first difference (re run ADF test and if not stationary compute a second difference). The

differencing order shall be the value of  for the  parameters.d ARIMA(p, d, q)



5.2. Correlogram anlaysis to determine the values of  and  from : p

will be the number of lags of  used as regressors. Whereas  is the number of lags of the

error term that should go in the model.

5.3. Experiment different combinations of orders for the AR and MA terms, having as

maximum values for  and  the ones found in the previous step. The combination that

gives the least  (Hyndman and Athanasopoulos 2014, 8.6) and has only significant

parameters is the best model.

5.4. Anlise the residuals (Fig. 5) to ensure the model obtained is a good fit (Bizstats.ai,

2019). The residuals should follow a normal distribution with mean zero and have a

uniform distribution. Moreover, the ordered distribution of residuals should follow the

linear trend of the samples taken from a standard normal distribution, which reinforces the

normality of the residuals. Lastly, the residuals should appear to be white noise, which can

be assessed through a correlogram.

p q ARIMA(p, d, q)

Y q

p q

AIC



6. Dynamic model approach

6.1. On this case exactly the same steps as for the univariate ARIMA model should be

followed, only now instead of being univariate, this model also has exogenous variables

(Towards Data Science, 2018).

6.2. Perform t-tests to make sure that all the parameters are significant. If not, remove the

non significant parameters from the model and repeat the residual analysis (Fig 5).

7. Interpretation of results

Experimental Results
Experimental findings disclose that the methodology above has a good level of accuracy for

many Beiersdorf products. It was applied to all the products of one particular client. Before

going into further detail, the overall analysis shows that 28% of the products were modeled

through a multiple regression, 12% were explained by an ARIMA univariate approach, 8% by a

SARIMA univariate method and 46% of the products had its sales described using a dynamic

model. Despite the good results obtained, this model did not present any accurate results for 6%

of the products. 

With the purpose of illustrating the proposed methodology, a few applications of the algorithm

are demonstrated bellow. To keep the confidentiality of the data, the product names were

replaced by numbers and the names of the variables are treated using the characterization

previously presented. 



Product 24
Product 24 time series (Fig 6), does not seem to be stationary nor seasonal.

Log-Lin was the best-fit model resulting from applying the forward selecting strategy to choose

significant regressors and making logarithmic transformations to the data. That is, a logarithm

transformation was applied to the sales values. The model has an r-squared of 0.658, which is

higher then the level of acceptance, suggesting that it seems to have significant parameters. A

graphical analysis of the residuals shows that they satisfy the assumptions of the model, i.e. not

only do they follow a normal distribution, but they also have no pattern when plotted against the

fitted values (Fig 7).

An F-test (Fig 7), shows that the model is overall significant. However, it is not possible to

reject the null hypothesis of the t-tests for some parameters, meaning that these may be



redundant. Through an analysis of the value inflation factors and t-tests, these non-significant

regressors were removed from the model. Finally, product 24 sales can be described as follows:

Since the final model has an r-squared of 0.602, it can be stated that 60.2% of the variation in

the sales of product 24 is due to changes in the following factors: market share of brand 3 

, or in the market penetration of category 2 by the market , or by brands 5 

 and 3  at client 3. It can also be due to changes in the market penetration

by brand 5 in client 1 . Moreover, changes in the number of stores 11 , 22 

, 13 , or 33  also contribute to explaining these 60.2% of sales variation.

In other words, if client 1 opens a new store type 3 , the sales of product 24 at client 2

will decrease by 0.286 units. In order to tackle this penalty in sales, NIVEA can engage in

strategies to increase the market penetration of category 2 , for instance. If the latter

increases by 1%, then the sales of product 24 at client 2 will increase by 262.855 units.

Furthermore, if the market penetration of brand 5 in client 3  increases 1%, then the

sales of product 24 drop 1178 units. However, an increase of 1% in the market penetration of

brand 3  in the same client boosts sales of product 24 by 3783.133 units. Thus, if

NIVEA foresees that client 1 is going to open a type 3 store, it can partner up with brand 3 to

either increase its market penetration at client 3  or to increase their market share 

. It should be stressed that the aforementioned strategy of increasing a competitor's

market share (MS) might not be the best path to follow since it might have a negative impact on

the sales of many other products, despite the positive contribution for the sales of product 24 to

client 2. Therefore, promoting a positive growth in the market penetration (MP) of a competitor

brand in this particular category should be the best strategy, as it contributes to increase

NIVEA's sales of product 24 to client 2, without negatively impacting the sales of other

products. 

Log( ) = −8.5515 + 8.8471M + 209.728M + 26.2855MŜ 24,2,t S2,3,t P2,3,2 P2,0,0 (5)

−117.8003M + 378.3133M + 146.6778M − 0.7727P2,5,3 P2,3,3 P2,5,1 C1,1
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(M )S2,3,t (M )P2,0,0

(M )P2,5,3 (M )P2,5,3

(M )P2,5,1 ( )C2,2

( )C2,2 ( )C1,3 ( )C3,3

( )C1,3

( )M2,0,0

(M )P2,5,3

(M )P2,3,3

(M )P2,3,3

(M )S2,3,t



Product 76
Product 76 time series plot (Fig 8) shows a high variance, especially in recent periods, but there

are no clear signs of stationarity or seasonality.

Accordingly, logarithmic transformations were made to the data followed by the forward

selecting strategy to choose the best regressors to describe this product sales. The resulting best-

fit model had a low r-squared (0.248) and residuals that did not verify the assumptions of the

regression (Fig 9).

Hence, an ARIMA/SARIMA univariate should be applied. The ADF test shows that the series

seems to be stationarity (Fig 10). The same can be observed in the correlogram of

autocorrelation and partial autocorrelation, together with the fact that the sales of this product

are not seasonal. Hence, an  method was pursued. The correlogram (Fig 10)

suggests that the parameters  and  of the ARIMA are both at most, 1.

ARIMA(p, 0, q)

p q



Through the tryout of several combinations of  and  values, the best-fit model is an 

. Consequently, the sales of product 76 to client 2 can be explained by the

following equation:

The residuals satisfy the assumptions of the model (Fig 11) since their variance is

approximately uniformly distributed and the residuals seem to be normally distributed with

mean 0. Additionally, the qq-plot shows that the ordered distribution of residuals falls almost

perfectly on the linear trend of the samples taken from a standard normal distribution. Lastly,

the correlogram of the residuals seems to be white noise.

Thus, it can be concluded that the sales of product 34 will be predictable based on the value of

the sales of the previous month. In other words, the current sales of product 34 are highly

correlated (0.4) with the previous month sales. 

p q

ARIMA(1, 0, 1)

= 135.5775 + 0.41Ŝ 34,2,t S34,2,t−1 (6)



Product 75
The time series plot (Fig 12) of product 75 suggests no stationarity and no seasonality.

After making logarithmic transformations to the data, the forward selecting strategy to find the

regressors that better explain the sales of product 75 was applied. The best-fit regression model

obtained had residuals that did not satisfy the assumptions of the regression (Fig 13) and

appeared to have a high r-squared (0.624).

Therefore, a dynamic approach should be followed. The ADF test (Fig 14) shows that the series

are not stationary, so it needs to be differenced. Analyzing the correlogram (Fig 14), the values

of  and  had to be be lower than 2. Thus, the model used was an  with

significant exogenous variables.

p q ARIMA(p, 1, q)



The best-fit model is an ARIMA(0,1,1) with the variable that represents the promo intensity of

this product category (12) at client 3 . In other words, the sales of product 75 to client 2

are given by the following equation:

The variance of the residuals is approximately uniform and they seem to follow a normal

distribution with mean 0. Additionally, the ordered distribution of residuals falls almost

perfectly on the linear trend of the samples taken from a standard normal distribution. Their

correlogram seems to be white noise (Fig 15).

Therefore, the sales of product 75 to client 2 can be explained by the promo intensity of brand 3

in category 12  and are negatively correlated with the error of the previous period 

. If the promo intensity of brand 3  declines 1%, the sales of product 75 to client

2 increase approximately 181 units. With this information, NIVEA's strategy can be adapted to

influencing brand 3 promo intensity to drop.

(P )I12,3

. = 37.5523 − 181.4459P −d1 Ŝ 75,2,t I12,3 εt−1 (7)

(P )I12,3

( )εt−1 (P )I12,3



Product 90
The time series plot of product 90 clearly shows seasonality (Fig 16).

Hence, a dynamic approach should be pursued. Both the ADF test and the correlogram (Fig 17)

show that the series are stationary, thus no differencing is required. Additionally, the

correlogram of autocorrelation reinforces the seasonality of this product's sales. The model used

was therefore a . Once again through the analysis of the

autocorrelation and partial autocorrelation correlograms (Fig 17), it can be concluded that the

maximum values for p, q, P and Q are 1, 2, 1 and 2, respectively.

After observing all the possible combinations of orders of the SARMA parameters, the best-fit

model is a . Hence, product 90 sales can be explained by the

equation bellow. 

SARIMA(p, 0, q)x(P , 0, Q, 12)

SARIMA(0, 0, 0)x(2, 0, 0, 12)

= 3.4704 + 2.951 × MŜ 90,2,t 10−5 P10,3,3 (8)

+0.4767 + 0.2849S90,2,t−12 S90,2,t−24



The residuals (Fig 18) follow a normal distribution with mean 0 and its variance has an

approximately uniform distribution around 0. Moreover, their correlogram is white noise and

their ordered distribution falls almost perfectly on the linear trend of the samples taken from a

standard normal distribution.

This model discloses that the sales of product 90 are approximately 0.48 times greater than in

the previous year and 0.28 times more than two years before. This means that the sales of

product 90 are predictable based on historical values. Furthermore, it can be stated that the

market penetration of brand 3 in client 3  has a small, but positive impact on

product 90 sales. Thus, in order to increase the sales of product 90, NIVEA can partner up with

brand 3 to increase their market penetration in this category and client.

Limitations
The analysis performed is restricted by the sample size, since there are only 5 years of data

available. This methodology puts in practice only basic methods, since it is a preliminary

approach. Thus, there are multiple further analysis that could be conducted. To the purpose of

this approach, the levels of accuracy accepted were not too demanding. In terms of practical

results, there might be some flaws since the sales were only considered in volume and not in

value. Furthermore, in all the cases that required differencing, some real characteristics of the

data might have been lost. Moreover, while building the Python code, simplifications to the

statistical methods were made as otherwise no automation to support the application of the

methodology would be feasible. Despite some loss of quality control on statistical methods,

(M )P10,3,3



automation versus the alternative of doing it analytically, was essential for practical application

of the methodology.

Conclusions
The goal of this thesis is to provide decision makers with a methodology that supports strategic

decisions to influence product sales. Variables that have statistical significance to explain the

sales of each product were identified through the analysis. 

The work project begins with an explanation of the importance that these models have to a

consumer oriented company and a brief description of Beiersdorf. Then, it carries on to a

definition of the external variables that can have an impact on product sales. Also, a short

description about the three model types used is given. Next, the developed step-by-step

methodology is presented, followed by a summary of the results of its application to all the 100

products of client 2. From all these products, the methodology failed to give accurate results to

only 6 of them. Thereupon, four examples of product sales modeling are given. Firstly, sales of

product 24 were defined by a multiple regression. Then both products 75 and 76 sales were

modeled respectively through an univariate ARIMA(0,1,1) and ARIMA(1,0,1). Finally, product

90 time series are clearly seasonal so it was immediatly decided to follow a dynamic model,

being the best-fit a SARIMA(0, 0, 0)x(2, 0, 0, 12) with one exogenous variable. 

