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Abstract

Time series forecasting is an essential tool in many fields. In recent years, machine learning
has gained popularity as an appropriate tool for time series forecasting. When employing
machine learning algorithms, it is necessary to optimise a machine learning pipeline, which is a
tedious manual effort and requires time series analysis and machine learning expertise. AutoML
(automatic machine learning) is a sub-field of machine learning research that addresses this issue
by providing integrated systems that automatically find machine learning pipelines. However,
none of the available open-source tools is yet explicitly designed for time series forecasting.

The proposed system TSPO (Time Series Pipeline Optimisation) aims at providing an
autoML tool specifically designed to solve time series forecasting tasks to give non-experts the
capability to employ machine learning strategies for time series forecasting. The system utilises
a genetic algorithm to find an appropriate set of time series features, machine learning models
and a set of suitable hyper-parameters. The optimisation objective is defined as minimising the
obtained error, which is measured with a time series variant of k-fold cross-validation.

TSPO outperformed the official machine learning benchmarks of the M4-Competition in 9
out of 12 randomly selected time series. TSPO captured the characteristics of all analysed time
series consistently better compared to the benchmarks.

The results indicate that TSPO is capable of producing robust and accurate forecasts without
any human input.

Keywords: Time Series Forecasting, Genetic Algorithms, Machine Learning, Time Series
Decomposition, Time Series Cross-Validation, Hyper-parameter Optimisation, Time Series
Feature Engineering, autoML
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Resumo

A previsão de séries temporais é uma importante ferramenta em muitas disciplinas. Nos últimos
anos, a aprendizagem automática ganhou popularidade como ferramenta apropriada para a
previsão de séries temporais. Ao utilizar algoritmos de aprendizagem automática, é necessário
otimizar pipelines de aprendizagem automática, que é um esforço manual, tedioso e que requer
experiência na área. O AutoML (aprendizagem automática automatizada) é um subcampo
de aprendizagem automática que aborda esse problema, fornecendo sistemas integrados que
encontram automaticamente pipelines de aprendizagem automática. No entanto, nenhuma
das ferramentas de código aberto disponíveis é explicitamente destinada à previsão de séries
temporais.

O sistema proposto TSPO (Time Series Pipeline Optimisation) visa fornecer uma ferramenta
de aprendizagem automática projetada especificamente para resolver problemas de previsão de
séries temporais. Dando a não especialistas a capacidade de utilizar estratégias de aprendizagem
automática para previsão de séries temporais. O sistema utiliza um algoritmo genético para
encontrar um conjunto apropriado de pipelines de séries temporais, modelos de aprendizagem
automática e um conjunto de hiperparâmetros adequados. O objetivo da otimização é definido
como a minimização do erro obtido, medido com uma variante da validação cruzada k-fold
aplicada a séries temporais.

O TSPO superou os benchmarks oficiais de aprendizagem automática da competição M4
em 9 das 12 séries temporais aleatoriamente selecionadas. Além disso o TSPO capturou as
características de todas as séries temporais analisadas melhor que os benchmarks. Os resultados
indicam que o TSPO é capaz de produzir previsões robustas e precisas sem qualquer contribuição
humana.

Palavras-chave: Previsão de séries temporais, algoritmos genéticos, aprendizagem automática,
decomposição de séries temporais, validação e otimização de parâmetros, engenharia de carac-
terísticas de séries temporais, autoML
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Chapter 1

Introduction

Time series forecasting has gathered great attention ever since. The ability to look into the future
drives the curiosity of researchers, analysts, and forecasters. In many different fields, such as
meteorology, supply-chain optimisation, macro-economics, or finance, the impact of time series
data is vast. In other domains, especially in business decision making, the use of data-driven
support systems is increasing. Any decision made that employs resources of any kind benefits
from having a rigorous approach to forecasting. It minimises misallocation, reduces wrong
expectations, and gives a solid foundation to decision making processes.
Thus, there is an increasing and already high demand for robust, scalable, and accurate fore-
casting tools. In recent years, machine learning algorithms gained popularity as an appropriate
tool for time series forecasting. Statisticians and Data Scientists are now spending much time
with the task of finding suitable features and models that provide accurate views into the future.
Most machine learning algorithms require extensive pre-processing, feature selection, and hyper-
parameter optimisation to be able to solve a time series forecasting task with a satisfying result.
Analysts with forecasting, machine learning and domain expertise are relatively rare, which
makes the engagement with appropriate and scalable time series forecasting tools expensive for
organizations.

TSPO (Time Series Pipeline Optimisation) is a tool which aims at automating this task and thus,
gives even non-experts in the field of machine learning the chance to employ machine learning
to any given time series forecasting task. TSPO takes raw time series data and finds suitable
machine learning approaches to extrapolate the time series into the future without any prior
knowledge or any human input. The search is carried out by employing a Genetic Algorithm.
There are recent developments and proposed systems in the area of automated machine learning.
There are open-source tools, such as TPOT [59], auto-Weka [46] and auto-sklearn [27] and
commercial tools, such as H2O Driverless AI. However, the afore-mentioned open-source tools
do not provide appropriate support for time series forecasting, whereas TSPO is specifically
designed to solve this task.

This thesis is structured in the following way: section 2 gives an overview of related
work. Section 3 discusses the implementation and functionality of TSPO in detail. Section 4
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CHAPTER 1. INTRODUCTION

presents the experimental methodology to test the performance of TSPO against two benchmarks.
Section 5 discusses the findings of the experimental phase, followed by section 6, which states
the limitations and gives proposals towards future work. The thesis is concluded in section 7.
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Chapter 2

Related Work

In this thesis, I will present a fully automated time series forecasting tool, which leverages a
genetic algorithm to find suitable features, machine learning models and the respective hyper-
parameters. The approach takes a raw time series, automatically decomposes it, extracts time
series features for each decomposition and finds a model with fitting hyper-parameter. In this
chapter, I will present related work for the three areas the proposed system touches. In 2.1, I will
discuss the current state of automatic machine learning. In 2.2, I will present the topic of time
series forecasting. In 2.3, the final section of this chapter, I will review selected applications of
genetic algorithms.

