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Abstract 

 

Banking crises have afflicted economies in developing countries at least as much as they have in 

developed ones. In this paper, we discuss possible indicators that allow an effective forecast of 

banking crises based on an historical analysis of past crises, and develop several probit models, 

using yearly data from 1960 to 2014 for 33 developing countries across Latin America, Africa and 

Asia-Pacific. We find that a dynamic probit model which incorporates exuberance dummy 

variables gives the best forecasting results. Data on exports, inflation, broad money and birth rate 

provide the best indicators across the different models tested. 

 

 

Keywords: Early Warning System, Dynamic Probit Models, Banking Crisis 
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1. Introduction 

Banking crises have sprouted around the world throughout the past century, having reached 

their climax on the turn of the past decade. They have given rise to major setbacks on general 

economic welfare, affecting developed and developing countries alike. These events often stem 

from the risk exposure inherent to banking institutions which finance long-term investments with 

short-term deposits, leaving them vulnerable to the so called “bank runs”: situations in which large 

portions of the depositors demand their deposits back, forcing banks to liquidate long-term 

investments at sub-optimal prices (Goldstein & Razin, 2013). 

 In this paper, we adapt the approach developed by Antunes, Bonfim, Monteiro, & 

Rodrigues (2018) to develop an early warning system for banking crises in developing countries 

using yearly data from 1960 to 2014. Three models are tested: a Simple Probit Model, a Dynamic 

Probit Model, and a Dynamic Exuberance Probit Model. The indicators used in the forecasting 

models were chosen after extensive reading of literature focused on previous banking crises, with 

particular emphasis on Latin American countries where these events were most recurrent, along 

with variables used in similar, previously developed Early Warning Systems. The final models 

include Total Debt Service (%Exports), Total Reserves (%Total External Debt), Birth Rate, Broad 

Money Growth, Current Account (%GDP), Domestic Credit provided by the Financial Sector 

(%GDP), Domestic Credit to Private Sector (%GDP), Exports of Goods and Services (%GDP), 

External Balance on Goods and Services (%GDP), GDP Growth, and annual Inflation of Consumer 

Prices, as well as dummy variables for past crisis events and exuberance in the variables. 

 The aim of this paper is to shed more light on the causes behind banking crises in developing 

countries and provide the best indicators to forecast such events, while corroborating the validity 

of dynamic probit models as forecasting tools by applying the methodology of Antunes, Bonfim, 

Monteiro, & Rodrigues (2018) on a completely different dataset. Another contribution comes from 
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further investigating the potential use of demographical variables as indicators for financial 

distress, rooted on the assumption that shifts in the financial well-being may have an influence on 

family planning, and thus be reflected in variables such as Birth Rate. 

 The paper is organized as follows: in Section 2 we explore the core of the literature review, 

highlighting the major causes of past baking crises; Section 3 comprises the explanation of the data 

used in the models; in Section 4 we discuss the methodology applied; Section 5 offers an analysis 

of the results from the several regressions; and Section 6 summarizes our main conclusions and 

findings, while exploring our limitations and suggesting further research. 

 

2. Indicators from the past 

Financial collapses have haunted developing countries in the past, with resolution costs 

(sometimes reaching as high as $250 billion) hindering the development of government programs 

for fiscal consolidation (Honohan, 1997). It would be unreasonable to aim at identifying and 

preventing every single bank failure, but to avert the occurrence of systemic banking problems 

should be one of the main goals among policy makers. In order to do so, one must take a closer 

look into some of the main banking crises of the past and understand the underlying factors which 

are common across them. The three main regions of analysis in this paper are Latin America, Africa 

and Asia-Pacific, with the first naturally taking the limelight as there is evidence that, between 

1970 and 1995, it suffered 50 percent more crises per country than East Asian, European or Middle 

Eastern countries (Kaminsky & Reinhart, 1998). 

Endogenous macroeconomic instability has often been at the core of banking crises in Latin 

America. Boom and bust cycles have been common in the past, with banks over-investing in 

optimistic times, giving rise to the number of defaults with ruinous consequences in the following 
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years, the bust phase of the cycle. This was the case for Argentina, Chile and Uruguay in 1979-83, 

as well as Mexico in 1994 (Honohan, 1997). 

In the years that led to the crisis in the early 1980s, Argentina faced high rates of inflation 

and serious balance of payments’ problems, as well as a considerable fiscal deficit. Growing 

lending rates and financing of high-yield but high-risk projects, as well as rocketing nominal 

interest rates and a lack of adequate supervision, were at the heart of the crisis (Baliño, 1987). The 

1990s banking crisis in Argentina was accompanied by a currency crisis and it was marked by 

current account deficits, low level of domestic savings, and a worsening fiscal position (García-

Herrero, 1997). 

As for Chile, the period between 1974-81 was marked by economic reforms which initiated 

the boom phase of the business cycle. New and raising expectations about the country’s potential 

allowed for an increase in domestic private demand, fostered by renewed access to domestic and 

foreign loanable funds, operated by private national banks. Eventually, excessive risk taking by 

banks and changes in relative prices opened way for a banking crisis (Barandiarán, & Hernández, 

1999). Financial liberalization in the absence of a proper regulatory framework is also pointed as 

a factor in the Chilean crisis of 1984 (Carstens, Hardy, & Pazarbasioglu, 2004; Kunt, & 

Detragiache, 1998). Kunt & Detragiache (1998) highlight foreign currency loans as a source of 

banking problems for Chile at this time, while Honohan (1997) stresses poor management and the 

assumption of risky open foreign exchange positions as important factors. 

The Mexican Peso crisis of 1994 was linked to “disaster myopia”, a phenomenon that 

occurs whenever managers neglect negative events deemed unlikely (Honohan, 1997). The crisis 

was boosted by drastic changes in the banking system due to swift liberalization (Honohan, 1997; 

Griffith-Jones, 1998) which happened, as was the case of Chile, without appropriate regulatory 
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measures (Carstens, Hardy, & Pazarbasioglu, 2004). Large current account deficits are also pointed 

out as a main factor on the brink of the crisis (Griffith-Jones, 1998). 

