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Abstract

As social media usage becomes more integrated into our daily lives, the impact of

online abuse also becomes more prevalent. Research in the area of Offensive Language

Classification are numerous and often occur in parrallel. Offensive Language Identi-

fication Dataset (OLID) schema was introduced with the aim of consolidating related

tasks by categorising offense into a three-level hierarchy - detection of offensive posts

(Level A), distinguishing between targeted and untargeted offenses (Level B) and then

identifying the target of the offense (Level C).

This thesis presents our contribution to the Offensive Language Classification Task

(English SubTask A) of OffensEval 2020, and a follow-up study of Offense Type Classi-

fication (subTask B) and Offense Target Identification (subTask C) of OffensEval 2019.

These tasks follow the OLID schema where each level corresponds to an individual

subtask.

For subtask A, the dataset is examined in detail and the most uncertain parti-

tions are removed by an under-sampling technique of the training set. We improved

model performance by increasing data quality, taking advantage of further offensive

language classification datasets. We fine-tuned separate BERT models from individ-

ual datasets and experimented with different ensemble approaches including SVMs,

Gradient boosting, AdaBoosting and Logistic Regression to achieve a final ensemble

classification model that enhanced macro-F1 score. Our best model, an average en-

semble of four different Bert models, achieved 11th place out of 82 participants with

a macro F1 score of 0.91344 in the English SubTask A.

The dataset for subtask B and C are highly unbalanced, and modification of the clas-

sification thresholds improved classifier performance of the minority classes, which

in turn improved the overall performance. Again using the BERT architecture, the

models achieved macro-F1 scores of 0.71367 for subTask B and 0.643352 for subTask

C, equivalent to the 5th and 2nd places in the respective tasks.

We showed that BERT is an effective architecture for offensive language classifica-

tion and propose further performance gains are possible by improving data quality.

Keywords: Offensive Language, Hate Speech, Toxic Language, Abusive Language,
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Resumo

Conforme o uso da Social Media se torna mais integrado no nosso dia-a-dia, o impacto

do abuso online torna-se também mais prevalente. Pesquisas na área de Classificação

de Linguagem Ofensiva são numerosas e ocorrem frequentemente em paralelo. O

esquema Offensive Language Identification Dataset (OLID) foi introduzido com o

objectivo de consolidar tarefas relacionadas com a categorização de ofensas numa

hierarquia de três níveis - detecção de posts ofensivos (nível A), distinção entre ofensas

directas e indirectas (nível B) e posteriormente a identificação do visado pela ofensa

(nível C).

Esta tese apresenta a nossa contribuição à Offensive Language Classification Task

(English sub-tarefa A) da OffensEval 2020, e um subsequente estudo de Offense Type

Classification (sub-tarefa B) e Offense Target Identification (sub-tarefa C) da OffensE-

val 2019. Estas tarefas seguem o esquema OLID onde cada nível corresponde a uma

tarefa individual.

Para a sub-tarefa A, o conjunto de informação é examinado em detalhe e as parti-

ções mais incertas são removidas por uma técnica de sub-amostragem do conjunto de

treinamento. Melhoramos também o desempenho ao melhorar a qualidade da informa-

ção, aproveitando de conjuntos mais recentes de classificação de linguagem ofensiva.

Ajustamos modelos BERT disjuntos através de conjuntos de informação indivi-

duais e experimentamos com diferentes junções incluindo SVMs, Gradient boosting,

AdaBoosting e Regressão Logística para alcançar /* um modelo classificação junção

final */ que melhorou a pontuação macro-F1. O nosso melhor modelo, uma junção

média de quatro modelos Bert diferentes, alcançou o 11º de 82 participantes com uma

pontuação macro de 0,91344 na sub-tarefa A de Inglês.

O conjunto de informação para a sub-tarefa B e C são altamente desequilibrados, e

modificar os limiares de classificação melhorou o desempenho de classes minoria, que

por sua vez melhoraram o desempenho no geral. Novamente usando a arquitectura

BERT, os modelos alcançaram pontuações macro-F1 de 0,71367 para a sub-tarefa B

e 0.643352 para a sub-tarefa C, equivalente ao 5º e 2º lugares nas tarefas respectivas.

Mostrámos que a arquitectura BERT é eficaz para classificação de linguagem ofensiva

e propomos que é possível ganhar desempenho através da melhoria da qualidade da

informação.
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1
Introduction

1.1 Background and Motivation

As people turn more and more to the online world for their entertainment, social and

communication needs, the anonymity offered by the platforms also draw out diverse

and sometimes divisive opinions.

As an example, the current US President Donald Trump frequently use Twitter

to engage with his followers, posting controversial statements and inflaming senti-

ments while bypassing the minimal level of civility and scrutiny required by a more

traditional media. It is only very recently that Twitter started to assert some form of

moderation - in May 2020, Twitter labelled Trump’s false claims about mail-in ballots

with a “Fact Check” warning[7], and in June 2020, one of Trump’s tweets was labelled

as with a “abusive behaviour” warning[12].

A popular Japanese reality TV program, Terrace House, came into global attention

in June 2020 when one of its stars, Hana Kimura, a bubbly 22 year old professional

wrestler, committed suicide after receiving a stream of online abuse on Twitter and

Instagram[5].

In the most extreme cases, dangerous online communities can radicalise and em-

bolden disenfranchised individuals, leading some to commit horrendous crimes such

as the New Zealand terrorist attack in 2019 where the perpetrator killed 51 people

and injured 49, and broadcast-ed it live on the internet[4].

It cannot be overemphasised the importance of ensuring online safety in this dig-

ital age, both in terms of protecting individual mental health as well as achieving a

tolerant and stable society. To do so we need to an effective way to detect offensive

language in social media, one that would ensure civility of online discussions and

prevent cyberbullying while allowing for opposing ideas to be expressed. Social Media

1



CHAPTER 1. INTRODUCTION

platforms like Facebook have traditionally argued that they are not content providers,

but now countries like the UK are proposing to legislate to ensure that the platforms

are putting systems in place to block harmful content on their sites[6].

1.2 Research Questions

This thesis aims to investigate the topic of Offensive Language Classification, taking

advantage of recent breakthroughs in Natural Language Processing and Deep Learning

techniques.

We present the results of our participation in a recent NLP research challenge

focusing on detecting and classifying offensive language in Twitter by answering the

following questions:

(A) Is the tweet offensive? (Offensive Language Detection)

(B) Is the offense targeted? (Classification of Offensive Type)

(C) If the offense is targeted, identify the target as one of the following - individual,

group or others (Offensive Target Identification)

The questions are explored through the subtasks A, B and C, and discussed in

detail in Chapter 5, 6 and 7 respectively.

1.3 Contribution

We participated in “Task 12 - Offensive Language Classification Identification in Social
Media”[61] of SemEval 2020 Shared Task. Through improving data quality with the

inclusion of additional data sources and employing various ensembling approaches,

we yield a model that achieved a macro F1 score of 0,91344 in the English SubTask A,

placing 11th place out of 82 teams. We published the result in a System paper[53] for

the SemEval workshop.

1.4 Structure of the Thesis

This document is structured into eight chapters:

1. Chapter 2 introduces main concepts related to Natural Language Processing

using Deep Learning and provides an overview of the major ideas leading up to

the latest state of the art methods;

2. Chapter 3 introduces the three sub-tasks in Offensive Language Classification

based on the OLID schema [59]. We analyse the datasets in detail and describe

related work

2



1.4. STRUCTURE OF THE THESIS

3. Chapter 4 describes the experimental setup of our system;

4. Chapter 5 analyses the results of subtask A - offensive language detection;

5. Chapter 6 discusses the results of subtask B - offensive types categorisation, i.e.

if the offense is targeted;

6. Chapter 7 describes the result of subtask C - offensive target identification, i.e.

determining the target of the offense;

7. Chapter 8 concludes the thesis and provide recommendation for future work.

3
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2
Theoretical Background

The field of Natural Language Processing (NLP) has evolved over the years, moving

from traditional statistically based machine learning approaches such as Latent Se-

mantic Indexing[3], Latent Dirichlet Allocation[9], Brown Clustering[10], to the mod-

ern state-of-art deep learning methods like RNN[41], LSTM[25] and CNN[30]. Even

within the deep-learning area, there has been significant developments in the last two

years with the introduction of attention-based, Transformer[52]-type architectures

like BERT[15] and GPT[44]. This chapter aims to summarise key concepts leading up

to the development of the Transformer architecture and provide readers with a basic

intuition of the BERT model[15].

2.1 Text Classification using Deep Learning

Offensive Language Classification is an example of a Text Classification Task in NLP,

where a classifier automatically assigns labels to a group of texts based on its con-

tent. As text is sequential in nature, its meaning is derived from the individual words

meaning as well as the order in which they are combined.

2.1.1 Word Representations

For deep learning models, the text input needs to be converted to numerical format.

The simplest form is to one-hot-encode each word by giving it a unique integer value,

then convert it into a binary vector of size N, the size of the vocabulary, where all

values are zero except for the index of the integer, marked as 1.

Word embedding improves upon one-hot-encoding by creating a lower-dimensional

representation of the words such that words with similar meaning will be grouped in

the vector space. This is based on the idea of “distributional semantics”, where a word’s

5



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Word2Vec - The CBOW architecture predicts the current word based on
the context, and the Skip-gram predicts surrounding words given the current word,
from [36]

meaning is given by the words that frequently appear close-by [19, 22]. Word2Vec [36]

and GloVe [42] are two popular algorithms for learning word embeddings inspired

by neural network language model (NNLM)[8] where a feed-forward neural network

with a linear layer and a non-linear hidden layer was used to learn the word vector

representation and a statistical language model, i.e. a probability distribution over

sequences of words.

Word2Vec[36] uses a concept of local context window where a target is surrounded

by context words, and introduces a Continuous Bag-Of-Words (CBOW) algorithm to

predict the current word based on the surrounding context words, and a Skip-gram

algorithm to predict surrounding words given the current word as shown in Figure

2.1.

GloVe (Global vectors for word representation)[42] combines the concept of global

matrix factorization and the local context window methods. Using the intuition that

word meaning can be derived from its word co-occurrence probabilities, the model

is trained to learn the weights of the word vectors by predicting global word co-

occurrence counts.

These types of word embedding are often trained on a large corpus, and the rep-

resentation are then saved as weights in an embedding matrix to be used as features

for specific downstream tasks. These methods provides a good way of representing

word meanings as well as their inter-relationships, but cannot represent words that

have different meanings in different contexts. For instance, the word “bank” has a

different meaning in the phrase “river bank” and “bank account”, but will have the

same representation in this scenario. In the following section we will introduce new

embedding representation that consider contextual information to embed each word

in a latent space.

6



2.1. TEXT CLASSIFICATION USING DEEP LEARNING

2.1.2 Sequence Modelling

The simplest form of representing a group of words like a sentence is with a Bag-of-
Words model[22] where the model constructs a dictionary of unique words along with

their word counts, disregarding grammar and word order. These become features that

are fed into a linear classifier such as Naive Bayes[21], SVM[51] or Random Forest[23],

to make a prediction.

