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The rising incidence and mortality rate associated with the metastatic ability of
cutaneous melanoma represent a major public health concern. Cutaneous melanoma
is one of the most invasive human cancers, but the molecular mechanisms are
poorly understood. Moreover, currently available therapies are not efficient in avoiding
melanoma lethality. In this context, new biomarkers of prognosis, metastasis, and
response to therapy are necessary to better predict the disease outcome. Additionally,
the knowledge about the molecular alterations and dysregulated pathways involved
in melanoma metastasis may provide new therapeutic targets. Members of the Ras
superfamily of small GTPases regulate various essential cellular activities, from signaling
to membrane traffic and cytoskeleton dynamics. Therefore, it is not surprising that they
are differentially expressed, and their functions subverted in several types of cancer,
including melanoma. Indeed, Ras small GTPases were found to regulate melanoma
progression and invasion. Hence, a better understanding of the mechanisms regulated
by Ras small GTPases that are involved in melanoma tumorigenesis and progression
may provide new therapeutic strategies to block these processes. Here, we review the
current knowledge on the role of Ras small GTPases in melanoma aggressiveness
and the molecular mechanisms involved. Furthermore, we summarize the known
involvement of these proteins in melanoma metastasis and how these players influence
the response to therapy.

Keywords: ras Small GTPases, biomarkers, metastasis, cancer progression, cancer therapies, cutaneous
melanoma

Abbreviations: Arf, ADP-ribosylation factor; Arl, Arf-like; Akt, protein kinase B; AurkA, Aurora kinase; BMP, bone
morphogenetic protein; BRAF, V-raf murine sarcoma viral oncogene homolog B1; CREPT, cell-cycle-related and expression-
elevated protein in tumor; CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; EPHB4, ephrin type-B receptor 4;
ERK, extracellular-signal-regulated kinase; FDA, Food and Drug Administration; GAP, GTPase-activating proteins; GDI,
guanosine nucleotide dissociation inhibitors; GDP, guanosine diphosphate; GEF, guanine nucleotide exchange factors; GTP,
guanosine-5′-triphosphate; Hras, Harvey rat sarcoma; Kras, Kirsten rat sarcoma; MEK, mitogen-activated protein kinase;
MITF, microphthalmia-associated transcription factor; MMP, metalloproteinases; NF2, neurofibromatosis type 2; Nras,
neuroblastoma rat sarcoma; OS, overall survival; PAK, P21-activated kinase; PD-1, programmed cell-death protein 1; PFS,
progression free survival; PI3K, phosphatidylinositol 3-kinase; RAF, rapidly accelerated fibrosarcoma; Rho, Ras homologous;
Ran, Ras-like nuclear; Rab, Ras-like proteins in brain; Ras, Rat Sarcoma; ROCK, RHO kinase; UV, ultraviolet; VEGF-C,
vascular endothelial growth factor-C.
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INTRODUCTION

Melanoma derives from the malignant transformation of
melanocytes, which are melanin-producing cells located in the
epidermis, eyes, meninges, esophagus, and mucous membranes
(Ali et al., 2013). According to the site of origin of this
malignancy, three main subtypes of melanoma are defined:
cutaneous, uveal, and mucosal (Kuk et al., 2016). While
cutaneous melanoma accounts for 90% of all melanoma
cases, uveal and mucosal melanomas are relatively rare
(Leonardi et al., 2018).

Cutaneous melanoma, herein referred to as melanoma,
represents the most lethal skin neoplasm, leading to 60–75% of
the mortality rate related to skin malignancies, even though it
accounts for only 5% of all skin tumors (Bandarchi et al., 2010;
Potrony et al., 2015; Esteva et al., 2017). Despite the efforts to
prevent and detect melanoma early on, the incidence of this type
of cancer has been increasing worldwide (Guy et al., 2015; Siegel
et al., 2019). Presently, the staging of melanoma (I–IV) is based
on tumor thickness, presence or absence of ulceration, lymph
node involvement, and distant metastasis (Zbytek et al., 2008).
Essentially, stage I and II melanoma show no evidence of regional
or distant metastasis, in contrast to stage III and IV melanoma,
which are characterized by lymph node and distant metastasis,
respectively (Mohr et al., 2009). Early-stage melanoma is often
associated with a favorable prognosis, with a 5-year survival rate
of up to 90% (Luke et al., 2017; Allemani et al., 2018). On the
other hand, stage IV melanoma is characterized by a 5-year
survival rate of only 16% (Luke et al., 2017; Allemani et al., 2018;
Cronin et al., 2018).