Often associated with poor management and lack of supervision, fraud can also be at the 

heart of banking crisis. This was the case in Venezuela in 1994 (Honohan, 1997). Other factors 

such as terms of trade shocks or abnormal movements in real exchange rates (Carstens, Hardy, & 

Pazarbasioglu, 2004), as well as the presence of an unstable or unreliable political environment 

(García-Herrero, 1997; Honohan, 1997), have also led the country into banking hazard. 

Turning our attention to Africa, we can also find traces of mislead political decisions 

associated with fraud which have caused large insolvencies in state owned banks in Nigeria, in 

1993 (Honohan, 1997). Sanusi (2010) also points to macroeconomic instability associated with 

large capital inflows, and overall lack of transparency and regulatory measures as causes for the 

banking failures across Nigeria in the past. In Ghana, non-performing loans have stirred banking 

volatility, led by variations in macroeconomic variables such as inflation, real GDP per capita 

growth and real effective exchange rates (Amuakwa–Mensah, & Boakye–Adjei, 2015). 

Lastly, we can examine the conditions which originated and enflamed the financial crisis 

all across Asia-Pacific in 1997. Although some of these were initially currency crises, 

“As the dust settles in currency markets, many of these countries will be left [and 

indeed were] with serious banking sector problems, if not full-scale banking 

crises”, 

Kaminsky & Reinhart (1998). 

There is evidence that the banking systems in this region were overall fragile even before 

the onset of the crisis (Corsetti, Pesenti, & Roubini, 1999), with the growing volume of short-term 

flows mostly intermediated by poorly regulated and otherwise ill-supervised domestic banking 
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sectors (Kaminsky & Reinhart, 1998). In the Philippines, outright fraud contributed to the 

fragilization of the banking system, with the loan losses of two large banks bailed out in the 1980s 

enriching the president and his associates, directly or indirectly (Honohan, 1997). Indeed, bailout 

costs are estimated to range from 7 percent of GDP in the Philippines to more than 20 percent of 

GDP in Thailand (Kaminsky & Reinhart, 1998). 

Corsetti, Pesenti, & Roubini (1999) suggest that the data on the growth of bank credit to 

the private sector and the ratio of private sector lending to GDP point towards a lending boom in 

the 1990s across East Asian countries. They also find evidence of deteriorating quality of loans by 

observing a growing percentage of non-performing loans. This was again, as across countries in 

other regions, related to mishandled financial liberalization, excessive lending in highly risky 

projects and lack of commitment to regulatory actions in countries such as Thailand, Indonesia and 

Malaysia. 

 

3. Data 

The data selected for the development of this paper’s early warning system was chosen not 

only by analyzing past banking crises, as discussed in the previous section, but also by considering 

the variables used on similar warning systems in the past. All data was retrieved from the World 

Bank, except for the Crisis dummy variable. 

The Crisis dummy variable was taken from the Harvard Business School’s Behavioral 

Finance & Financial Stability project database on Global Crises Data by Country, collected by 

Carmen Reinhart, Ken Rogoff, Christoph Trebesch and Vincent Reinhart. It includes a dummy 

variable for Banking Crisis for more than 70 countries and over 200 years. However, for this paper, 

the variable was considered from 1960 until 2014, for a set of 33 developing countries. 



Forecasting Banking Crises in Developing Countries: a Dynamic Probit Approach 

- 7 - 

 

The countries selected can be divided geographically in three groups: Latin American 

countries (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, Ecuador, 

El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay, and 

Venezuela); African countries (Cote d’Ivoire, Egypt, Ghana, Kenya, Morocco, Nigeria, South 

Africa, Zambia, and Zimbabwe); and Asia-Pacific countries (China, India, Indonesia, Malaysia, 

Philippines, and Thailand). 

The variable Inflation of Consumer Prices was used to catch any movements related to 

macroeconomic mismanagement. It is measured by the consumer price index, reflecting the annual 

percent change in the cost to the average consumer of acquiring a given basket of goods and 

services. 

Domestic Credit provided by the Financial Sector (%GDP) and Domestic Credit to Private 

Sector (%GDP) are meant to account for boom and bust cycles in credit concession, while serving 

as a proxy for financial liberalization. 

To reflect the imbalances on the balance of payments and the overall international 

commercial position, the variables Current Account (%GDP), Exports of Goods and Services 

(%GDP) and External Balance on Goods and Services (%GDP) were used. 

In order to account for adverse macroeconomic shocks which can destabilize the banking 

system, the variable GDP Growth (annual%) was retrieved. 

The inclusion of the demographical variable Birth Rate, crude (per 1.000 people) was 

included to test whether variables seemingly out of the usual financial spectrum could aid 

predicting the occurrence of a banking crisis by reflecting behavioral changes on the populations’ 

behalf, following the rationale of Lopes, Machado, Huffstot, & Mata (2018). 

Finally, we considered Total Debt Service (%Exports), Total Reserves (%Total External 

Debt) and Broad Money Growth (annual%) by building on the work previously developed by 
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Bussiere & Fratzscher (2006); Kaminsky, Lizondo, & Reinhart (1998); Antunes, Bonfim, 

Monteiro, & Rodrigues (2018); Drehmann & Juselius (2012); and Edison (2003). 

 

4. Methodology 

The bedrock for this paper’s empirical findings is set upon the application of binary 

response models. The theoretical foundations for the construction of the regressions closely follow 

the methodology applied in Antunes, Bonfim, Monteiro, & Rodrigues (2018). Likewise, the 

general model is composed by the dependent binary variable 𝑦𝑖𝑡, a banking crisis indicator for 

country 𝑖 in year 𝑡 which takes the value of one whenever a crisis occurs and zero otherwise; and 

a (1 × 𝑑) vector of exogenous variables 𝑋𝑖,𝑡−𝑘. 