2.1 Automatic Machine Learning

The approach of the proposed system belongs to the field of automated machine learning
(autoML). AutoML refers to solving a machine learning task in an automated way so that
none (or very little) manual effort is required. AutoML aims at providing non-experts with the
possibility of applying machine learning techniques to address a specific task without requiring
prior technical or domain knowledge.

When trying to solve a machine learning task, it not only requires selecting an algorithm, it
also requires setting up the hyper-parameters of the selected algorithm. Setting and tweaking
hyper-parameters in the right way can - and often will - result in a better performing model.
Generally speaking, there is no crystal-clear recipe for most algorithms to end up with a suitable
pair of hyper-parameters. It is still a matter of intuition, domain-expertise and experience to
tweak hyper-parameters in a way they result in a performant and robust model [14]. Research
has also shown that a suitable set of hyper-parameters significantly increases the performance
of models compared to most default settings [52, 56].

The goal of most autoML approaches is to fully automatise the process of model selec-
tion, hyper-parameter optimisation, and feature selection. Previously, several approaches and
strategies only tackled a subset of this process, whereas in recent years several fully automated
approaches arose.

Common strategies of hyper-parameter tuning involve grid-search, in which the cross product
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CHAPTER 2. RELATED WORK

of a set of possible hyper-parameters is applied to the task at hand. This brute force approach
exhaustively tries every possible combination and returns the best fitting set of hyper-parameters.
Random search is a different approach in which the possible hyper-parameters are randomly
chosen and not predefined as in the grid search approach. Several studies have proven this
approach to be more effective [4]. Other strategies for hyper-parameter optimisation involve
gradient-search [2, 63], evolutionary search [20, 49, 73] and Bayesian optimisation [23, 45, 65,
72].

With the recent development in the field of Bayesian optimisation, this approach gained
more attention in the research community. Results suggest that hyper-parameter optimising
algorithms in this domain are more effective than the brute force paradigm of grid search and
random search. In some applications, these approaches even outperformed manual optimisation
by domain experts[65].

Another aspect of autoML research is feature engineering. As manual feature engineering
is a tedious and repetitive task, research has aimed to provide automatised tools. Three systems
recently introduced to fulfil this task automatically are ExploreKit [43], the data science machine
[42] and cognito [44]. The first uses meta-features extracted from previously known datasets
and a machine learning-based algorithm to efficiently rank composed features, whereas the
data science machine can extract features from relational data sources leveraging deep feature
synthesis. This approach was proven in several competitions to be more effective than the
manual selection of appropriate features. Cognito explores various feature construction choices
hierarchically and increases model accuracy through a greedy strategy.

In recent years several systems have been proposed that combine all three aspects of autoML:
i.) model selection, ii.) hyper-parameter optimisation and iii.) feature engineering. Amongst
others, TPOT [59], auto-Weka [46] and auto-sklearn [28] are integrated systems that produce
pipelines to solve machine learning tasks and to solve the CASH (combined algorithm selection
and hyper-parameter optimisation) problem.

The CASH problem refers to the task of not only finding a suitable set of hyper-parameters
for a given model but enhancing this search with model selection, data pre-processing steps
and feature engineering. Adding these steps enhances the search space for potential settings
significantly and demands smarter choices in optimisation methods than brute force approaches
such as grid search.

Auto-WEKA is built on top of the machine learning software WEKA and utilises its imple-
mentations of base learners, ensemble methods, meta-methods and feature selection methods.
This system finds a suitable setting to solve the CASH problem using Bayesian optimisation
for a given dataset. Kotthoff et al. found that this approach often outperforms standard model
selection and hyper-parameter optimisation methods [46].

Similarly, auto-sklearn also relies on Bayesian optimisation to solve the CASH problem.
This system is built on top of the well-known Python library scikit-learn [60] utilising its
implementations for base learners, feature and data pre-processing methods. Feurer et al.

4



2.2. TIME SERIES FORECASTING

enhance their system by taking knowledge gained from previous datasets into account and
constructing ensembles from already evaluated models. This system was capable of winning 6
out of 10 competitions in the chalearn automl competition [35].

A different approach was proposed by Olson et al. Contrary to the former, the TPOT
system does not rely on Bayesian optimisation but on genetic programming (GP). The system
treats machine learning algorithms as GP-operators from which arbitrary long pipelines are
constructed. The obtained results indicate that this system can outperform standard pipelines
[59].

2.2 Time Series Forecasting

A time series is a sequence of historical measures of an observable variable y with an equal
time interval [6]. There are many ways why time series are of interest. Generally, there are
two main ideas when it comes to time series analysis: one is to understand the relationship
between an input and an output variable, and the other is to be able to predict or forecast the
future based on historical information [15]. In this thesis, I will focus on the latter. Time series
forecasting is a crucial task in various fields of science such as economics, finance, business
intelligence, meteorology and telecommunication [5]. Therefore, models able to produce robust
and accurate forecasts are needed. One of the issues arising when creating a model that can
fulfil such a task is the question of the forecasting horizon. Naturally, to create a forecast for one
step into the future is already a challenge of its own. However, when talking about a multi-step
forecasting approach, issues such as the accumulation of errors, increasing uncertainty and thus
a reduced accuracy, are even more present [5]. Nevertheless, the presented system is dealing
with an arbitrary number of steps ahead for a given time series and its functionalities are further
discussed in section 3.

Linear models dominated the forecasting domain for a long time. Up until the late 1970s,
linear statistical methods such as ARIMA models were state-of-the-art. However, during that
time, it became apparent that linear models are unable to adapt to many real-world applications
[16]. So, several non-linear time series models were introduced. Amongst others, the threshold
autoregressive model [68, 69] and the autoregressive conditional heteroscedastic (ARCH) model
[25] are examples of non-linear time series models. Despite these developments, the analytical
study of non-linear time series forecasting is still in its infancy when compared to linear time
series forecasting [5, 16].