This work project provides tools to accurately explain the behavior of consumer product sales

by applying these models to different types of products using Beiersdorf's data. Being a

preliminary approach, some flwas were identified which may be improved with further

investigation.
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Appendix

A. Overall results
Table A.1: The most acurate model for each product for client 2.

Product Method Model detail

1 Dynamic SARIMAX(1, 1, 0)x(1, 0, 0, 12)

2 Dynamic SARIMAX(0, 0, 0)x(2, 0, 1, 12)

3 Dynamic SARIMAX(1, 0, 0)x(1, 0, 1, 12)

4 Dynamic ARIMAX(1, 0, 2)

5 Regression Log-Lin

6 Dynamic ARIMAX(0, 0, 1)

7 SARIMA Univariate SARIMAX(0, 1, 1)x(1, 0, 0, 12)

8 Regression Lin-Lin

9 Regression Lin-Lin

10 SARIMA Univariate SARIMAX(0, 0, 0)x(2, 0, 0, 12)

11 Dynamic SARIMAX(0, 0, 0)x(0, 0, 1, 12)

12 Regression Lin-Lin

13 Dynamic ARIMAX(0, 0, 1)

14 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

15 ARIMA Univariate ARIMA(0, 1, 1)

16 ARIMA Univariate ARIMA(0, 0, 1)

17 None

18 Dynamic ARIMA(0, 1, 1)

19 Regression Log-Lin

20 Regression Log-Log

21 Regression Log-Lin

22 Regression Log-Lin

23 Regression Log-Log

24 Regression Log-Lin

25 SARIMA Univariate SARIMAX(0, 0, 0)x(0, 0, 1, 12)

26 Regression Lin-Log

27 Dynamic ARIMA(1, 0, 0)

28 Regression Log-Log



Product Method Model detail

29 SARIMA Univariate SARIMAX(0, 0, 0)x(1, 0, 0, 12)

30 None

31 None

32 Dynamic ARIMA(0, 0, 1)

33 Dynamic ARIMA(0, 0, 1)

34 ARIMA Univariate ARIMA(1, 0, 1)

35 None

36 Regression Log-Log

37 Regression Lin-Log

38 None

39 Dynamic ARIMA(1, 1, 1)

40 SARIMA Univariate SARIMAX(0, 0, 0)x(1, 0, 0, 8)

41 Regression Lin-Lin

42 Dynamic ARIMA(0, 1, 1)

43 ARIMA Univariate ARIMA(0, 0, 1)

44 ARIMA Univariate ARIMA(1, 1, 1)

45 Regression Lin-Log

46 Regression Log-Lin

47 Regression Lin-Lin

48 Regression Log-Lin

49 Regression Log-Log

50 Regression Log-Log

51 SARIMA Univariate SARIMAX(0, 0, 0)x(0, 0, 1, 12)

52 Dynamic SARIMAX(0, 0, 0)x(0, 0, 1, 12)

53 None

54 Regression Log-Lin

55 Dynamic ARIMA(0,0,2)

56 Regression Lin-Log

57 Regression Log-Log

58 Regression Log-Lin

59 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

60 Dynamic ARIMA(0,0,1)

61 Regression Log-Lin



Product Method Model detail

62 Dynamic ARIMAX(1, 0, 1)

63 Dynamic ARIMAX(0, 1, 2)

64 SARIMA Univariate SARIMAX(0, 0, 0)x(1, 0, 0, 12)

65 Dynamic ARIMAX(0, 0, 2)

66 Dynamic SARIMAX(0, 1, 1)x(1, 0, 0, 8)

67 Dynamic SARIMAX(0, 0, 0)x(3, 0, 1, 6)

68 Dynamic ARIMAX(0, 1, 1)

69 Dynamic ARIMAX(1, 0, 1)

70 Dynamic ARIMAX(1, 0, 1)

71 ARIMA Univariate ARIMA(0, 1, 1)

72 ARIMA Univariate ARIMA(1, 1, 1)

73 SARIMA Univariate SARIMAX(0, 0, 1)x(0, 0, 1, 12)

74 Regression Log-Log

75 Dynamic ARIMA(0, 1, 1)

76 ARIMA Univariate ARIMA(1, 0, 1)

77 ARIMA Univariate ARIMA(1, 1, 2)

78 Dynamic ARIMA(0, 1, 1)

79 ARIMA Univariate ARIMA(0, 1, 1)

80 ARIMA Univariate ARIMA(1, 1, 1)

81 Dynamic ARIMA(0, 1, 1)

82 Regression Lin-Log

83 ARIMA Univariate ARIMA(0, 1, 1)

84 Dynamic SARIMAX(0, 0, 0)x(1, 0, 1, 12)

85 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

86 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

87 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

88 Dynamic SARIMAX(0, 0, 0)x(2, 0, 0, 12)

89 Dynamic SARIMAX(0, 0, 0)x(1, 0, 1, 12)

90 Dynamic SARIMAX(0, 0, 0)x(2, 0, 0, 12)

91 Dynamic SARIMAX(0, 0, 0)x(2, 0, 0, 12)

92 Dynamic SARIMAX(1, 0, 1)x(2, 0, 0, 12)

93 Dynamic SARIMAX(0, 0, 0)x(1, 0, 1, 12)

94 Dynamic SARIMAX(1, 0, 1)x(2, 0, 0, 12)



Product Method Model detail

95 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

96 Dynamic SARIMAX(1, 0, 0)x(1, 0, 1, 12)

97 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

98 Dynamic SARIMAX(0, 0, 0)x(1, 0, 1, 12)

99 Dynamic SARIMAX(0, 0, 0)x(2, 0, 0, 12)

100 Dynamic SARIMAX(0, 0, 0)x(1, 0, 0, 12)

B. Experimental results - Multiple Regression
Figure B.1: Best-fit model from transormations and forward selecting strategy

Figure B.2: Final best-fit model



C. Experimental results - ARIMA Univariate
stationary
Figure C.1: Final best-fit model

D. Experimental results - ARIMA Univariate non-
stationary



Figure D.1: Final best-fit model

E. Experimental results - Dynamic model
Figure E.1: Final best-fit model

F. Pyhton code
Tabke F.1: Python code for the methodology



pip install pmdarima 

# Data curation

import pandas as pd

import numpy as np

%matplotlib notebook

import matplotlib.pyplot as plt

import statsmodels.api as sm

import statsmodels.formula.api as smf 

sales_volume = pd.read_excel('data_clean.xlsx', header=[0,1,2,

3,4], index_col=[0, 1], sheetname='Sales Volume')

sales_volume = pd.DataFrame(sales_volume)

sales_volume = sales_volume.replace(np.NaN, 0) 

def get_tokens(string): 

   import re 

   tokens = re.sub(r'[^\sa-zA-Z0-9]', '', string).lower().str

ip().split() 

   return tokens 

#Variables definition 

y_raw = pd.read_excel('data_clean.xlsx', header=[0,1,2,3,4], i

ndex_col=[0, 1], sheetname='Sales Volume')

y_raw = y_raw.replace(np.NaN, 0)

y_raw = pd.DataFrame(y_raw) 



x1 = pd.read_excel('data_clean.xlsx', skiprows = 17, header=[0

,1], index_col=[0, 1], sheetname='Internal Data-Promo Intensit

y')

x1 = pd.DataFrame(x1) 

x2 = pd.read_excel('data_clean.xlsx', skiprows = 32, header=[0

,1,2], index_col=[0, 1], sheetname='Internal Data-MarketPenetr

ation')

x2 = pd.DataFrame(x2) 

x3 = pd.read_excel('data_clean.xlsx', skiprows = 16, header=[0

,1], index_col=[0, 1], sheetname='Internal Data-Market Share')

x3 = pd.DataFrame(x3) 

x4 = pd.read_excel('data_clean.xlsx', skiprows = 7, header=[0,

1], index_col=[0, 1], sheetname='Stores per Client')

x4 = pd.DataFrame(x4)

x4cleancols1 = pd.DataFrame('x4'+ x4.iloc[:,0:8].columns.get_l

evel_values(0) + x4.iloc[:,0:8].columns.get_level_values(1))

x4cleancols2 = get_tokens(str(x4cleancols1))

x4cleancols = [x for x in x4cleancols2 if x.startswith('x4')]

x4.columns = x4cleancols 

x5 = pd.read_excel('data_clean.xlsx', skiprows = 2, header=[0,

1,2], index_col=[0, 1], sheetname='Internal Data-Media Plan')

x5 = x5.replace(np.NaN, 0)

x5 = pd.DataFrame(x5) 

e_n = pd.read_excel('data_clean.xlsx', skiprows = 24, header=[



0,1], index_col=[0, 1], sheetname='External Data')

e_n = pd.DataFrame(e_n)

e_n.columns = ['e1', 'e2', 'e3', 'e41', 'e42', 'e43', 'e5'] 

# Categories  

#Y - sales time series:

aftersun_pd = y_raw.iloc[:, 0:4]

labello_pd = y_raw.iloc[:, 36:56]

bath_pd = y_raw.iloc[:, 57:68]

shower_pd = y_raw.iloc[:, 69:100]

inshower_pd = y_raw.iloc[:, 146:153]

soap_pd = y_raw.iloc[:,101:116]

bodyessentials_pd = y_raw.iloc[:, 117:146]

bodyperformance_pd = y_raw.iloc[:,154:166]

bodyapc_pd = y_raw.iloc[:,167:181]

facecare_pd = y_raw.iloc[:, 182:244]

facecleansing_pd = y_raw.iloc[:,245:289]

hand_pd = y_raw.iloc[:,290:302]

deofemale_pd = y_raw.iloc[:, 302:339]

deomale_pd = y_raw.iloc[:,340:367]

haircare_pd = y_raw.iloc[:, 368:401]

styling_pd = y_raw.iloc[:, 402:419]

aftershave_pd = y_raw.iloc[:, 420:431]

menfacecare_pd = y_raw.iloc[:, 432:465]

sunprotect_pd = y_raw.iloc[:,466:514] 

aftersun_sonae = y_raw.iloc[:, 529:532] 



x1facecleansing = x1.iloc[:, 4:8]

x1facecleansingcleancols1 =  pd.DataFrame('x1facecleansing'+ x

1facecleansing.columns.get_level_values(1))

x1facecleansingcleancols = get_tokens(str(x1facecleansingclean

cols1))

x1facecleansingcleancols = [x for x in x1facecleansingcleancol

s if x.startswith('x1')]

logx1facecleansing = np.log(x1.iloc[:, 4:8].replace(0,1))

logx1facecleansingcleancols1 =  pd.DataFrame('logx1facecleansi

ng'+ x1facecleansing.columns.get_level_values(1))

logx1facecleansingcleancols = get_tokens(str(logx1facecleansin

gcleancols1))

logx1facecleansingcleancols = [x for x in logx1facecleansingcl

eancols if x.startswith('logx1')]

logx1facecleansing.columns =logx1facecleansingcleancols  

x1facecleansing.columns = x1facecleansingcleancols 

x2face = x2.iloc[:, 0:10]

x2facecleancols1 =  pd.DataFrame('x2face'+ x2face.columns.get_

level_values(1)+ x2face.columns.get_level_values(2))

x2facecleancols = get_tokens(str(x2facecleancols1))

x2facecleancols = [x for x in x2facecleancols if x.startswith(

'x2')]

logx2face = np.log(x2.iloc[:, 0:10].replace(0,1))

logx2facecleancols1 =  pd.DataFrame('logx2face'+ x2face.column

s.get_level_values(1)+ x2face.columns.get_level_values(2))

logx2facecleancols = get_tokens(str(logx2facecleancols1))

logx2facecleancols = [x for x in logx2facecleancols if x.start

swith('logx2')]



logx2face.columns =logx2facecleancols  

x2face.columns = x2facecleancols 

x3facecleansing = x3.iloc[:, 3:6]

x3facecleansingcleancols1 =  pd.DataFrame('x3facecleansing'+ x

3facecleansing.columns.get_level_values(1))

x3facecleansingcleancols = get_tokens(str(x3facecleansingclean

cols1))

x3facecleansingcleancols = [x for x in x3facecleansingcleancol

s if x.startswith('x3')]

logx3facecleansing = np.log(x3.iloc[:, 3:6].replace(0,1))

logx3facecleansingcleancols1 =  pd.DataFrame('logx3facecleansi

ng'+ x3facecleansing.columns.get_level_values(1))

logx3facecleansingcleancols = get_tokens(str(logx3facecleansin

gcleancols1))

logx3facecleansingcleancols = [x for x in logx3facecleansingcl

eancols if x.startswith('logx3')]

logx3facecleansing.columns =logx3facecleansingcleancols  

x3facecleansing.columns = x3facecleansingcleancols 

x1facecare = x1.iloc[:, 9:12]

x1facecarecleancols1 =  pd.DataFrame('x1facecare'+ x1facecare.

