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Abstract 

Information asymmetry in used-car markets results from knowledge differences between buyers 

and sellers about used cars. Naturally, someone who owns a used car for a certain period, develops 

a deeper understanding of the real value opposed to someone who did not. The goal of this work is 

to attempt to reduce information asymmetry in used-car markets by using state-of-the-art machine 

learning models. With data provided by a Polish used-car online marketplace, a price range 

estimation as well as a point estimation will be made for every car. A Median Absolute Percentage 

Error of 7.86% and Target Zone of 58.38% are achieved.1 

Keywords: Information Asymmetry, Machine Learning, Price Range Estimation, Used-car 

markets  

 
1 Link to the corresponding GitLab code repository: https://gitlab.com/leo9226/thesis-repository 
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1. Introduction 

Information asymmetry is a phenomenon that exists in markets with an imbalance of knowledge 

between two parties (Akerlof, 1970). It is especially relevant for used-car markets which are 

described as markets for “Lemons” by Akerlof. After owning a car for a certain period, sellers have 

a very good idea of the quality of their cars while a buyer is unable to form such a comprehensive 

opinion of the car’s condition. The motivation behind this work is twofold. First, the 

aforementioned information asymmetry and resulting adverse selection lead to market 

inefficiencies and in the worst case market failure (Akerlof, 1970). Second, Otomoto, a used-car 

online marketplace in Poland and subsidiary of OLX Group that provides the data for this work, 

wants to create the best possible buying experience for the buyers. By attempting to reduce the 

information asymmetry by mediating the user a sense of the true value of the car, the user is 

provided with valuable information one often would not have been able to acquire. Furthermore, 

transparency is increased and the buyer’s probability to overpay decreases. An ideal outcome of 

this project would be that, in the long term, more buyers are attracted by the platform which 

consequently will attract more sellers. 

This shall be achieved by providing the buyer with a point estimation of the car’s value together 

with a surrounding price range estimation. These values will be computed based on accrued car 

listing data over the last year. The machine learning model used to compute these values is called 

LightGBM (Ke et al, 2017). The point estimate, i.e. predicted price, is the median prediction of a 

quantile regression while the upper and lower boundaries of the price range are the 75th and 25th 

percentiles, respectively. 

The rest of this work is built up as follows. First, literature underlining the relevance of the problem 

and the importance of a price range is discussed. In Section 3, the methodology, including all 
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methods used in order to predict the price ranges, is explained in detail. Section 4 deals with the 

results of the machine learning models, recommendations for Otomoto, a critical discussion of the 

results, limitations of the work and possible subsequent studies. Finally, the work is concluded. 

2. Literature Review 

Information Asymmetry and the Market for “Lemons” 

In his paper from 1970, Akerlof introduced the concept of the Market for “Lemons”. In a used-car 

market, sellers have more information about the real condition of their car, leading to information 

asymmetry. Due to the fact that the buyer is unaware of which car is of high and which car is of 

low quality, he is only willing to pay the average price of all cars. Sellers with high quality cars 

(“peaches”) consequently leave the market because the price offered by the buyers is too low. This 

phenomenon is commonly referred to as adverse selection. The buyer then adjusts his willingness 

to pay, causing more “peaches” to leave the market. This cycle carries on until there are only bad 

cars (“lemons”) left in the market. To counteract these effects, Akerlof mentions interventions by 

the government or warranties and brand names to guarantee the buyer a certain quality standard of 

the product in perspective (1970). 

Price Ranges 

To reduce information asymmetry and the resulting adverse selection in used-car markets, an exact 

price estimate as well as price range estimations will be constructed for each car. At first it may 

sound counterintuitive to introduce uncertainty to a certain prediction to increase certainty, but in 

the following this decision will be explained. The reasons to use a price range instead of just a point 

estimate are of both intrinsic and extrinsic nature. A major extrinsically motivated reason is that 

the values of car characteristics are subjective and differ from individual to individual. To be able 

to reflect these perceptions, a price range seems to be an effective tool. Another argument for a 
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range is price dispersion of identical goods (Kaplan and Menzio, 2015). In their paper, Kaplan and 

Menzio analyzed 300 million transactions by 50,000 households and showed that the price 

distribution for the same bundle of goods is approximately normal with a standard deviation 

between 9% and 14%. Although not in the context of used cars, it is shown that similar goods can 

have different prices. To verify if this phenomenon also occurs in used-car markets, the 

distributions of the true prices (local_gross_price) for undamaged (i.e. damaged = 0) Volkswagen 

Golf, Opel Astra and Skoda Octavia model cars with similar vehicle_year, engine_power and 

mileage are visualized. A similar coefficient of variation and standard deviation can be observed 

for all three cars, supporting the hypothesis that a price dispersion for similar cars exists in used-

car markets. Further explanations can be found in Appendix B. 

When applying the Range Theory from Volkmann (1951) to behavioral pricing, it indicates that 

humans construct a price expectation consisting of a lower and upper boundary based on 

memorized prices (Janiszewski, 1999). It can be derived that humans intuitively build price ranges, 

hence supporting the construction of a price range around the median car price prediction. Within 

research on acceptable price ranges, it was found that consumers tend to perceive relatively low 

prices as less acceptable, as they create the impression of low quality (Coulter, 2013). Moreover, 

high prices also lead to lower acceptance, because they are perceived as too expensive. Hence, 

Monroe suggested that consumers have a lower and upper price threshold (1973). This is similar 

to the extremeness aversion, a psychological concept that states that an option with more extreme 

values is perceived as less attractive opposed to an option with rather moderate values (Simonson 

and Tversky, 1992). A deduction that can be made from this concept is that consumers are more 

likely to be addressed by narrower price ranges instead of wider, more uncertain ranges. The 

intrinsic motivation to use price ranges arises from the fact that the model is not perfect and rarely 

predicts the exact, correct price. In most cases, there is a deviation to the ground truth. 
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Big Data 

The prediction of the point estimate and construction of the price range shall be achieved by 

leveraging the use of big data and sophisticated machine learning models. Machine learning 

algorithms fed with big data have shown very promising results in various fields. Amongst them 

are healthcare (Chen et al, 2017), online car-hailing prediction (Huang et al, 2019) and molecular 

and materials science (Butler et al, 2018). Just by looking at the large amount of applications, it 

seems that this problem is ideally suited for machine learning. Otomoto has the necessary high-

quality data readily available and a strong IT infrastructure to deploy large-scale machine learning 

models. Although there is not much literature about big data and the possible implications on 

information asymmetry available, one paper, however, finds in the context of financial markets 

that artificial intelligence reduces the degree of information asymmetry and increases market 

efficiency (Marwala and Hurwitz, 2017). Another paper shows that big data may reduce 

information asymmetry in the Peer-to-Peer lending industry through the reduction of signaling and 

search costs (Yan et al, 2015). 