In the last three decades, machine learning approaches have reached the forecasting com-
munity and are more regularly used in the context of time series forecasting. Amongst other
techniques, neural networks are prevalent [47]. Neural networks, and machine learning in
general, are data-driven and self-adaptive, which means only little a priori knowledge is required.
These characteristics are different from traditional model-based approaches. Secondly, machine
learning approaches are generalisable and, finally, they are non-linear [74]. Next to the usage
of neural networks, several other machine learning techniques have been used for time series
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CHAPTER 2. RELATED WORK

forecasting, i.e. gradient boosting [66], support vector machines [18] and more [1]. Additionally,
there are many different ensemble methods for forecasting. For instance, Lee et al. combined
ARIMA models, Neural Networks and genetic programming [48]. The work of Donate et al.
is especially worth mentioning in this thesis as they are evolving neural networks with genetic
algorithms for time series forecasting [21] and their results indicate that a genetic algorithm can
find algorithms that solve time series forecasting tasks adequately.

2.3 Genetic Algorithms

Genetic Algorithms are a type of search and optimisation algorithm which belong to the class
of evolutionary algorithms. This algorithm is biologically inspired by the evolution theory of
Charles Darwin [33]. The core idea is that natural selection combined with variation will cause
a population to evolve over time. In a search algorithm, a population of possible solutions
to a given optimisation problem is evolved towards a better solution. In an iterative process,
candidate solutions are evaluated and subsequently modified through genetic operators such as
selection, crossover and mutation. This heuristic approach has been proven to work well in large
search spaces with multiple local optima, and thus, it is predestined for the task at hand. In 3.3,
I give a more detailed description of the functionality of the search algorithm.

Over the past decades, various applications of genetic algorithms to optimisation problems
were proposed. For instance in portfolio optimisation [9], bank loan decision [57], allocation of
goods in shop shelves [8], supply chain management [37] and for the objective of this thesis most
interestingly for hyper-parameter optimisation [20, 49] and the optimisation of neural network
architectures [30, 61, 62].

6



Chapter 3

TSPO

The name TSPO stands for Time Series Pipeline Optimisation. The goal is to find a suitable
pipeline for a given time series. What is meant with a pipeline in this context is two-fold.
First, the time series is decomposed into three components: a trend, seasonal and remainder
component. For the sake of simplicity, a decomposition of a potential cycle component can
be neglected. Secondly, for each of these components, TSPO focuses on finding a suitable
selection of features, a suitable model and suitable hyper-parameters for the selected model. A
full pipeline is considered to have three sets of selected features, three models, with each suitable
hyper-parameters. When putting the decomposed series back together, the final forecast can be
produced (see Fig. 3.1). In the following section, I will describe the process of finding these
pipelines in detail and justify all relevant decisions. I will describe the decomposition in 3.1. In
3.2, I will describe a pre-processing step. Next, I will explain the genetic search algorithm in
3.3 by going into the details on how to evaluate candidate pipelines in 3.4 and how to engineer
features in 3.5.

3.1 Decomposition

The first step of the system is to perform a decomposition of the time series. The chosen tool
to do this is the Singular Spectrum Analysis (SSA) [24, 34]. This tool decomposes a time

Figure 3.1: TSPO Overview
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series (YC ) into the sum of three individual components: a trend (TC ), a seasonal (SC ) and a
remainder component (RC ) at index t as given in (3.1). This step aims to deconstruct a seemingly
complex time series into small, interpretable components, which have different characteristics
and, therefore, are easier to be forecasted individually.

YC = TC + SC +RC (3.1)

The components are additive and independent of each other [36]. This characteristic is
important for the design of the system as it allows for parallel processing of the pipeline search
for each of the components.

In the first step of the decomposition algorithm, an embedding of the one-dimensional time
series is performed. Embedding refers to mapping the one-dimensional time series into a multi-
dimensional time series matrix, where each element consists of a lagged vector. The length of
the lagged vector is determined by the window size, which is a parameter of the algorithm and
is set to 4 in the current version of the system. The second step of the decomposition algorithm
is to make a singular value decomposition (SVD) of the obtained matrix. The next step is to
reconstruct the time series. This is done by grouping the decomposed matrix into a predefined
number of groups (in the current version of the system the group parameter is set to 3 to be in
line with (3.1)) and by subsequently applying diagonal averaging to the grouped matrix. For
the proposed system, the implementation of SSA from the python package pyts [26] is used.
Please refer to [24, 34] for a complete introduction to SSA. Figure 3.2 shows exemplary a
decomposition of one time series from the experimental phase (4).

3.2 Pre-Processing

At a first step, the decomposed data is scaled utilising the scikit-learn package [60] instance
of the MinMaxScaler. Most machine learning algorithms require scaled data. Thus, to have a
common approach, the entire data is scaled beforehand. There are two common ways to do that:
the MinMaxScaler, which subtracts the minimum value and divides the result by the maximum
subtracted by the minimum, and the StandardScaler, which takes the difference between the
value and the mean value and divides the result by the standard deviation. The result of both
approaches are features transformed to the same scale, whereas from the first, the values are
bound between 0 and 1. As some algorithms, i.e. Neural Networks, require this bound [32], the
MinMaxScaler was the better choice. Even though this scaler is prone to outliers, it was used.
Since there is currently no outlier treatment in the system, this must be considered a limitation.