Recurrent neural networks (RNN)[41] improves upon linear classifiers by taking into

account the sequential nature of text. Figure 2.2 shows a single RNN cell, A, receiving

an input Xt and producing an output ht, and sending the output back to itself. At each

time step t, the recurrent network A receives the input Xt as well as its own output

from the previous time step ht-1, allowing information to be passed from one time

step to the next. This can be represented against the time axis as shown in Figure 2.2

(right) where RNN cell A is “unrolled through time”. This chain-like nature allows RNN

to model sequences such as text, where each time step represent a word in a certain

position in a sentence. Figure 2.3 represents the case of text classification where a

sequence of words, represented by the red boxes, are input into RNN (green boxes)

at separate time steps and taking the last output, represented by the blue box, as the

classification label.

Figure 2.2: An unrolled recurrent neural network. From [40]

Figure 2.3: Sequence classification using RNN. Words are represented as input vectors
in red, output vectors are in blue and green vectors hold the RNN’s state. From [28]

An RNN cell learns its weights through back-propagation, and as the sequence

length increases, the unrolled RNN becomes a very deep network. This causes the

7



CHAPTER 2. THEORETICAL BACKGROUND

gradient to either vanish or explode and as a result the network cannot learn long

range information effectively.

The Long Short-Term Memory cell is a special kind of RNN that can detect long

term dependencies in the data by using various gates to control and protect cell states.

Figure 2.4 shows the content of an LSTM cell. The cell state is split into two vectors:

h(t), the short-term state and c(t) the long-term state. As the long-term state c(t-1)

traverses through the network, it goes through a forget gate, dropping some memories,

then add some new memories that were selected by an input gate via the addition

operation, resulting in the new cell state c(t). The long-term state is also copied and

passed through a tanh function, and the result is filtered by the output gate to produce

the short-term state, h(t) and the cell output at this time step, y(t)

Now to understand at how the gates work. The current input vector x(t) and previ-

ous short-term state h(t-1) are fed to four different fully connected layers (FC) as shown

at the bottom of Figure 2.4. The main layer analyses x(t) and h(t-1), then outputs g(t).

The other three layers act as gate controllers that uses logistic activation function to

output values between 0 and 1, where 0 represents a closed gate and 1 represents an

open gate. The forget gate, f(t), controls which part of the long term memory should

be erased; the input gate, i(t) controls which part of g(t) to add to the long-term state;

the output gate, o(t) controls which part of the long-term state should be output to h(t)

and y(t).

The ability of LSTM to preserve information and forget when it’s no longer required

makes it more successful than a basic RNN in capture long-term patterns.

Figure 2.4: Architecture of a basic LSTM Cell, showing how the long-term memory c(t)
and the short-term memory h(t) propagates through the cell controlled by the input
gate, forget gate and output gate. x(t) and y(t) represent the input and output to the
cell at time step t and fully connected layers are represented by FC. [18]
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2.1.3 Attention

The Attention mechanism was introduced as a means of improving neural machine

translation[2]. Neural machine translation generally uses an encoder-decoder archi-

tecture where a source sentence is encoded into a fixed-length vector from which a

decoder generates a translation. The encoder-decoder is jointly trained to maximise

the probability of a correct translation given a source sentence. However, when the

source sentence is long, some information can be lost in the process of compressing the

representation into a fixed length vector. This is also known as information bottleneck.

Attention solves the problem by allowing the model to focus on the relevant part

of the sequence. For each step of the decoding process, there is a direct connection to

every step of the encoder. An attention score is calculated to represent the similarity

between the decoder state and each of the attention states, often using a dot product.

Figure 2.5: Attention patterns in generating French (left) to English (top) translation.
Lighter value indicates more attention (higher weight) on that particular word. From
[2]

2.1.4 Transformers

The Transformer[52] architecture reduces the amount of sequential computation with

the use of attention mechanisms. Previously, Recurrent Neural Networks (RNN), Long

Short-Term Memory networks (LSTM) and Gated Recurrent Units (GRU) were the

dominant architectures for sequence modeling but their sequential nature precludes

parallelization and do not work well for longer sequences. The transformer architec-

ture utilizes only attention mechanisms to draw global dependencies between input

and output, its capability for parallel operations resulted in a significant increase of

efficiency.

9
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The transformer architecture consists of an encoder and a decoder component,

shown as the left and right halves of Figure 2.6. Both the encoder and the decoder

consist of six stacked multi-head self-attention layers and point-wise, fully connected

layers.

The self-attention layers in the encoder uses keys, values and queries from the

previous layer or from the input embedding. Each position in the encoder represents a

single word and can attend to all positions in the previous layer, such that the influence

of the other words in the sentence on the current word is taken into account when the

word is encoded. Using “Scaled Dot-Product Attention”, the calculation is done for

all words simultaneously using matrices Q ∈ RNs×dk (Query) , K ∈ RNt×dk (Key) and

V ∈ RNt×dv (Value) by computing the dot products of the query with all keys, where

Nt denotes the target vocabulary size Ns the source vocabulary size and dk the latent

space dimension for keys and queries and dv for values. We divide each by
√
dk , square

root of the dimension of the keys and queries, and apply a softmax function to get the

weights on the values as shown by the equation:

Attention(Q,K,V ) = softmax

QKT√
dk

V (2.1)

Multi-head attention is created by projecting queries, keys and values h times with dif-

ferent, learnt linear projections to dk ,dk and dv dimensions, respectively. The attention

function is then preformed in parallel on each of the projected versions, yielding dv-

dimensional output values. Finally these values are concatenated and again projected,

resulting in the final values. (Figure 2.7). The use of multi-head attention allows

the model to jointly extract information from different representation subspaces at

different positions.

For the decoder layer, there is a multi-head self-attention sub-layer, a fully con-

nected feed forward network as well as an additional encoder-decoder attention sub-

layer. The self-attention layer allows each position in the decoder to attend to all

positions in the decoder up to and including that position, and uses masking to pre-

vent the position from attending to subsequent positions. The encoder-decoder layer

uses queries from the previous decoder layer, and the memory keys and values from

the output of the encoder, to allow every position in the decoder to attend over all

positions of the input sentence.

Input and output words are converted into vectors of dimension dmodel using learnt

embeddings. The decoder output is converted with learned linear transformation and

softmax function, to predict the next-token probability.

In order to encapsulate the relative position of the tokens in the sequence, “po-

sitional encoding” is added to the input embeddings at the bottoms of the encoder

and decode stacks. The positional encodings have the same dimension, dmodel , as the

embeddings, so they can be summed.
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Figure 2.6: The Transformer Architec-
ture - with stacked multi-head self at-
tention (orange) and fully connected
layers (blue) in both encoder (left) and
decoder (right). Input to the model is a
sequence of words and the output is a
sequence of word probabilities. From
[52]

Figure 2.7: Multi-Head Attention con-
sisting of h attention layers running
in parallel. These layers are then con-
catenated and passed through a linear
layer. From [52]

The Transformer can be trained significantly faster than architectures based on

recurrent or convolutional layers as its operations are highly parallelizable. It also

achieved a new state of the art results for translation tasks and became the basis for a

series of subsequent milestones in NLP.

2.1.5 Contextualised Embeddings

BERT (Bidirectional Encoder Representation from Transformer)[15] is a cumulation

of several ideas in NLP coming together to create a major breakthrough.

BERT uses a multi-layer bidirectional Transformer encoder architecture, based on

implementation described in Vaswani et al. [52]. To understand the concepts behind

BERT, it is useful to see the some key progressions in NLP leading up to its inception.

Previous work has shown “Language Model Pre-training” to be an effective tech-

nique for learning word embeddings in NLP tasks[13, 26, 43, 44], whereby training

models to predict the next word in a sentence allow the models to acquire familiar-

ity with the language without the need of labelled data. These word representations

benefit from having models trained on large corpus of data such as Wikipedia and

published books.
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One such example is ELMo[43], which uses a bi-directional LSTM to extract context-
sensitive word representations from a left-to-right and a right-to-left language model.

Contextual word embeddings are created by concatenating these representations, and

are used as input features in task-specific down-stream architectures.

ULMFit[26] extends the idea of Language Model Pre-training by introducing a

Language Model fine-tuning method for classification tasks that mimics Computer

Vision-style transfer learning. Rather than just learning and extracting contextualized

embeddings, the ULMFit model utilizes the same architecture for the unsupervised

pre-training and the downstream fine-tuning. Firstly the model is trained on general-

domain corpus to capture features of the language in different layers, then the target

tasks is used to fine-tune the language model to obtain task-specific features. Finally

the target task classifier is fine-tuned through gradual layer unfreezing, allowing the

model to preserve low-level representations such as the embeddings, while adopting

high level ones. The ULMFit uses a regular bi-directional LSTM architecture, with no

attention or residue connections, and various tuned dropout hyperparameters. (Figure

2.8)

Figure 2.8: ULMFiT consists of three stages: a) The LM is trained on a general-domain
corpus to capture general features of the language in different layers. b) The full LM
is fine-tuned on target task data using discriminative fine-tuning (‘Discr’) and slanted
triangular learning rates (STLR) to learn task-specific features. c) The classifier is
fine-tuned on the target task using gradual unfreezing, ‘Discr’, and STLR top reserve
low-level representations and adapt high-level ones (shaded: unfreezing stages; black:
frozen) From [26]

The OpenAI Transformer, GPT[44] continues with the idea of pre-training a Lan-

guage Model on large corpus of unlabelled text, followed by discriminative fine-tuning

on target task. Unlike the bi-LSTM-based ULMFit, OpenAI GPT utilizes a 12-layer

decoder-only transformer with masked self-attention heads. It also supports down-

stream tasks beyond text classification, such as question answering, semantic similarity

assessment and entailment determination. Only the decoder part of the transformer

architecture is used, as it fits the purpose of language modeling (predicting the next

12
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word). During the unsupervised pre-training, the BooksCorpus dataset[63], contain-

ing 7,000 unpublished books, is used to train a forward-only language model. At the

fine-tuning stage, the model is tuned to optimise both the target task as well as the

initial language model. This has been shown to improve the generalization of the

supervised model as well as accelerate convergence. This type of fine-tuning based

approach allows for task-agnostic architecture. The attention mechanisms of the trans-

former is able to better capture the language patterns and support transfer learning

compared to LSTM, and as a result OpenAI achieved state of art results on 9 of 12 NLP

datasets at the time.

Figure 2.9: (left) Transformer architecture and training objectives used in GPT. (right)
Input transformations for fine-tuning on different tasks. All structured inputs are
converted into token sequences to be processed by the pre-trained model, followed by
a linear+softmax layer. From [44]

2.1.5.1 BERT

Similar to ULMFit[26] and OpenAI GPT[44], BERT[15] also utilizes the pre-training
and fine-tuning approach using language models. BERT has a unified architecture

across different tasks, with minimal difference between pre-trained architecture and

the final downstream architecture.