The most aggressive melanomas spread from the primary
tumor site to surrounding tissues and frequently demonstrate
a tendency to resist to available therapies (reviewed in Luís
et al., 2020). Indeed, the high mortality rate of melanoma
patients is mainly associated with its elevated metastatic ability
(Zbytek et al., 2008). Currently, the treatment of advanced-
stage melanoma is based on surgical excision, targeted therapies,
and immunotherapies. BRAF and MEK inhibitors are targeted
therapies approved by the FDA for the treatment of patients with
BRAF-mutant melanomas (Grimaldi et al., 2017). The treatment
of metastatic melanoma patients with highly selective BRAF-
inhibitors improves both overall and progression-free survival
(OS and PFS) (Sosman et al., 2012; Wong and Ribas, 2016;
Domingues et al., 2018). However, only half of these patients
demonstrate a positive response to targeted therapies and this
response tends to be limited over time (Eroglu and Ribas, 2016).

The immunotherapies also available for advanced-stage
melanoma are based on CTLA-4 and PD-1 blockers, which
confer a survival benefit and more durable responses, compared
to targeted therapies (Luke et al., 2017; O’Donnell et al., 2019;
Yu et al., 2019). However, primary resistance occurs in 40–65
and 70% of metastatic melanoma patients submitted to anti-PD-
1 and anti-CTLA-4 therapies, respectively. Moreover, from the
initial responders, around 20–30% develop secondary resistance
(Gide et al., 2018). Recently, it was shown in stage III melanoma
patients that the neoadjuvant treatment with immunotherapies
and targeted therapies is associated with higher rates of OS,

disease, recurrence, and metastasis free-survival, resulting in
a more efficient therapeutic approach to impair melanoma
progression (Eggermont et al., 2016, 2018; Long et al., 2017;
Weber et al., 2017; Maio et al., 2018; Song et al., 2019).

Despite the growing understanding of melanoma biology
and the improvement in its treatment over the last decades,
the genetic basis of melanoma metastasis is unclear (Liu and
Sheikh, 2014). Consequently, the unveiling of signaling pathways
and complex interactions contributing to melanoma progression
could provide relevant knowledge for the development of novel
and efficient therapies (Damsky et al., 2011).

Rat sarcoma (Ras) superfamily of small guanosine-5′-
triphosphate (GTP)ases regulate many essential cellular activities
such as cell signaling, membrane trafficking and cytoskeleton
dynamics (Vetter and Wittinghofer, 2001; Zhen and Stenmark,
2015; Casalou et al., 2016, 2019; Toma-Fukai and Shimizu,
2019). Although Ras small GTPases control crucial physiological
functions in cell homeostasis, several superfamily members are
involved in the aberrant activation of signaling cascades that play
a central role in a broad spectrum of human diseases, including
cancer (Aspenström, 2018; Casalou et al., 2020; Gopal Krishnan
et al., 2020). In recent years, a growing interest in the functions of
small GTPases in the context of cancer has emerged. Considering
the multiplicity of cellular processes in which these proteins are
involved, it is essential to understand their usefulness as potential
biomarkers and/or therapeutic targets. Notably, in melanoma, the
dysregulated expression and/or activity of these proteins has been
associated with cancer cell migration and invasion (Wong and
Ribas, 2016; Liu W.N. et al., 2017; Liu et al., 2019; Wen et al.,
2017; Huang et al., 2018). Therefore, the normal functions of
small GTPases can be subverted by melanoma cells to spread
and invade, leading to metastasis (Wong and Ribas, 2016; Huang
et al., 2018). As such, melanoma, which is one of the most invasive
types of cancer, is a suitable and useful model to explore the
mechanisms underlying the roles of Ras superfamily members in
cancer aggressiveness.

Here, we review the current evidence supporting the role
of several Ras small GTPases in melanoma aggressiveness,
progression, and response to therapy. Indeed, a considerable
number of proteins from this superfamily are dysregulated in
melanoma, mostly being over-activated and implicated in various
molecular networks involved in melanoma growth, metastasis,
and resistance to therapy.