columns.get_level_values(1))

x1facecarecleancols = get_tokens(str(x1facecarecleancols1))

x1facecarecleancols = [x for x in x1facecarecleancols if x.sta

rtswith('x1')]

logx1facecare = np.log(x1.iloc[:, 9:12].replace(0,1))

logx1facecarecleancols1 =  pd.DataFrame('logx1facecare'+ x1fac

ecare.columns.get_level_values(1))



logx1facecarecleancols = get_tokens(str(logx1facecarecleancols

1))

logx1facecarecleancols = [x for x in logx1facecarecleancols if

x.startswith('logx1')]

logx1facecare.columns =logx1facecarecleancols  

x1facecare.columns = x1facecarecleancols 

x3facecare = x3.iloc[:, 6:9]

x3facecarecleancols1 =  pd.DataFrame('x3facecare'+ x3facecare.

columns.get_level_values(1))

x3facecarecleancols = get_tokens(str(x3facecarecleancols1))

x3facecarecleancols = [x for x in x3facecarecleancols if x.sta

rtswith('x3')]

logx3facecare = np.log(x3.iloc[:, 6:9].replace(0,1))

logx3facecarecleancols1 =  pd.DataFrame('logx3facecare'+ x3fac

ecare.columns.get_level_values(1))

logx3facecarecleancols = get_tokens(str(logx3facecarecleancols

1))

logx3facecarecleancols = [x for x in logx3facecarecleancols if

x.startswith('logx3')]

logx3facecare.columns =logx3facecarecleancols  

x3facecare.columns = x3facecarecleancols 

x1bodyessentials = x1.iloc[:, 16:20]

x1bodyessentialscleancols1 =  pd.DataFrame('x1bodyessentials'+

x1bodyessentials.columns.get_level_values(1))

x1bodyessentialscleancols = get_tokens(str(x1bodyessentialscle

ancols1))

x1bodyessentialscleancols = [x for x in x1bodyessentialscleanc



ols if x.startswith('x1')]

logx1bodyessentials = np.log(x1.iloc[:, 16:20].replace(0,1))

logx1bodyessentialscleancols1 =  pd.DataFrame('logx1bodyessent

ials'+ x1bodyessentials.columns.get_level_values(1))

logx1bodyessentialscleancols = get_tokens(str(logx1bodyessenti

alscleancols1))

logx1bodyessentialscleancols = [x for x in logx1bodyessentials

cleancols if x.startswith('logx1')]

logx1bodyessentials.columns =logx1bodyessentialscleancols  

x1bodyessentials.columns = x1bodyessentialscleancols 

x2body = x2.iloc[:, 10:26]

x2bodycleancols1 =  pd.DataFrame('x2body'+ x2body.columns.get_

level_values(1)+ x2body.columns.get_level_values(2))

x2bodycleancols = get_tokens(str(x2bodycleancols1))

x2bodycleancols = [x for x in x2bodycleancols if x.startswith(

'x2')]

logx2body = np.log(x2.iloc[:, 10:26].replace(0,1))

logx2bodycleancols1 =  pd.DataFrame('logx2body'+ x2body.column

s.get_level_values(1)+ x2body.columns.get_level_values(2))

logx2bodycleancols = get_tokens(str(logx2bodycleancols1))

logx2bodycleancols = [x for x in logx2bodycleancols if x.start

swith('logx2')]

logx2body.columns =logx2bodycleancols  

x2body.columns = x2bodycleancols 

x3bodyessentials = x3.iloc[:, 12:15]

x3bodyessentialscleancols1 =  pd.DataFrame('x3bodyessentials'+

x3bodyessentials.columns.get_level_values(1))



x3bodyessentialscleancols = get_tokens(str(x3bodyessentialscle

ancols1))

x3bodyessentialscleancols = [x for x in x3bodyessentialscleanc

ols if x.startswith('x3')]

logx3bodyessentials = np.log(x3.iloc[:, 12:15].replace(0,1))

logx3bodyessentialscleancols1 =  pd.DataFrame('logx3bodyessent

ials'+ x3bodyessentials.columns.get_level_values(1))

logx3bodyessentialscleancols = get_tokens(str(logx3bodyessenti

alscleancols1))

logx3bodyessentialscleancols = [x for x in logx3bodyessentials

cleancols if x.startswith('logx3')]

logx3bodyessentials.columns =logx3bodyessentialscleancols  

x3bodyessentials.columns = x3bodyessentialscleancols 

x1bodyperformance = x1.iloc[:, 20:24]

x1bodyperformancecleancols1 =  pd.DataFrame('x1bodyperformanc

e'+ x1bodyperformance.columns.get_level_values(1))

x1bodyperformancecleancols = get_tokens(str(x1bodyperformancec

leancols1))

x1bodyperformancecleancols = [x for x in x1bodyperformanceclea

ncols if x.startswith('x1')]

logx1bodyperformance = np.log(x1.iloc[:, 20:24].replace(0,1))

logx1bodyperformancecleancols1 =  pd.DataFrame('logx1bodyperfo

rmance'+ x1bodyperformance.columns.get_level_values(1))

logx1bodyperformancecleancols = get_tokens(str(logx1bodyperfor

mancecleancols1))

logx1bodyperformancecleancols = [x for x in logx1bodyperforman

cecleancols if x.startswith('logx1')]

logx1bodyperformance.columns =logx1bodyperformancecleancols  



x1bodyperformance.columns = x1bodyperformancecleancols 

x3bodyperformance = x3.iloc[:, 15:18]

x3bodyperformancecleancols1 =  pd.DataFrame('x3bodyperformanc

e'+ x3bodyperformance.columns.get_level_values(1))

x3bodyperformancecleancols = get_tokens(str(x3bodyperformancec

leancols1))

x3bodyperformancecleancols = [x for x in x3bodyperformanceclea

ncols if x.startswith('x3')]

logx3bodyperformance = np.log(x3.iloc[:, 15:18].replace(0,1))

logx3bodyperformancecleancols1 =  pd.DataFrame('logx3bodyperfo

rmance'+ x3bodyperformance.columns.get_level_values(1))

logx3bodyperformancecleancols = get_tokens(str(logx3bodyperfor

mancecleancols1))

logx3bodyperformancecleancols = [x for x in logx3bodyperforman

cecleancols if x.startswith('logx3')]

logx3bodyperformance.columns =logx3bodyperformancecleancols  

x3bodyperformance.columns = x3bodyperformancecleancols 

x1bodyapc = x1.iloc[:, 24:28]

x1bodyapccleancols1 =  pd.DataFrame('x1bodyapc'+ x1bodyapc.col

umns.get_level_values(1))

x1bodyapccleancols = get_tokens(str(x1bodyapccleancols1))

x1bodyapccleancols = [x for x in x1bodyapccleancols if x.start

swith('x1')]

logx1bodyapc = np.log(x1.iloc[:, 24:28].replace(0,1))

logx1bodyapccleancols1 =  pd.DataFrame('logx1bodyapc'+ x1bodya

pc.columns.get_level_values(1))

logx1bodyapccleancols = get_tokens(str(logx1bodyapccleancols1



))

logx1bodyapccleancols = [x for x in logx1bodyapccleancols if x

.startswith('logx1')]

logx1bodyapc.columns =logx1bodyapccleancols  

x1bodyapc.columns = x1bodyapccleancols 

x3bodyapc = x3.iloc[:, 18:21]

x3bodyapccleancols1 =  pd.DataFrame('x3bodyapc'+ x3bodyapc.col

umns.get_level_values(1))

x3bodyapccleancols = get_tokens(str(x3bodyapccleancols1))

x3bodyapccleancols = [x for x in x3bodyapccleancols if x.start

swith('x3')]

logx3bodyapc = np.log(x3.iloc[:, 18:21].replace(0,1))

logx3bodyapccleancols1 =  pd.DataFrame('logx3bodyapc'+ x3bodya

pc.columns.get_level_values(1))

logx3bodyapccleancols = get_tokens(str(logx3bodyapccleancols1

))

logx3bodyapccleancols = [x for x in logx3bodyapccleancols if x

.startswith('logx3')]

logx3bodyapc.columns =logx3bodyapccleancols  

x3bodyapc.columns = x3bodyapccleancols 

x1shower = x1.iloc[:, 28:32]

x1showercleancols1 =  pd.DataFrame('x1shower'+ x1shower.column

s.get_level_values(1))

x1showercleancols = get_tokens(str(x1showercleancols1))

x1showercleancols = [x for x in x1showercleancols if x.startsw

ith('x1')]

logx1shower = np.log(x1.iloc[:, 28:32].replace(0,1))



logx1showercleancols1 =  pd.DataFrame('logx1shower'+ x1shower.

columns.get_level_values(1))

logx1showercleancols = get_tokens(str(logx1showercleancols1))

logx1showercleancols = [x for x in logx1showercleancols if x.s

tartswith('logx1')]

logx1shower.columns =logx1showercleancols  

x1shower.columns = x1showercleancols 

x2shower = x2.iloc[:, 45:58]

x2showercleancols1 =  pd.DataFrame('x2shower'+ x2shower.column

s.get_level_values(1)+ x2shower.columns.get_level_values(2))

x2showercleancols = get_tokens(str(x2showercleancols1))

x2showercleancols = [x for x in x2showercleancols if x.startsw

ith('x2')]

logx2shower = np.log(x2.iloc[:, 45:58].replace(0,1))

logx2showercleancols1 =  pd.DataFrame('logx2shower'+ x2shower.

columns.get_level_values(1)+ x2shower.columns.get_level_values

(2))

logx2showercleancols = get_tokens(str(logx2showercleancols1))

logx2showercleancols = [x for x in logx2showercleancols if x.s

tartswith('logx2')]

logx2shower.columns =logx2showercleancols  

x2shower.columns = x2showercleancols 

x3shower = x3.iloc[:, 21:24]

x3showercleancols1 =  pd.DataFrame('x3shower'+ x3shower.column

s.get_level_values(1))

x3showercleancols = get_tokens(str(x3showercleancols1))

x3showercleancols = [x for x in x3showercleancols if x.startsw



ith('x3')]

logx3shower = np.log(x3.iloc[:, 21:24].replace(0,1))

logx3showercleancols1 =  pd.DataFrame('logx3shower'+ x3shower.