Best Practices 

A prominent example of such a price range estimation is Zillow (Zillow, 2019). Based on state-of-

the-art machine and statistical learning, Zillow forecasts a point estimate together with an estimated 

sales range for real estate objects. The larger the estimated sales range around the point estimate, 

the higher the degree of uncertainty of the models regarding the accuracy of the point estimate. 

One example in the context of used markets for motorized vehicles is Tradus (Tradus, 2019). They 

predict a point estimate as well as a price range estimation for a certain percentage of the listed 

vehicles. The prediction is calculated based on the vehicle’s features and current and past listings 

of similar vehicles. Finally, a recommendation for the buyer is made, where Tradus rates the 

vehicles from Very low price to Very high price. Tradus’ implementation of such a price range 
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estimation shows that big data can be used to attempt to reduce information asymmetry in used-

vehicle markets.  

3. Methodology 

Data Origin and Curation 

The data used throughout this work was provided by Otomoto. It includes cars that were listed 

from 10/12/2018 (dd/mm/yyyy) to 09/12/2019, allowing the author to use data of in total 365 days. 

It includes all the features of an advertisement that can be specified during the posting flow 

including advertisement id and advertisement specific features. Only advertisements with a status 

other than moderated, draft, removed_by_moderator, unpaid and new are considered. After 

removing irrelevant features (i.e. ad-specific, repetitive and invariant), the dataset contains 116 

features and approximately 2 million rows. The goal of this work is to predict the variable 

local_gross_price (in Złoty), the price for which a car is listed on the marketplace. The listing price 

will function as the label, because Otomoto is not acting as a payment provider and thus does not 

have knowledge of the transaction amounts. The car features given by the user when posted on the 

website can be bundled into three groups: basic car parameters, extended set of car parameters and 

car equipment. A detailed explanation of the features can be found in Appendix A, also showing a 

range of visualizations regarding their frequencies in the dataset. Because the data was heavily 

curated by Otomoto before being provided, the curation applied throughout this work is very little. 

A detailed description of the preparation function responsible for the data curation can be found 

in the GitLab repository. 

Important Metrics 

The two key metrics that will be used to assess the quality of the machine learning models are the 

Median Absolute Percentage Error (MdAPE) and Target Zone (TaZ) (2). The MdAPE is defined 
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as the median of the Absolute Percentage Errors (APE) of all predictions. The APE itself is defined 

as follows: 

𝐴𝑃𝐸 =  
𝑦 −  𝑦̂

𝑦 
 ∗  100 (1) 

𝑇𝑎𝑍 =  
𝑐

𝑛
, (2) 

where y is the label, 𝑦̂ is the prediction, c is the number of all predictions with an APE smaller than 

or equal to 10% and n is the number of all predictions. 

The Model 

The model chosen for this work is LightGBM (Ke et al, 2017). LightGBM originates from the 

family of Gradient Boosting Machines (GBM) or rather Gradient Boosting Decision Trees 

(GBDT). Decision trees are tree-like structures that consist of root, internal and terminal nodes, 

also known as leaves (Rokach and Maimon, 2005). The tree makes the predictions by splitting the 

dataset into subsets on each level of the tree based on certain criteria. The beginning is marked by 

the root node, which is split on the best predictor. The end of a tree is marked by its leaves, which, 

in this case, contain the car price predictions. For visual support, a decision tree can be found in 

Appendix D. GBDT construct an additive model, where in each iteration a decision tree is trained 

on the residuals of the previous iteration (Friedman, 1999). These residuals are the gradient of the 

loss function that is being minimized, hence the name Gradient Boosting. The final prediction for 

a single car is then calculated by the sum of all the leaves the car ended up in. Because the trees 

are trained with the residuals, negative values in the leaves are possible. GBDT models have proven 

to deliver cutting edge performance in a range of tasks (e.g. Li, 2012; Richardson et al, 2007). 

Some of the reasons are high accuracy, short training and prediction times and low memory 

consumption (Si et al, 2017). Though, with the ever-growing amounts of data, GBDT is facing 
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computational complexities. The main reason is that the most time-consuming part of learning a 

decision tree is finding the optimal split points (Ke et al, 2017). LightGBM introduces two novel 

techniques, namely Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling 

(EFB) to target this issue. Ke et al claim that a speed up of the training time compared to established 

GBDT algorithms by up to over 20 times can be achieved while maintaining practically the same 

accuracy. GOSS focuses on data instances with a large gradient due to their higher contribution to 

the information gain in a split compared to data instances with a small gradient. Out of the instances 

with small gradients, a subsample is dropped, therefore the reduction in training speed. EFB on the 

other hand bundles mutually exclusive features together to reduce the total number of features. 

This is especially effective for sparse datasets, where features rarely take non-zero values 

simultaneously. Another advantage of LightGBM over GBDT algorithms like XGBoost (Chen and 

Guestrin, 2016) is the possibility of using unencoded categorical features, i.e. strings, as input 

features.  

LightGBM will be used for quantile regressions throughout this work. There are two main reasons 

for choosing quantile over classical regressions. First, due to their robustness against outliers (John, 

2015). Second, quantile regressions allow the prediction of pre-specified percentiles, thus making 

them an ideal candidate to construct the boundaries of the price range. The point estimation is the 

median, while the lower and upper bound are the 25th and 75th percentiles, respectively. 

EDA 

Due to the limited space of this work, the insights gained, and visualizations created throughout 

the Exploratory Data Analysis (EDA) will be presented in Appendix C.  
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Boruta Feature Selection 

In the next step, the feature selection algorithm Boruta is applied on the dataset. In the era of big 

data, datasets have become increasingly large, often equipped with more features than actually 

needed to build accurate machine learning models (Kursa, Rudnicki, 2010). The two major 

problems arising from this issue are of computational nature and decrease in accuracy. While the 

former slows down algorithms, the latter can have a much worse impact. When the number of 

features is significantly higher than most favorable, the accuracy of the model’s predictions can 

suffer (Kohavi and John, 1997). Therefore, the goal of feature selection is to find features of high 

relevance for model construction. Here, BorutaPy (Homola, 2018), a Python package 

implementing the Boruta feature selection algorithm (Kursa and Rudnicki, 2010), comes into play. 