The 𝑦𝑖𝑡 variable follows a Bernoulli distribution, such that 𝑃[𝑦𝑖𝑡 = 1] = 𝑝𝑖𝑡 and 

𝑃[𝑦𝑖𝑡 = 0] = 1 − 𝑝𝑖𝑡, while 𝑝𝑖𝑡 is dependent on an information set available at 𝑡 − 1, given by 

ℱ𝑡−1 ≔ 𝜎 { (𝑦𝑖𝑠, 𝑥𝑖𝑠), 𝑠 ≤ 𝑡 − 1 } . Following Kauppi & Saikkonen (2008) and Candelon et al. 

(2014), we model the conditional probability 𝑝𝑖𝑡 as a function of the variables in ℱ𝑡−1, and consider 

𝑦𝑖𝑡 = 𝐼 (𝑦𝑖𝑡
∗ ≥  𝑢𝑖𝑡), where 𝐼(. ) is an indicator function, 𝑢𝑖𝑡 is an 𝑖. 𝑖. 𝑑. process and 𝑦𝑖𝑡

∗  is a latent 

variable that is related to the conditional probability 𝑝𝑖𝑡 through the common cumulative 

distribution function of the random variables {𝑢𝑖𝑡}. Furthermore, 𝑦𝑖𝑡
∗ = 𝐹−1(𝑝𝑖𝑡), where 𝐹(. ) is a 

cumulative distribution function assumed to be monotonically increasing and twice continuously 

differentiable. Hence, the probability of a crisis event is given by the expected value of 𝑦𝑖𝑡 

conditional on ℱ𝑡−1, i.e., 𝐸(𝑦𝑖𝑡|ℱ𝑡−1) = 𝑃(𝑦𝑖𝑡
∗ ≥ 𝑢𝑖𝑡|ℱ𝑡−1) = 𝐹(𝑦𝑖𝑡

∗ ) = 𝑝𝑖𝑡. 
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4.1 Model Specifications 

To forecast banking crisis events, we consider three models. The first is a Simple Probit 

model depicted as 

𝑦𝑖𝑡
∗ =  𝛼 + ∑ 𝑥𝑖,𝑡−𝑘𝛽𝑘

′

Ρ

𝑘

 +  𝑢𝑖,𝑡 , 
(1) 

where k, the number of lags used, is equal across the explanatory variables, and ranges from one 

to five years, Ρ ∈ (1, … , 5). When the full range of the lags is applied (Ρ = 5) we are looking at 

the Total Period model. We also considered two restricted models: one to assess the predictive 

power of the indicators closer to the crisis, which we called the Late Period model and in which k= 

{1, 2, 3}; and another to evaluate the effectiveness of the indicators when predicting a crisis earlier 

on, which we called the Early Period model and in which k= {3, 4, 5}. The distinction between 

Late Period and Early Period models will also be used in the next two models. 

 The second model analyzed is a Dynamic Probit model presented as 

𝑦𝑖𝑡
∗ =  𝛼 + ∑ 𝑥𝑖,𝑡−𝑘𝛽𝑘

′

Ρ

𝑘

 +  ∑ 𝛾𝑘 𝑦𝑖,𝑡−𝑘

Ρ

𝑘

 +  𝑢𝑖,𝑡 , 
(2) 

where 𝑦𝑖,𝑡−𝑘 is the binary crisis indicator variable for country 𝑖 at time 𝑡 –  𝑘. The lags of 𝑦𝑖𝑡 are 

included based on the belief that the occurrence of a banking crisis in previous years may help 

forecast a similar event in the future. In other words, we now consider the possibility of time 

dependence in 𝑦𝑖𝑡 and try to capture its effect through a dynamic model. 

Finally, the last model considered represents a Dynamic Exuberance Probit model, 

𝑦𝑖𝑡
∗ =  𝛼 + ∑ 𝑥𝑖,𝑡−𝑘𝛽𝑘

′

Ρ

𝑘

 +  ∑ 𝛾𝑘 𝑦𝑖,𝑡−𝑘

Ρ

𝑘

 +  ∑ 𝐷𝑖,𝑡−𝑘
𝑘 𝛿𝑘

′

Ρ

𝑘

 +  𝑢𝑖,𝑡 , 
(3) 
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where D𝑖,𝑡−𝑘
𝑘  is a (1 ×  𝑑) vector, such that 𝐷𝑖,𝑡−𝑘

𝑘 ∶=  (𝐷𝑖,𝑡−𝑘
𝑘1 , 𝐷𝑖,𝑡−𝑘

𝑘2 , … , 𝐷𝑖,𝑡−𝑘
𝑘𝑑 ) and 𝛿𝑘

’  

(𝑘 =  1, … , Ρ) is a (1 ×  𝑑) vector of parameters. 𝐷𝑖,𝑡−𝑘
𝑘  is the dummy variable for exuberance, 

which takes a value of one whenever the value for the according variable in 𝑡 –  𝑘  is higher than 

its 0.75 percentile across the data available for country 𝑖. The latter variables are included in order 

to capture any additional effect that an exuberant behavior of explanatory variables may have on 

the forecast of a banking crisis. 

 The gradual differences implemented in the equations building from the first equation allow 

us to perceive the marginal benefit that these additions have on the predictive power of the initial 

model. In every equation constructed above, a forecast is easily achieved without the need for 

constructing an actual forecasting model for the explanatory variables. By using a set of 

explanatory variables available at 𝑡 –  𝑘 (with 𝑘 ≥ 1), a forecast for 𝑦𝑖𝑡 for every year is directly 

achieved. 