The subsequent step is to check the quality of the data in terms of format and appropriate
length. At first, the system checks if the data was presented in a correct format, which is a
pandas dataframe [53] with an index set to DateTime format. Furthermore, it checks how many
time steps are present. As the system aims at producing robust and accurate forecasts, a certain
requirement of time steps must be fulfilled. The minimum requirement is set by the following
equation:

8



3.2. PRE-PROCESSING

Figure 3.2: Decomposition of Time Series M26778

=C

(2 ∗ B + C0ℎ403)
≥ 1 (3.2)

where =C is the total number of time steps, s refers to a natural seasonal cycle (i.e. for
monthly data it would be 12 as it corresponds to one year) and C0ℎ403 refers to the forecasting
horizon, meaning the steps into the future one would like to forecast. To prepare a time series
to a supervised learning-like setting, features need to be extracted. Amongst other time series
features, there are lagged values and moving averages. Both require a parameter: the lag size
and the window size, respectively. If the user has not defined them differently, these parameters
are set automatically in this step. If there are enough time steps both parameters are set to
two seasonal cycles. For instance, both parameters would be set to 2 * 12 for a monthly time
series, which corresponds to data from 2 full years. This allows the algorithm to capture the
entire signal from the past two years and therefore capture eventual seasonal signals. If there
are not enough time steps, the user must set these parameters. To prepare further for the feature
engineering step, subsequent time series features are determined. This system utilises the tsfresh
package [12], which allows extracting 36 time series characteristics. This results in 794 features,
which is very prone to the curse of dimensionality. Hence, the features are supposed to be
reduced. The tsfresh package includes a built-in feature filtering algorithm called fresh [13],
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which relies on statistical hypothesis testing. This test is carried out, and only relevant features
based on this algorithm are selected for the feature engineering step 3.5. The last step of the
pre-processing consists of cutting the time series into folds. To achieve the goal of producing
robust forecasts, a variant of k-fold cross-validation is used for the evaluation of each pipeline.

3.3 Genetic Search Algorithm

Genetic Algorithms (GA’s) are a class of optimisation models that take the natural evolution
process as a reference. Despite the existence of several variants of GA’s, instances share the
following elements: a population of potential solutions, a selection method based on an assigned
fitness score, crossover methods to redistribute information within the population and random
variation in the form of mutation. The core of each GA is the fitness function as it incorporates
the optimisation objective. This fitness function evaluates the goodness of fit for a candidate
solution to the problem at hand and assigns a score to each of the candidate solutions. This score
is used to compare the solutions. A well-designed fitness function is crucial for the success of
the optimisation strategy.

Commonly, potential solutions or individuals are represented as bit strings. As this rep-
resentation is not suitable for the problem at hand, the system uses a different representation.
The objective for the system is to find a pipeline including a set of features, a model, and a
set of hyper-parameters. There are several issues to using bit strings as a representation: The
model part could only contain one model, and hence there would be too many restrictions
on assembling the bit string. Furthermore, the hyper-parameters are dependent on the model
selection. Another issue with a bit string representation is that the hyper-parameters vary in
terms of the data type. Some are floats with no bounds, some are integers, Boolean’s, or strings.
The construction of a bit string that takes all this information into account would be too complex.
Therefore, the system uses a different representation.

[F,M,P] (3.3)

As demonstrated in (3.3), the individual representation consists of three elements combined
in a list-like object. The first element, F, is a set of feature id’s, that correspond to respective
time series features. The second element, M, is a string of a model id, and the third element, P,
corresponds to a hyper-parameter dictionary based on the selected model of the second element.
This representation is flexible, since the first and second element are interchangeable, and not
as complex as fitting all the information into a bit string. This form of representation carries
several implications, which are described alongside the explanation of all genetic operators.

The first step of the genetic search algorithm is to initialise a random population. In the
current state of the system, no specific initialisation function is used. The system randomly
assembles individuals until the population size is reached. While individuals are randomly
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3.3. GENETIC SEARCH ALGORITHM

Figure 3.3: Genetic Search Algorithm Scheme
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generated, they are also evaluated. The evaluation process is described in section 3.4. The
default value for the population size is set to 10 but is adjustable by the user.

Now the actual evolutionary process starts. For n number of generations, the following
process is repeated. The first step is to find the elite, the individual with the best fitness, in the
current population. The elite goes unchanged to the next population to preserve information of
at least one good solution. Now an inner loop takes place and is repeated until a new population
is filled with individuals. At first, an individual is selected through a selection method. There are
several different methods, however, this system relies on one of the most commonmethods called
Tournament Selection. In this selection method, random individuals are drawn with replacement
from the population until the tournament size is reached. From these drawn individuals, the one
with the best fitness is selected. That means individuals with worse fitness are less likely to be
drawn. However, with a very low probability, even the individual with the worst fitness has the
chance to be selected, this is the stochastic characteristic of a GA.

The selected individual advances to the variation phase. With a certain probability, the
crossover probability, crossover is carried out. If it is carried out, a second individual with the
same process as described above is selected. Generally, there are several different crossover
methods such as point-crossover, cycle-crossover and many more. This system uses a more
simplistic approach. The crossover swaps the feature element of one individual with another so
that one set of features is stacked to a different model and hyper-parameter. The resulting two
offspring are either mutated with a mutation operator or go straight to the new population.

Themutation probability determines how likely it is that an individualmutates. The crossover
operator shares characteristics between individuals of a population, mutation operators, however,
explore yet unselected characteristics from the search space. Classical mutation methods contain
shuffle-mutation, ball-mutation, or bit-flip. In this system, there are three different mutation
methods present each touching one of the three elements of the individual representation.

1. Swap Features replaces 10% of the features with randomly selected ones.

2. Mutate Model exchanges the model with a random model from the search space. New
hyper-parameters are assigned randomly, as well.

3. Mutate Hyper-Parameter ball mutates a randomly selected hyper-parameter. If the hyper-
parameter is of type Boolean or string, it is chosen randomly.

The different mutation operators have different degrees of introducing new characteristics to
the individual. Meaning, changing one hyper-parameter in a pipeline typically has less impact
than exchanging an entire model and setting a new hyper-parameter at random. Therefore, each
of the three mutation operators were assigned probabilities of being chosen. In the current
version of the system, the probabilities are [0.4, 0.2, 0.4]. So, it is less likely, that the entire
model is exchanged in this step rather than the introduction of different features or the exchange
of a hyper-parameter. After the new population has reached the desired population size, the old
population is deleted, and the evolutionary search continues until all generations are evolved.
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The winning solution is the elite of the last generation. Figure 3.3 provides an overview of the
genetic search algorithm.