Boruta is a wrapper built around a random forest, which is an ensemble of various decision trees. 

Opposed to GBDT, a random forest grows the trees simultaneously, where the final prediction is 

made through a vote by all decision trees (Breiman, 2001). Boruta selects the most important 

features by carrying out a range of steps. First, one shadow feature for each original feature in the 

dataset is created and their values randomly shuffled. It then runs a random forest on the extended 

dataset and computes Z scores for each feature. The benchmark the original features need to attain 

is the Maximum Z score among Shadow Attributes (MZSA). Features that score lower than the 

MZSA undergo a two-sided test of equality with the MZSA. In case the importance is significantly 

higher, they are deemed as important and kept in the dataset, otherwise they will be permanently 

removed. Then, all shadow attributes are removed, and the procedure is repeated until all features 

are labelled as either important or unimportant. One restriction from using Boruta is that random 

forests require all features to be numerical and not containing any Not a Number (NaN). NaNs in 

the numerical features are imputed with the median of the specific feature and NaNs in categorical 

features are replaced with ‘Other’. The string categorical features are encoded using target 
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encoding (McGinnis, 2016). Even though necessary, this procedure leads to a different dataset. To 

account for this, the parameter perc of BorutaPy, which determines the threshold for comparison 

between shadow and real features, is set to 80 (Homola, 2018). 

Splitting the Dataset 

Having selected the most meaningful features, the next step is to split the dataset into training 

(80%), validation (10%) and test (10%) set. During the hyperparameter optimization, the model 

will be trained with the training set, while the validation set will be used to calculate the prediction 

errors. The test set acts as a holdout set and will be used to assess the generalization abilities of the 

trained model on previously unseen data (Hastie et al, 2008). 

Goodness-of-fit tests 

Because the dataset is divided into three subsets, it is important to validate that the distributions of 

the validation and test sets are similar to the training set. If not given, a model will not be able to 

generalize well and produce biased predictions (Chung et al, 2019). Because different data types 

require different goodness-of-fit tests, three different statistical tests will be applied. The 

Kolmogorov-Smirnov test (Massey, 1951) will be used for continuous features, the chi-square 

contingency test (Pearson, 1900; Pearson, 1904; Crack, 2018) for binary categorical features and 

the chi-square test for string categorical features (Pearson, 1900; Baird, 1983; Crack, 2018). For 

all of the above-mentioned goodness-of-fit tests, the null hypothesis is that the two distributions 

are similar. The hypothesis will be evaluated with the p-values computed by the tests assuming a 

significance level of 0.05. 

Hyperopt Hyperparameter Optimization 

Hyperparameters are high-level parameters that control the way a machine learning model works 

and must be defined prior to the training of a model (Zheng, 2015). In achieving an accurate model, 

tuning these parameters is paramount, because in some cases a poorly trained model might perform 
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worse than chance while the same model with tuned hyperparameters produces highly accurate 

predictions (Hutter et al, 2014). In the case of LightGBM, the pool of tunable hyperparameters is 

big (Microsoft, 2019). To account for this, the Python library Hyperopt will be utilized (Bergstra 

et al, 2019). Hyperopt optimizes the hyperparameters of machine learning algorithms and is built 

for cases where the search space is too big to perform classical optimization techniques such as 

grid search (Bergstra et al, 2013). Based on Sequential Model-Based Optimization (SMBO), 

Hyperopt explores the pre-defined search space and picks the next set of hyperparameters based 

on the performance of the previous trial (Hutter et al, 2011). Furthermore, SMBO is capable of 

quantifying parameter importance and parameter interactions. To utilize the Hyperopt library, one 

must define an objective function and configure a search space (Bergstra et al, 2011; Bergstra et 

al, 2013). The search space includes all hyperparameters and the respective value ranges. The 

objective function, in this case, runs a LightGBM model with a set of hyperparameters chosen by 

the SMBO from the configured search space and returns the MdAPE on the validation set as its 

loss. This process is repeated for a set number of trials given by the user. The overall goal is to 

minimize the MdAPE on the validation set. After each Hyperopt run, a visualization of the 

performance with one plot for each hyperparameter is created and analyzed. Ideally, clusters of 

points can be observed, meaning that this value area promises good results for this specific 

hyperparameter. In the succeeding Hyperopt run, the focus will lie on the clustered areas, gradually 

decreasing the value ranges in the search space. 

Cross-validation 

Followed by the hyperparameter optimization process, cross-validation will be applied on a 

LightGBM model trained with the best set of hyperparameters. Cross-validation is a statistical 

method that, among others, helps to assess the generalization abilities of a machine learning model 
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by testing it on previously unseen data (Stone, 1974). A common form of cross-validation, also 

used in this work, is called k-fold cross-validation (Refaeilzadeh et al, 2008). First, the data is split 

into k folds of equal size. Thereafter, k different models are trained, each on k-1 folds of the data 

and the performance of this model will be assessed on the held-out fold. The performance of each 

of the k models will be tracked with the metrics MdAPE and TaZ, both for the test (held-out fold) 

and the training (k-1 folds) instances. After completion, the metrics of the k models, divided by 

train and test performance, will be averaged and the standard deviation calculated. Ideally, two 

things can be observed. The standard deviation is only marginal, meaning that the performance 

over all the folds is somewhat stable and the difference between the training and test performance 

is as small as possible, indicating that the model is not overfitting. The number of folds chosen is  

𝑘 = 5 so that for each iteration 80% of the data is used to train the algorithm. 

After the assessment of the quality of the model, another LightGBM model will be trained on the 

training and validation sets (90%) and tested on the test set (10%). The result will be visualized 

using the custom function plot_performance. 