 

4.2 Parameter Estimation 

 In non-linear models, such as the probit models described above, the parameters can be 

estimated using maximum likelihood. The probability distribution of the 𝑖th observation, when a 

random sample of 𝑛 outcomes of the binary variable 𝑦𝑖𝑡 is available and the probability of success 

is the same for all observations, is given by 𝑝𝑦𝑖(1 –  𝑝)1 – 𝑦𝑖. When the observations are mutually 

independent, the log-likelihood function is given by 

𝑙𝑜𝑔 𝐿(𝑝𝑖𝑡) = ∑ ∑ 𝑦𝑖𝑡 𝑙𝑜𝑔(𝑝𝑖𝑡)

𝑁

𝑖 = 1

𝑇

𝑡=1

  +  ∑ ∑(1 − 𝑦𝑖𝑡) 𝑙𝑜𝑔(1 −  𝑝𝑖𝑡) =

𝑁

𝑖 = 1

𝑇

𝑡=1

 

= ∑ ∑ 𝑦𝑖𝑡 𝑙𝑜𝑔(𝐹(𝑦𝑖𝑡
∗ ))

𝑁

𝑖 = 1

𝑇

𝑡=1

  +  ∑ ∑ (1 − 𝑦𝑖𝑡) 𝑙𝑜𝑔(1 −  𝐹(𝑦𝑖𝑡
∗ )) ,

𝑁

𝑖 = 1

𝑇

𝑡=1

 
(4) 
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since, as defined above, 𝐹(𝑦𝑖𝑡
∗ ) = 𝑝𝑖𝑡. Maximizing the log-likelihood function above can be done 

by using standard numerical methods. 

 For inference purposes, a Newey-West (NW) type estimator of the covariance matrix of the 

parameters is considered, adapted to a pooled panel data model. 

 

4.3 Model Evaluation 

 The evaluation of the forecasting models relies on a numerical and graphical analysis. 

Several indicators are useful to assess the effectiveness of the regressions, from which we highlight 

its sensitivity (the share of crisis observations classified as crisis by the model) and its specificity 

(the percentage of non-crisis observations classified as non-crisis by the model). We may also rely 

on the fraction of overall correctly classified events for an assessment of the quality of the models. 

The models classify an event as “crisis” or “non-crisis” depending on the cut-off defined for the 

latent variable, which was set at 0.5, i.e. if the regression returns a value higher than the cut-off 

threshold, the models classify the observation as a banking crisis, and as no crisis otherwise. 

 The graphical analysis is based on the models’ performance through the receiver operating 

characteristic (ROC) curves. These curves are related to the above-mentioned indicators: the 

horizontal axis is equal to one minus the specificity, while the sensitivity is represented in the 

vertical axis. This graphical representation allows us to quickly compare the goodness of fit of the 

different models. The points on the curve indicate the relation between the non-crisis observations 

which will be classified incorrectly by the model (horizontal axis) and the crisis observations 

correctly classified (vertical axis). Looking at the area under the ROC curve, or the AUROC, will 

give us further information on the predictive quality of the model: the larger the AUROC, the 

greater the predictive power of the model. 
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5. Results 

 In this section, we discuss the results obtained from various regressions. It includes the 

three different models presented in the previous chapter (Simple Probit, Dynamic Probit, and 

Dynamic Exuberance Probit), each with three periodic subsets (Total Period, Early Period, and 

Late Period). 

 

5.1 Main Results 

We start by analyzing the Simple Probit regressions (Table 1). Four out of the eleven 

selected indicators fail to show any significance when the forecasting model is based on the Total 

Period regression: Total Debt Service (%Exports), Birth Rate, Broad Money Growth and Domestic 

Credit provided by the Financial Sector. The variables Domestic Credit to Private Sector, Exports 

of Goods and Services, GDP Growth (annual%) and Inflation of Consumer Prices show 

significance for two of the five lags considered, while External Balance on Goods and Services is 

significant for three of the lags considered. 

For the Early Period estimation, Total Debt Service (%Exports), Birth Rate and Broad 

Money Growth present statistically significant coefficients, in contrast with the Total Period 

regression. Total Reserves (% Total External Debt) and Current Account (%GDP) lose their 

significance. All other indicators remain significant for at least one lag, except for Domestic Credit 

provided by the Financial Sector, which remains non-significant. 

Regarding the Late Period regression, only five indicators bare any significance: Birth Rate, 

Broad Money Growth, Current Account (% GDP), External Balance on Goods and Services, and 

Inflation of Consumer Prices. 

With the addition of the lagged Crisis dummy, we now analyze the Dynamic Probit model 

(Table 2). It is worth noticing the importance of this addition by comparing Figures 1, 2 and 3 
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with Figures 4, 5 and 6, respectively: the ROCs move further from the 45º line, which results in 

higher AUROCs for the Dynamic Probit models than those obtained for the Simple Probit models. 

This attests to their higher predictive power and quality, achieving higher fractions of correct 

predictions per incorrect prediction. The lagged Crisis Dummy also proves relevant in the three 

sub-sets of the Dynamic Probit analysis, corroborating the narrative that crisis events are dynamic 

in nature. 

In the Total Period regression, Exports of Goods and Services is the indicator with the 

highest number of significant lags, baring statistical significance two, three and five years prior to 

a banking crisis. Total Reserves (%Total External Debt), Broad Money Growth, External Balance 

on Goods and Services, GDP Growth (annual%), and Inflation of Consumer Prices show statistical 

significance in two lags. 

Much as in the Simple Probit regression for the Early Period, Total Reserves (% Total 

External Debt) and Current Account (%GDP) still carry no significance for a timely forecast of a 

banking crisis. 

In the Late Period, for the Dynamic Probit regression, we can see that External Balance on 

Goods and Services is a valuable indicator as it bares significance on all three lags. Birth Rate, 

Broad Money Growth, Current Account (%GDP), Exports of Goods and Services, and Inflation of 

Consumer Prices have at least one statistically significant lag in this regression, just as they did 

with the Simple Probit approach. Overall, Domestic Credit provided by the Financial Sector, once 

again, brought no significant results. 

The addition of exuberance dummies to the Dynamic Probit model gives us the Dynamic 

Exuberance Probit model regressions (Table 3). This allows us to evaluate whether an abnormally 

large change in a variable in a given year is of added significance to forecast banking crisis 

episodes. Again, we can compare Figures 4, 5 and 6 from the Dynamic Probit models with Figures 
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7, 8 and 9 from the Dynamic Exuberance Probit models to confirm the benefits of this addition to 

the forecasting model, which can be observed through the growth of the AUROC values. 