columns.get_level_values(1))

logx3showercleancols = get_tokens(str(logx3showercleancols1))

logx3showercleancols = [x for x in logx3showercleancols if x.s

tartswith('logx3')]

logx3shower.columns =logx3showercleancols  

x3shower.columns = x3showercleancols 

x1deofemale = x1.iloc[:, 37:41]

x1deofemalecleancols1 =  pd.DataFrame('x1deofemale'+ x1deofema

le.columns.get_level_values(1))

x1deofemalecleancols = get_tokens(str(x1deofemalecleancols1))

x1deofemalecleancols = [x for x in x1deofemalecleancols if x.s

tartswith('x1')]

logx1deofemale = np.log(x1.iloc[:, 37:41].replace(0,1))

logx1deofemalecleancols1 =  pd.DataFrame('logx1deofemale'+ x1d

eofemale.columns.get_level_values(1))

logx1deofemalecleancols = get_tokens(str(logx1deofemalecleanco

ls1))

logx1deofemalecleancols = [x for x in logx1deofemalecleancols

if x.startswith('logx1')]

logx1deofemale.columns =logx1deofemalecleancols  

x1deofemale.columns = x1deofemalecleancols 

x2deo = x2.iloc[:, 27:46]

x2deocleancols1 =  pd.DataFrame('x2deo'+ x2deo.columns.get_lev

el_values(1)+ x2deo.columns.get_level_values(2))



x2deocleancols = get_tokens(str(x2deocleancols1))

x2deocleancols = [x for x in x2deocleancols if x.startswith('x

2')]

logx2deo = np.log(x2.iloc[:, 27:46].replace(0,1))

logx2deocleancols1 =  pd.DataFrame('logx2deo'+ x2deo.columns.g

et_level_values(1)+ x2deo.columns.get_level_values(2))

logx2deocleancols = get_tokens(str(logx2deocleancols1))

logx2deocleancols = [x for x in logx2deocleancols if x.startsw

ith('logx2')]

logx2deo.columns =logx2deocleancols  

x2deo.columns = x2deocleancols 

x3deofemale = x3.iloc[:, 28:31]

x3deofemalecleancols1 =  pd.DataFrame('x3deofemale'+ x3deofema

le.columns.get_level_values(1))

x3deofemalecleancols = get_tokens(str(x3deofemalecleancols1))

x3deofemalecleancols = [x for x in x3deofemalecleancols if x.s

tartswith('x3')]

logx3deofemale = np.log(x3.iloc[:, 28:31].replace(0,1))

logx3deofemalecleancols1 =  pd.DataFrame('logx3deofemale'+ x3d

eofemale.columns.get_level_values(1))

logx3deofemalecleancols = get_tokens(str(logx3deofemalecleanco

ls1))

logx3deofemalecleancols = [x for x in logx3deofemalecleancols

if x.startswith('logx3')]

logx3deofemale.columns =logx3deofemalecleancols  

x3deofemale.columns = x3deofemalecleancols 

x1deomale = x1.iloc[:, 40:44]



x1deomalecleancols1 =  pd.DataFrame('x1deomale'+ x1deomale.col

umns.get_level_values(1))

x1deomalecleancols = get_tokens(str(x1deomalecleancols1))

x1deomalecleancols = [x for x in x1deomalecleancols if x.start

swith('x1')]

logx1deomale = np.log(x1.iloc[:, 40:44].replace(0,1))

logx1deomalecleancols1 =  pd.DataFrame('logx1deomale'+ x1deoma

le.columns.get_level_values(1))

logx1deomalecleancols = get_tokens(str(logx1deomalecleancols1

))

logx1deomalecleancols = [x for x in logx1deomalecleancols if x

.startswith('logx1')]

logx1deomale.columns =logx1deomalecleancols  

x1deomale.columns = x1deomalecleancols 

x3deomale = x3.iloc[:, 30:33]

x3deomalecleancols1 =  pd.DataFrame('x3deomale'+ x3deomale.col

umns.get_level_values(1))

x3deomalecleancols = get_tokens(str(x3deomalecleancols1))

x3deomalecleancols = [x for x in x3deomalecleancols if x.start

swith('x3')]

logx3deomale = np.log(x3.iloc[:, 30:33].replace(0,1))

logx3deomalecleancols1 =  pd.DataFrame('logx3deomale'+ x3deoma

le.columns.get_level_values(1))

logx3deomalecleancols = get_tokens(str(logx3deomalecleancols1

))

logx3deomalecleancols = [x for x in logx3deomalecleancols if x

.startswith('logx3')]

logx3deomale.columns =logx3deomalecleancols  



x3deomale.columns = x3deomalecleancols 

x1menaftershave = x1.iloc[:, 48:52]

x1menaftershavecleancols1 =  pd.DataFrame('x1menaftershave'+ x

1menaftershave.columns.get_level_values(1))

x1menaftershavecleancols = get_tokens(str(x1menaftershaveclean

cols1))

x1menaftershavecleancols = [x for x in x1menaftershavecleancol

s if x.startswith('x1')]

logx1menaftershave = np.log(x1.iloc[:, 48:52].replace(0,1))

logx1menaftershavecleancols1 =  pd.DataFrame('logx1menaftersha

ve'+ x1menaftershave.columns.get_level_values(1))

logx1menaftershavecleancols = get_tokens(str(logx1menaftershav

ecleancols1))

logx1menaftershavecleancols = [x for x in logx1menaftershavecl

eancols if x.startswith('logx1')]

logx1menaftershave.columns =logx1menaftershavecleancols  

x1menaftershave.columns = x1menaftershavecleancols 

x2menaftershave = x2.iloc[:, 87:103]

x2menaftershavecleancols1 =  pd.DataFrame('x2menaftershave'+ x

2menaftershave.columns.get_level_values(1)+ x2menaftershave.co

lumns.get_level_values(2))

x2menaftershavecleancols = get_tokens(str(x2menaftershaveclean

cols1))

x2menaftershavecleancols = [x for x in x2menaftershavecleancol

s if x.startswith('x2')]

logx2menaftershave = np.log(x2.iloc[:, 87:103].replace(0,1))

logx2menaftershavecleancols1 =  pd.DataFrame('logx2menaftersha



ve'+ x2menaftershave.columns.get_level_values(1)+ x2menaftersh

ave.columns.get_level_values(2))

logx2menaftershavecleancols = get_tokens(str(logx2menaftershav

ecleancols1))

logx2menaftershavecleancols = [x for x in logx2menaftershavecl

eancols if x.startswith('logx2')]

logx2menaftershave.columns =logx2menaftershavecleancols  

x2menaftershave.columns = x2menaftershavecleancols 

x3menaftershave = x3.iloc[:, 36:39]

x3menaftershavecleancols1 =  pd.DataFrame('x3menaftershave'+ x

3menaftershave.columns.get_level_values(1))

x3menaftershavecleancols = get_tokens(str(x3menaftershaveclean

cols1))

x3menaftershavecleancols = [x for x in x3menaftershavecleancol

s if x.startswith('x3')]

logx3menaftershave = np.log(x3.iloc[:, 36:39].replace(0,1))

logx3menaftershavecleancols1 =  pd.DataFrame('logx3menaftersha

ve'+ x3menaftershave.columns.get_level_values(1))

logx3menaftershavecleancols = get_tokens(str(logx3menaftershav

ecleancols1))

logx3menaftershavecleancols = [x for x in logx3menaftershavecl

eancols if x.startswith('logx3')]

logx3menaftershave.columns =logx3menaftershavecleancols  

x3menaftershave.columns = x3menaftershavecleancols 

x1menfacecare = x1.iloc[:, 52:56]

x1menfacecarecleancols1 =  pd.DataFrame('x1menfacecare'+ x1men

facecare.columns.get_level_values(1))



x1menfacecarecleancols = get_tokens(str(x1menfacecarecleancols

1))

x1menfacecarecleancols = [x for x in x1menfacecarecleancols if

x.startswith('x1')]

logx1menfacecare = np.log(x1.iloc[:, 52:56].replace(0,1))

logx1menfacecarecleancols1 =  pd.DataFrame('logx1menfacecare'+

x1menfacecare.columns.get_level_values(1))

logx1menfacecarecleancols = get_tokens(str(logx1menfacecarecle

ancols1))

logx1menfacecarecleancols = [x for x in logx1menfacecarecleanc

ols if x.startswith('logx1')]

logx1menfacecare.columns =logx1menfacecarecleancols  

x1menfacecare.columns = x1menfacecarecleancols 

x2menfacecare = x2.iloc[:, 103:113]

x2menfacecarecleancols1 =  pd.DataFrame('x2menfacecare'+ x2men

facecare.columns.get_level_values(1)+ x2menfacecare.columns.ge

t_level_values(2))

x2menfacecarecleancols = get_tokens(str(x2menfacecarecleancols

1))

x2menfacecarecleancols = [x for x in x2menfacecarecleancols if

x.startswith('x2')]

logx2menfacecare = np.log(x2.iloc[:, 103:113].replace(0,1))

logx2menfacecarecleancols1 =  pd.DataFrame('logx2menfacecare'+

x2menfacecare.columns.get_level_values(1)+ x2menfacecare.colum

ns.get_level_values(2))

logx2menfacecarecleancols = get_tokens(str(logx2menfacecarecle

ancols1))

logx2menfacecarecleancols = [x for x in logx2menfacecarecleanc



ols if x.startswith('logx2')]

logx2menfacecare.columns =logx2menfacecarecleancols  

x2menfacecare.columns = x2menfacecarecleancols 

x3menfacecare = x3.iloc[:, 39:42]

x3menfacecarecleancols1 =  pd.DataFrame('x3menfacecare'+ x3men

facecare.columns.get_level_values(1))

x3menfacecarecleancols = get_tokens(str(x3menfacecarecleancols

1))

x3menfacecarecleancols = [x for x in x3menfacecarecleancols if

x.startswith('x3')]

logx3menfacecare = np.log(x3.iloc[:, 39:42].replace(0,1))

logx3menfacecarecleancols1 =  pd.DataFrame('logx3menfacecare'+

x3menfacecare.columns.get_level_values(1))

logx3menfacecarecleancols = get_tokens(str(logx3menfacecarecle

ancols1))

logx3menfacecarecleancols = [x for x in logx3menfacecarecleanc

ols if x.startswith('logx3')]

logx3menfacecare.columns =logx3menfacecarecleancols  

x3menfacecare.columns = x3menfacecarecleancols 

x1sunprotection = x1.iloc[:, 60:64]

x1sunprotectioncleancols1 =  pd.DataFrame('x1sunprotection'+ x

1sunprotection.columns.get_level_values(1))

x1sunprotectioncleancols = get_tokens(str(x1sunprotectionclean

cols1))

x1sunprotectioncleancols = [x for x in x1sunprotectioncleancol

s if x.startswith('x1')]

logx1sunprotection = np.log(x1.iloc[:, 60:64].replace(0,1))



logx1sunprotectioncleancols1 =  pd.DataFrame('logx1sunprotecti

on'+ x1sunprotection.columns.get_level_values(1))

logx1sunprotectioncleancols = get_tokens(str(logx1sunprotectio

ncleancols1))

logx1sunprotectioncleancols = [x for x in logx1sunprotectioncl

eancols if x.startswith('logx1')]

logx1sunprotection.columns =logx1sunprotectioncleancols  

x1sunprotection.columns = x1sunprotectioncleancols 

x2sun = x2.iloc[:, 113:126]

x2suncleancols1 =  pd.DataFrame('x2sun'+ x2sun.columns.get_lev

el_values(1)+ x2sun.columns.get_level_values(2))

x2suncleancols = get_tokens(str(x2suncleancols1))

x2suncleancols = [x for x in x2suncleancols if x.startswith('x

2')]

logx2sun = np.log(x2.iloc[:, 113:126].replace(0,1))

logx2suncleancols1 =  pd.DataFrame('logx2sun'+ x2sun.columns.g

et_level_values(1)+ x2sun.columns.get_level_values(2))