SHAP Model Explainability 

This part of the methodology focuses on model interpretability, something that becomes 

increasingly important in the age of big data and complex machine learning models whose behavior 

at times is not apparent (Lakkaraju et al, 2017). As Lundberg et al stated, model interpretability “is 

important for trust, actionability, accountability, debugging and many other tasks” (2019: 1). To 

interpret the results of the LightGBM model, the concept of SHapley Additive exPlanation (SHAP) 

values will be applied (Lundberg and Lee, 2017). SHAP values are based on game theory 

applications and are unique, consistent and locally accurate attribution values to explain model 

predictions. The authors claim that other feature attribution methods are inconsistent in a way that 
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they can decrease feature importance although the true importance increases. Lundberg et al 

furthermore developed the concept of SHAP interaction values (2019). An extension of SHAP 

values that captures pairwise interaction effects of features and enables consistency even for single 

predictions. To analyze the feature attributions for the best LightGBM model, one plot will be 

presented in Section 4, which will show the individualized feature attributions on a global level. In 

Appendix F more SHAP plots are presented. 

Quantile Regressions 

To construct the price ranges, two quantile regressions will be built. The lower boundary of the 

price range will be the 25th percentile prediction while the upper boundary will be the 75th percentile 

prediction. Hence, 50% of the median predictions will fall into this interval. A prediction interval 

covering 50% of the predictions is chosen in accordance with the literature presented in section 2. 

It includes a reasonable amount of predictions while at the same time not allowing the price range 

to become too large. The metrics Prediction Interval Coverage Probability (PICP) (3), Mean 

Interval Prediction Width (MPIW) (4), MPIW captured (5) and Relative Mean Prediction Interval 

Width (6) will measure the quality of the intervals (Pearce et al, 2018). They are defined as follows. 

𝑃𝐼𝐶𝑃 =  
𝑐

𝑛
 (3) 

𝑀𝑃𝐼𝑊 =  
1

𝑛
 ∑ 𝑦̂𝑈𝑖 − 𝑦̂𝐿𝑖

𝑛

𝑖=1

 (4) 

𝑀𝑃𝐼𝑊 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 =  
1

𝑐
 ∑ 𝑦̂𝑈𝑖 − 𝑦̂𝐿𝑖

𝑐

𝑖=1

 (5) 

𝑅𝑀𝑃𝐼𝑊 =  
1

𝑛
 ∑

𝑦̂𝑈𝑖 − 𝑦̂𝐿𝑖

𝑦̂𝑖

𝑛

𝑖=1

 (6) 
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where n is the total number of predictions, c is the number of median predictions that fall within 

the prediction interval [25; 75] (i.e. captured), 𝑦̂𝑈𝑖  ( 𝑦̂𝐿𝑖) is the upper (lower) boundary of the 

interval for car i and 𝑦̂𝑖 is the median prediction for car i. 

Comparison to Baseline 

To measure the relative accuracy of the LightGBM model trained with the boruta features and 

optimized hyperparameters, a comparison to four different models will be conducted. First, two 

LightGBM models will be trained, one with all features (1) and one with basic features (2). 

Subsequently, an XGBoost regression (Chen and Guestrin, 2016) as well as a scikit-learn random 

forest (Pedregosa et al, 2011) will be fit on the boruta features. The comparison with XGBoost and 

the random forest is not fully representative, because the hyperparameters are not tuned (i.e. default 

set of hyperparameters) and they require the inputs to be numerical. Furthermore, random forests 

do not accept NaNs. To replace these values, the same heuristics already used within the feature 

selection with the Boruta algorithm are applied.  

4. Results, Recommendations, Discussion, Limitations & Future Research 

Results 

After applying the Boruta feature selection algorithm on the dataset, 51 features out of 115 are 

selected and thus, deemed as important to predict the price of a car. This reduction in size of about 

55% is rather drastic and indicates that most of the features in the original dataset are of poor quality 

for this specific problem. 

The result of the goodness-of-fit tests is very satisfying. In total, 12 tests for continuous, 70 tests 

for binary categorical and 20 tests for string categorical features are conducted. Except for four 

binary tests, for every single test the conclusion is that the respective features from the training and 

validation/test set come from a similar distribution. 
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In order to tune the hyperparameters, three Hyperopt runs were conducted. The result of the first 

run is illustrated by Figure 1 (only 3 subplots are shown).  

Each of the subplots is structured in the same way. The title refers to the hyperparameter, the x-

axis shows the value range and the y-axis shows the loss (MdAPE) of the iteration where the value 

of this hyperparameter is the corresponding point on the x-axis. For instance, bagging_fraction 

shows a cluster of points in the range from 0.8 to 0.925, indicating that this area promises good 

results. All subplots will be analyzed and the value range, if possible, reduced. Appendix E contains 

all used search spaces, one plot like Figure 1 for each Hyperopt run and the final set of 

hyperparameters yielding the lowest MdAPE. Moreover, an explanation of the hyperparameters is 

included. 

The cross-validation performed with the set of hyperparameters chosen by Hyperopt shows a mean 

MdAPE of 7.92% over the 5 folds on the test set with a mean TaZ of 58.2%. The standard deviation 

of the MdAPE and TaZ on the test set are 0.03% and 0.13%, respectively. The mean MdAPE on 

the train set over the 5 folds lies at 5.36% with a standard deviation of 0.01%. Both the standard 

deviation on the test set and the difference between test and training set performances are very 

satisfactory. Hence, an adequate quality of the hyperparameters is confirmed. 

Figure 1 Scatterplot for the distribution of the hyperparameters during a Hyperopt run 
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Next, the performance of a LightGBM model with the best hyperparameters will be evaluated by 

plotting the results (Figure 2). 

 

Figure 2: Performance Plot for the best LightGBM Model 
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Subplot 1 shows a Percentage Error (PE) histogram with PE on the x- and frequency on the y-axis. 

It can be noted that the distribution looks similar to a bell curve and has a median PE of around 

0%, meaning that the model is evaluating the prices fairly. Subplot 2 shows an APE histogram with 

the APE on the x- and frequency on the y-axis. While the MdAPE and TaZ are 7.86% and 58.38% 

respectively, a large proportion of the predictions has an APE of close to 0%. An MdAPE of around 

0% may be a signal for an overfitting model. The purpose of subplot 3 is to analyze the variance 

of the predictions for different price levels. To do so, the true price is binned into 250 bins and each 

prediction is assigned into one bin. For each bin, one box plot is plotted, showing the variance of 

the predictions. The diagonal shows the ideal prediction value as it is composed by the median 

values of each of the 250 bins. The main takeaway from this plot is that the variance increases at a 

steady, but slow pace until around 160,000 Złoty (Zł). From there, the length of the box plots starts 

to fluctuate more heavily. 