For the Total Period Dynamic Exuberance Probit model, one indicator is statistically 

significant in four different lags, which deserves to be highlighted. This indicator is the Birth Rate. 

Inflation of Consumer Prices also stands out with three statistically significant lags. The Crisis 

Dummy remains highly significant and rather impactful. The most staggering result for this 

regression, however, relates to the exuberance factor on the Birth Rate variable, which shows 

statistical significance on all five years prior to a crisis event. Moreover, although Domestic Credit 

provided by the Financial Sector as an indicator has shown no significance in any of the regressions 

so far, an exuberant behavior on this variable is seemingly relevant in the Total Period forecast, 

carrying statistical significance in one lag. 

For the Early Period model, every variable apart from Domestic Credit provided by the 

Financial Sector and Current Account (%GDP) is statistically significant in at least one of the three 

lags used. 

For the Late Period, Birth Rate exuberance variables are once again of paramount 

importance for the forecast, by being significant in all three years preceding a banking distress. 

Broad Money Growth, External Balance on Goods and Services and Inflation of Consumer Prices 

are significant regressors on all the lags of the Late Period regression. 

Comparing the Total Period forecasts between the Simple Probit, Dynamic Probit, and 

Dynamic Exuberant Probit, we can see how they gradually became better with the addition of the 

Crisis and Exuberance dummies. In Figure 1, the AUROC value was 0.7837. With the addition of 

the Crisis dummy, it grew to 0.9256 in Figure 4. Finally, after adding all the Exuberance dummies, 

the value reached 0.9556 in Figure 7, leaving us with a final model with a clear improvement in 

forecasting power. It is also worth noticing that the Late Period models perform better than the 
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Early Period models for Dynamic Probit and Dynamic Exuberance Probit models, but not for the 

Simple Probit model. This may be due to the fact that the lagged Crisis Dummy is substantially 

more impactful in the Late Period regression than in the Early Period regression, with larger 

coefficients one year prior to a banking crisis. 

 In Table 4 we can see how the percentage of correctly predicted outcomes evolves through 

the models. While in the Simple Probit model the highest result for this indicator was 82.64 percent 

in the Total Period regression, this value rose to 90.25 and 91.86 percent for the homologous 

regression in the Dynamic Probit and Dynamic Exuberance Probit models respectively. We can 

also observe that this evolution in predictive power was not due to enhanced specificity, which 

remained relatively stable through the models, but rather through a significant improvement in the 

sensitivity of the models, which shows how the successive additions to the primordial model were 

more relevant in correctly identifying crisis outcomes than in predicting non-crisis events. We can 

also see that the major difference between Late Period and Early Period models lies on this same 

factor, sensitivity, which is remarkably poorer in Early Period estimations. 

 

5.2 Robustness Tests 

 In order to confirm the usefulness of our model and, to a certain extent, its external validity, 

we performed two robustness checks based on restrictions on the data used. 

 The first restriction was related to the timeframe used on the models. The period between 

1979 and 1983 was plagued with banking crises all over Latin America, and most of the indicators 

retrieved from historical literature refer to this period. Therefore, we tested the model with the best 

results thus far, the Dynamic Exuberance Probit model for the Total Period, dropping from the 

dataset the afore-mentioned years. The results were satisfactory: with the exception of the Domestic 
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Credit variables, every indicator proved statistically significant at least one lag (Table 5), while 

the AUROC value rose to 0.9688 (Figure 10). 

 The second restricted model constructed for robustness checking was based on country 

exclusion. Latin America saw a number of banking crises in the 1980-90s period which could have 

potentially been affected by spillover effects. Thus, somewhat arbitrarily, we excluded the three 

Latin American countries with the highest number of banking crises between 1960 and 2014: 

Venezuela (which recorded 15 baking crises), Argentina and Uruguay (both counting 10 events). 

The results were not significantly different from the unrestricted model: the Domestic Credit 

variables again presented no statistically significant coefficients, and neither did the exuberance 

dummy variables for Exports of Goods and Services and GDP Growth (annual%). Every other 

variable proved statistically significant (Table 5). The AUROC value was 0.9556 (Figure 11), 

which is equal to the AUROC verified for the unrestricted model. 

 

6. Concluding Remarks 

The main goal of this paper was to explore the causes and indicators of banking crises in 

developing countries through the analysis of empirical evidence, and test the accuracy of using 

variables functioning as proxy to those causes when predicting a banking crisis event through a 

dynamic probit model. 

Our results show that Birth Rate, Broad Money Growth, Exports of Goods and Services, 

and Inflation of Consumer Prices are the best indicators overall, giving the highest number of 

significant regressors across the several models. The relation between banking crises and Broad 

Money Growth or Inflation is clearest among these indicators, as these variables relate directly to 

the money supply, a direct link to the banking system. Exports of Goods and Services provide 

information on the well-being of a country’s economy by reflecting its competitiveness in the 
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international market. Headwinds in this front damage a country’s economic performance, which 

could be cause for concern among investors, thus impacting the banking system. The consistently 

significant results from the Birth Rate indicators corroborate the narrative that families, at least in 

developing countries, are influenced by the financial environment regarding the number of children 

they have. Thus, information on the demographic evolution of a country also seems to be helpful 

in predicting banking crisis events. Some indicators performed better in the early prediction models 

(Total Debt Service, and GDP Growth), while some were more useful for late predictions (Current 

Account, and External Balance on Goods and Services). Somewhat surprisingly, the variables 

related to credit cycles were the least informative on the probability of a banking crisis event. 

Some variables were initially considered from the analysis of previous banking crises, but 

had to be disregarded due to scarcity of data. For instance, Interest Payment Expenses and Real 

Interest Rate would have been useful to further assess the impact of interest rate fluctuations; 

Central Government Debt, Real Effective Exchange Rate, and Global Equity Indices could have 

been of interest to study the influence of international market variations on the wellbeing of a 

country’s banking system; Life Expectancy at Birth and School Enrollment on a Tertiary Level 

could have contributed to further explore the relation between socio-demographic and financial 

variables. 