RAS SUPERFAMILY OF SMALL GTPases:
NOMENCLATURE AND REGULATION

Ras superfamily members regulate cytoskeleton remodeling,
membrane trafficking, cell signaling, and nuclear transport, being
essential for several cellular processes such as cell proliferation,
differentiation and motility (Vetter and Wittinghofer, 2001;
Zhen and Stenmark, 2015; Casalou et al., 2016, 2019; Toma-
Fukai and Shimizu, 2019). Interestingly, Ras was the first small
GTPase identified (Feinberg et al., 1983) and there are now more
than 150 known members of this superfamily, based on their
sequence homology and biochemical and functional similarities
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(Wennerberg et al., 2005; Rojas et al., 2012; Liu W.N. et al., 2017).
The Ras superfamily comprises 5 families: Ras, Rho, Rab, Ran,
and Arf (Rojas et al., 2012).

A distinguishing feature of these proteins is that they alternate
between an inactive GDP-bound and an active GTP-bound state
(Cherfils and Zeghouf, 2013; Lin et al., 2018; Toma-Fukai and
Shimizu, 2019). This molecular switch is mediated by GAPs,
responsible for GTP hydrolysis to GDP, and GEFs, which catalyze
the exchange of GDP to GTP (Bos et al., 2007) (Figure 1). Besides
these two regulators, GDIs are a distinct class of proteins that
interact with small GTPases, preventing GDP dissociation and
maintaining these proteins in their inactive form (Rak et al.,
2003). In general, active small GTPases localize to the plasma
membrane or intracellular membranes; when these proteins are
inactive, they are not membrane-bound and localize to the
cytoplasm (Jackson and Bouvet, 2014; Kim et al., 2018; Goryachev
and Leda, 2019) (Figure 1). GEFs, GAPs, and GDIs are essential
regulators of small GTPase activity, allowing their spatiotemporal
control and activation.

RAS FAMILY MEMBERS INVOLVED IN
MELANOMA GROWTH,
AGGRESSIVENESS, AND RESPONSE TO
THERAPY

The Ras family was the first from the superfamily to be
described, comprising approximately 36 members, divided into
six subfamilies: Ras, Ral, Rap, Rad, Rheb, and Rit (Wennerberg
et al., 2005; Goitre et al., 2014). Notably, the Ras subfamily
includes 3 isoforms: Hras, Nras, and Kras, described several
decades ago due to their oncogenic activation in several tumors
(reviewed in Hobbs et al., 2016; Kano et al., 2016; Zhou et al.,
2016). Previous studies demonstrated that 27% of all human
cancers contain missense gain of function mutations in RAS
genes (Prior et al., 2012; Hobbs et al., 2016).

Indeed, 28% of all melanoma cases have mutations in the
NRAS gene, being after BRAF mutations the second most
frequent oncogenic alteration in this type of cancer (Akbani
et al., 2015). More than 80% of NRAS mutations occur in
codon 61 and induce conformational changes in NRAS motifs,
blocking GTP hydrolysis by GAPs and promoting the prevalence
of GTP-bound NRAS (Akbani et al., 2015; Parker and Mattos,
2018). Consequently, the constitutive activation of these proteins
triggers the aberrant activation of Ras/RAF/MEK/ERK and
PI3K/Akt signal transduction pathways, which regulate cell
proliferation, growth, differentiation, and survival (McCubrey
et al., 2015; Santos and Crespo, 2018) (Figure 2). Additionally,
NRAS upregulation was verified in melanoma samples, when
compared to normal skin tissues (Liu S. et al., 2017). As
expected, NRAS silencing in melanoma cell lines significantly
reduces cell proliferation, migration, and invasion and promotes
cell apoptosis (Table 1) (Liu S. et al., 2017). Consistently,
in vivo experiments showed a decrease in melanoma growth
after NRAS depletion, associated with the suppression of
Ras/RAF/MEK/ERK and PI3K/Akt pathways (Liu S. et al., 2017).

Therefore, the overactivation of these signaling pathways
promotes the uncontrolled proliferation of melanoma cells,
contributing to melanoma growth and aggressiveness (Yajima
et al., 2012; Liu S. et al., 2017).