Figure 3 below is plotted with the SHAP library and summarizes the feature importance for the 7 

most important predictors. On the y-axis is the feature, on the secondary y-axis a color scale ranging 

from red (corresponds to high value) to blue (corresponds to low value) and the x-axis represents 

the SHAP value, which is a measurement for the impact on the prediction of the model. I.e., a 

SHAP value for mileage of 12,250 Zł increases the prediction by exactly 12,250 Zł. For each 

feature, the SHAP value of every predicted instance is represented as a dot. It immediately becomes 

apparent that the most influential predictors of the car price are vehicle_year, engine_power, 

mileage, make and model. In the case of vehicle_year, it can be stated that a newer car has positive 

SHAP values and thus, increases the prediction, whereas older cars are more onto the blueish side 

of the color scale and have a negative influence on the car price prediction. String categorical 

features are in grey, because the strings are nominal. Due to the limited scope of this work, three 
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SHAP plots, an analysis of a single prediction, a feature importance bar plot, and the full summary 

plot (Figure 3) with 20 features will be presented in Appendix F. 

 

Figure 3: Summary plot for the 7 most important features 

 

Figure 4: Relative Prediction Interval Width for cars with low, medium and high predictions 

The results of the two quantile regressions, 25th and 75th percentile, are presented above in Figure 

4, which shows three histograms illustrating the distributions of the relative prediction interval 
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width for cars with low, medium and high predictions. To get equal subsets, the thresholds to divide 

the instances are the 33rd and 66th percentiles. The density is on the y-axis. Theoretically, the PICP 

should be 0.5, because 50% of the points fall within the interval [25; 75]. Practically, the PICP is 

0.448, meaning that 44.80% of the true prices fall within their individual [25; 75] prediction 

interval. The MPIW for all predictions is 5908.34 Zł, while the MPIW captured is 6669.2 Zł. The 

overall RMPIW is 0.1927, showing that on average the length of the prediction interval is 1/5 of 

the size of the median prediction. The distributions of the three subsets furthermore show that with 

an increasing prediction, the relative prediction interval width is decreasing. 

Finally, the results from the comparison of the best LightGBM model to the baseline models are 

presented in Table 1 below. The results show that a LightGBM model with all features shows a 

slightly better MdAPE. Therefore, the feature selection process needs to be reconsidered as 

accuracy is lost. Possible explanations can be the loss of important interactions between features 

and the altered dataset used throughout the feature selection. Appendix G shows two plots: one 

comparing the random forest and XGBoost; and one comparing the three LightGBM models. 

Algorithm Featur

es 

Preproce

ssing 

Tuned MdAPE test TaZ 

test 

(%) 

MdAPE 

train 

TaZ 

train 

(%) 

LightGBM Boruta None Yes 7.89 58.23 5.52 67.56 

LightGBM All None Yes 7.73 59.09 5.14 69.02 

LightGBM Basic None Yes 9.66 51.21 7.88 57.73 

XGBoost Boruta Target 

Encoding 

No 15.58 34.22 15.54 34.29 
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Algorithm Featur

es 

Preproce

ssing 

Tuned MdAPE test TaZ 

test 

(%) 

MdAPE 

train 

TaZ 

train 

(%) 

Random 

Forest 

Boruta Target 

encoding 

& NaNs 

No 7.58 59.03 3.0 86.64 

Table 1: Comparison of 5 different learning algorithms 

Recommendations 

An important question is how to use the predictions or more specifically, how to present the point 

estimate and price range estimations to the buyer on the marketplace. Given an example where the 

median prediction, 25th percentile and 75th percentile are 6,500, 6,250 and 7,000 Zł, respectively, 

a recommendation for the buyer could involve a color bar and the following information: 

“The suggested price for this car is 6,500 Zł.  

50% of the sellers sell a similar car for 6,250 – 7,000 Zł.” 

For visual support, a color bar shows the upper and lower boundaries and median prediction. 

Moreover, it is crucial to not leave the buyer in the dark about the computation of the suggested 

prices. Explanations regarding the technology, methodology and used car characteristics need to 

be included. By clarifying these things, the buyer can retrace the whole process and the probability 

of developing trust towards the suggested prices and a deeper understanding increases. 

Discussion 

The fact that the target group of introducing price range estimations is the buyers leads to a problem 

that could cause severe consequences for Otomoto. As Otomoto does not sell cars, they are 

dependent on sellers that use their platform. If a seller is unsatisfied with the predictions, e.g. 

because he believes the true value of the car is higher, the probability of delisting the car and 

moving to a competitor increases. In case the car is indeed overpriced, it is both beneficial for the 
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buyer, as he avoids purchasing an overpriced car, and for the algorithm, as the quality of the data 

improves. On the other hand, if the car is fairly priced, Otomoto loses a valuable seller and the 

number of good cars listed on their website decreases. Even though the predictions might not satisfy 

the expectations of the seller, at the same time they are a reason to stay on the platform. Because 

they are so informative and beneficial for the buyers, the number of users on the platform and 

hence, possible buyers for a car increases. Thus, the increasing buyer potential is a strong motivator 

to stay on the platform. Another problem is created by the price range itself. Wide range indicate 

uncertainty and instead of helping the buyers to form an opinion about the true value of a car, it 

can create confusion. 

Limitations 

Throughout this work, a local machine is used. This comes with computational restrictions, 

especially concerning the hyperparameter optimization and feature selection. Another limitation 

arises from the feature selection with Boruta, which utilizes random forests and therefore requires 

all features to be numerically encoded and without NaNs. A different approach for feature selection 

could be chosen to mitigate this limitation. A limitation concerning the price of the cars is that 

Otomoto does not record transaction data of actual purchases. Therefore, only the listing price on 

the platform is available to build a learning algorithm. Nevertheless, the feature is_business 

indicates if a seller is private or business/commercial. In general, business retailers have a better 

understanding of the real value of the cars they are selling. The model should be able to learn this 

pattern and the MdAPE on cars sold by business retailers smaller. This can be observed with 

10.26% MdAPE for private and 6.07% for business sellers. A possible heuristic is to learn the 

model just on cars of business sellers. Yielding in a more accurate model, this leaves out 49.0% of 

the data and thus a lot of possibly important variance. More importantly, business sellers focus on 

a smaller range of cars than private sellers, because they promise higher profits. The model would 
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have problems generalizing well on non-business seller cars once in production. Lastly, this model 

has not been deployed. Consequently, no observations have been made and the effect of a possibly 

reduced information asymmetry cannot be measured. 