logx2suncleancols = get_tokens(str(logx2suncleancols1))

logx2suncleancols = [x for x in logx2suncleancols if x.startsw

ith('logx2')]

logx2sun.columns =logx2suncleancols  

x2sun.columns = x2suncleancols 

x3sunprotection = x3.iloc[:, 45:48]

x3sunprotectioncleancols1 =  pd.DataFrame('x3sunprotection'+ x

3sunprotection.columns.get_level_values(1))

x3sunprotectioncleancols = get_tokens(str(x3sunprotectionclean

cols1))



x3sunprotectioncleancols = [x for x in x3sunprotectioncleancol

s if x.startswith('x3')]

logx3sunprotection = np.log(x3.iloc[:, 45:48].replace(0,1))

logx3sunprotectioncleancols1 =  pd.DataFrame('logx3sunprotecti

on'+ x3sunprotection.columns.get_level_values(1))

logx3sunprotectioncleancols = get_tokens(str(logx3sunprotectio

ncleancols1))

logx3sunprotectioncleancols = [x for x in logx3sunprotectioncl

eancols if x.startswith('logx3')]

logx3sunprotection.columns =logx3sunprotectioncleancols  

x3sunprotection.columns = x3sunprotectioncleancols 

x1sunaftersun = x1.iloc[:, 64:68]

x1sunaftersuncleancols1 =  pd.DataFrame('x1sunaftersun'+ x1sun

aftersun.columns.get_level_values(1))

x1sunaftersuncleancols = get_tokens(str(x1sunaftersuncleancols

1))

x1sunaftersuncleancols = [x for x in x1sunaftersuncleancols if

x.startswith('x1')]

logx1sunaftersun = np.log(x1.iloc[:, 64:68].replace(0,1))

logx1sunaftersuncleancols1 =  pd.DataFrame('logx1sunaftersun'+

x1sunaftersun.columns.get_level_values(1))

logx1sunaftersuncleancols = get_tokens(str(logx1sunaftersuncle

ancols1))

logx1sunaftersuncleancols = [x for x in logx1sunaftersuncleanc

ols if x.startswith('logx1')]

logx1sunaftersun.columns =logx1sunaftersuncleancols  

x1sunaftersun.columns = x1sunaftersuncleancols 



x3sunaftersun = x3.iloc[:, 48:51]

x3sunaftersuncleancols1 =  pd.DataFrame('x3sunaftersun'+ x3sun

aftersun.columns.get_level_values(1))

x3sunaftersuncleancols = get_tokens(str(x3sunaftersuncleancols

1))

x3sunaftersuncleancols = [x for x in x3sunaftersuncleancols if

x.startswith('x3')]

logx3sunaftersun = np.log(x3.iloc[:, 48:51].replace(0,1))

logx3sunaftersuncleancols1 =  pd.DataFrame('logx3sunaftersun'+

x3sunaftersun.columns.get_level_values(1))

logx3sunaftersuncleancols = get_tokens(str(logx3sunaftersuncle

ancols1))

logx3sunaftersuncleancols = [x for x in logx3sunaftersuncleanc

ols if x.startswith('logx3')]

logx3sunaftersun.columns =logx3sunaftersuncleancols  

x3sunaftersun.columns = x3sunaftersuncleancols 

x1lipcare = x1.iloc[:, 68:72]

x1lipcarecleancols1 =  pd.DataFrame('x1lipcare'+ x1lipcare.col

umns.get_level_values(1))

x1lipcarecleancols = get_tokens(str(x1lipcarecleancols1))

x1lipcarecleancols = [x for x in x1lipcarecleancols if x.start

swith('x1')]

logx1lipcare = np.log(x1.iloc[:, 68:72].replace(0,1))

logx1lipcarecleancols1 =  pd.DataFrame('logx1lipcare'+ x1lipca

re.columns.get_level_values(1))

logx1lipcarecleancols = get_tokens(str(logx1lipcarecleancols1

))

logx1lipcarecleancols = [x for x in logx1lipcarecleancols if x



.startswith('logx1')]

logx1lipcare.columns =logx1lipcarecleancols  

x1lipcare.columns = x1lipcarecleancols 

x2lipcare = x2.iloc[:, 126:136]

x2lipcarecleancols1 =  pd.DataFrame('x2lipcare'+ x2lipcare.col

umns.get_level_values(1)+ x2lipcare.columns.get_level_values(2

))

x2lipcarecleancols = get_tokens(str(x2lipcarecleancols1))

x2lipcarecleancols = [x for x in x2lipcarecleancols if x.start

swith('x2')]

logx2lipcare = np.log(x2.iloc[:, 126:136].replace(0,1))

logx2lipcarecleancols1 =  pd.DataFrame('logx2lipcare'+ x2lipca

re.columns.get_level_values(1)+ x2lipcare.columns.get_level_va

lues(2))

logx2lipcarecleancols = get_tokens(str(logx2lipcarecleancols1

))

logx2lipcarecleancols = [x for x in logx2lipcarecleancols if x

.startswith('logx2')]

logx2lipcare.columns =logx2lipcarecleancols  

x2lipcare.columns = x2lipcarecleancols 

x3lipcare = x3.iloc[:, 51:54]

x3lipcarecleancols1 =  pd.DataFrame('x3lipcare'+ x3lipcare.col

umns.get_level_values(1))

x3lipcarecleancols = get_tokens(str(x3lipcarecleancols1))

x3lipcarecleancols = [x for x in x3lipcarecleancols if x.start

swith('x3')]

logx3lipcare = np.log(x3.iloc[:, 51:54].replace(0,1))



logx3lipcarecleancols1 =  pd.DataFrame('logx3lipcare'+ x3lipca

re.columns.get_level_values(1))

logx3lipcarecleancols = get_tokens(str(logx3lipcarecleancols1

))

logx3lipcarecleancols = [x for x in logx3lipcarecleancols if x

.startswith('logx3')]

logx3lipcare.columns =logx3lipcarecleancols  

x3lipcare.columns = x3lipcarecleancols 

x1styling = x1.iloc[:, 72:76]

x1stylingcleancols1 =  pd.DataFrame('x1styling'+ x1styling.col

umns.get_level_values(1))

x1stylingcleancols = get_tokens(str(x1stylingcleancols1))

x1stylingcleancols = [x for x in x1stylingcleancols if x.start

swith('x1')]

logx1styling = np.log(x1.iloc[:, 72:76].replace(0,1))

logx1stylingcleancols1 =  pd.DataFrame('logx1styling'+ x1styli

ng.columns.get_level_values(1))

logx1stylingcleancols = get_tokens(str(logx1stylingcleancols1

))

logx1stylingcleancols = [x for x in logx1stylingcleancols if x

.startswith('logx1')]

logx1styling.columns =logx1stylingcleancols  

x1styling.columns = x1stylingcleancols 

x3styling = x3.iloc[:, 54:57]

x3stylingcleancols1 =  pd.DataFrame('x3styling'+ x3styling.col

umns.get_level_values(1))

x3stylingcleancols = get_tokens(str(x3stylingcleancols1))



x3stylingcleancols = [x for x in x3stylingcleancols if x.start

swith('x3')]

logx3styling = np.log(x3.iloc[:, 54:57].replace(0,1))

logx3stylingcleancols1 =  pd.DataFrame('logx3styling'+ x3styli

ng.columns.get_level_values(1))

logx3stylingcleancols = get_tokens(str(logx3stylingcleancols1

))

logx3stylingcleancols = [x for x in logx3stylingcleancols if x

.startswith('logx3')]

logx3styling.columns =logx3stylingcleancols  

x3styling.columns = x3stylingcleancols 

x1haircare = x1.iloc[:, 76:80]

x1haircarecleancols1 =  pd.DataFrame('x1haircare'+ x1haircare.

columns.get_level_values(1))

x1haircarecleancols = get_tokens(str(x1haircarecleancols1))

x1haircarecleancols = [x for x in x1haircarecleancols if x.sta

rtswith('x1')]

logx1haircare = np.log(x1.iloc[:, 76:80].replace(0,1))

logx1haircarecleancols1 =  pd.DataFrame('logx1haircare'+ x1hai

rcare.columns.get_level_values(1))

logx1haircarecleancols = get_tokens(str(logx1haircarecleancols

1))

logx1haircarecleancols = [x for x in logx1haircarecleancols if

x.startswith('logx1')]

logx1haircare.columns =logx1haircarecleancols  

x1haircare.columns = x1haircarecleancols 

x3haircare = x3.iloc[:, 57:61]



x3haircarecleancols1 =  pd.DataFrame('x3haircare'+ x3haircare.

columns.get_level_values(1))

x3haircarecleancols = get_tokens(str(x3haircarecleancols1))

x3haircarecleancols = [x for x in x3haircarecleancols if x.sta

rtswith('x3')]

logx3haircare = np.log(x3.iloc[:, 57:61].replace(0,1))

logx3haircarecleancols1 =  pd.DataFrame('logx3haircare'+ x3hai

rcare.columns.get_level_values(1))

logx3haircarecleancols = get_tokens(str(logx3haircarecleancols

1))

logx3haircarecleancols = [x for x in logx3haircarecleancols if

x.startswith('logx3')]

logx3haircare.columns =logx3haircarecleancols  

x3haircare.columns = x3haircarecleancols 

x5aftersun = x5.iloc[:, 0:4]

x5labello = x5.iloc[:, 36:56]

x5bath = x5.iloc[:, 57:68]

x5shower = x5.iloc[:, 69:100]

x5inshower = x5.iloc[:, 146:153]

x5soap = x5.iloc[:,101:116]

x5bodyessentials = x5.iloc[:, 117:145]

x5bodyperformance = x5.iloc[:,154:166]

x5bodyapc = x5.iloc[:,167:181]

x5facecare = x5.iloc[:, 182:244]

x5facecleansing = x5.iloc[:,245:289]

x5hand = x5.iloc[:,290:302]

x5deofemale = x5.iloc[:, 302:339]

x5deomale = x5.iloc[:,340:367]



x5haircare = x5.iloc[:, 368:401]

x5styling = x5.iloc[:, 402:419]

x5aftershave = x5.iloc[:, 420:431]

x5menfacecare = x5.iloc[:, 432:465]

x5sunprotect = x5.iloc[:,466:514] 

# Data Cleaning 

def datacleaning(category, list): 

   '''

   A function that will remove the products for which there i

s not enough data to perform any analysis 

   Thee are either already discontinued or have been added to

the market less than 4 years ago. 