Other variables related to transparency, corruption, and their ties to the financial system 

would have been interesting to test as leading indicators of banking crises, especially since they 

were so repeatedly pointed as main factors in the past. However, the data for these variables was 

even scarcer. 

Our results also corroborate those of Antunes, Bonfim, Monteiro, & Rodrigues (2018) in 

the sense that the progressive additions to the Simple Probit model prove useful in enhancing the 

predictive power of the model, with the Dynamic Exuberance Probit model giving the best results. 
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 We cannot stress enough that one of the biggest contributions of this paper comes from the 

intertwining of financial variations and demographical changes. Seldom used in related literature, 

the connection between banking distress and fluctuations in the birth rate provided one of the most 

consistent indicators in this study. The reasoning behind it is simple: variations in the financial 

environment influence the willingness of a household to add another element to the family. Further 

research on the matter could help clearing this link, or even test the effectiveness of other behavioral 

variables in forecasting banking crises. 
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8. Appendix 

8.1 Tables 

  Simple Probit 

 Lags Total Period  Early Period  Late Period 

  Coef. P>z 
 

Coef. P>z 
 

Coef. P>z 

  
        

Total Debt 
Service 

(%Exports) 

L1. 
        

L2. 
        

L3. 
        

L4. 
   

0.015 0.06 
   

L5. 
        

  
        

Total 
Reserves 
(%Total 
External 

Debt) 

L1. 
        

L2. 
        

L3. 0.007 0.09 
      

L4. 
        

L5. 
        

  
        

Birth Rate 

L1. 
      

-0.416 0.02 

L2. 
        

L3. 
   

-0.651 0.01 
 

0.434 0.01 

L4. 
        

L5. 
   

0.305 0.04 
   

  
        

Broad 
Money 
Growth 

L1. 
        

L2. 
      

0.001 0.05 

L3. 
   

0.003 0.01 
 

0.001 0.01 

L4. 
   

0.001 0.04 
   

L5. 
        

  
        

Current 
Account 
%GDP 

L1. -0.036 0.05 
    

-0.045 0.01 

L2. 
        

L3. 
        

L4. 
        

L5. 
        

  
        

Domestic 
Credit by 
Financial 

Sector 

L1. 
        

L2. 
        

L3. 
        

L4. 
        

L5. 
        

  
        

          

Domestic 
Credit to 
Private 
Sector 

L1. 
        

L2. 0.038 0.06 
      

L3. 
        

L4. 
        

L5. -0.052 0.03 
 

-0.044 0.02 
   

  
        

Exports of 
Goods and 

Services 

L1. 
        

L2. 0.039 0.02 
      

L3. 
        

L4. 
   

0.043 0.06 
   

L5. -0.059 0.01 
 

-0.057 0.01 
   

  
        

External 
Balance on 
Goods and 

Services 

L1. 0.064 0.03 
    

0.066 0.01 

L2. -0.041 0.05 
    

-0.029 0.06 

L3. 
        

L4. 
        

L5. 0.075 0.01 
 

0.084 0.00 
   

  
        

GDP Growth 
(annual%) 

L1. 
        

L2. 
        

L3. -0.032 0.04 
 

-0.037 0.02 
   

L4. 
        

L5. 0.034 0.09 
 

0.043 0.03 
   

  
        

Inflation of 
Consumer 

Prices 

L1. 
        

L2. 
        

L3. 
   

-0.002 0.02 
 

-0.001 0.07 

L4. -0.001 0.09 
 

-0.001 0.04 
   

L5. -0.001 0.10 
      

Pseudo R2  0.1812 
 

749 

 
0.1263 

 
755 

 
0.1175 

 
807 N  

  

Table 1 – Simple Probit Model 
The total period refers to lags [5;1], the early period to lags [5;3] and the late period to lags [3;1]. Standard errors are clustered by country. 
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  Dynamic Probit 

 Lags Total Period  Early Period  Late Period 

  Coef. P>z 
 

Coef. P>z 
 

Coef. P>z 

          
Crisis 

dummy 
L1. 2.102 0.00     2.062 0.00 
L2.         
L3.    0.882 0.00    
L4.         
L5.    -0.350 0.06    

          

Total Debt 
Service 

(%Exports) 

L1.         
L2.         
L3.         
L4. 0.019 0.08  0.017 0.03    
L5.    -0.009 0.09    

          

Total 
Reserves 
(%Total 
External 

Debt) 

L1.         
L2.         
L3. 0.013 0.02       
L4. -0.009 0.02       
L5.         

          

Birth Rate 

L1.         
L2. -0.380 0.06       
L3.    -0.570 0.03  0.266 0.03 
L4.         
L5.    0.255 0.08    

          

Broad 
Money 
Growth 

L1.         
L2. 0.003 0.04     0.001 0.00 
L3. 0.007 0.04  0.003 0.01  0.002 0.00 
L4.    0.001 0.01    
L5.         

          

Current 
Account 
(%GDP) 

L1.       -0.053 0.01 
L2. 0.055 0.00     0.039 0.04 
L3.         
L4.         
L5.         

          

Domestic 
Credit by 
Financial 

Sector 

L1.         
L2.         
L3.         
L4.         
L5.         

          

Domestic 
Credit to 
Private 
Sector 

L1.         
L2.         
L3.         
L4.         
L5.    -0.038 0.05    

          

Exports of 
Goods and 

Services 

L1.         
L2. 0.076 0.00     0.057 0.03 
L3. -0.067 0.02     -0.049 0.02 
L4.    0.050 0.03    
L5. -0.052 0.04  -0.062 0.01    

          
External 

Balance on 
Goods and 

Services 

L1. 0.055 0.04     0.076 0.01 
L2. -0.099 0.00     -0.095 0.00 
L3.       0.040 0.05 
L4.         
L5.    0.096 0.00    

          
GDP Growth 

(annual%) 
L1.         
L2.         
L3. -0.049 0.00  -0.030 0.06    
L4. 0.052 0.01       
L5.    0.041 0.04    

          
Inflation of 
Consumer 

Prices 

L1.         
L2. -0.002 0.05     -0.001 0.00 
L3. -0.005 0.04  -0.002 0.01  -0.001 0.00 
L4.    -0.001 0.01    
L5.         