Future Research 

Future research should focus on two main topics. First, the model offers space for improvements. 

Approaches could involve feature engineering, new approaches for feature selection, further tuning 

of the hyperparameters or trying different learning algorithms including neural networks. Second, 

the implications on the real world of the introduction of such a model need to be researched. It is 

interesting to know how sellers, buyers and Otomoto are affected and if the overall goal, a reduction 

of information asymmetry in used-car markets, is reached. 

5. Conclusion 

The purpose of this work is to attempt to reduce information asymmetry in used-car markets by 

using machine learning models, namely LightGBM. To achieve this, a point as well as a price range 

estimation can be presented to the buyer. Feature selection, goodness-of-fit tests and 

hyperparameter optimization are applied on a dataset with one year of car listing data provided by 

a Polish used-car online marketplace. Lastly, two quantile regressions are built for the upper and 

lower boundaries of the price range. The model shows a good performance with a Median Absolute 

Percentage Error of 7.86% and a Target Zone of 58.38%. The Relative Mean Prediction Interval 

Width of the price ranges is 0.1927. Based on the model’s performance and accuracy, a deployment 

on Otomoto for a trial period should be considered. To make adequate use of the results, Otomoto 

should present the point estimation together with the price ranges and a supportive, colored graphic. 

Since the model has not been deployed, the effects on all affected parties cannot be observed. 
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Appendices 

A – Description of different groups of features 

The following explanations of the three groups of features were adapted from an internal document. 

1. Basic car characteristics:  

• make  

• model 

• vehicle_year 

• mileage 

• fuel_type 

• engine_capacity 

• engine_power 

• gearbox 

This subset of car parameters is relevant because the concept of "similar cars" used in Sourcing 

Insights. engine_capacity, gearbox and engine_power are non-mandatory, but except gearbox 

(96.41%), appear in 100% of the ads. Figure 5 represents the percentage of ads for which a value 

is specified for the corresponding feature. 

 

Figure 5: Occurrence of basic car features 
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2. Extended car characteristics: 

The second set is composed by all the fields contained in the <params> field, except for the 

'features' field, which contains the car equipment features and is analyzed later. The features 

included in this subset are: 

• price_gross_net, price_currency, make, vehicle_year, fuel_type, color, body_type, model, 

price, mileage, has_vin, has_registration, engine_capacity, metallic, gearbox, no_accident, 

registered, service_record, engine_power, original_owner, door_count, vat_discount, 

nr_seats, financial_option, vat, rhd, transmission, damaged, leasing_concession, version, 

peal, particle_filter, tuning, approval_for_goods, historical_vehicle, matt, country_origin, 

date_registration, vin, registration, engine_code, monthly_payment, co2_emissions, video, 

remaining_payments, residual_value, down_payment, authorized_dealer, acrylic 

Similar graphs for the extended car characteristics are represented by Figures 6 and 7 below. 

 

Figure 6: Occurrence of extended car features no. 1 
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Figure 7: Occurrence of extended car features no. 2 

3. Car equipment characteristics: 

The car equipment features are encoded in a different way. There are 85 possible equipment 

features, and during the data extraction process, every feature is counted if present or set to zero if 

absent. The features included in this subset are: 

• central_lock, abs, front_airbags, assisted_steering, front_electric_windows, 

front_passenger_airbags, electronic_rearview_mirrors, electronic_immobiliser, cd, 

original_audio, onboard_computer, alloy_wheels, esp, fog_lights, asr, front_side_airbags, 

steering_wheel_commands, automatic_air_conditioning, rear_electric_windows, 

heated_rearview_mirrors, cruise_control, isofix, side_window_airbags, alarm, 

rear_parking_sensors, automatic_wipers, mp3, aux_in, bluetooth, automatic_lights, 

dual_air_conditioning, electric_interior_mirror, daytime_lights, front_heated_seats, 

usb_socket, tinted_windows, air_conditioning, rear_passenger_airbags, velour_interior, 

gps, roof_bars, both_parking_sensors, electric_exterior_mirror, leather_interior, leds, 

system_start_stop, xenon_lights, electric_adjustable_seats, driver_knee_airbag, sd_socket, 
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towing_hook, speed_limiter, heated_windshield, rearview_camera, park_assist, dvd, 

cd_changer, sunroof, radio, panoramic_sunroof, shift_paddles, lane_assist, 

active_cruise_control, blind_spot_sensor, adjustable_suspension, quad_air_conditioning, 

auxiliary_heating, rear_heated_seats, head_display, tv, electric_windows, power_steering, 

airbags, sliding_doors, computer, speed_control, parking_sensors, lift, passenger_airbag 

Because of the encoding applied, there are no NaNs in the equipment features. The bar plots can 

be found in the folder Graphs in the GitLab repository. 
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B – Deviation of prices for similar cars 

All cars were grouped by make and model and the following cars were picked for a more detailed 

analysis: 

• Volkswagen Golf (3rd most common car) 

• Opel Astra (most common car) 

• Skoda Octavia (7th most common car) 

In order to only compare similar cars, the cars listed above were filtered for the following criteria: 

• 130 <= engine_power <= 150 

• 2018 <= vehicle_year <= 2019 

• mileage <= 10000 

• damaged = 0 

The following histograms (Figures 8, 9 and 10) are all structured the same. On the y-axis is the true 

price (local_gross_price) and on the x-axis is the frequency. Under the legend is a text box with 

important information regarding the number of cars plotted (n), the standard deviation (std), mean 

and coefficient of variation. For all cars, the coefficient of variation lies between 12.3 and 15.6%, 

supporting the hypothesis that similar cars have a varying price. 

 

Figure 8: Histogram for local_gross_price of similar Opel Astra cars 



31 
 

 

Figure 9: Histogram for local_gross_price of similar Volkswagen Golf cars 

 

Figure 10: Histogram for local_gross_price of similar Skoda Octavia cars 
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C – Exploratory Data Analysis 

Hereafter, the visualizations created, and insights gained throughout the EDA will be presented 

and discussed. 

Figure 11 represents two waffle charts, where each square stands for a certain number of cars. The 

waffle charts show the distribution of body_type and transmission, respectively. It becomes 

apparent that the top 6 body types, combi, compact, suv, sedan, city-car and minivan make up the 

lion’s share of all body types. Looking at the distribution of transmission, one can see that front-

wheel makes up for around 75% of all transmissions while rear-wheel, all-wheel-auto and all-

wheel-permanent are rather equally distributed. 