   The function takes two parameters: the category from which

the products will be removed and the list 

   of products that need to be removed, which come from a gra

phical analysis

   ''' 

   name = category 

   category_clean = category.drop(list, axis = 1, level = 4) 

   return category_clean 

aftersun_pd_clean = datacleaning(aftersun_pd, ['NSUN_IN-SHWR_R

FRSHNG_AFT_SUN_LTN_250ML','NSUN_AFTR_SUN_BRNZ&TAN_PROL._LTN_20

0ML'])

labello_pd_clean = datacleaning(labello_pd, ['LAB_CR&CLR_ND_4,

8G', 'LAB_PCH_4,8G', 'LAB_CHERRY,_4,8_GR', 'LAB_STRAWBERRY,_4,

8_GR', 'LAB_FR_SHN_PNK_WTR_MLN_4,8G','LAB_FRU_SHN_BLB_4,8G',

'LAB_VNL_BTR_CRM_4,8G', 'LAB_CR_BL_RPBY_RD_APL_7G', 'LAB_CR_BL



_FRS_MNT_7G','LAB_FOR_MEN,_4,8_GR', 'LAB_LP_BTR_TIN_ORG_16,7G'

,'LAB_LP_BTR_TIN_RPBY_RS_16,7G', 'LAB_LP_BTR_TIN_VNL_16,7G',

'LAB_MED_PROTECTION,_4,8_GR', 'LAB_SOS_LP_RPR_6ML', 'LAB_MIXED

_DISPLAY', 'LAB_MILK&HONEY,_4,8_GR', 'LAB_SUN_SPF25,_4,8_GR'])

bath_pd_clean = datacleaning(bath_pd, ['NBC_SHR_CRM_ALO_750ML'

,'NBC_BTH_SPR_TCH_500ML', 'NBC_BTH_CREME_SOFT_750ML','NBC_BTH_

CRM_SMT_750ML', 'NBC_BTH_RELAXING_MOMENTS_500ML','NBC_BTH_CARE

_&_RELAX_750ML','NBC_BTH_GD_BYE_STR_750ML', 'NBC_BTH_DRM_SNS_7

50ML', 'NBC_BTH_WLC_SUN_SHN_750ML'])

shower_pd_clean = datacleaning(shower_pd, ['NBC_SHR_CLY_FRS_GN

G&BSL_500ML', 'NBC_SHR_CLY_FRS_HBS&WSAG_500ML', 'NBC_SHR_CARE_

&_COCOA__500ML','NBC_SHR_CARE_&_COCONUT_500ML', 'NBC_SHR_CR&CC

N_750ML','NBC_SHR_CRM_CR_250ML', 'NBC_SHR_SPR_TCH_500ML','NBC_

SHR_CRM_SFT_750ML', 'NBC_CRM&OIL_PRS_CHR_BLS_500ML','NBC_CRM&O

IL_PRS_LTS_500ML','NBC_SHR_CARE_&_ROSES_500ML', 'NBC_SHR_CARE_

&_STARFRUIT_500ML','NBC_SHR_MEN_DP_500ML', 'NBC_SHR_MINI_ENERG

Y_FOR_MEN_50ML','NBC_SHR_PWR_FRT_FRS_500ML', 'NBC_SHR_PUR_FRS_

500ML', 'NBC_SHR_SLK_MOE_CRM_CR_200ML','NBC_SHR_SLK_MOE_SMR_01

_200ML', 'NBC_SHR_SLK_MOE_VNL_CRM_200ML','NBC_SHR_MUSCLE_RELAX

_250ML', 'NBC_SHR_PROTECT_&_CARE_500ML','NBC_SHR_PUR_FOR_MEN_2

50ML', 'NBC_SHR_MEN_RCK_SAL_250ML','NBC_SHR_CR&SUN_SHN_250ML',

'NBC_SHR_SUN_SHN_LV_500ML','NBC_SHR_WATER_LILY_&_OIL_250ML'])

inshower_pd_clean = datacleaning(inshower_pd,['NBODY_ESS_IN_SH

R_LTN_250ML','NBODY_ESS_IN_SHR_MLK_80ML', 'NBODY_ESS_IN_SHR_BT

Y_GLW_250ML', 'NBODY_ESS_IN_SHR_HNY_MLK_250ML'])

soap_pd_clean = datacleaning(soap_pd,['NBC_SOAP_FP_COCONUT_90G

R', 'NBC_SOAP_LS_DMN_BTY_250ML','NBC_LQD_SOP_REF_DMN_TCH_500M

L', 'NBC_SOAP_FB_HONEY_&_OIL_100GR','NBC_LQD_SOP_HONEY&OIL_250

ML', 'NBC_LQD_SOP_HONEY&OIL_500ML','NBC_LQD_SOP_CRM_CR_250ML',



'NBC_BAR_SOP_CRM_CR_BOX_3X100GR', 'NBC_SOAP_FB_HAPPYTIME_3X100

GR','NBC_LQD_SOP_LMN&OIL_250ML', 'NBC_SOAP_FP_MILK_90GR','NBC_

SOAP_FP_MIXED_DISPLAY'])

bodyessentials_pd_clean = datacleaning(bodyessentials_pd, ['NB

ODY_RCH_CRG_MLK_250ML', 'NBODY_EXP_HYD_LTN_250ML', 'NBODY_EXP_

HYD_LTN_400ML', 'NBODY_MIXED_DISPLAY', 'NBODY_RCH_CRG_MLK_400M

L','NBODY_ESS_MSE_NRS_MLK_200ML', 'NBODY_MIXED_DISPLAY','NBODY

_MIXED_DISPLAY', 'NBODY_ESS_ENR_LTN_200ML','NBODY_ESS_RLX_LTN_

200ML', 'NBODY_ESS_SNSL_LTN_200ML','NBODY_ESS_ORG_BLSM_BQT_200

ML', 'NBODY_ESS_MSE_WLD_RSBY&WHT_TEA_200ML','NBODY_ESS_CCN_MN_

OIL_CRM_200ML', 'NBODY_ESS_CHRY_BLSM__JJB_CRM_200ML','NBODY_ES

S_MSE_CCMB_SPL&MTCH_TEA_200ML', 'NBODY_ESS_VNL_ALMN_OIL_200ML'

,'NBODY_ESS_CHRY_BLSM__JJB_OIL_200ML', 'NBODY_ESS_CC__MCDM_OIL

_200ML','NBODY_ESS_RSE__ARG_OIL_200ML', 'NBODY_PUR&NTR_MLK_250

ML','NBODY_RPR&CR_LTN_300ML__PMP', 'NBODY_SNS_LTN_250ML', 'NBO

DY_SMT_MLK_400ML', 'NBODY_ESS_MSE_SMT_SNS_200ML','NBODY_IN_SHR

_LTN_Q10_250ML'])

bodyperformance_pd_clean = datacleaning(bodyperformance_pd, [

'NBODY_Q10_MLK_400ML','NBODY_FIRMING_OIL_200ML','NBODY_FIR_LTN

_Q10+_400ML', 'NBODY_Q10_CRM_300_ML','NBODY_PRFR_Q10_LGG_S-M_1

PCS', 'NBODY_PRFR_Q10_LGG_L-XL_1PCS', 'NBODY_PRFR_Q10_+_FRSH_L

GS_200ML','NBODY_PRFR_Q10_PNT_S-M_1PCS', 'NBODY_PRFR_Q10_PNT_L

-XL_1PCS'])

bodyapc_pd_clean = datacleaning(bodyapc_pd, ['NCR_NRS_CRM_200M

L', 'NCR_NRS_CRM_400ML', 'NCR_SNS_CRM_200ML', 'NSFT_PROMOTION'

,'N_SFT_PLS_JAR_LMT_EDT_GRN_100ML', 'N_SFT_PLS_JAR_LMT_EDT_PNK

_100ML', 'N_SFT_PLS_JAR_LMT_EDT_YLW_100ML', 'NSFT_TUBE_75_ML',

'NSFT_JAR_300_ML'])

facecare_pd_clean = datacleaning(facecare_pd, ['NF_CLL_AA_DY_C



R_SPF30_50ML','NF_CLL_MAT_DY_CRM_SPF30_50ML', 'NF_CLL_MAT_NGT_

CRM_50ML','NF_CLL_MAT_OIL_SRM_30ML', 'NFC_CLL_MAT_AGE_SPT_30M

L','NFC_CLL_VOL_SHEET_MSK', 'NF_CLL_RDNCE_FLUID_SPF15_40ML','N

F_CLL_RDNCE_EYE_LIGHT_15ML', 'NF_CLL_RDNCE_NGHT_ESSNCE_40ML',

'NF_CLL_AA_SRM_PEARLS_30ML', 'NF_CLL_AA_VOLUME_FLLNG_DAY_50ML'

,'NF_CLL_VLM_FLLNG__SRM_AMP_5ML', 'NF_ESS_NIGHT_NRML_JAR_50ML'

, 'NF_DAY_N/M_UV_PROTECT._TUBE_50ML', 'NF_ESLS_DY_CRM_N/M_SPF3

0_50ML_JAR','NF_ESLS_DY_D/S_SPF30_50ML_JAR', 'NF_PURE_CONTROL_

SHINE_TUBE_75ML','NF_ESLS_SNS_DY_SPF15_50ML_JAR', 'NF_ESLS_SNS

_NGT_50ML_JAR','NF_ESS_MOISTURISING_2X7,5_ML', 'NF_ESS_BLMSH_P

RONE_MSTRSR_50ML_TUBE','NF_ESS_BLMSH_PRONE_BB_CRM_50ML_TUBE',

'NF_ESS_BLMSH_PRONE_CNTRL_SHN_DAY_50ML_T', 'NF_DNAGE_NIGHT_50M

L_JAR','NF_P&N_ANTI_AGE_DAY_CRM,_50_ML_JAR','NF_P&N_ANTI_AGE_N

GHT_CRM,_50_ML_JAR', 'NF_MIXED_DISPLAY', 'NF_Q10_MASK_2X7,5ML'

, 'NFC_Q10_CUSH_15ML_MEDIUM','NFC_Q10_CUSH_15ML_DARK', 'NFC_Q1

0_NGHT_CRM_VIT_C_40ML','NFC_Q10_DAYCARE_20ML_FB', 'NF_Q10_EYE_

ROLL-ON_10_ML','NF_Q10_DAYCARE_NOUR,_50ML', 'NF_Q10_OIL,_30ML'

,'NF_Q10_CC_CREAM_50ML_TUBE', 'NFC_Q10_C_SHEET_MSK','NF_Q10_DY

_SPF30_XTR_PRTCTN_50ML', 'NF_Q10_SERUM_PEARLS_40ML_DISP', 'NF_

ESLS_MASK_MOISTURIZING_75ML_TUBE','NFC_ESS_URBAN_SKIN_DAY_CARE

_50ML','NFC_ESS_URBAN_SKIN_NIGHT_CARE_50ML','NF_VIT_XTR_NOURSH

NG_DAY_JAR_50ML', 'NF_VIT_CALC_DAY_50ML_JAR','NF_VIT_SOY_EYE_1

5ML_TUBE', 'NF_VIT_SOY_DAY,_JAR_50_ML', 'NF_VIT_SOY_NIGHT_50ML

_JAR', 'NF_CLL_AA_SRM_40ML'])

facecleansing_pd_clean = datacleaning(facecleansing_pd, ['NF_E

SLS_BI-PHASE_EMR_BLUE_125ML', 'NF_MIXED_DISPLAY','NF_ESLS_PEEL

ING_NRML_75ML', 'NF_P&N_MILK_ALL_SKN_TPS_BTL_200ML','NF_ESLS_E

XFOLIATING_MASK_2X7,5ML','NF_ESS_BLMSH_PRONE_3IN1_150ML', 'NF_

ESLS_PMP_WSH_OIL_NRML_150ML','NF_ESLS_PMP_WSH_OIL_DRY_150ML', 



'NF_ESLS_RC_SCRB_CMBNTN_75ML','NF_ESS_INSHWR_MUR_NRML_150ML',

'NF_ESS_INSHWR_MUR_SNSTV_150ML_TOTTLE','NF_ESLS_CLN_MOUSSE_DRY

_DISP_150ML', 'NF_ESS_CRM_CARE_MILK_BTL_200ML','NF_ESS_CRM_CAR

E_WSH_CRM_TUBE_150ML', 'NF_MCLLR__WTR_IN_OIL_RS_400ML','NF_ESL

S_MCLLR_WTR_SENS_200ML', 'NF_ESLS_MCLLR_WTR_SENS_100ML','NF_ES

LS_MCLLR_EXP_MUR_WTPRF_400ML', 'NF_ESLS_MCLLR_WTR_NRML_400ML',

'NF_ESLS_MCLLR_WTR_SENS_400ML','NF_VIT_MILK_BTL_200_ML', 'NF_V

IT_TONER,_200_ML_BOTTLE','NF_DTX_CLAY_WASH_150ML', 'NF_DTX_SHE

ET_MASK_1PC','NF_DTX_PORE_REFINE_MASK_75ML', 'NF_DTX_PEEL_OFF_

MASK_75ML','NF_DTX_PURIFY_MASK_75ML', 'NF_DTX_PEEL_OFF_MASK_10

ML','NF_DTX_MCLLR_WTR_400ML', 'NF_ESLS_WIPES_NRML_25PCS','NF_E

SLS_WIPES_DRY_25PCS', 'NF_ESLS_WIPES_NRML_25X2_MULTIPACK','NF_

ESLS_WIPES_DRY_25X2_MUL', 'NF_ESLS_MCLLR_WIPES_25X2_MULTIPA',

'NF_MCLLR_WPS_RS_25PCS', 'NF_ESLS_WPS_BIODGRDBL_25PCS','NF_ESL

S_WPS_NRML_40PCS', 'NF_ESLS_WIPES_DRY_40PCS','NF_ESS_CRM_CARE_

WIPES_25PCS'])

deofemale_pd_clean = datacleaning(deofemale_pd, ['NDEO_SPY_INV

_BLC&WHT_PUR_FM_150ML','NDEO_SPY_MINI_INV_BLC&WHT_CLR_FM_35ML'