Whereas OpenAI GPT uses a multi-layer forward-only Transformer decoder ar-

chitecture, BERT is based on a multi-layer bi-directional Transformer encoder archi-

tecture. BERT is pre-trained using two unsupervised tasks - Masked Language Model
(MLM) and Next Sentence Prediction (NSP).

In a multi-layered environment like the Transformer, if the language model is

trained from both left-to-right and from the right-to-left, the word will inevitably

“seeing itself” in other layers. This presents a challenge in achieving bi-directionality in

Transformers. BERT overcame this restriction by using Masked Language Model(MLM)
- randomly mask 15% of the input text and train the language model to predict the

masked words instead of the next word in a sequence. This allows BERT to be a more

13



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.10: Differences in pre-training model architectures. BERT uses a bidirec-
tional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the
concatenation of independently trained left-to-right and right-toleft LSTMs to gener-
ate features for downstream tasks. Among the three, only BERT representations are
jointly conditioned on both left and right context in all layers. In addition to the archi-
tecture differences, BERT and OpenAI GPT are fine-tuning approaches, while ELMo
is a feature-based approach. From [15]

powerful, deep bi-directional model than a shadow bi-directional model produced by

concatenating a left-to-right and a right-to-left model such as ELMo.

To cater for downstream tasks that requires an understanding of relationships

between sentences such as Question Answering (QA) and Natural Language Inference

(NLI), BERT introduces a Next Sentence Prediction (NSP) task for the pre-training stage.

Here, sentences A and B are chosen from the corpus where 50% of the time B is the

next sentence that follows A, and 50% of the time B is a random sentence from the

corpus. The model is then trained to identify if sentence B follows A, in doing so, it

learns to understand the relationship between two sentences.

BERT is pre-trained using the BooksCorpus[63] containing 800M words and the

English Wikipedia, containing 2,500M words. The size of the corpus allows the pre-

trained model to develop deeper understanding of the underlying language patterns.

Two BERT pre-trained models are available for download: BERTBASE and BERTLARGE .

BERTBASE consists of 12 layers, hidden size of 768 and 12 self-attention heads, totalling

110M parameters and BERTLARGE has 24 layers, 1024 hidden units, 16 self-attention

heads and a total of 340M parameters. The pre-training process take a significant

amount of time, but do not need to be repeated as the downstream target task models

are initialized using all of the pre-trained model weights.

The downstream model has essentially the same architecture as the pre-trained

model, but with an additional task-specific output layer. After plugging task-specific

inputs and outputs into the BERT model, all the parameters are fine-tuned end-to-end.

For tasks involving sentence pairs, such as question-answering, BERT´s self attention

mechanism applies bi-directional cross attention between the two sentences to learn

their dependencies.

Figure 2.11 shows the structure of BERT´s input representation. The input rep-

resentation can represent both a single sentence and a pair of sentences in one token

sequence, based on the downstream task. The first token of every sequence is a special
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classification token ([CLS]), whose final hidden state represents the sentence aggre-

gation results for classification tasks. For tasks requiring sentence pairs, the pairs

are packed together into a single sequence, separated with a special token ([SEP]). A

segment embedding is added to the token embedding to differentiate sentence A from

sentence B. Finally the position embeddings are added to the input representation.

Figure 2.11: BERT input representation. The input embeddings are the sum of the
token embeddings, the segmentation embeddings and the position embeddings. From
[15]

Figure 2.12: Overall pre-training and fine-tuning procedures for BERT. Apart from
output layers, the same architectures are used in both pre-training and fine-tuning.
The same pre-trained model parameters are used to initialize models for different
down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a
special symbol added in front of every input example, and [SEP] is a special separator
token (e.g. separating questions/answers). From [15]

*
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The abusive and offensive language classification task has been studied from different

perspectives, ranging from aggression identification [29, 37], bullying detection [57],

hate speech identification [14], toxic comment classification [16], and offensive lan-

guage classification [55, 60].

In a recent comparative study of different subtasks related to abusive language

detection, Waseem et al. [54] suggested the subtasks can be synthesised with a typology

that captures their central similarities and differences. They proposed a two-level

typology that considers whether (i) the abuse is directed to a specific target, and (ii)

the degree to which it is explicit. Directed abuse, where someone is mentioned by

name, tagged by a username or referenced by a pronoun are examples of cyberbullying,

while abusive expressions towards generalised groups such as racial categories can be

considered as hate speech. By drawing a distinction between explicit and implicit

abuse, they highlighted the difficulties in detecting the latter, which can often be

obscured by the use of ambiguous terms, sarcasm and lack of profanity and hateful

terms.

Zampieri et al. [59] extended this idea and compiled a Offensive Language Iden-

tification Dataset (OLID) that follows a three-level hierarchical schema for offensive

language classification which considers:

(A) whether a tweet is offensive or not (Offensive Language Detection)

(B) whether the offense is targeted (Categorization of Offensive Language Types)

(C) whether it is targeted towards individuals, groups or others. (Offensive Language

Target Identification)
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They proposed that the fine-grained approach would help to consolidate related tasks

in this field, and including the target of the abuse would assist future studies of hate

speech with respect to a specific target.

The OLID [59] dataset became the official dataset for the OffensEval 2019 Shared

Task [60] where each level correspond to a specific sub-task. OffensEval 2020 con-

tinued with the same hierarchical annotation schema but with much larger, semi-

supervised datasets.

In this chapter we analyze the official dataset for OffensEval2020 English sub-task

A [61], and discuss additional datasets and resources that we used for this task. We

also describe the official dataset for OffensEval 2019 sub-task B and sub-task C [60]

and look at related work for all the subtasks.

3.1 Level A - Offensive Language Detection

3.1.1 Task Description and Dataset

According to OLID [59] annotation guidelines, level A discriminates between the

following types of tweets:

• Not Offensive (NOT): Posts that do not contain offense or profanity

• Offensive (OFF): Posts containing any form of non-acceptable language (profan-

ity) or a targeted offense, which can be veiled or direct. This includes insults,

threats, and posts containing profane language or swear words.

3.1.1.1 Semi-Supervised Dataset for Offensive Language Identification (SOLID)

The official OffensEval 2020 English Training Dataset (SOLID)[45] contains over nine

million tweets and was labelled in a semi-supervised manner using model built from

an ensemble of PMI [50], LSTM [24], FastText [27] and BERT [15].

It followed the annotation guideline as OLID, but instead of the binary label, two

numerical scores are provide for each tweet – µ and σ . µ represents the average of the

confidences predicted by the models for belonging to the positive class (OFF). σ is the

confidences’ standard deviation. Table 3.1 shows a sample of the dataset content.

id text average (µ) std(σ)

1159533701283350000
First time I heard his name in camp, he seems to
be the forgotten guyChristian Covington being
disruptive so far today

0.195773 0.187379

1159533703522990000
When I go to drink with Tsubaki he would
always fall asleep first. His sleeping face looks
really innocent and not like him at all. Fufu♪

0.262401 0.145998

1159533703758060000 @USER His ass need to stay up 0.833391 0.140628

Table 3.1: SOLID dataset sample entries
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Figure 3.1: SOLID Data Distributions - Original and Subsets

In order to find a suitable decision boundary for binary classification, we binned µ

and σ and analysed their respective distribution using histograms for the confidence

levels (Figure 3.1-middle) and standard deviation (Figure 3.1-bottom), as well as the

distribution of the standard deviation over the confidence scores (Figure 3.1-top).

The original dataset is shown as the left-most column on Figure 3.1. The middle

graph, SOLID - AVG_CONF (µ) Histogram, shows the dataset has significantly more

lower values of average confidence (µ) such that there will be more negative examples

(NON) than positive (OFF) if the threshold is taken around a mid-range value of 0.5.

The boxplot on the top left column shows that mid-range values of µ have a higher

variance in the σ values.

We inspected the tweets with mid-range values of µ (0.4 < µ < 0.6) and high stan-

dard deviation σ (> 0.3) and found various examples of mis-classification (assuming

that the classification threshold was set at µ = 0.5).

Table 3.2 shows examples of offensive texts with µ < 0.5. Surprisingly many of

these tweets contain profanity but were not correctly identified. This suggested the

semi-supervised training algorithm was not very sensitive to the profanity words.

On the other hand, Table 3.3 highlights that self deprecating comments were often

mislabelled as being offensive and general negative comments on society or negative

sentiments were also incorrectly marked as offensive.

As tweets with mid-range µ and / or high σ appear to be inconsistent and mislead-

ing, we decided to remove these uncertain regions from the training dataset instead

of altering the threshold. We created two subsets by under-sampling the mid-range

values of µ (0.4 < µ < 0.6) to see if a more selective sampling would improve the results,

one containing about 6M samples by just under-sampling the uncertain region (SOLID

A) and another with only 1M samples (SOLID B).
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text average (µ) std (σ)

First of all bitch Let me take Lay to Walmart before I push her down 0.400922 0.339073
Not in da mood 4 these hoes 0.401108 0.321429
my favorite part of coming to the gym alone is that all the persian fuckboys
come out to play

0.420394 0.321399

But America is the shittiest place on earth right?? ?? 0.423781 0.319078
I do love all the slutty costumes though. Even though half of you are sluts
anyways.

0.424623 0.314600

religion is so fuckingggff bulshittt 0.426189 0.300384
@USER Tell it to the IMBECILE in the White House! His name is #Trump 0.443468 0.314032
@USER You are Corrupted! You should retire right now and step down! 0.480829 0.313158
Sooo many fresh when we was in school niggas bums now....tf happen to u! 0.485208 0.318131
Thick master Ken is certainly one of the nastiest sissy boys of all time 0.436352 0.303370
So Lion King was absolute dogshit 0.442239 0.315102
@USER attention WHORE be gone. 0.493955 0.320506
The Chinese Satanist 0.490647 0.327647
@USER only If you are weak and insecure 0.489890 0.308845
Losing to Retards 0.496200 0.303528

Table 3.2: Example of Mis-classification - offensive texts with µ < 0.5 in SOLID

text average (µ) std (σ)

Today sucked. Where’s the tequila? 0.501158 0.321304
caring about something you know is pointless 0.503435 0.311307
fear and greed 0.504076 0.305328
This heat is truly obnoxious 0.504384 0.303848
My body is garbage and I would love to rent a new one pls. 0.523693 0.325015
Let me start on this book to kill some time 0.536988 0.323009
You know for a bimbo I sure do read a lot... 0.538729 0.343389
in a world that needs a lot of help i feel so useless ... 0.545438 0.302742
Ate veggies today and I’m not thinner...damn it! 0.547136 0.314980
Animals is one hell of an album 0.547262 0.312807
The world is cruel #bot 0.547752 0.317849
@USER It’s coming. Be patient 0.548401 0.325815
Ignorance is a bliss 0.548738 0.300488
the graveyard 2 was insane 0.549510 0.331272
@USER i will, thank you. this week was crap. 0.550122 0.319092
Still missing you like crazy tho’ 0.557427 0.338659
I am just too sad right now and i feel worthless... 0.557784 0.347495
I’ve really, really been the best of fools, I did what I could 0.561318 0.300886
Why do fools fall in love? 0.575715 0.330991

Table 3.3: Example of of Mis-classification - non-offensive texts with µ > 0.5 in SOLID

SOLID A was created by removing majority of records with mid-range µ as well

as removing records with σ > 0.2. The distribution is shown in middle column of

Figure 3.1. The resulting dataset contains 6,464,288 records, roughly 72% of the

original dataset volume.
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SOLID B was created with the intention of balancing dataset by sampling equal

number records from both high and low µ ranges. Records with σ > 0.2 were removed

and only a small number of tweets with mid-range µ were kept. The distribution is

shown in the right column of Figure 3.1. The resulting dataset contains 1,030,000

records, roughly 11% of the original dataset volume.