 

Figure 11: Waffle Chart for number of cars by body_type and transmission 

Figure 12 below shows the distribution of the features color and fuel_type in the form of a bar 

chart. For both plots, the colors/fuel types are on the x- and the corresponding counts on the y-axis. 

One can observe that the colors of the cars are rather traditional with black, silver, grey, white and 

blue making up the majority. Though, the number of colorful cars, e.g. red, green or dark-red is 

not insignificant. 

The distribution of fuel_type shows a similar picture than transmission. diesel and petrol occur 

roughly equally alike and together make up around 94% of all fuel types. Interestingly, among the 

2 million cars there are only 57 electric ones. This can be explained by the fact that otomoto is a 
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used-car platform and that electric vehicles are rather new. Hence, it is unlikely that they are already 

sold on used-car platforms. 

 

Figure 12: Bar plots for number of cars by color and fuel_type 
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Figure 13 is a regression plot, where vehicle_year is binned into 60 bins and each price is allocated 

into one bin. Then, the median of all prices within a bin were plotted as a scatter point. The points 

are widely scattered until around 1935, mainly due to a low number of cars from these years and 

because cars of this age are considered as old timers and thus, have a higher price. The median 

price then steadily decreases until a tipping point around 1998. From thereon, the median prices 

steadily increase, with big jumps from 2016 to 2019. 

 

Figure 13: Regression-Scatter plot for binned years (x-axis) and local_gross_price (y-axis) 
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Figure 14 below illustrates the price difference for the top 20 makes (by number of cars). For each 

car of a top 20 make, the z-score is computed. Then, the z-scores of all cars from a top 20 make 

were averaged. The three German brands mercedes-benz, bmw and audi are the most expensive 

cars with volvo as number four. Because these four brands are much more expensive than an 

average top 20 make car, most brands have a red bar, indicating that their average price is below 

the average of all top 20 make cars. 

 

Figure 14: Diverging bar chart showing local_gross_price differences for top 20 makes with most cars 
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Figure 15 below is similar to figure 14 above, but instead of price, mileage is compared amongst 

the top 20 makes. The methodology behind calculating the z-scores is identical. German cars again 

dominate with 5 out of the top 6 brands. Asian cars, on average, have a lower mileage with the 

brands kia, hyundai, suzuki and Nissan ranking at the bottom. 

 

Figure 15: Diverging bar chart showing mileage differences for top 20 makes with most cars 
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The graph below (Figure 16) is a heatmap representing the Pearson correlations between all 

numerical features in the dataset. The most important correlations are in the bottom row, because 

a high correlation with the label local_gross_price indicates that the feature is a good predictor to 

explain the variance of local_gross_price. Indeed, the correlations with engine_power, mileage 

and vehicle_year are 0.59, -0.42 and 0.51, respectively. This intuition is also confirmed by the 

SHAP summary plot presented in the main part of this work, where these three features are deemed 

as very important for explainability of local_gross_price.  

 

Figure 16: Heatmap (Pearson correlation) for all numerical (excluding binary categorical) features 

 

The last figure of the EDA is presented below. Figure 17 has two subplots, with vehicle_year on 

the x- and engine_power on the y-axis. In the first subplot, the median engine power for each of 

the top 10 makes is plotted as a scatter point. Up until around 2000, the scatter points are distributed 

without any clear structure. From 2000 on, this changes as the median engine power for all makes 

slowly increases and converges. Car producers are hence producing, regarding engine power, more 

and more similar cars. 
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With respect to the second subplot, illustrating the mean engine power per make, the same pattern 

can be observed. In addition, two different groups are emerging, colored in orange and green. Here, 

the rate of engine power increase is slightly higher, meaning that there is a significant number of 

cars with very high engine power. It seems that producers focus on either the lower or higher engine 

power group and streamline their production.  

 

Figure 17: Scatterplots with vehicle_year (x-axis) and engine_power (y-axis). Colors represent top 10 makes with 

most cars. First subplot represents median engine_power, second subplot the mean 
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D – Decision Tree 

Figure 18 represents a decision tree of a dataset only containing the features vehicle_year, make 

and engine_power. The root node is split on vehicle_year with the criteria <= 2009.50. Depending 

on vehicle_year, the next split is then conducted on either engine_power <= 125.50 or vehicle_year 

<= 2016.50. Although make is a string categorical feature, it appears in numerical values, because 

LightGBM performs transformations under the hood. The leaves contain the final prediction of the 

tree. E.g. the value of leaf 0 is -898.35. In case a car ends up in this leaf (if vehicle_year <= 2009.50 

and engine_power <=125.50), 898.35 is deducted from the overall prediction of all trees. 

 

Figure 18: Decision Tree of a LightGBM model for a reduced dataset with only three features. 
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E – Search space and hyperparameters 

Table 2 below shows the search space for the first Hyperopt run. 

Name Data type Minimum Maximum Step size Distribution 

bagging_fraction float 0.5 0.95 0.025 uniform 

bagging_freq Int 1 6 1 uniform 

bin_construct_sample_cnt int  10,000 300,000 10,000 uniform 

cat_l2 float 6 14 0.25 uniform 

cat_smooth float 6 14 0.25 uniform 

cegb_tradeoff float 0.93 1.0 0.01 uniform 

feature_fraction float 0.5 0.925 0.025 uniform 

lambda_l1 float 0.1 1.0 0.05 uniform 

lambda_l2 float 0.1 1.0 0.05 uniform 

learning_rate float 0.05 0.15 0.005 uniform 

min_sum_hessian_in_leaf float 0.06 0.18 0.01 uniform 

min_data_in_leaf int 6 40 2 uniform 

n_estimators int 50 100 10 uniform 

num_leaves int 3400 6400 200 uniform 
Table 2: Search space for first Hyperopt run 

Below, the full result of the first Hyperopt run with the search space from Table 2 is shown 

(Figure 19). The best loss achieved is an MdAPE of 7.97%. 
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Figure 19: Scatterplot for the distribution of the hyperparameters during a Hyperopt run no. 1 
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Table 3 below shows the search space for the second Hyperopt run: 