3.4 Evaluation

The essential part of the genetic search algorithm is the way a candidate solution is evaluated.
Since in the proposed system, the goal is to find suitable pipelines for a given forecasting task,
this objective needs to be incorporated in the evaluation. In this section, I will discuss the
evaluation in detail.

Each candidate solution is represented in the form explained in 3.3. This representation is
then translated into a pipeline and applied to the data at hand. Since we are dealing with a time
series forecasting approach using machine learning models, the given time series needs to be
translated into a supervised machine learning-like setting. Having this said, the evaluation is
carried out following these steps:

1. The data is split in k-folds for validation based on the defined fold dictionary from the
pre-processing step 3.2.

2. A feature engineering is done for each fold based on the candidate features (First element
of the representation F), and the data is split into a training and a test set.

3. A machine learning model using the chosen method (Second Element M) and the
respective hyper-parameter (Third Element P) is fitted using the training set of each fold.

4. Forecasts are created using the test set as an input for each of the models.

5. The produced forecast is then compared to the true values of the test set, and the error is
computed based on a preselected error measure.

6. The fitness value is set, which corresponds to the average error of all folds.

The validation of a candidate pipeline is one of the most important aspects of this system.
The goal is to produce pipelines with a high generalisation ability, meaning they overfit as least
as possible and, thus, have predictive power.

A common practice inmachine learning to detect overfitting and tomeasure the generalisation
error is the utilisation of cross-validation. However, due to the serial correlation, which typically
occurs in time series data, a traditional k-fold cross-validation strategy is impractical [17].
Usually, each of the folds become once the test set and serve all other times as the training set.
Because of the serial correlation, this is generally not a favourable strategy for time series data.
Even though some researchers propose this technique for purely autoregressive models [3]. A
different strategy would be to use a classical hold-out-sample strategy, where the last part of a
time series is used as a test set [67]. However, this strategy might not be able to detect overfitting
accurately. There are also other common strategies, such as nested cross-validation [71]. The
backdrop of this strategy is that it allows leakage between different folds.
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Figure 3.4: Example for 3-Fold Cross-Validation of Time Series M26778

So, the strategy of choice should prevent leakage between the folds and more importantly,
between the training and the test set within each fold. The order of time steps needs to be
respected, and no information about the test data can be in the training data. The used strategy
is illustrated in Figure 3.4. The entire data set is partitioned in folds. The fold size is determined
by the maximum lag * 2 + the forecasting horizon. The number of folds is determined by the
number of samples divided by the fold size, rounded down. The remaining samples that do
not belong to a fold are used as a buffer between the folds to further prevent any leakage of
information. For every fold, the test set is determined as the last datapoints with the size of the
forecasting horizon. The usage of another validation split to use for further hyper-parameter
optimisation was neglected as per the design of the system.

The following steps are executed per fold in a subsequent manner. The feature engineering
is carried out, and the resulting dataset is split into a training and a test set. The length of the
test set is determined by the forecasting horizon. The number of samples in the test set is equal
to the steps ahead into the future. Please refer to 3.5 for a detailed description of the feature
engineering step.

The next step is to fit a model to the training data set. In the current version of the system,
there are five different machine learning models, that could be selected by the algorithm. Four
tree-based algorithms are present in the system: A classical random forest, a quantile random
forest, an extreme gradient boosting, and a categorical boosting algorithm. These algorithms
have been proven to work well with time series forecasting problems [38, 41, 50, 66].

There is also a classical feed-forward neural network with its architecture being a hyper-
parameter. Neural networks have been proven to work well with time series forecasting.
They appear to be especially good in capturing non-linear time series [1, 21, 48]. For the
implementation of the algorithm, standard libraries are used and described in table 3.1. Since
time series forecasting is a regression problem all these methods, use the respective regressor
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Algorithm Implementation

XGBoost xgboost [10]
Random Forest scikit-learn [7, 60]

Quantile Random Forest scikit-garden1 [55]
CatBoost catboost [22]

Feed-Forward Neural Network Keras [11]

Table 3.1: Implementation of Machine Learning Algorithms

implementation.
As a next step, these regressors need to be tested on unseen data. To do that, forecasts are

generated for the steps ahead and compared to the true values. The system allows for forecasting
multiple steps ahead, and therefore, the issue of producing a multiple steps ahead forecast must
be considered. Several strategies exist, and I will discuss them in the following section.

As already mentioned in 2.2 the one step ahead forecasting problem can be written as a
supervised learning approach such that an input matrix X consisting of past values of the time
series is used as a training data set,

- =


H#−1 H#−2 · · · H#−=−1

H#−2 H#−3 · · · H#−=−2
...

...
...

...

H= H=−1 · · · H1


(3.4)

where N refers to current time step and n to the total number of samples in the time series
and mapped to a scalar vector y

H =


H#

H#−1
...

H=+1


(3.5)

consisting of the respective time step ahead (N+1). For the sake of simplicity, features derived
from past values are not mentioned in the equations throughout this chapter. For the one step
forecast the forecast is generated from the values at the current time step, such that

Ĥ#+1 = 5̂ (H# , H#−1, · · · , H#−=−1) (3.6)

where 5̂ refers to the trained regressor and Ĥ refers to the forecast. From this set up several
possible strategies to perform a multi-step forecast can be derived. A multi-step forecasting
can be considered when the periods to be forecasted exceed 1. So that the next H values
[H=+1, · · · , H#+� ], where H > 1, can be considered as the forecasting horizon or the steps ahead.
Three common strategies are: the recursive, the direct and the multiple output strategy. The
recursive strategy uses a one step model and uses H times recursively the predicted previous
value to forecast the next one. It trains a model 5̂ such that

1https://github.com/scikit-garden/scikit-garden
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Figure 3.5: Recursive Strategy for Multi-Step Prediction

ĤC+� = 5̂ ( ĤC+�−1, ĤC+�−2, · · · , HC , · · · , HC−=+1) (3.7)

with t representing the current time step. Figure 3.5 provides an illustration of this strategy.
This strategy is widely used, despite the known shortcomings of accumulating estimation errors.
Since the input for the predictions are predictions itself, potential estimation errors are carried
on into the future.