,'NDEO_RLL-ON_INV_BLC&WHT_PUR_FM_50ML','NDEO_SPY_INV_BLC&WHT_S

LK_SMTH_FML_150ML','NDEO_RLL-ON_INV_BLC&WHT_SLK_SMTH_FML_50M',

'NDEO_RLL-ON_BLC&WHT_FRSH__FML_50ML','NDEO_DEO_SPY_INV_BLC&WHT

_FRSH__FML_150ML','NDEO_RLL-ON_CLM&CR_FML_50ML', 'NDEO_RLL-ON_

DBL_EFF_VLT_SNS_F_50ML','NDEO_SPY_DMLK_SNS_AP_FML_150ML','NDEO

_RLL-ON_DEO_MLK_PINK_AP_FML_40ML','NDEO_SPY_DEO_MLK_BLUE_AP_FM

L_150ML','NDEO_RLL-ON_DEO_MLK_BLUE_AP_FML_40ML', 'NDEO_RLL-ON_

DRY_LE__FM_50ML','NDEO_SPY_DRY_LE_FM_200ML', 'NDEO_SPY_FRS_FLW

_FML_150ML','NDEO_RLL-ON_FRS_FLW_FML_50ML_GLASS_50ML', 'NDEO_R

LL-ON_FRESH_F_50ML','NDEO_SPY_FRESH_AP_F_200ML', 'NDEO_SPY_PRO

TECT_&_CARE_AP_FML_200ML','NDEO_RLL-ON_PROTECT_&_CARE_AP_FML_5



0ML', 'NDEO_SPY_PRL&BTY_F_200ML','NDEO_RLL-ON_PRL&BTY_50ML',

'NDEO_SPY_PURE_F_200ML','NDEO_RLL-ON_PURE_F_50ML', 'NDEO_RLL-O

N_POWDER_TOUCH_FML_GLAS_50ML','NDEO_SPY_POWDER_TOUCH_FML_150M

L', 'NDEO_SPY_PUR&SNS_FML_200ML','NDEO_RLL-ON_PUR&SNS_FML_50M

L', 'NDEO_SPY_STR_PRT_FML_150ML','NDEO_RLL-ON_STR_PRT_FML_50M

L'])

deomale_pd_clean = datacleaning(deomale_pd,['NDEO_RLL-ON_BLC&W

HT_FRSH_ML_50ML', 'DEO_SPY_BLC&WHT_FRSH__ML_150ML','NDEO_SPY_B

LACK_MALE_150ML', 'NDEO_RLL-ON_BLACK_MALE_50ML','NDEO_RLL_ON_D

P_BRW_50ML_ML', 'NDEO_SPY_DP_BRW_150ML_ML','NDEO_RLL-ON_DRY_LE

__ML_50ML', 'NDEO_SPY_DRY_LE_ML_200ML','NDEO_SPY_FRESH_ACT_ML_

200ML', 'NDEO_RLL-ON_FRESH_M_50ML','NDEO_SPY_FRS_OCN_ML_150ML'

, 'NDEO_RLL-ON_FRS_OCN_ML_GLASS_50ML','NDEO_SPY_PROTECT_&_CARE

_AP_ML_200ML','NDEO_RLL-ON_PROTECT_&_CARE_AP_ML_50ML', 'NDEO_S

PY_SNS_PRTKT_ML_150ML','NDEO_SPY_SNS_PRTKT_ML_200ML','NDEO_RLL

-ON_SLV_PRTT_M_50ML', 'NDEO_SPY_SPORT_M_150ML','NDEO_RLL-ON_ST

R_PRT_ML_50ML'])

haircare_pd_clean = datacleaning(haircare_pd, ['NHC_SHM_ADD_GL

S_250ML','NHC_SHM_NM_ADD_PR_250ML', 'NHC_SHM_NM_ADD_PWR_250ML'

,'NHC_SHM_BLNC_FRS_CR_400ML', 'NHC_SHM_NM_CL_FRSH_250ML','NHC_

SHM_COL_CR_PRT_400ML', 'NHC_CNDR_COL_CR_PRT_200ML','NHC_SHM_CL

SC_MLD_CR_400ML', 'NM_SHM_BLCK_ML_250ML','NHC_SHM_DMN_GLS_CR_4

00ML', 'NHC_CNDR_DMN_GLS_CR_200ML','NHC_SHM_HR_MLK_250ML', 'NH

C_CNDR_HR_MILK_200ML','NHC_SHM_HR_MLK_400ML', 'NHC_LV_IN_CNDRP

MP_HRMLK_NORMAL_DRY_200ML','NHC_CNDR_HAIRMILK_THICK_200ML', 'N

HC_SHM_HAIRMILK_THICK_400ML','NHC_SHM_INT_CR_RPR_400ML', 'NHC_

CNDR_INT_CR_RPR_200ML','NHC_SHM_LNG_RPR_400ML', 'NHC_CNDR_LNG_

CR_RPR_200ML','NHC_SHM__MCL_MSG_400ML', 'NHC_SHM_MCL_GRS_HR_SC

P_400ML','NHC_SHM_MCL_SNS_HR_SCP_400ML', 'NHC_SHM_MCL_COL_SCR_



400ML','NHC_CNDR_MCL_CLR_SCR_200ML', 'NHC_SHM_PRT_CR_250ML','N

HC_CNDR_RPR_TRGT_CR_200ML', 'NHC_SHM_RPR_TRGT_CR_400ML','NHC_S

HM_SP_250ML', 'NHC_SHM_NM_STRG_PWR_250ML','NHC_SHM_VLM_CR_400M

L'])

styling_pd_clean = datacleaning(styling_pd, ['NHS_SPY_COL_CR_P

RT_250ML','NHC_STYLING_SPRAY_CARE&HOLD', 'NHC_STYLING_MOUSSE_C

ARE&HOLD','NHS_MOE_EXT_SRG_HLD_150ML','NHS_BLM_FLX_CRL_CR_150M

L','NHC_STYL_GEL_MTTFYNG_SHP_150ML','NHC_STYL_GEL_DFN_SHN_150M

L', 'NHS_SPY_SRG_HLD_250ML','NHS_SPY_VITAL_LQU_250ML', 'NHS_SP

Y_VLM_CR_250ML'])

aftershave_pd_clean = datacleaning(aftershave_pd, ['NM_AS_LTN_

BLACK_100ML', 'NM_BDY_PRTCT&CR_AS_LTN_240ML','NM_AS_LTN_PRTCT&

CARE_2-PHASE_100ML', 'NM_AS_BLM_SNSTV_COOLNG_100ML','NM_SNSTV_

BLM_SKNSTBL_125ML', 'NM_AS_LTN_ACTV_NRGY_100ML','NM_AS_BLM_ACT

V_NRGY_100ML'])

menfacecare_pd_clean = datacleaning(menfacecare_pd,['NMEN_BRD_

SKN_WSH_100ML', 'NM_FCL_GEL_WASH_PRTCT&CR_100ML','NM_FC_CRM_AC

TIVE_AGE_DNAGE_50ML', 'NM_FC_CRM_AP_150ML', 'NM_FC_CRM_AP_30M

L', 'NIVEA_MEN_BEARD_OIL_75ML','NMEN_BRD_SKN_GEL_50ML','NM_FC_

GEL_SNSTV_HYDRO_50ML', 'NM_FC_CRM_SNSTV_COOLNG_MOIST_50ML','NM

_FC_CRM_SNSTV_SPF15_50ML','NM_FC_GEL_ACTV_NRGY_MRNG_FX_50ML', 

'NM_FC_EYE_ROLL_ON_SKN_NRGY_10ML','NM_SH_GEL_BLACK_200ML','NM_

SH_FOAM_PRTCT&CR_250ML', 'NM_BDY_PRTCT&CR_SH_STCK_75ML','NMEN_

BDY_PRCTC&CR_SHG_GEL_200ML', 'NM_SH_FOAM_SNSTV_200ML', 'NM_SH_

GEL_SNSTV_ONESTROKE_200ML', 'NM_SH_FOAM_SNSTV_MINI_35ML','NM_S

H_GEL_SNSTV_MINI_30ML', 'NM_SH_GEL_SNSTV_COOLNG_200ML','NM_SH_

FOAM_SLV_PRTCT_200ML', 'NM_SH_GEL_ACTV_NRGY_200ML'])

sunprotect_pd_clean = datacleaning(sunprotect_pd, ['NSUN_DEEP_

TAN_OIL_SPF_6,_200ML','NSUN_DT_OIL_SPY_SPF6,_150ML', 'NSUN_DT_



OIL_200ML','NSUN_FC_CRM_PRTT&BRN_SPF50_50ML','NSUN_UV_FACE_SEN

SITIVE_CRÈME_SPF_50,_50M','NSUN_FC_CRM_SHN_CTRL_SPF30_50ML','N

SUN_FC_CRM_A_A&PGMT_BB_SPF50_50ML','NSUN_FC_ANTI-AGE&PIGM_CRM_

SPF_50_50ML','NSUN_KIDS_ROLL-ON_PINK_50+,_50ML', 'NSUN_KIDS_RO

LL-ON_GREEN_50+,_50ML','NSUN_KIDS_SENSITIVE_TRIGGER_SPRAY_300M

L','NSUN_KIDS_SWM&PLY_PROT_LTN_SPF50+,150ML','NSUN_KIDS_PRT&SE

NS_ROLL-ON_SPF_50+_50ML','NSUN_KIDS_PRTCT_LTN_ROLL-ON_SPF50+_5

0ML','NSUN_BABY_PROT_LTN_SPF_50+,_200ML','NSUN_P&B_ACTVT_PRT_O

IL_SPRY_SPF_20_200ML','NSUN_P&B_ACTVT_PRT_OIL_SPRY_SPF_30_200M

L','NSUN_PRT_&_BRN_TRG_SPY_SPF_30,_300ML','NSUN_SPY_SPF_20,_20

0ML', 'NSUN_LTN_SPF_30,_200ML','NSUN_LTN_SPF_30,_400ML','NSUN_

TRIGGER_SPRAY_50+,_300ML','NSUN_PRTCT&MSTR_LTN_SPF_50+_400ML',

'NSUN_PRTCT_&_MSTR_ROLL-ON_SPF_50+_50ML','NSUN_PRTCT&RFRSH_CLN

G_MIST_SPF_30_200ML','NSUN_PRTCT&RFRSH_CLNG_MIST_SPF_20_200ML'