3.1.2 Data Augmentation

We opted to augment the dataset as the semi-supervised nature of SOLID lead to more

ambiguity in its usage and as well as potentially being less reliable in the results. The

dataset we chose to include are described in the following section. Table 5.2 shows the

target distributions of the datasets we used.

Class SOLID OLID Train Kaggle Profanity SOLID A SOLID B

NON 7,628,650 ( 84%) 8,840 ( 67%) 1,660,540 ( 92%) 147,509 ( 80%) 5,636,935 ( 87%) 515,000 ( 50%)
OFF 1,446,768 ( 16%) 4,400 ( 33%) 144,334 ( 8%) 36,845 ( 20%) 827,353 ( 13%) 515,000 ( 50%)

TOTAL 9,075,418 (100%) 13,240 (100%) 1,804,874 (100%) 184,354 (100%) 6,464,288 (100%) 1,030,000 (100%)

Table 3.4: Target Distribution of the datasets.

3.1.2.1 Offensive Language Identification Dataset (OLID)

The Offensive Language Identification Dataset (OLID)1 was created for the OffensEval

2019 shared task. The training set contains 14,100 manually annotated tweets, where

a tweet was labelled as offensive (OFF) if it contains any form of profanity or targeted

offense, either veiled or direct, and non-offensive (NON) otherwise. The ratio of OFF

to NON is roughly 1 to 2. The quality of this dataset is better and more reliable than

SOLID, however it is almost 650 times smaller.

id tweet subtask_a
86426 @USER She should ask a few native Americans what their take on this is. OFF

18485
@USER I am truly sorry that you are having a rough day. I hope it gets
better for you. I am doing fantastic.

NOT

24276 @USER He is truly dumb as shit. OFF
62688 @USER Someone should’ve Taken this piece of shit to a volcano. OFF

95295
...and what plan might that be? The discredited Chequers Plan or crash
out without a plan? URL

NOT

Table 3.5: OLID dataset sample entries

1https://scholar.harvard.edu/malmasi/olid
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3.1.2.2 Jigsaw Unintended Bias in Toxicity Classification Dataset (Kaggle)

The Kaggle 2019 Toxicity Classification Dataset (Kaggle)2 dataset contains over 1.8

million public comments from online news discussions. This dataset was created with

the aim of reducing unintended bias in toxicity classification as a result of identity

mentions. The data has been labelled with identity mentions, such as Muslim, Gay or

Black, and a toxicity score (TARGET) that represents the faction of human annotators

who believe the post is toxic. We decided to include this as it is a large dataset where

each comment has been reviewed by up to 10 annotators, and its content could prove

useful in reducing false positive errors. For this task we will just use the comment_text

and target columns. As the dataset contains comments rather than tweets, the length

of text could be significantly longer.

id target comment_text

5672903 0.000000
Just look at the comments here in the SA, every single little snowflake (D)onkey is
against the wall. Obviously you do know that the money will be spent in the US to build
the wall which means lots of manufacturing and construction jobs for US workers.

6046443 0.000000 I’m guessing it will bounce or Trump will simply reimburse him behind the scene.

6156401 0.868852
Pelosi needs to go she is such an idiot the craziest person that I have had the non
privilege of trying to comprehend anything that comes out of that disgusting mouth
of hers CLEAN THE SWAMP she is nuts

5158315 0.000000 What do you expect from a newspaper that has less than 100 real subscribers? LOL

Table 3.6: Kaggle dataset samples, showing target and comment_text columns

3.1.3 Additional Resources

3.1.3.1 Profanity Check (Profanity)

A simple text search of the word “fuck” in SOLID returned 268,845 matches, roughly

3% of all tweets. Out of these, 2.3% were mis-classified as non-offensive. Figure 3.2

compares the distribution of the confidence scores µ and σ for profanity tweets contain-

ing the word “fuck” against those in the whole dataset. The box-plot on top left show

that tweets with µ between 0.3 − 0.7 have a larger σ , indicating more uncertainty in

the classification. The SOLID-AVG_CONF(µ) histogram in the middle left also shows

some tweets with the word “f**k” had µ < 0.5 (Figure 3.2).

This suggests a need to increase our model’s sensitivity to profanity words. Rather

than using a dictionary based approach [20], we decided to use a Python library,

Profanity-check3, that checks for profanity and offensive language in text. It was built

using a SVN model trained on 184,354 records from a twitter dataset4 and a Wikipedia

dataset [62]

2https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
3https://pypi.org/project/profanity-check/
4https://github.com/t-davidson/hate-speech-and-offensive-language/tree/master/data
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Figure 3.2: Distribution of f**k words in SOLID

3.1.4 Using the Datasets

Having sourced additional dataset for this task, we will create separate models using

data from each dataset and compare their performances in Chapter 5.

3.1.5 Related Work

OffensEval 2019 sub-task A used the OLID dataset and 104 teams participated in the

task. Seven out of the top ten teams used BERT, with various pre-processing techniques

and different parameters.

The top team, NULI[31] experimented with different models including Linear,

LSTM and fine-tuning pre-trained BERT on the OLID dataset. They used pre-processing

techniques such as emoji substitution, hashtag segmentation, replacing URLS and con-

verting text to lowercase. Their final model was BERT, as it outperformed other models

during development.

The second team, vradivchev_anikolov[38] trained a large number of models includ-

ing Naive Bayes, SVM, CNN, MLP, RNN and BERT, then combined the best of them in

ensembles. Their pre-processing step included removing most punctuation except for

“@” and “#”, hashtag segmentation and stop words removal. Their best performing

model was also BERT, as the other models overfitted in Dev.

The top non-BERT model, MIDAS[33], used an ensemble of Convolutional Neural

Network, Bidirectional LSTM with attention, and Bidirectional LSTM + Bidirectional

GRU and is ranked 5th.
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3.2 Level B - Automatic Categorization of Offense Types

3.2.1 Task Description and Dataset

Using OLID [59] annotation guidelines, level B differentiates between the types of

offense by detecting if the offense is targeted:

• Targeted Insult (TIN): Posts containing insult/threat to an individual, a group,

or others;

• Untargeted (UNT): Posts containing non-targeted profanity and swearing. Posts

with general profanity are not targeted, but they contain non-acceptable lan-

guage.

We will use the Offensive Language Identification Dataset (OLID)5, which was

also the official dataset for OffensEval 2019 subtask B. Table 3.8 shows how different

tweets are labelled as TIN or UNT in column subtask_b. We note that some scenarios

can be ambiguous, or even incorrectly labelled. For instance the last sample in the

table contains the text “I just threw up in my mouth.” appears to be untargeted and

was labelled as such. But the hashtag #LockHerUp suggests otherwise. This highlights

the complexity of this subtask and perhaps the need for more detailed annotation

guidelines and cross checking.

The distribution of TIN and UNT are fairly unbalanced, with 3,876 targeted of-

fenses and 524 untargeted offenses. (Table 3.7)

A B C Training Test Total
OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT — 524 27 551
NOT — — 8,840 620 9,460
All 13,240 860 14,100

Table 3.7: Distributions of label combinations in OLID

3.2.2 Related Work

This is an existing task and results and papers have been published in OffensEval 2019

task report[60]. 76 teams participated in the sub-task B. Unlike sub-task A, offensive

language detection, where majority of the top models are BERT-based, the offense type

classification task drew out a wider variety of techniques. In particular five out of the

top ten teams used an ensemble model.

The best team, jhan014[20], devised a probabilistic model to calculate the offensive-

ness of a sentence based on the offensiveness of individual words in the sentence and

5https://scholar.harvard.edu/malmasi/olid
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tweet subtask_a subtask_b subtask_c
@USER @USER @USER Bad people don’t obey the law.
There are many more guns in circulation in North America
than there are people. Gun control is liberal mind masturbation.

OFF TIN GRP

@USER Comparing a date to rape is disgusting. I hope your
family never has to deal with rape. You are a disgusting POS.

OFF TIN IND

@USER He is repulsive. OFF TIN IND
@USER @USER @USER Fake conservatives and their fake
outrage over the budget betrayal URL URL

OFF TIN GRP

@USER CNN = Fake News OFF TIN OTH
@USER @USER These liberals have no problem lying. OFF TIN OTH
@USER this is fucking hilarious OFF UNT NaN
I just threw up in my mouth. #LockHerUp #MAGA URL OFF UNT NaN

Table 3.8: OLID samples for Offense Type Categorisation and Target Identification

intensified by other words in the sentence that are syntactically related to the offensive

words. The inclusion of syntactic information in their model assisted in the detection

of targeted offense because usually targeted offensive language have different sentence

structure with untargeted ones.

The second team, Amobee[46] designed a new type of convolutional neural network

called “Multiple Choice CNN” (MC-CNN) and used that over a custom developed

embedding. The idea was to replace quantitative questions such as “how mad is

the speaker?”, where the result is believed to be represented by the activation of the

corresponding filter, with multiple choice questions such as “what is the speaker -

happy/sad/other?”, where the number of choices denoted by the number of filters and

the sum of filter activations for each group is forced to be equal to 1. The approach

appear to result in less over-fitting.

The best team from sub-task A, NULI[31], again fine-tuned a BERT pre-trained

model and was ranked 4th, showing that BERT worked well for this task too.

3.3 Level C - Offense Target Identification

3.3.1 Task Description and Dataset

After the data has been identified as Targeted (TIN) in level B, level C of OLID [59]

annotation schema is about detecting the target of the offense by categorising the target

as the following:

• Individual (IND): Posts targeting an individual. This can be a famous person, a

named individual or an unnamed participant in the conversation. Insults and

threats targeted at individuals are often defined as cyberbullying.

• Group (GRP): Posts targeting a group of people considered as a unity due to the

same ethnicity, gender or sexual orientation, political affiliation, religious belief,

or other common characteristic. Many of the insults and threats targeted at a

group correspond to what is commonly understood as hate speech.
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• Other (OTH): The target of these offensive posts does not belong to any of the

previous two categories (e.g., an organisation, a situation, an event , or an issue).

Table 3.7 shows that the Target distribution is again unbalanced, with significantly

more IND labels than GRP and OTH. Table 3.8 shows samples of the categorisation in

the column subtask_c. While posts targeted towards individuals are easier to identify,

there can be some confusion between GRP and OTH labels. In the table, the post

“USER USER These liberals have no problem lying.” is classified as OTH, but it can be

argued that “liberals” infer a political affiliation and should be classified as GRP.