Name Data type Minimum Maximum Step size Distribution 

bagging_fraction float 0.75 0.925 0.025 uniform 

bagging_freq Int 4 6 1 uniform 

bin_construct_sample_cnt int  10,000 150,000 10,000 uniform 

cat_l2 float 11 16 0.25 uniform 

cat_smooth float 5 10 0.2 uniform 

cegb_tradeoff float 0.97 1.0 0.01 uniform 

feature_fraction float 0.75 0.925 0.025 uniform 

lambda_l1 float 0.1 0.5 0.01 uniform 

lambda_l2 float 0.5 0.85 0.01 uniform 

learning_rate float 0.085 0.13 0.005 uniform 

min_sum_hessian_in_leaf float 0.12 0.20 0.01 uniform 

min_data_in_leaf int 15 30 1 uniform 

n_estimators int 80 120 10 uniform 

num_leaves int 5000 6400 100 uniform 
Table 3: Search space for second Hyperopt run 

Below, the full result of the second Hyperopt run with the search space from Table 3 is shown 

(Figure 20). The best loss achieved is an MdAPE of 7.92. 
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Figure 20: Scatterplot for the distribution of the hyperparameters during a Hyperopt run no. 2 
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Table 4 below shows the search space for the last Hyperopt run: 

Name Data type Minimum Maximum Step size Distribution 

bagging_fraction float 0.80 0.90 0.025 uniform 

bagging_freq Int 4 4 - - 

bin_construct_sample_cnt int  50,000 130,000 10,000 uniform 

cat_l2 float 13 15.5 0.1 uniform 

cat_smooth float 6.5 10 0.1 uniform 

cegb_tradeoff float 0.97 0.98 0.005 uniform 

feature_fraction float 0.80 0.925 0.025 uniform 

lambda_l1 float 0.3 0.5 0.025 uniform 

lambda_l2 float 0.7 0.95 0.025 uniform 

learning_rate float 0.1 0.125 0.005 uniform 

min_sum_hessian_in_leaf float 0.11 0.16 0.01 uniform 

min_data_in_leaf int 15 25 1 uniform 

n_estimators int 80 120 10 uniform 

num_leaves int 5500 6400 50 uniform 
Table 4: Search space for the third Hyperopt run 

Below, the full result of the third Hyperopt run with the search space from Table 4 is shown 

(Figure 21). The best loss achieved is an MdAPE of 7.9%. 
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Figure 21: Scatterplot for the distribution of the hyperparameters during a Hyperopt run no. 3 
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The final values and an explanation (LightGBM documentation, see References) for the 

hyperparameters are in Table 5 below. The table also includes the parameters alpha, 

early_stopping_round, max_depth, metric, objective and seed, which are all fixed to a certain 

value. 

Name Final value Explanation 

bagging_fraction 0.9 will randomly select part of data without resampling 

bagging_freq 4 frequency for bagging, performs bagging at every kth iteration 

bin_construct_sample_cnt 60,000 number of data that sampled to construct histogram bins 

cat_l2 14.1 L2 regularization in categorical split 

cat_smooth 7.1 
can reduce the effect of noises in categorical features, especially for 

categories with few data 

cegb_tradeoff 0.98 cost-effective gradient boosting multiplier for all penalties 

feature_fraction 0.925 will randomly select part of features on each iteration 

lambda_l1 0.325 L1 regularization 

lambda_l2 0.85 L2 regularization 

learning_rate 0.105 shrinkage/learning rate, eta 

min_sum_hessian_in_leaf 0.13 minimal sum hessian in one leaf 

min_data_in_leaf 17 minimal number of data in one leaf 

n_estimators 120 number of boosting iterations/decision trees 

num_leaves 6400 maximum number of leaves in one tree 

alpha 0.5 predicted quantile 

early_stopping_round 10 will stop training if metric doesn’t improve in last 10 rounds 

max_depth -1 limit the max depth for trees, -1 means no limit 

metric ‘quantile’ metric to be evaluated on the evaluation set 

objective ‘quantile’ objective of the LightGBM model 

seed 42 ensure reproducibility 
Table 5: Hyperparameters with corresponding value (chosen by Hyperopt) and explanation (extracted from 

Documentation) 
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F – SHAP plots 

In the following, three SHAP plots will be presented. Figure 22 shows the explanation for single 

prediction. The base value is the average model output over the training dataset that is passed to 

the SHAP explainer (equal to explainer.expected_value). Features that push the prediction higher 

are colored in red, and those pushing the prediction lower are colored in blue. The output value is 

the prediction for this specific car. vehicle_year with a value of 2013.0 is rather new compared to 

other cars and thus pushes the prediction up by around 6,000 Zł. Mileage on the other hand is 

relatively high (301,000) and causes a decrease in value of around 10,000. It is interesting to note 

that feature interaction really matters. A vehicle_year value of 2013.0 not always by circa 6,000. 

The effect on the prediction depends on the values of the other features. 

 

Figure 22: SHAP Force Plot explaining a single prediction 
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Figure 23 below is a feature importance bar chart for the 20 most influential features. On the y-axis 

are the features and on the x-axis are the mean absolute SHAP values. They stand for the average 

impact on model output, i.e. if the mean absolute SHAP value for vehicle_year is 17,500, then, on 

average, vehicle_year increases or decreases the prediction by 17,500. One can observe that 

vehicle_year by far is the most important predictor with a mean absolute SHAP value of around 

19,000. engine_power and mileage, also numerical features, lie in between 5,000 and 7,500. Make 

and model are the first string categorical features and have mean absolute SHAP values of around 

3,000. The overall conclusions are that only a handful of features determine the price of a car and 

that the heatmap (Figure 16) correctly predicted the most important (numerical) predictors. 

 

Figure 23: Bar Plot illustrating the feature importance, features on the x-axis and mean absolute SHAP values 

on the y-axis 
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Figure 24 below shows the full summary plot of Section 4 of the main part of this work. 

 

Figure 24: Summary plot for the20 most important features 
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G – Comparison to Baseline Visualizations 

The first plot (Figure 25) compares the performance of the three LightGBM models with optimized 

hyperparameters but trained with different features. One model is trained with the features selected 

by the Boruta algorithm, one is trained with all features and one only with the basic features. 

The second plot (Figure 26) on the other hand illustrates the performance of the XGBoost and 

random forest models. 
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Figure 25: Comparison of performance of three LightGBM models with different features (Boruta vs All vs 

Basic) 
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Figure 26: Comparison of performance of XGBoost and random forest models 