A different strategy is the direct strategy. In this strategy, H different models are trained,
each having a different forecasting horizon. The benefit is that no predicted values are used to
generate forecasts. However, there are as well several downsides to this approach. Firstly, there is
no statistical dependency between the generated forecast, and secondly, the computational costs
for training this many individual models are much higher. Figure 3.6 provides an illustration of
this strategy.

The two previous strategies always consist of a single output. The underlying of the multiple
output strategy (also known as Joint Strategy) is that the output is not a single scalar but a vector
of forecasted values such as

[ ĤC+� , · · · , ĤC+1] = 5̂ (H=, · · · , H#−=+1) (3.8)

There are two benefits of this strategy: Firstly, unlike the direct strategy this strategy takes the
stochastic dependencies between the different outputs into account, and secondly, this strategy
does not accumulate a prediction error such as the recursive strategy. However, a downside is
the reduced flexibility of the model. Using the direct or the recursive strategy, every forecasting
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Figure 3.6: Multiple Output Strategy for Multi-Step Prediction

horizon could be chosen without much additional effort to adjust the models, whereas, with this
strategy, the horizon is fixed [5]. Amongst others, there are two more hybrid strategies: the
DirRec and the DIRMo strategy. They are not considered in the initial version of the system.
In this system, the recursive strategy and the multiple output strategy are used. All tree-based
algorithms use the recursive strategy, the feed-forward neural network uses a multiple output
strategy. The reason why the multiple output strategy is only used for the neural network is
that the tree-based models do not allow for multiple outputs, whereas the neural network is
predestined for this approach as the output layer can be of arbitrary shape. These strategies are
used over the direct strategies as they are computationally less expensive.

After the forecast is produced, it is compared to the true value, and the error is computed.
The fitness (as described in 3.3) of each candidate pipeline is its performance in this evaluation
step. There are several error metrics implemented in the current state of the system, and the
user is given the opportunity to select one of the predefined error measures or to pass a custom
error metric. In the following section, I explain the predefined error metrics. The mean absolute
error is given by

"�� =
1
=

=∑
8=1
| (HC − ĤC ) | (3.9)

where y corresponds to the true value, Ĥ to the forecasted value and n to the number of
forecasted values. This nomenclature is used throughout this chapter. This metric takes the
absolute error and averages it. A similar approach is themean squared error, which takes instead
of an absolute the squared error. It is given by

"(� =
1
=

=∑
8=1
(HC − ĤC )2 (3.10)

These are quite common error metrics and used in various applications. However, they have
several drawbacks such as being prone to outliers and their scale dependency [40, 64].

Two different approaches use a percentage error. These approaches are the most common
in forecasting [64] and are easier to compare against each other when having differently scaled
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time series. Differently to the mean absolute percentage error given in 3.11, the symmetric
mean absolute percentage error given in 3.12 has a lower and an upper bound [0, 200].

"�%� =
1
=

=∑
8=1
| HC − ĤC

HC
| ∗ 100 (3.11)

B"�%� =
1
=

=∑
8=1
| HC − ĤC
HC + ĤC

| ∗ 200 (3.12)

Another approach that is resistant to outliers is the mean absolute scaled error given in 3.13.
However, if all true values are equal, and hence the difference between them is 0, a division by
0 occurs [40, 64], which is unfavourable and results in an error.

"�(� =
1
=

=∑
8=1

|HC − ĤC |
1
=−1

∑=
8=2 |H8 − H8−1 |

(3.13)

The experimental phase is carried out using the sMAPE error. The fitness value, in the end,
is given by the error given from the selected error metric and averaged over all folds.

3.5 Feature Engineering

To be able to present a time series forecasting problem to a machine learning algorithm, features
need to be extracted. ML algorithms need a labelled dataset in a form presented in 3.4 and
3.5. To achieve this, feature engineering is carried out. In the current version of the system,
4 different categories of features are extracted: lags, moving averages, datetime features and
tsfresh features.

Lags are previous time steps of a specific time point. The extraction of the lag values
makes a given time point depending on previous time steps. Thus, the ML algorithm can catch
signals from previous time steps. Moving averages take from a given time window the average.
The system uses a maximum lag value and the window size parameter, which is set in the
pre-processing step (3.2). From the provided dates in the original time series, datetime features
are extracted. These consist of, i.e. week, month, quarter, and year. The tsfresh features are
extracted by calling the python library.
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Experimental Methodology

The M4-Competition serves as a benchmark to understand the behaviour of the system and
to demonstrate its capabilities. The M4-Competition is the 4th edition of the Makridakis
challenge [51], a forecasting challenge that was first established in 1979. This edition was
published in January 2018. This challenge was used as a benchmark, because, on the one hand,
it provided accurate and clean data; on the other hand, this challenge had a strong emphasis on
reproducibility [39]. Therefore, official benchmarks are available in a public GitHub repository
1. The challenge consisted of two sub-challenges, the first is to predict intervals, and the second
is to produce point forecasts. The benchmarking of this thesis focuses on the latter. The proposed
benchmarks by the M4-Competition consists of statistical benchmarks and ML benchmarks. To
have a fair set-up, the ML benchmarks were used. They consist of a multi-layered perceptron
and a recurrent neural network with both basic architecture and parametrisation as well as a
basic pre-processing with detrending and deseasonalisation. Because the treatment of data and
the chosen models are similar to the search space of TSPO, this benchmarking is suitable. The
data used in the competition consist of a total of 100,000 time series. The time series have time
intervals ranging from yearly to hourly and is distributed in 6 different domains (Micro, Industry,
Macro, Finance, Demographic and other). Because of the high computational cost of finding a
pipeline with TSPO, a subset of these time series was used for benchmarking. The subset used
monthly data with two randomly chosen time series from each domain. The benchmarking was
carried out in two steps. Over five replicas (seeds) TSPO searched for a suitable pipeline on
each of the selected time series. The system was given 15 generations with a population size
of 10. Considering the decomposition, TSPO evaluated 450 (15 generations * 10 individuals
per population * 3 components) individual pipelines per replica using the cross-validation as
discussed in 3.4. To make the results of these pipelines comparable to the M4 benchmarks, the
pipelines were fitted again on the dataset without cross-validation. A simple training and test
set split was done, such that the test set consists of the forecasting horizon. The forecasting
horizon was set to 12 steps ahead, which corresponds to one year ahead for the monthly data.
The produced forecast is measured against the truth value to get an error score. Simultaneously,
the two benchmark algorithms produced forecasts on the same datasets for the same forecasting