3.3.2 Related Work

OffensEval 2019 task report[60] also included team results on this sub-task. Similar to

sub-task B, ensembles were quite popular and were used by five of the top ten teams.

The best team, vradivchev_anikolov[38] experimented with a large number of mod-

els such as SVM, Naive Bayes, RNN, MLP and BERT and combined the best models in

a soft voting classifier. Instead of using a default classification threshold of 0.5, they

derived optimal thresholds for each class using cross-validation. BERT was their best

model, as the other models, including ensemble, overfitted to the training set.

The second team, NLPR@SRPOL[48] combined in an ensemble several models

(LSTM, Transformer, OpenAI’s GPT, Random forest, SVM) with various embeddings

(custom, ELMo, fastText, Universal Encoder) together with additional linguistic fea-

tures(number of blacklisted words, special characters, etc.). Their model was trained

on publicly available datasets as well as their custom datasets annotated by linguists.
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4
Experimental Setup

BERT[15] has revolutionised the field of NLP since its inception in late 2018, produc-

ing state-of-the art results across many NLP tasks, including text classification. As

discussed in the previous section, BERT-based models performed well across all three

OffensEval 2019 subtasks, achieving 1st place in subtask A and C and 4th place in sub-

task B. The alternative models that achieved comparable results in training required

far more task specific and feature engineering yet often over-fit during test.

As a result, we chose to use pre-trained BERT models for all three subtasks, and

fine-tune these models using downstream datasets for each task.

There are many benefits of using a pre-trained BERT model. As the model was

trained on a large corpus of data, it can produce fairly good results even if the dataset

used for fine-tuning is relatively small in size as the model architecture remain the

same and only the weights are adjusted.

HuggingFace [56] provides a well-developed API and includes downloadable pre-

trained models. We will use BERT-base-uncased model, which contains 110M param-

eters.

4.1 Text Pre-processing

For Twitter datasets OLID (§ 3.1.2.1) and SOLID (§ 3.1.1.1) the text were pre-processed

using the following steps:

• replace emojis with text descriptions, using Python library, emoji1

• expand hashtags and contractions

• replace Ampersand (&) with "and"

1https://pypi.org/project/emoji/
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• replace "URL"with "http"

• keep a maximum of three consecutive occurrences of "@USER"

• replace tabs and line feed characters with a single blank space

• remove all symbols except for the following [-?.,!@#].

• convert text to lowercase

For the Kaggle dataset (§ 3.1.2.2), we simply expanded the contractions and con-

verted text to lowercase.

4.2 BERT & HuggingFace

We implemented BERT using the PyTorch-Transformers library (https://pytorch.

org/hub/huggingface_pytorch-transformers/) from HuggingFace. [56].

The following steps prepare the data into a suitable input format:

1. Add “[CLS]” at the beginning and “[SEP]” at end of each sentence

2. Tokenize text using the pre-trained BERTTokenizer (“BERT-base-uncased”)

3. Pad each sequence to a specified maximum length (128 for twitter datasets)

4. Create attention masks which contains 1s for each token and 0s for padding

5. Split the data into training and development sets and convert the data into Torch

Tensors

6. Create training and development data-loaders

We used these steps to train the model:

1. Load a pre-trained “BERT-base-uncased” BERTForSequenceClassification model

from PyTorch-Transformer library. This model extends the base BERT model by

the inclusion of a final linear layer corresponding the number of output classes.

2. Use AdamW optimizer, with learning rate of lr = 2e−5

3. Use Warmup Linear Schedule where the number of warm up steps is between

5-10% of total number of steps

4. Train the model between 2-3 epochs based on the performance on the develop-

ment set

5. Combine training and validation set and use the same parameters to retrain

model
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4.3. EVALUATION METRICS

Predicted
Negative Positive

Actual
Negative True Negative (tn) False Positive (fp)
Positive False Negative (fn) True Positive (tp)

4.3 Evaluation Metrics

A confusion matrix is often used to describe the performance of a classification model

and consists of the number of observations belonging to each of the following:

True Positives (tp) - correctly predicted positive values

True Negatives (tn) - correctly predicted negative values

False Positives (fp) - when the actual class is no but the predicted class is yes

False Positives (fp) - when the actual class is yes but the predicted class is no

The official metric for this task macro-F1, giving equal importance to precision

and recall, as well as equal weighting on the minor and major classes. We will also

use macro-precision, macro-recall as well as accuracy as intermediate steps in our

evaluation. Precision, recall and accuracy are calculated as follows:

precision =
tp

tp+ f p
recall =

tp

tp+ f n
acc. =

tp+ tn
tp+ f p+ tn+ f n

F1 score is the weighted average of precision and recall. It is often more useful

than accuracy especially when the class distribution is unbalanced.

F1 =
precision ∗ recall
precision+ recall

Macro-averaged F1-score, or the macro-F1, is computed as an arithmetic mean of

individual per-class F1-scores:

macroF1 =
1
C

C∑
i=1

F1i

where C is the total number of classes.

Macro-F1 is a good metric to use for our tasks as due to the imbalanced data the

performance of the model on minority class will have a significant impact on the

results.

Similarly, macro-precision and macro-recall are the arithmetic mean of their indi-

vidual per-class scores:

macro − precision =
1
C

C∑
i=1

precisioni
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macro − recall =
1
C

C∑
i=1

recalli

where C is the total number of classes.
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5
Offensive Language Detection (Level A)

5.1 Training & Dev Split

We created train/dev splits with the sizes specified in Table 5.1 to find the best hyper-

parameter for training each individual model. We then used OLID test set for evaluate

and compare the results of each model.

Model Training Set Size Validation Set Size

OLID 11,916 1,324
SOLID 9,075,365 50,000
SOLID subsample A 6,444,288 20,000
SOLID subsample B 1,010,000 20,000
Kaggle 1,624,387 180,487
Profanity Check N/A N/A

Table 5.1: Training and Validation Set Sizes, for model tuning.

Class OLID Test

NON
OFF

620 ( 72%)
240 ( 28%)

TOTAL 860 (100%)

Table 5.2: Target Distribution of Dev dataset, for model selection.
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Model macro-F1 macro-P macro-R acc.

SOLID 0.80967 0.84332 0.78925 0.85814
SOLID A 0.78802 0.77548 0.81384 0.80833
SOLID B 0.80237 0.79466 0.81223 0.83605
OLID 0.81122 0.80278 0.82218 0.84302
Kaggle 0.74961 0.84081 0.72009 0.83023
Profanity 0.68617 0.85194 0.66230 0.80581

Avg Ensemble 0.81219 0.84795 0.79086 0.86047

Table 5.3: Results of individual models for Dev Set, reported macro-F1, precision,
recall and accuracy for each model. We show the best model in bold

5.2 Dev Error Analysis

Table 5.3 details the classification results of each model independently. We report

the validation scores (OLID Test) and the test scores (SOLID Test). In addition to

macro-F1, we also also included macro precision (P), recall (R) and accuracy (acc.).

Figure 5.1 shows the confusion matrices for individual models in the Dev set. Here

the positive class represents that the text is offensive and the negative class represents

non-offensive.

It’s interesting to see that OLID and SOLID models have the best macro-F1 scores

out of the 6 individual models. OLID model has the best macro-recall, followed by

models created by SOLID subsets as well as SOLID full set. This means those models

are better at minimising type II errors, i.e. having offensive text mis-classified as being

non-offensive. This is evident when looking at the confusion matrices, which show

OLID has proportionally smaller number of False Negatives (54) to True Positives (186)

than Profanity Check, where it has 159 False Negatives and 81 True Positives.

Conversely, model trained with Profanity Check have better precision thus better

at reducing thus type I error (False Positives Rate). For instance, The Profanity Check

model has 8 False Positives and 81 True Positives while OLID has 81 False Positives

and 186 True Positives.

Contrary to our initial hypothesis, the models trained from under-sampling the

uncertain partition of SOLID did not perform as well as the model built using the

whole set in terms of macro-F1 scores. We posit that further tuning of the optimal

threshold µ and σ for under-sampling, may influence the results. Possibly apply a more

aggressive under-sampling could increase precision scores. Due to time constraints we

leave further exploration as future work.

As each model has different strengths, we decided to experiment with various

ensemble techniques to create a final model. Instead of combining all the data into

one single dataset for training, we wanted to have more flexibility in tuning the impact

of using each dataset, so decided to create separate models using each dataset so the

final model can benefit from having larger datasets without smaller datasets being

undermined.
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Figure 5.1: Confusion Matrices on the Dev set

5.3 Ensemble Methods

We used the output of the following models as input features to the ensemble model.

The models from SOLID subsets are not included as they did not out-perform SOLID

full set.

• OLID

• SOLID

• Kaggle

• Profanity

Here we experiment with different ensemble techniques, and train the ensemble

model using the OLID Test dataset, with 5 fold cross validation, and 10% of dataset

reserved for comparison between models.

Ensemble Method Parameter Search Parameter Chosen
average ensemble N/A equal weights of 0.25

weighted ensemble
check weights between 0 and 1
in incremental steps of 0.1

w(olid) = 0.5, w(solid) = 0.3,
w(kaggle) = 0.5, w(prof) = 0.3

gradient boosting n_estimators: [5, 10, 30, 50] n_estimators = 10
ada boost n_estimators: [5, 10, 30, 50] n_estimators = 10

svm - rbf kernel
C : [0.1, 1, 10, 100]
gamma: [0.01, 0.1, 1, 10]

C = 100
gamma = 0.1

svm - linear kernel C : [0.1, 1, 10, 100] C = 0.1
logistic regression C : [0.1, 1, 10, 100] C = 0.1

Table 5.4: Parameters of Ensembles, where “n_estimators” represents the maximum
number of estimators at which boosting is terminated, “C” indicates the inverse of
regularization strength and “gamma” represents the inverse of the radius of influence
of samples selected by the model as support vectors
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5.3.1 Average Ensemble

This is the simplest method where each individual model contribute equally to the

final prediction. As there are 4 individual models, each model has a weight of 0.25.

A threshold of 0.5 is then applied to the weighted sum to determine between “NON”

and “OFF” for the final prediction.

5.3.2 Weighted Ensemble

Here we search for the weights of each individual model from between 0 and 1, in

increments of 0.1. Again, a threshold of 0.5 is then applied to the weighted sum to

determine between “NON” and “OFF” for the final prediction.

5.3.3 AdaBoost Ensemble

In AdaBoost[17] algorithm uses a series of decision trees. The first tree is trained

with all observations having equal weight. After evaluating the first tree, observations

in error are assigned higher weights than the correct observations when training the

second tree. This process repeats for a specified number of trees as subsequent trees

help to classify observations that were mis-classified by previous trees. The model is

the weighted sum of predictions of all the trees, with more weight placed on stronger

learners.

With individual model outputs as input features, we trained Scikit-learn’s Ad-

aBoostClassifier using default settings, with 5-fold k-fold validation combined with

grid-search of hyper-parameter - n_estimators to find the optimal number of estimators

to use for the ensemble.