,'NSUN_INVS_PROT_SPY_SPF20,_200ML', 'NSUN_SENS_SOOTH_LOTION_SP

F_50+200M_L','NSUN_SENSITIVE_SOOTHING_SPRAY_50+,_200ML','NSU_P

URE_&_SENSITIVE_SPY_SPF30_200ML','NSU_PURE_&_SENSITIVE_SPY_SPF

50_200ML']) 

y = pd.concat([aftersun_pd_clean, labello_pd_clean, bath_pd_cl

ean, shower_pd_clean, inshower_pd_clean, soap_pd_clean, bodyes

sentials_pd_clean, bodyperformance_pd_clean, bodyapc_pd_clean,

facecare_pd_clean, facecleansing_pd_clean, deofemale_pd_clean,

deomale_pd_clean, haircare_pd_clean, styling_pd_clean, aftersh

ave_pd_clean, menfacecare_pd_clean, sunprotect_pd_clean], join

= 'outer', axis = 1, ignore_index = False)

category_names = pd.DataFrame(['AFTER_SUN', 'LABELLO', 'NBC_BA

TH', 'NBC_SHOWER', 'NBC_SOAP', 'NBODY_ESSENTIAL', 'NBODY_INSHO

WER', 'NBODY_PERFORMANCE', 'NCRM_CREME', 'NCRM_SOFT', 'NF_CAR



E', 'NF_CLEANSE', 'NIVEA_DEO_FEMALE', 'NIVEA_DEO_MALE', 'NIVEA

_HAIR_CARE', 'NIVEA_HAIR_STYLING', 'NM_AFTER_SHAVE', 'NM_MOIST

URISER', 'NM_SHAVING', 'PROTECTION'], columns =['Categories']) 

# Plot the Times series of each category  

def timeseriesplot(data, m, n, category): 

   """Plot the time series of each product. Takes as paramete

rs a data frame c composed by all the products in category c,

   m, n - the number of rows and columns the figure should ha

ve.

   """ 

   fig_data = plt.figure(figsize = (n, m)) 

   fig_data.subplots_adjust(hspace = 0.3, wspace = 0.2, top=

0.9) 

   plt.suptitle(data.iloc[:,[0]].columns.get_level_values(0)[

0] + ' sales of category '+ category) 

   size = len(data.columns) 

   for i in range(int(size)): 

       m1 = m-2 

       n1 = n-2 

       fig_i = fig_data.add_subplot(m1, n1, i+1) 

       graph_i = fig_i.plot(np.array(data.iloc[:,[i]]), color

= 'navy', linewidth = 0.7) 

       fig_i.set_title(data.iloc[:,[i]].columns.get_level_val

ues(3)[0], fontsize = 'xx-small') 

       fig_i.set_xticklabels([]) 

       fig_i.set_yticklabels([]) 



       fig_data.savefig(data.iloc[:,[0]].columns.get_level_va

lues(0)[0] + '_sales_of_category_'+ data.iloc[:,[0]].columns.g

et_level_values(1)[0]+ '.png') 

def plottimeseries(): 

   category = input('Enter the category you want to analyse:'

) 

   data = y.xs(category, level = 1, axis = 1) 

   n = int(len(data.columns)+3) 

   return timeseriesplot(data, 4, n, category)

# Multiple Regression Model  

def transformdata(yc, x11, logx11, x21, logx21, x31, logx31, x

51): 

   for p in range(len(yc.columns)): 

       yp = pd.DataFrame(yc.iloc[:, p]) 

       yp.columns=['y'] 

       x51 = pd.DataFrame(x51.iloc[:, [p]])  

       x51.columns = ['x5'] 

       logyp = pd.DataFrame(np.log(yc.iloc[:, p].replace(0, 1

))) 

       logyp.columns=['logy'] 

       logx4 = np.log(x4.replace(0,1)) 

       logx51 = pd.DataFrame(np.log(x51.iloc[:, p].replace(0,

1)))  

       logx51.columns = ['logx5'] 

       loge_n = np.log(e_n.replace(0,1)) 

       linlindata = pd.concat([yp, x11, x21, x31, x4, x51, e_

n], axis = 1, join = 'outer', ignore_index = False) 



       print(str(yc.iloc[:,[p]].columns.get_level_values(4)[0

])) 

       loglindata = pd.concat([logyp, x11, x21, x31, x4, x51,

e_n], axis = 1, join = 'outer', ignore_index = False) 

       print(str(yc.iloc[:,[p]].columns.get_level_values(4)[0

])) 

       linlogdata = pd.concat([yp, logx11, logx21, logx31, lo

gx4, logx51, loge_n], axis = 1, join = 'outer', ignore_index =

False) 

       print(str(yc.iloc[:,[p]].columns.get_level_values(4)[0

])) 

       loglogdata = pd.concat([logyp, logx11, logx21, logx31,

logx4, logx51, loge_n], axis = 1, join = 'outer', ignore_index

= False) 

       print(str(yc.iloc[:,[p]].columns.get_level_values(4)[0

])) 

       data = pd.concat([linlindata, loglindata, linlogdata,

loglogdata], keys = ['linlin', 'loglin', 'linlog', 'loglog'],

axis = 1, join = 'outer', ignore_index = False) 

       return data 

       p+=1

#Use forward stepwise strategy to find the linear model that m

aximizes the adjusted r sqaured 

def forward_selected(data, response): 

   """Linear model designed by forward selection.

   Parameters:

   -----------

   data : pandas DataFrame with all possible predictors and r



esponse

   response: string, name of response column in data

   Returns:

   --------

   model: an "optimal" fitted statsmodels linear model

          with an intercept

          selected by forward selection

          evaluated by adjusted R-squared

   """ 

   remaining = set(data.columns) 

   remaining.remove(response) 

   selected = [] 

   current_score, best_new_score = 0.0, 0.0 

   while remaining and current_score == best_new_score: 

       scores_with_candidates = [] 

       for candidate in remaining: 

           formula = "{} ~ {} + 1".format(response, 

                                          ' + '.join(str(s) f

or s in selected + [candidate])) 

           score = smf.ols(formula, data).fit().rsquared_adj 

           scores_with_candidates.append((score, candidate)) 

       scores_with_candidates.sort() 

       best_new_score, best_candidate = scores_with_candidate

s.pop() 

       if current_score < best_new_score: 

           remaining.remove(best_candidate) 

           selected.append(best_candidate) 

           current_score = best_new_score 

   formula = "{} ~ {} + 1".format(response, 



                                  ' + '.join(str(s) for s in

selected)) 

   model = smf.ols(formula, data).fit() 

   return model 

# This function returns the best model among the 4 possible tr

ansformations

def bestrmodel(models): 

   """Returns the best model (based on the adjusted r square

d) to describe the slaes of product p,

   takes as a parameter a list of the best model of each tran

sformation

   """ 

   adjr = [model1.rsquared_adj, model2.rsquared_adj, model3.r

squared_adj, model4.rsquared_adj] 

   bestmodel = models[adjr.index(max(adjr))] 

   return bestmodel 

def residuals(model): 

   """Resturns the residuals plot against the fitted values,

as well as the histogram of residuals. 

   Takes as parameters a model and the number of rows and col

umns the figure must have

   """ 

   fig_res = plt.figure(figsize= (8, 3)) 

   fig_res.subplots_adjust(hspace = 0.3, wspace = 0.2, top=0.

9) 

   res = fig_res.add_subplot(1,2,1) 

   res.plot(model.fittedvalues, model.resid, linestyle='', ma



rker = 'o', color = 'navy') 

   res.set_xticklabels([]) 

   res.set_yticklabels([]) 

   res.set_title('Residuals against fitted values', fontsize

= 'x-small') 

   hist = fig_res.add_subplot(1,2,2) 

   hist.hist(model.resid, histtype = 'bar', color = 'navy') 

   hist.set_yticklabels([]) 

   hist.set_xticklabels([]) 

   hist.set_title('Histogram of Residuals', fontsize = 'x-sma

ll') 

   fig_res.savefig('Hist_res.png') 

# Function to see if the model is statistically significant  

def modelsignificance(model): 

   if (model.f_pvalue < 0.05): 

       print(model.f_pvalue, "We can reject the null hypothes

is and conclude that the model is overall significant") 

   else:  

       print("We are not able to reject the null hypothesis,

hence we can't conclude that the model is significant") 

# Model each variable with a high p-value against all the othe

rs

def multicolcheck(model, x, data):    

   l = [] 

   for i in range(len(model.params.index)-1): 

       l.append(i+1) 



   params = data[model.params.index[l]] 

   Xparams = params.drop(labels = x, axis =1) 

   model = sm.OLS(data[x], Xparams).fit() 

   return model 

def VIF(model): 

   VIF = 1/(1-model.rsquared) 

   return VIF 

def computeVIF(model, data): 

   listvariables = model.params.index.drop('Intercept') 

   vifs = [] 

   names = [] 

   for i in range(len(listvariables)): 

       VIF1 = VIF(multicolcheck(model, listvariables[i], data

)).round(2) 

       vifs1 = {VIF1: listvariables[i]} 

       vifs2 = {listvariables[i]: VIF1} 

       vifs.append(list(vifs1)) 

       names.append(list(vifs2)) 

   datavifs = [vifs, names] 

   vifstable = np.transpose(pd.DataFrame(datavifs, index = [

'VIF', 'Variable'])) 

   print('Máximum VIF is:', max(vifstable['VIF'])) 

   return vifstable 

# Remove the redundant variable from the model

def newmodel(model, x, data, response): 



   l = [] 

   for i in range(len(model.params.index)-1): 

       l.append(i+1) 

   params = data[model.params.index[l]] 

   Xparams = params.drop(labels = x, axis =1) 

   formula = "{} ~ {} + 1".format(response, 

                                   ' + '.join(str(s) for s in

Xparams)) 

   newmodel = smf.ols(formula, data=data).fit() 

   return newmodel 

# Def to check if the time series of product p - after observi

ng the time series graph, this test will be applied

# to time series suggesting stationarity. A confidence level o

f 95% will be used. 

# Hence if p-value > 0.05 H0 is not rejected and data is not s

tationary; otherwise H0 is rejected and the data is stationary 

# H0: The time series is not stationary

# H1: The time series is stationary

def stationarity(yc): 

   from statsmodels.tsa.stattools import adfuller 

   size = len(yc.columns) 

   for p in range(size): 

       yp = yc.iloc[:, p] 

       result = adfuller(yp.dropna()) 

       if (result[1] < 0.95):  

           x= print('ADF Statistic: %f' % result[0],'\n','p-v

alue: %f' % result[1], '\n', yc.iloc[:,[p]].columns.get_level_

values(4)[0] + ' is stationary') 



       else:  

           x = print('ADF Statistic: %f' % result[0],'\n','p-

value: %f' % result[1], '\n', yc.iloc[:,[p]].columns.get_level

_values(4)[0] + ' is not stationary') 

       print(x) 

   return 

# Fit stepwise an auto-ARIMA or dynamic 

import pmdarima as pm 

sxmodel = pm.auto_arima(y1, exogenous = exog.iloc[:,[0]], star

t_p=0, start_q=0, 

                        test='adf', 

                        max_p=0, max_q=0,m=12, 

                        start_P=0, max_P=2, start_Q=0, max_Q=

2,seasonal=True, 

                        d=0, D=0, trace=True, 

                        error_action='ignore',   

                        suppress_warnings=True,  

                        stepwise=True) 

# Residual diagnosis for ARIMA and Dynamic 

def bestarimaplot (model, m, n): 

   model.plot_diagnostics(figsize = (m, n)) 

   return plt.show()