1https://github.com/Mcompetitions
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horizon. The error measure resulting from this exercise are compared to the error measure from
TSPO. Analogically to the M4-Competition, sMAPE and MASE are used as error measures.
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Experimental Results

To conclude whether the pipelines found by TSPO consistently perform better than the bench-
marks, the obtained error metrics sMAPE and MASE from the 12 selected time series are
compared. Error metrics are collected over five replicas of each time series, resulting in 60 error
metrics. TSPO performed in 50 time series better than the benchmarks for the sMAPE error
metric. In 49 time series TSPO obtained a better score for the MASE error metric. Figure 5.1
shows the error distribution and tables A.1 and A.2 show the mean errors for each time series.
For both error measures, the mean is lower than the two benchmarks. For sMAPE, the extreme
values of TSPO exceed the sMAPE values of MLP. Figures 5.2 and 5.3 show the mean deviation
between TSPO and the two benchmarks. With regards to the RNN, TSPO performed better in
all time series and for both error measures. With regards to the MLP, TSPO performed better
in 10 out of 12 time series. In three time series (M23317, M26778, M40129), TSPO had a
lower sMAPE score with a high magnitude (> 0.1), whereas MLP had a lower sMAPE score
for M7271 with a high magnitude.

Figure 5.1: Boxplots of the sMAPE and MASE Distribution across all datasets
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ANOVA and the Friedman Test are carried out to test if these findings are statistically
significant.

Within-subjects ANOVA is a standard statistical method to check whether multiple sample
means differ or not [29]. The Null hypothesis tests if the sample means of each group are
the same, and the observed variation is merely random [19]. In this context, the groups are
the errors obtained from TSPO and the two benchmarks. The null hypothesis is rejected for
sMAPE as well as for MASE at a U = 0.05 significance level. Thus, the ANOVA provides
evidence that the error measures follow a different distribution. The pairwise Tukey test [70]
determines which groups (in this context, pipelines) are different. The test compares each
group with each other and checks if the null hypothesis, samples of each group follow the same
distribution, is to be rejected. The result shows that the error measures obtained from TSPO are
significantly (U = 0.05) different from both benchmarks, whereas the error measures of the two
benchmarks follow the same distribution. However, ANOVA requires several assumptions to be
fulfilled, such as the samples being drawn from a normal distribution and equal variance [19].
Unfortunately, either one or the other assumption is violated for sMAPE and MASE. Therefore,
the non-parametric Friedman test [31] is carried out to test further if the error measures of TSPO
and the benchmarks are significantly different. This statistical method ranks the error measures
of the pipelines in the range of [1, 3] and computes the average rank. The null hypothesis
states that all pipelines are equivalent; thus, the mean rank is equal [19]. The null hypothesis
is rejected on a U = 0.05 significance level. Similarly to the pairwise Tukey test in ANOVA,
the Nemenyi test [58] determines which groups differ. The result of the Nemenyi test and the
previously described pairwise Tukey test reveal the same effect for both sMAPE and MASE: the
error measures obtained from TSPO differ significantly from the error measures obtained by the
two benchmarks. Analogically, the test comparing the two benchmarks fails to reject the null
hypothesis, and thus, there is statistical evidence that they follow the same error distribution. The
two statistical procedures ANOVA and the Friedman test independently concluded that the er-
rormeasures obtained byTSPO are significantly different from those obtained by the benchmarks.

The error measures show advantages in favour of TSPO. Nevertheless, these error metrics
do not provide measures on the shape of the obtained forecasts. Figure 5.5 provides an overview
of the generated forecasts, the benchmarks, and the actual time series values. When visually
inspecting the generated forecasts, it gets apparent that the forecasts generated by the pipelines
found by TSPO capture the shapes of the time series better than the benchmarks. Except for
two cases (M7271, M26382), the overall trend was detected. The reason for this could be the
feature engineering carried out by TSPO, which is more extensive compared to the benchmarks.
Furthermore, the Singular Spectral Analysis used to decompose the time series could be a factor
in a way that each component is better detected for TSPO than the benchmarks. Another aspect
is the use of a k-fold cross-validation variant (refer to 3.4) to evaluate candidate pipelines. This
procedure provides pipelines with a high generalisation ability and, thus, with high predictive
power. The likelihood of overfitting is reduced.
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Figure 5.2: Heatmap of MASE Mean
Deviations to TSPO

Figure 5.3: Heatmap of sMAPEMean
Deviations to TSPO

The pipelines mainly consist of the feed-forward neural network. Especially for the trend
component, the neural network performed best. In 55 out of 60 cases, TS PO selected the Neural
Network. This finding is in line with Ahmed et al. [1], who found an MLP performing best on
the monthly M3 data set, the predecessor challenge of the M4-Competition. For the seasonal
component, XGBoost appears to perform best. The least selected algorithms are random forest,
quartile random forest, and cat boost.