5.3.4 Gradient Boosting Ensemble

A Gradient Boosting Ensemble[35] uses a differentiable loss function, a series of weak

learners (decision trees) and an additive component. The decision trees used are

regression trees, outputting real values. Trees are added to the model to reduce the

calculated loss using gradient descent. The new tree´s output is added to the output

of the previous trees, and the process repeats until a specified number of trees are

reached or when the loss falls below a certain threshold.

With individual model outputs as input features, we trained Scikit-learn’s Gradient-

BoostingClassifier using default settings, with 5-fold k-fold validation combined with

grid-search of hyper-parameter - n_estimators to find the optimal number of estimators

to use for the ensemble.
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5.3.5 SVM (Linear Kernel) Ensemble

We used Support Vector Machine[51] with Linear Kernel to combine individual model

outputs and generate a prediction. Support Vector Machines tries to find a hyper-

plane to separate data points representing different classes, with a largest possible

margin, i.e. distance to its nearest data point on each side, while lowering the rate of

mis-classification. The C parameter controls the amount of regularization, where a

large C will cause the optimizer to choose a smaller-margin hyper-plane, while a small

C value would result in a larger margin even if the hyper-plane mis-classifies some

points. For our experiment, we used a grid search to find the optimal hyperparameter

for C. (Table 5.4)

5.3.6 SVM (RBF Kernel) Ensemble

We also used Support Vector Machine with Radial Kernel which utilises a Radial Basis

Function (RBF) to create a bell-shaped decision boundary, so that it can work with

datasets that are not linearly separable. In addition to the hyperparameter C, gamma

(gamma) is also used for regularization. A smaller gamma results in a smoother de-

cision boundary while a larger gamma results in a more irregular decision boundary.

Table 5.4 shows the values of C and gammawe used in the grid search when combining

results of individual models.

5.3.7 Logistic Regression Ensemble

Lastly we used a logistic regression model to combine the results of individual models.

Here the hyperparameter C is the inverse regularization strength such that higher

values of C represent less regularization. We used grid search over the values of [0.1,

1, 10, 100] for C to find the best hyperparameter for the ensemble.

5.4 Ensembles Results On Dev Set

Models macro-F1 macro-P macro-R acc.

Logistic Regression 0.80784 0.84698 0.78542 0.85814
AdaBoost 0.80848 0.85073 0.78495 0.85930
SVM linear 0.80967 0.84332 0.78925 0.85814
Avg 0.81219 0.84795 0.79086 0.86047
Gradient Boost 0.81414 0.85400 0.79120 0.86279
SVM RBF 0.81474 0.85269 0.79247 0.86279
Weighted 0.81528 0.80540 0.82890 0.84535

Table 5.5: Results of ensembles, reported macro F1, precision (P), recall (R) and accu-
racy (acc.) for Dev set. Bold values show the best performing models
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We report the model ensemble results on the dev set (OLID Test) in Table 5.5.

Weighted Ensemble achieved the highest macro-F1 score, followed by SVM RBF model,

Gradient Boost Model and Average Ensemble.

While searching for the best weights using Grid Search, we found over 1000 combi-

nations that resulted in the same top score. This suggests that the amount of training

data is insufficient and we may be over-fitting to the dataset. This result also suggest

potential issues with more complex ensemble techniques.

5.4.1 Final Model

Model p value

Weighted < 0.01
Logistic Regression > 0.01
SVM RBF > 0.01
SVM Linear > 0.01
AdaBoost > 0.01
Gradient Boost > 0.01

Table 5.6: Results of Wilcoxon Rank-Sum Test - comparing prediction distribution of
different ensembles against predictions by the average weighted ensemble

We applied the Wilcox-on Rank-Sum Test to compare the prediction distributions

of each ensemble against the predictions by the average ensemble for the dev set

(Table 5.6). Only the weighted ensemble produced a result that is statistically different

(p<0.01). Ultimately we decided to submit the Avg ensemble since it is a simple model

that is less prone to over-fitting and improved upon models trained with individual

datasets.

5.5 Test Results

The official Test dataset, SOLID Test, contains 3,887 tweets. Of which, 1,080 tweets

(28%) are offensive. (Table 5.7). Like the training and dev datasets, the test dataset is

also unbalanced.

Class SOLID Test

NON 2,807 ( 72%)
OFF 1,080 ( 28%)

TOTAL 3,887 (100%)

Table 5.7: Target Distribution of Test Dataset.
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Table 5.8 and Table 5.9 show results of our individual models and ensemble models

on the test dataset. We have submitted the Average Ensemble as the final model, and it

is fortunate that the model in fact out-performed all other ensemble models as well as

all the individual models. The confusion matrices on the test set (Figure 5.2) highlights

that the Avg Ensemble was a good all-rounder compared to the individual models, with

the second lowest False Negatives rate and moderate False Positive rates. Table 5.8

shows that the Avg Ensemble has the best macro-Recall and macro-F1 in comparison

to individual models, and Table 5.9 shows the Avg Ensemble has the highest score

across all matrices for ensemble models.

Our team, M20170548, achieved a macro-F1 score of 0.91344 in the OffensEval

shared task for English sub-task A, and ranked 11th out of 81 teams. The full teams

results are shown in Table 5.10. We note that the scores are very close, where the top

20 teams are within 0.01 range, suggesting a very tight competition.

Model macro-F1 macro-P macro-R acc.

OLID 0.90428 0.88543 0.93798 0.91742
SOLID 0.91136 0.89223 0.94510 0.92359
SOLID A 0.90822 0.88877 0.94439 0.92050
SOLID B 0.90814 0.88877 0.94382 0.92050
Kaggle 0.90998 0.90436 0.91619 0.92668
Profanity 0.85402 0.89636 0.82852 0.89220

Avg Ensemble 0.91344 0.89464 0.94539 0.92560

Table 5.8: Results of individual models for Test Set, reported macro-F1, precision,
recall and accuracy for each model. We show the best model in bold

Models macro-F1 macro-P macro-R acc.

Logistic Regression 0.91212 0.89358 0.94325 0.92462
AdaBoost 0.91304 0.89442 0.94436 0.92539
SVM linear 0.91136 0.89223 0.94510 0.92359
Avg 0.91344 0.89464 0.94539 0.92565
Gradient Boost 0.91244 0.89385 0.94371 0.92488
SVM RBF 0.91076 0.89208 0.94265 0.92333
Weighted 0.90521 0.88597 0.94090 0.91700

Table 5.9: Results of ensemble models for Test Set, reported macro-F1, precision, recall
and accuracy for each model. We show the best model in bold
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Figure 5.2: Confusion Matrices on the Test set

Team Score # Team Score # Team Score

1 UHH-LT 0.9204 29 UTFPR 0.9094 57 OffensSzeged 0.9032
2 Galileo 0.9198 30 IU-UM@LING 0.9094 58 aprosio 0.9032
3 Rouges 0.9187 31 talhaanwar 0.9093 59 RGCL 0.9006
4 GUIR 0.9166 32 SSN NLP 0.9092 60 byteam 0.8994
5 KS@LTH 0.9162 33 Hitachi 0.9091 61 jmperez 0.899
6 kungfupanda 0.9151 34 kathrync 0.9091 62 PUM 0.8973
7 TysonYU 0.9146 35 XD 0.909 63 shardul007 0.8927
8 AlexU-BackTranslation-TL 0.9139 36 UoB 0.909 64 I2C 0.8919
9 SpurthiAH 0.9136 37 PAI-NLP 0.9089 65 sonal.kumari 0.89
10 amsqr 0.9135 38 PingANPAI 0.9089 66 IJS 0.8887
11 m20170548 0.9134 39 VerifiedXiaoPAI 0.9089 67 IR3218 0.8843
12 Coffee Latte 0.9132 40 nlpUP 0.9089 68 TeamKGP 0.8822
13 wac81 0.9129 41 NLP Passau 0.9088 69 UNT Linguistics 0.882
14 hwijeen 0.9129 42 TheNorth 0.9087 70 janecek1 0.8744
15 UJNLP 0.9128 43 problemConquero 0.9085 71 Team Oulu 0.8655
16 ARA 0.9119 44 Lee 0.9084 72 TECHSSN 0.8655
17 Ferryman 0.9115 45 Wu427 0.9081 73 KDELAB 0.8653
18 ALT 0.9114 46 ITNLP 0.9081 74 HateLab 0.8617
19 SINAI 0.9105 47 Better Place 0.9077 75 IASBS 0.8577
20 MindCoders 0.9105 48 IIITG-ADBU 0.9075 76 IUST 0.8288
21 IRLab DAIICT 0.9104 49 ‘doxaAI 0.9075 77 Duluth 0.7714
22 erfan 0.9103 50 NTU Place 0.9067 78 RTNLU 0.7665
23 Light 0.9103 51 FERMI 0.9065 79 KarthikaS 0.6351
24 KAFK 0.9099 52 mdherath 0.9063 80 Bodensee 0.4954
25 PALI 0.9098 53 INGEOTEC 0.9061 81 Majority Baseline 0.4193
26 PRHLT-UPV 0.9097 54 PGSG 0.906 82 IRlab@IITV 0.0728
27 YNU oxz 0.9097 55 SRIB2020 0.9048
28 IITP-AINLPML 0.9094 56 tcaselli 0.9036

Table 5.10: Results for OffensEval 2020 English Subtask A. Teams are ranked in
decreasing order of macro-averaged F - From [61]
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6
Categorization of Offense Types (Level B)

6.1 Training Process

We created a Training and a Dev set by splitting the OLID training set using the

proportion shown in Table 6.1.

Class Training Set Dev Set Combined

TIN 3487 (88%) 389 (88%) 3,876 (88%)
UNT 473 (12%) 51 (12%) 524 (12%)

TOTAL 3960 (100%) 440 (100%) 4400 (100%)

Table 6.1: Target Distribution of Training and Dev Set

Using a pre-trained “BERT-base-uncased” BERTForSequenceClassification model

from PyTorch-Transformer library, we compared the results by adjusting the following

hyperparameters:

• number of training epochs

• learning rate for AdamW optimizer

• number of warm up steps for the Warmup Linear steps

• train batch size

6.2 Dev Results

The model achieved the results shown in Table 6.2 on the Dev set when trained over

4 epochs. We logged the loss and accuracy and macro-F1 for each epoch, and noticed

that although the loss was the lowest in epoch 4, epoch 3 achieved a higher macro-F1.
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macro-F1 macro-P macro-R Accuracy

0.60163 0.66823 0.58132 0.87727

Table 6.2: Results on the Dev set

Figure 6.1: Confusion Matrix on the Dev set

6.3 Error Analysis

The confusion matrix in Figure 6.1 shows that out of 51 total Untargeted offences

(UNT), 41 of them (80%) have been mis-classified as Targeted (TIN). This is perhaps

not unexpected, given that the data is highly unbalanced and the classifier is prone to

predict more majority class (TIN).

To mitigate this, We experimented with changing the classification threshold from

a default at 0.50 to 0.95 in increments of 0.05. Table 6.3 outline the results at each

step. We noticed that macro-Precision and Accuracy was the highest at a threshold of

0.50 and generally decreases as the threshold is increased. Conversely macro-Recall

increases as the threshold is increased.