Pseudo R2 

 
 0.4758 

 
749 

 0.1739 
 

755 

 0.4165 
 

807 N 

 
Table 2 – Dynamic Probit Model 
The total period refers to lags [5;1], the early period to lags [5;3] and the late period to lags [3;1]. Standard errors are clustered by country. 
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  Dynamic Exuberance Probit 

 Lags Total Period  Early Period  Late Period 

  Coef. P>z 
 

Coef. P>z 
 

Coef. P>z 

          

Crisis 
dummy 

L1. 2.515 0.00     2.118 0.00 
L2.         
L3.    0.763 0.00    
L4.         
L5.    -0.342 0.03    

          

Total Debt 
Service 

(%Exports) 

L1.         
L2.         
L3.         
L4. 0.025 0.05  0.018 0.07    
L5. -0.037 0.01  -0.026 0.02    

          

Total 
Reserves 
(%Total 
External 

Debt) 

L1.         
L2.         
L3.    0.003 0.08    
L4. -0.010 0.07       
L5.         

          

Birth Rate 

L1. 0.115 0.09       
L2. -0.543 0.01       
L3.    -0.607 0.07  0.345 0.00 
L4. -0.127 0.08       
L5. 0.388 0.00  0.244 0.01    

          

Broad 
Money 
Growth 

L1.       -0.001 0.01 
L2. 0.005 0.00     0.001 0.00 
L3.    0.002 0.01  0.001 0.02 
L4. 0.003 0.01       
L5.         

          

Current 
Account 
%GDP 

L1.       -0.057 0.01 
L2. 0.111 0.01     0.067 0.03 
L3.         
L4.         
L5.         

          

Domestic 
Credit by 
Financial 

Sector 

L1.         
L2.         
L3.         
L4.         
L5.         

          

Domestic 
Credit to 
Private 
Sector 

L1.         
L2.         
L3.         
L4.         
L5.    -0.040 0.07    

          

Exports of 
Goods and 

Services 

L1.         
L2. 0.089 0.00     0.059 0.05 
L3. -0.096 0.00     -0.054 0.02 
L4.    0.056 0.02    
L5.    -0.055 0.00    

          

External 
Balance on 
Goods and 

Services 

L1. 0.096 0.01     0.094 0.00 
L2. -0.128 0.00     -0.111 0.00 
L3.       0.051 0.03 
L4.         
L5.    0.094 0.01    

          

GDP Growth 
(annual%) 

L1.         
L2.         
L3.         
L4. 0.100 0.00       
L5.    0.077 0.01    

          

Inflation of 
Consumer 

Prices 

L1.       0.001 0.01 
L2. -0.003 0.00     -0.001 0.01 
L3. -0.006 0.02  -0.002 0.01  -0.001 0.02 
L4. -0.002 0.01       
L5.         

          

Total Debt 
Service 

(%Exports) 
(P75) 

L1.         
L2. 0.545 0.09       
L3.         
L4.         
L5.         

          

Total 
Reserves 
(%Total 
External 

Debt) (P75) 

L1.         
L2.         
L3. -0.815 0.02  -0.772 0.03  -0.453 0.00 
L4.         
L5.         

          

Birth Rate 
(P75) 

L1. 1.283 0.01     0.699 0.04 
L2. 4.423 0.00     3.248 0.00 
L3. -5.214 0.00     -3.931 0.00 
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L4. 2.315 0.07  2.302 0.01    
L5. -2.369 0.00  -3.293 0.00    

          

Broad 
Money 
Growth 
(P75) 

L1.         
L2.         
L3.       0.344 0.06 
L4.         
L5. 0.610 0.00  0.315 0.10    

          

Current 
Account 

%GDP (P75) 

L1.         
L2. -0.838 0.01       
L3. 0.849 0.01     0.621 0.01 
L4.         
L5.         

          

Domestic 
Credit by 
Financial 

Sector (P75) 

L1.         
L2.         
L3.       -0.612 0.09 
L4.         
L5. -0.782 0.01       

          

Domestic 
Credit to 
Private 

Sector (P75) 

L1.         
L2.         
L3. -1.303 0.03       
L4. 1.729 0.01       
L5.         

          

Exports of 
Goods and 

Services 
(P75) 

L1.         
L2.         
L3.    0.295 0.09    
L4.         
L5.         

          

External 
Balance on 
Goods and 

Services 
(P75) 

L1. -0.287 0.07     -0.383 0.01 
L2.         
L3.    -0.798 0.00  -0.499 0.08 
L4. 0.636 0.08       
L5.         

          

GDP Growth 
(annual%) 

(P75) 

L1.         
L2.         
L3.         
L4.         
L5.    -0.398 0.09    

          

Inflation of 
Consumer 

Prices (P75) 

L1.         
L2.         
L3.       0.437 0.01 
L4. 0.531 0.00  0.356 0.00    
L5. 0.402 0.03  0.585 0.00    

Pseudo R2 

 
 0.5875 

 
749 

 0.2890 
 

755 

 0.4753 
 

807 N 

 
Table 3 – Dynamic Exuberance Model 
The total period refers to lags [5;1], the early period to lags [5;3] and the late period to lags [3;1]. Standard errors are clustered by country. 

 

 
  Percentage of Correctly 

Predicted Outcomes 
 Sensitivity  Specificity 

 
Simple Probit 

      

       
Total Period  82.64  21.92  97.35 
Early Period  80.93  8.84  98.36 
Late Period  
 

 82.28  9.87  99.08 

Dynamic Probit       

       
Total Period  90.25  70.55  95.02 
Early Period  80.66  17.01  96.05 
Late Period 
 

 89.47  68.42  94.35 

Dynamic Exuberance Probit      

       
Total Period  91.86  73.97  96.19 
Early Period  83.84  38.10  94.90 
Late Period  89.96  67.76  95.11 
       

 
Table 4 – Statistical summary 
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 Dynamic Exuberance Probit – Robustness Checks, Total Period 

 Lags Year Restricted  Country Restricted 

  Coef. P>z 
 

Coef. P>z 

       

Crisis 
dummy 

L1. 2.624 0.00  2.514 0.00 
L2.      
L3.      
L4.      
L5.      