Overall, TSPO appears to be a competitive system to find time series forecasting pipelines
without any human input. The experimental results show that the obtained errors are significantly
lower than the errors of the benchmarks. Furthermore, the forecasting pipelines are better in
modelling and predicting the shapes of the analysed time series.
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Figure 5.4: Algorithms used in Pipelines per Component
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Figure 5.5: Forecasts, Benchmarks and Actual Time Series for Seed 1
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Chapter 6

Limitations and Future Work

AutoML and hence TSPO rely on computationally intensive search strategies. These strategies
require a high computational run-time, and hence for decent results, one has to wait for some
time. For instance, Olson et al. [59] report 8h of run-time in their experimental approach. The
runs carried out by TSPO took between 4h to 10h on a regular machine, and to get better results,
a longer run-time could increase the performance. For practical use, this is a limitation. The
computational costs are within the evaluation of a pipeline. Especially the feature engineering, in
combination with the multi-step prediction is the bottleneck. Amore performant implementation
of this step could improve the run-time of TSPO significantly. One direction could be to enable
the use of GPUs.

Another limitation is the choice of models in the search space. The current version of TSPO
supports five different machine learning algorithms, as discussed in section 3. The choice of
algorithms could be enhanced by introducing more and different models. For instance, recurrent
neural networks, especially LSTM’s, have been proven to work effectively for time series
problems [54]. Furthermore, classical statistical approaches, such as ARIMA or exponential
smoothing, could be introduced. As they require less training time than resource-intensive
machine learning approaches, a research direction could be to find a good training time vs
prediction accuracy trade-off. Like the previous argument, a shift from a pure genetic algorithm
strategy towards a genetic programming paradigm could enhance the flexibility of pipelines.
Similar to TPOT, the candidate solution, in this context, the pipeline, could be represented by a
genetic programming tree. This would give TSPO the capability to evolve pipelines of arbitrary
shape. In other words, the pipelines do not need to follow the current format as given in 3.3.

The last stated limitation is the introduction of furtherhyper-parameter. The genetic algorithm
itself introduces hyper-parameters such as tournament size, cross-over rate, and mutation rate –
these hyper-parameters need to be optimised to achieve good results. Extensive research on the
use of them could be fruitful to optimise the performance of TSPO. However, this research is
computationally expensive, and the first stated limitation should be addressed first.

Lastly, I would like to give another proposal for future research. In the current state of TSPO,
no prior knowledge of previous pipelines is incorporated in the search strategy. A warm start
mechanism, which uses potentially suitable pipelines for specific time series problems, could
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lead to an increase in performance. However, the issue of getting stuck in a local optimum
(premature convergence) needs to be considered when pursuing this idea.
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Chapter 7

Conclusion

Finding suitable machine learning pipelines for time series forecasting tasks poses a tedious
and challenging effort and requires expertise in the field of time series forecasting and machine
learning. Experts that combine both fields are relatively rare. The proposed system TSPO
addresses this issue by providing an autoML approach for time series forecasting and enables
non-expert practitioners to use machine learning capabilities without extensive technical and
domain knowledge. Most open-source autoML systems do not tackle the specific demands of
time series forecasting tasks.

The proposed system directs this issue by automatically performing a decomposition, extract-
ing a set of relevant time series features, finding a suitable model and respective hyper-parameters
for each of the obtained components. The system does these tasks by employing a genetic al-
gorithm that independently evolves a pipeline for each component. The optimisation criterion
of the genetic algorithm is to minimise the error of a multi-step forecast, which is obtained by
utilising a time series variant of k-fold cross-validation. This method allows obtaining robust
forecasts and, thus, addresses the issue of overfitting. The output of TSPO is a forecasting
pipeline that can process most of the time series signals and produce robust forecasts. TSPO is
capable of achieving this without any human input.

Empirical results show that TSPO outperforms the machine learning benchmarks of the
M4-Competition in 9 out of 12 selected time series tasks. In all given time series, TSPO captures
the shapes of each time series (i.e. the overall trend) consistently better.

The current implementation of the proposed system is computationally expensive. Future
workmay consequently focus on improving the run-time of the system. Furthermore, the optimal
setting for the genetic algorithm hyper-parameter and the incorporation of prior knowledge may
be subject to further research.
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Appendix A

Error Tables of Benchmarking

Type TSPO STD MLP RNN

M3393 Macro 0.044 0.007 0.063 0.063
M7271 Macro 0.214* 0.087 0.115 0.429
M10877 Micro 0.022 0.003 0.020 0.022
M12320 Micro 0.019* 0.009 0.054 0.046
M23317 Demographic 0.030 0.008 0.186 0.112
M26382 Demographic 0.021 0.007 0.068 0.038
M26778 Industry 0.075 0.011 0.254 0.248
M27850 Industry 0.027 0.002 0.062 0.049
M40129 Finance 0.025* 0.011 0.174 0.073
M44007 Finance 0.017 0.002 0.064 0.077
M47994 Other 0.045 0.005 0.049 0.053
M47979 Other 0.025 0.005 0.052 0.117

Table A.1: Mean sMAPE for TSPO and Benchmarks

Type TSPO STD MLP RNN

M3393 Macro 0.809 0.120 1.014 1.012
M7271 Macro 1.615 0.533 0.542 1.715
M10877 Micro 2.451 0.286 1.980 2.228
M12320 Micro 2.941* 1.465 6.279 5.339
M23317 Demographic 2.599 0.654 11.519 6.645
M26382 Demographic 1.619* 0.681 8.065 4.490
M26778 Industry 0.567 0.081 1.443 1.416
M27850 Industry 0.455 0.029 1.096 0.879
M40129 Finance 2.000 0.803 14.898 6.541
M44007 Finance 1.831* 0.174 4.629 5.561
M47994 Other 0.722 0.083 1.610 1.710
M47979 Other 0.829 0.153 2.380 5.570

*Due to high standard deviation (STD) the Median is given

Table A.2: Mean MASE for TSPO and Benchmarks
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