Threshold macro-F1 macro-P macro-R Accuracy

0.50 0.60164 0.66823 0.58133 0.87727
0.55 0.59917 0.65905 0.58004 0.87500
0.60 0.60861 0.66322 0.58856 0.87500
0.65 0.60861 0.66323 0.58856 0.87500
0.70 0.60861 0.66323 0.58856 0.87500
0.75 0.60611 0.65528 0.58728 0.87273
0.80 0.59888 0.63455 0.58342 0.86591
0.85 0.60517 0.63391 0.59065 0.86364
0.90 0.61632 0.63335 0.60512 0.85909
0.95 0.60733 0.60205 0.61397 0.82955

Table 6.3: Dev Results for models with different classification thresholds, reported
macro F1, precision (P), recall (R) and accuracy (acc.). Bold values show the best
performing models
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Figure 6.2: Confusion Matrix on Dev Set with modified Threshold

Intuitively this makes sense, as the threshold gets higher, there will be less in-

stances of minority class (UNT) being mis-classified as majority class (TIN), thus in-

creasing the Recall for the minority class (UNT). This comes at the expense of Recall

for the majority class, as model will mis-classify some majority class instances (TIN)

as being of minority class (UNT). As macro-Recall is the unweighted mean of Recall

from both classes and relative improvement of Recall in minority class is greater than

the relative degradation in the majority class, macro-Recall increases as the threshold

is moved higher. There could be a point where this is no longer the case but in our

scenario this observation holds true.

Let´s consider the majority class (TIN) as being the Positive class and the minority

class (UNT) as the Negative class.

As the classification threshold increases and more instances are being pushed to

the minority class, it reduces the macro-Precision scores. This happens as the num-

ber of False Negatives increases faster than the number of True Negatives, since the

Positive class (TIN) is also the majority and more of the previously predicted Positive

instances will became Negative as the threshold changes. Precision measures the ratio

of correctly classified instance of the class to the total number predicted for that class

and as a result, Precision for the minority class decreases as the threshold changes.

Finally, Table 6.3 shows that the classification threshold of 0.90 produced the high-

est macro-F1 score, although the threshold of 0.50 had a higher accuracy and macro-

Precision. The confusion matrix on Figure 6.2 represents the result where the threshold

was changed to 0.9. Compared to Figure 6.1, the number of False Positives has been

reduced from 41 to 37, but the number of False Negatives has increased from 13 to 25.

The macro-F1 score is increased as the amount of improvement of the minority class

is greater than the degradation of the majority class.

Table 7.4 shows all the tweets with changed predictions when the threshold was

changed from 0.5 to 0.9. There were 25 in total, with predictions changed from Tar-

geted to Untargeted. According to the original label only 7 of them were correct in
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this change. However, examining the content suggests majority of them are in fact

untargeted, which makes us question the accuracy of the original annotation.

actual
label

original
prediction

adjusted
prediction

tweet

0 1 0
Good- that soundtrack you DMed me with was fire as fuck and I still listen
to it often Bad - My tracks are better (joking I’m shit)

0 1 0
Don’t ever stop lil ma *COUGH* “eddandflow” *COUGH* oh shit is that
my Snapchat how’d that slip out?! ..add me

0 1 0 Fuck yeah!!

0 1 0
It’s going to suck with any rating. Venom without the Spiderman origin isn’t
really Venom. This is just a Sony cash grab.

0 1 0 Gun control now! Enough is enough!
0 1 0 Josh I am not fucking a loli robot
0 1 0 House of flowers!! Shits crazy
1 1 0 REST IN PUSSY
1 1 0 WHAT THE FUCK YOURE SO GORGEOUS IM ACTUALLY SOBBING
1 1 0 A Long Ass Blog That Might Not Make Sense
1 1 0 and in the are going to get a little bit riled up me thinks?!
1 1 0 Action talks and BULLSHIT walks
1 1 0 yea shit sucks thats why i stopped watching anime mostly
1 1 0 (She is clearly agitated in a defensive stance) Shit- what is she doing here
1 1 0 Fuuckk youu
1 1 0 I would name my dogs breed but I have no fucking clue what he is
1 1 0 Boycotting NFL for the rest of my life.
1 1 0 Clown
1 1 0 achichincle lamebotas!
1 1 0 Yep. Sure do. And he is been proving it on a daily basis.
1 1 0 real shit
1 1 0 Evolution. An evolution we helped to enact. is economic and social suicide.
1 1 0 I think it is more of a choice for ppl to stay hooked on shit

Table 6.4: Examples of prediction changes after threshold adjustment, where 1 repre-
sents Targeted (TIN) and 0 represents Untargeted (UNT)

6.4 Final Model

We decided to use a classification threshold of 0.9 instead of 0.5 for the final model in

order to improve model performance on the minor class. The final model was trained

by combining the training and dev set and using the following hyperparameters:

• Number of Training Epochs = 3
• Learning Rate = 5e-5
• Train Batch Size = 16
• Optimizer Warm up steps = 10% of total steps

6.5 Test Results

The target distribution of the test dataset (Table 6.5) is similar to the training dataset

(Table 6.1) and is also highly unbalanced.
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Table 6.6 shows results of the Test set, where the model with adjusted threshold of

0.9 improved upon the original model with threshold of 0.5 in terms of macro-F1 score.

This was achieved by an increase in Recall of the minor class (UNT) at the expense

of a slight degradation of Recall in the major class (TIN) and also the Precision and

Accuracy scores. This is illustrated by the confusion matrices in Figure 6.3, where

the original model only identified 9 (33%) out of 27 Untargeted offenses while the

adjusted model correctly identified 13 (48%).

Interestingly a threshold of 0.9 resulted in 26 instances being classified as Untar-

geted, which is quite close to the actual number of 27 Untargeted offenses.

Although we did not officially participate OffensEval 2019, the adjusted model

achieved a good result. Table 6.7 shows the official results of the task. A macro-F1

score of 0.71367, which would place it 5th out of 76 participating teams in the task.

Class OLID Test

TIN 213 ( 89%)
UNT 27 ( 11%)

TOTAL 240 (100%)

Table 6.5: Target Distribution of Test Dataset

model macro-F1 macro-P macro-R Accuracy

original 0.69332 0.78161 0.65493 0.90417
adjusted 0.71367 0.71729 0.71022 0.88750

Table 6.6: Results on the Test set, reported macro F1, precision (P), recall (R) and
accuracy (acc.). Bold values show the best performing models

Figure 6.3: Confusion Matrices on the Test set
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Sub-task B
Team Ranks F1 Range

1 0.755
2 0.739
3 0.719
4 0.716
5 0.708
6 0.706
7 0.700
8 0.695
9 0.692

10 0.687
11-14 .680-.682
15-24 .660-.671
25-29 .640-.655
30-38 .600-.638
39-49 .553-.595
50-62 .500-.546
63-74 .418-.486

75 0.270
76 0.121

Table 6.7: OffensEval 2019 Sub-task B results: F1-Macro for top-10 teams followed by
the rest of the teams grouped in ranges. From [60]
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7
Offense Target Identification (Level C)

7.1 Training Process

We again created a Training and a Dev set by splitting the OLID training set using the

proportion shown in Table 7.1.

Class Training Set Dev Set Combined

IND 2,163 (62%) 244 (63%) 2,407 (62%)
GRP 970 (28%) 104 (27%) 1,074 (28%)
OTH 355 (10%) 40 (10%) 395 (10%)

TOTAL 3,488 (100%) 388 (100%) 3,876 (100%)

Table 7.1: Target Distribution of Training and Dev Set

Using a pre-trained “BERT-base-uncased” BERTForSequenceClassification model

from PyTorch-Transformer library, we compared the results by adjusting the following

hyperparameters:

• number of training epochs

• learning rate for AdamW optimizer

• number of warm up steps for the Warmup Linear steps

• train batch size

The target distributions are unbalanced, and we adjusted the classification thresh-

old to improve the macro-F1 score.

This time we applied the thresholds used by the task´s top performing team,

Nikolov-Radivchev[39], giving preferences to the minority classes OTH and GRP by

lowering their classification thresholds and evaluating in the following order:

45



CHAPTER 7. OFFENSE TARGET IDENTIFICATION (LEVEL C)

• if probability for OTH exceeds 0.2, assign as OTH

• else if probability for GRP exceeds 0.3, assign as GRP

• otherwise assign as IND

7.2 Dev Results

model macro-F1 macro-P macro-R Accuracy

original 0.551911 0.659015 0.573676 0.76804
adjusted 0.579067 0.573554 0.590111 0.72165

Table 7.2: Results of original model and the model with adjusted thresholds, showing
macro F1, precision, recall and accuracy for the Dev sets. Bold values show the best
performing model

Figure 7.1: Confusion Matrices on the Dev set for the original model and the model
with adjusted threshold

actual
label

original
prediction

adjusted
prediction

count

GRP
GRP OTH 15

IND
GRP 7
OTH 7

IND
GRP OTH 9

IND
GRP 11
OTH 7

OTH
GRP OTH 7

IND
GRP 2
OTH 1

TOTAL 66

Table 7.3: Count of prediction changes as a result of threshold adjustment

7.3 Error Analysis
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actual
label

original
prediction

adjusted
prediction

tweet

GRP GRP OTH
@USER @USER Gun control isn’t about public safety...it’s about hating ’rednecks’
and social engineering.

GRP GRP OTH
@USER @USER @USER URL The left party relativizing and playing down
communist crimes

GRP GRP OTH @USER Antifa is Israel’s thug squad in America

GRP GRP OTH
@USER I’m just here to see which liberals decide to politicize this tragedy
(despite Cincy having tight gun control)...

GRP IND GRP @USER I am definitely for antifa members getting themselves killed.

GRP IND OTH
@USER @USER The more Antifa BS average Americans see in the news the
more repulsed they are by their antics.

IND GRP OTH
Agreed great idea! Wish we could also remove her from existence! #MAGA
#PatriotsUnited #ProLife #ProIsrael #WeAreQ. URL

IND GRP OTH
@USER It’s Good for our Gun Business. More Guns sell when these people bring up Gun
Control. Keep up the Great Work. Guns for All.

IND GRP OTH Democrat can’t even compete w @USER #MAGA URL
IND IND GRP @USER @USER @USER Yes he is and the democrats hate it

OTH GRP OTH
@USER @USER I think the pope and some others should be prosecuted for covering up
and protecting child rapists!

OTH GRP OTH @USER Religious persecution is bad... ...when it’s your religion being persecuted. URL

OTH GRP OTH
@USER @USER @USER @USER Name the social injustices caused by the GOP and the
death of anyone caused by members of it I dare you. How many people have lost their
lives to the idiocy of gun control?