       

Total Debt 
Service 

(%Exports) 

L1. 0.057 0.00    
L2. -0.054 0.03    
L3.      
L4.    0.025 0.05 
L5. -0.058 0.00  -0.037 0.01 

       

Total 
Reserves 
(%Total 
External 

Debt) 

L1.      
L2.      
L3.      
L4. -0.013 0.05  -0.010 0.07 
L5. 0.007 0.05    

       

Birth Rate 

L1. 0.275 0.01  0.115 0.09 
L2. -1.228 0.00  -0.542 0.01 
L3. 0.541 0.00    
L4. -0.275 0.00  -0.127 0.08 
L5. 0.729 0.00  0.388 0.00 

       

Broad 
Money 
Growth 

L1.      
L2. 0.006 0.00  0.005 0.00 
L3. 0.003 0.00    
L4. 0.003 0.00  0.003 0.01 
L5.      

       

Current 
Account 
%GDP 

L1.      
L2. 0.174 0.00  0.111 0.01 
L3. -0.090 0.09    
L4.      
L5.      

       

Domestic 
Credit by 
Financial 

Sector 

L1.      
L2.      
L3.      
L4.      
L5.      

       

Domestic 
Credit to 
Private 
Sector 

L1.      
L2.      
L3.      
L4.      
L5.      

       

Exports of 
Goods and 

Services 

L1.      
L2.    0.089 0.00 
L3. -0.125 0.00  -0.096 0.00 
L4. 0.075 0.03    
L5. -0.069 0.02    

       

External 
Balance on 
Goods and 

Services 

L1. 0.120 0.00  0.096 0.01 
L2. -0.173 0.01  -0.128 0.00 
L3.      
L4.      
L5.      

       

GDP Growth 
(annual%) 

L1.      
L2. -0.127 0.00    
L3. -0.102 0.05    
L4. 0.104 0.02  0.100 0.00 
L5.      

       

Inflation of 
Consumer 

Prices 

L1.      
L2. -0.005 0.00  -0.003 0.00 
L3. -0.002 0.02  -0.006 0.02 
L4. -0.002 0.00  -0.002 0.01 
L5. -0.002 0.01    

       

Total Debt 
Service 

(%Exports) 
(P75) 

L1. -0.737 0.01    
L2. 0.785 0.06  0.545 0.09 
L3.      
L4.      
L5. 1.093 0.00    

       

Total 
Reserves 
(%Total 
External 

Debt) (P75) 

L1.      
L2.      
L3. -1.312 0.00  -0.814 0.02 
L4. 1.039 0.04    
L5. -0.720 0.09    

       

Birth Rate 
(P75) 

L1. -2.265 0.07  1.282 0.01 
L2. 9.806 0.00  4.421 0.00 
L3. -7.895 0.00  -5.212 0.00 
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L4. 3.060 0.01  2.314 0.08 
L5. -2.039 0.02  -2.368 0.00 

       

Broad 
Money 
Growth 
(P75) 

L1. -0.872 0.08    
L2.      
L3. 0.632 0.08    
L4.      
L5. 0.906 0.00  0.609 0.00 

       

Current 
Account 

%GDP (P75) 

L1.      
L2. -1.250 0.00  -0.837 0.01 
L3. 1.634 0.00  0.849 0.01 
L4.      
L5.      

       

Domestic 
Credit by 
Financial 

Sector (P75) 

L1.      
L2. 1.938 0.01    
L3. -2.045 0.02    
L4.      
L5.    -0.783 0.01 

       

Domestic 
Credit to 
Private 

Sector (P75) 

L1. 1.546 0.01    
L2.      
L3. -2.062 0.05  -1.303 0.03 
L4. 3.346 0.00  1.729 0.01 
L5. -0.729 0.07    

       

Exports of 
Goods and 

Services 
(P75) 

L1.      
L2. 1.109 0.03    
L3.      
L4. -0.755 0.04    
L5.      

       

External 
Balance on 
Goods and 

Services 
(P75) 

L1. -0.597 0.08  -0.287 0.07 
L2.      
L3. -1.490 0.02    
L4. 0.807 0.08  0.636 0.08 
L5.      

       

GDP Growth 
(annual%) 

(P75) 

L1.      
L2. 1.220 0.00    
L3.      
L4.      
L5.      

       

Inflation of 
Consumer 

Prices (P75) 

L1.      
L2.      
L3.      
L4. 0.774 0.00  0.531 0.00 
L5.    0.402 0.03 

Pseudo R2 

 
 0.6358 

 
594 

 0.5872 
 

748 
 

 

N 

Table 5 – Robustness Check Models 
The total period refers to lags [5;1], the early period to lags [5;3] and the late period to lags [3;1]. Standard errors are clustered 

by country. 
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8.2 Figures 

 

 

 
Figure 1 - Simple Probit Model, Total Period 

 

 
Figure 2 - Simple Probit Model, Early Period 

 

 

 
Figure 3 - Simple Probit Model, Late Period 

 

 
Figure 4 - Dynamic Probit Model, Total Period 

 

 
Figure 5 - Dynamic Probit Model, Early Period 

 

 
Figure 6 - Dynamic Probit Model, Late Period 
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Figure 7 - Dynamic Exuberance Probit Model, Total 
Period 

 

 
Figure 8 - Dynamic Exuberance Probit Model, Early Period 

 
 

 
Figure 9 - Dynamic Exuberance Probit Model, Late Period 

 

 
Figure 10 - Dynamic Probit Exuberance Model, 
Robustness Test on Years 

 

 
Figure 11 - Dynamic Exuberance Probit Model, 
Robustness Test on Countries 

 

 

 