OTH GRP OTH
#PeoplesVote #StopBrexit @USER #remain I don’t want to go.. either, You know what, After
we leave, My slogans going to be It used to be better than this"should have stayed in.
Useless goverment. URL

OTH IND GRP

@USER @USER @USER Haha you liberals are so desperate it’s hilarious. Trying at all
ends to set him up. This BS last minute stalling tactic about the alleged HS incident and the
bait of emails that were sent to him. And people wonder how Trump won? Because they’re
tired of Democrats and their c

Table 7.4: Examples of prediction changes after threshold adjustment

Looking at Table 7.2 we can see that the threshold adjustments improved macro-F1

and macro-Recall, just as they did in previously in Chapter 6. The confusion matrices

on Figure 7.1 shows a big change in the number of predictions for OTH between the

original model and one with the adjusted threshold, increasing from 4 to 50. The

actual number of OTH in the Dev set is 40, so the adjusted model has a closer count,

even though only 10 out of those 50 are correct. However by making the model more

sensitive to the minority classes, it increases the Recall for those classes and ultimately

improves the macro-F1 score as well.

Table 7.3 shows number of prediction changes as a result of the threshold adjust-

ments. There are a total of 66 predication changes, with 31 (15 + 9 + 7) predictions

changing from GRP to OTH and 20 (7 + 11 + 2) predictions changed from IND to

GRP. Of these, only 7 out of 31 (23%) for the first group, and 7 out of 20 (35%) for the

second group were correct.

Table 7.4 shows samples of the prediction changes in each category. Firstly we

can see a high proportion of tweets relating to politics, spanning issues such as gun

control, antifa, MAGA (Make America Great Again) and brexit. Generally these should

be classified as GRP according to the annotation guideline, but in fact it is not always

obvious or consistently labelled. For instance, “@USER It’s Good for our Gun Business.
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More Guns sell when these people bring up Gun Control. Keep up the Great Work. Guns
for All.” has a label of IND but perhaps should be labelled as GRP, and similarly for

“@USER @USER @USER Yes he is and the democrats hate it” as offense is targeted towards

“democrats” rather than the individual.

Secondly it appears that the label OTH can be ambiguous, sometimes used instead

of GRP - “@USER @USER @USER @USER Name the social injustices caused by the GOP
and the death of anyone caused by members of it I dare you. How many people have lost their
lives to the idiocy of gun control?” and sometimes when the target is unclear - “@USER
Religious persecution is bad... ...when it’s your religion being persecuted. URL”. It can be

argued that the sentence is not targeted or offensive in the first place.

The samples highlights the difficulty in this task, and in offensive language classi-

fication in general, where the interpretation of offensiveness can be highly subjective.

7.4 Final Model

The final model was trained by combining the training and dev set and using the

following hyperparameters:

• Number of Training Epochs = 3

• Learning Rate = 2e-5

• Train Batch Size = 16

• Optimizer Warm up steps = 5% of total steps

We also adjusted the model´s classification thresholds as described earlier.

7.5 Test Results

Table 7.5 shows the target distribution of the Test dataset. Compared to the Training

and Dev datasets (Table 7.1), the Test dataset is slightly less unbalanced.

Class OLID Test

IND 100 ( 47%)
GRP 78 ( 37%)
OTH 35 ( 16%)

TOTAL 213 (100%)

Table 7.5: Target Distribution of Test Dataset

Our model with the adjusted thresholds has significantly improved its performance

in all aspects except for Accuracy (Table 7.1). This is likely due to the increase in the

number of OTH being classified. The original model only has 1 instance classified as

OTH while the adjusted model has 24 instances of OTH. Comparing this with an actual

OTH count of 35, the adjusted model has a closer total of classifying OTH, although
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only 11 out of the 24 are correct. This also suggests the difficulty in identifying a

minority class in an imbalanced dataset.

We did not officially participate in OffensEval 2019, but by adapting the threshold

used by the top team, our model achieved a macro-F1 score of 0.643352, ranking it

number 2. Table 7.7 shows the official results of the task. We note that the general

scores are not very high, perhaps due to the imbalance of data, and some inconsistency

in the annotation.

model macro-F1 Precision Recall Accuracy

original 0.530278 0.487709 0.582051 0.732394
adjusted 0.643352 0.653735 0.641172 0.727700

Table 7.6: Results of original model and the model with adjusted thresholds. Bold
values show the best performing model

Figure 7.2: Confusion Matrices on the Test set for the original model and the model
with adjusted threshold
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Sub-task C
Team Ranks F1 Ranage

1 0.66
2 0.628
3 0.626
4 0.621
5 0.613
6 0.613
7 0.591
8 0.588
9 0.587

10 0.586
11-14 .571-.580
15-18 .560-.569
19-23 .547-.557
24-29 .523-.535
30-33 .511-.515
34-40 .500-.509
41-47 .480-.490
46-60 .401-.476
61-65 .249-.340

Table 7.7: OffensEval 2019 Sub-task C results: F1-Macro for top-10 teams followed by
the rest of the teams grouped in ranges. From [60]
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8
Conclusions and Future Work

8.1 Conclusions

This thesis explores the topic of Offensive Language Classification in Social Media in

the context of research tasks in OffensEval 2020 and OffensEval 2019. We addressed

the topic in three levels:

Level A - Offensive Language Detection - is the tweet offensive?
The first question corresponds to subtask A of OffensEval 2020 and is satisfactorily

answered in this context as our model achieved a reasonable performance with a macro-

F1 score of 0.9134, placing it 11th out of 82 submissions.

The main challenge was due to semi-supervised nature of the official dataset,

SOLID, where the annotations were less reliable than a manually annotated one and

as a result required further interpretation. This limitation was overcame by including

additional offensive language classification datasets with similar annotation guideline

that were manually labelled, as well as using tools that cover the shortcomings of the

original dataset such as the profanity check library. Rather than creating one single

combined dataset, we fine-tuned separate BERT models for each different dataset and

experimented with various ensemble techniques to combine their prediction labels.

This allowed for more flexibility in tuning the impact of each dataset and allowed us

to get the benefit of larger datasets without undermining smaller ones. Combining

the output labels of the models instead of their probability scores allows us to deal

with the same classification space and bypass potential issue in the variance of their

estimation margins.

BERT architecture utilises contextualized embedding and multi-headed attention

to acquire deep knowledge of the language it models. By fine-tuning pre-trained BERT

models, Our final model performed better in Test compared to Dev, proving it did not
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over-fit to the dataset and that BERT is a suitable architecture for this task.

Level B - Categorisation of Offense Type - is the offense is targeted?

The second question corresponds to subtask B of OffensEval 2019 and warrants

further investigation. The existing top five submissions for subtask B achieved micro-

F1 scores in the range of 0.708 to 0.755. our model performed well in context of the

task, scoring 0.714, equivalent to the 5th place, but there is room for improvement.

Similar to subtask A, we fine-tuned a pre-trained BERT model, BERT-base-uncased.

The training dataset contained roughly roughly 7 times more targeted tweets compared

to untargeted tweets, causing the model to have a low recall on the minority class. By

experimenting with the classification threshold to optimize the macro-F1 score, we

finalised on a model with a classification threshold of 0.90 for the majority class.

The challenge in this task was multi-fold - the dataset is relatively small and unbal-

anced, and in addition appear to have inconsistent annotation. The syntactic structure

of the sentence may be important in the task of distinguishing between targeted offense

and untargeted offense. We note the top teams in this task utilized a rule-based, dic-

tionary approach to calculate the offensive score of a sentence as a linear combination

of individual words offensiveness and an “intensifier” factor of words syntactically

related to the word. The idea is interesting and worth exploring.

Level C - Offensive Target Identification - if the offense is targeted identify the

target as one of the following - individual, group or others

The third question corresponds to subtask C of OffensEval 2019. The top five

submissions for subtask C achieved micro-F1 scores in the range between 0.613 and

0.660. Our model scored 0.643, equivalent to the 2nd place, but we believe more

research is required in this area.

The dataset for this task was highly unbalanced, with 62% labelled as “IND”, 28%

as “GRP” and 10% as “OTH”. We adjusted the classification thresholds to increase the

recall of GRP and OTH predictions, which significantly improve the macro-F1 score

in both Dev and Test.

This appears to be a difficult task as the macro-F1 scores achieved by teams in

the top 50% percentile ranged between 0.511 and 0.660. Like subtask B, this task

also suffers from having a small and unbalanced dataset. The low scores could also

be attributed to the ambiguity between the labels GRP and OTH. By task definition,

the GRP label includes posts targeting groups of people with similar backgrounds or

political and religious beliefs while the OTH label applies for posts not belonging to

either IND or GRP, such as organisation, situation, event or issue. However a political

issue, such as gun control or Brexit, are sometimes inconsistently annotated. Likewise

when it comes to annotating offensive post related to politicians, the examples in the

training dataset are inconsistent.
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8.2 Future Work

As future work, we propose that Offensive Language Classification in Social Media can

be improved by focusing on these areas:

Data Quality

Our error analysis identified scenarios with inconsistent annotation, suggesting

a need for more detailed guidelines focusing on nuanced cases, provision of explicit

examples on how to annotate and increase the criteria for inter-annotator agreement.

For subtask A, our experiment in under-sampling uncertain regions of SOLID for

training did not yield a superior result. We leave as future work more aggressive under-

sampling schemes to access the consequences of only training on highly confident

predictions, and differ additional semi-supervised strategies to improve results using

SOLID dataset.

Social media platforms differ in their offensive language classification guidelines,

and one could divide the training data into different regions, with a standardised set

featuring regions with high agreement, and a separate “tricky” set that is annotated

per individual platform’s requirement. The model can then be fine-tuned by tailoring

the content and increasing the size of the tricky set.

Data Quantity

We have shown that model performance can be improved by combining models

trained on different datasets with similar annotation guidelines in subtask A. This

approach can be extended to include additional publicly available datasets in the

future. Data augmentation techniques such as back translation, or translating datasets

from a different language may also help to supplement cases where data quantity is

insufficient.

For subtask B and C, potential future work is to combine SOLID from OffensEval

2020 and OLID from OffensEval 2019, and explore with ensemble and sub-sampling

techniques as we did for subtask A.

If industry and the research community can agree on a common schema, such as

OLID, then future research can leverage off increased data quantity as a result of data

sharing. As a starting point we propose to extend the OLID schema to differentiate

between implicit and explicit abuse in order to incorporate research in the area of

micro-aggression.

Model Architectures

As NLP continue to accelerate and evolve, further gains can be made by applying

the new architectures in this domain. For instance, one could explore and compare

performances of various transformer models like XLNet [58] and BERT variants such

RoBERTa [32], DistilBERT [47]. Prior work has shown benefits in creating ensem-

bles from transformer based architectures as well as in combination with other deep

learning models, such as CNN [30] and LSTM [25].
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Techniques such as multi-task [11] learning and label transfer network [1] may be

useful when task specific data is limited. Furthermore, as requirement for offensive

language classification vary, few-shot learning may provide a useful alternative for

tailoring the system to detect specific scenarios when the amount of data is limited [49].

Finally, for subtask B and C, the inclusion of entity embeddings (NER) [34] as an

additional feature into the final classification layer may assist the classifier in differen-

tiating between targeted and untargeted posts, as well as identifying the type of target

if one exists.
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