NRAS mutations are frequently detected in elderly melanoma
patients, and they are preferentially found in the most aggressive
histological subtype of melanoma, i.e., nodular melanoma,
compared to the other histological subtypes (Lee et al., 2011;
Hacker et al., 2013). Some authors reported that NRAS mutations
are not prognostic factors for metastatic melanoma patients
(Carlino et al., 2014; Sperduto et al., 2017). Both studies
focused on a subset of metastatic melanoma patients with brain
metastases and no MAPK inhibitor therapy, respectively (Carlino
et al., 2014; Sperduto et al., 2017). Nevertheless, NRAS mutational
status was described as a prognostic factor of shorter OS for
stage IV non-uveal metastatic melanoma and primary invasive
melanoma patients (Devitt et al., 2011; Jakob et al., 2012). The
differences found between these studies could be explained by
sampling size (varying between 193 and 823 patients) and by
the subset of patients included in each study (Devitt et al.,
2011; Jakob et al., 2012; Carlino et al., 2014; Sperduto et al.,
2017). In this context, it would be important to clarify the
role of these mutations in the prognosis of melanoma patients
by staging to understand whether NRAS mutations could be
important biomarkers to predict the behavior of this disease.
Additionally, NRAS mutations were categorized as a type of
mutation characteristic of intermediate skin lesions (Shain et al.,
2015). In contrast, in benign lesions, these alterations are absent,
suggesting their essential role during melanoma progression
(Table 1) (Shain et al., 2015). Presently, there is evidence that
NRAS mutations are associated with thicker melanomas, elevated
mitotic rates, and a higher propensity for lymph node metastasis,
highlighting the importance of these alterations in the clinical
setting (Devitt et al., 2011; Ellerhorst et al., 2011; Heppt et al.,
2017). Thus, NRAS mutational analysis should be included in
melanoma routine diagnosis, given its relevance as a biomarker
of melanoma aggressiveness and easy evaluation.

Considering that NRAS mutations are present in almost
one third of melanoma cases, a successful targeted therapy
would be expected by now. However, despite the enthusiasm,
the therapeutic strategies developed so far have been mainly
focused on KRAS and no effective NRAS targeted therapies have
been approved (Kirchberger et al., 2018). Interestingly, MEK
inhibitors have demonstrated a modest improvement in the PFS
of NRAS-mutant melanoma patients even when compared with
chemotherapy with dacarbazine (Ascierto et al., 2013; Shain
et al., 2015; Kirchberger et al., 2018). MEK-targeted therapies
involve cell-cycle arrest, which is in agreement with the in vivo
studies showing melanoma growth suppression in mice treated
with MEK inhibitors (Vogel et al., 2015). Moreover, according
to one study, patients with NRAS-mutant melanomas would
benefit from the administration of anti-CTLA-4 and anti-PD-
1 therapies, since they demonstrated a better response to any
kind of immunotherapy and an improved PFS, compared to
patients with wild-type melanomas or BRAF-mutant melanomas
(Johnson et al., 2015). Additionally, this response tends to be
more stable and durable in NRAS-mutant melanoma patients,
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FIGURE 1 | Overview of Ras superfamily small GTPase regulation. Ras superfamily protein regulation mechanisms and downstream interaction with effectors, which
control cytoskeleton remodeling, membrane traffic, nuclear transport, and cell signaling. Guanine-nucleotide exchange factors (GEFs) and GTPase-activating
proteins (GAPs) are pivotal regulators for small GTPase activation and inactivation, respectively. Besides these two regulators, guanosine nucleotide dissociation
inhibitors (GDIs) are a distinct class of proteins that interact with small GTPases, preventing GDP dissociation and maintaining these proteins in their inactive form.
Guanosine triphosphate (GTP)-bound and guanosine diphosphate (GDP)-bound GTPases are represented in blue and brown, respectively. The small black curved
arrows represent the input and output of GDP and GTP during the cycles of GTPases activation and inactivation, as well as the release of the phosphate group. The
specific names of the membrane and receptors are not mentioned, because these proteins can be present in distinct organelles.

probably due to the higher levels of PD-L1 in these tumors
(Johnson et al., 2015). This finding reinforces the idea that NRAS
mutational analysis should be included in routine diagnosis as a
predictive biomarker of response to therapy, to select the group
of patients that would benefit more from the administration of
immunotherapies, even though specific therapeutic options do
not exist for NRAS-mutant melanoma patients.

Undoubtedly, Nras is the GTPase belonging to the Ras
superfamily with the most significant impact in melanoma.
However, Ral and Rap1 also play an important role in the
context of melanoma. RAL was described as an inducer of
proliferation in melanoma cell lines, even in the presence
of NRAS and/or BRAF oncogenic mutations (Mishra et al.,
2010; Zipfel et al., 2010) (Table 1). Likewise, RAP1 is
upregulated in melanoma cell lines and mediates melanoma
cell proliferation and invasion, contributing to resistance to
MAPK inhibitors (Hernández-Varas et al., 2011; Rodríguez
et al., 2017; Zhou et al., 2020) (Table 1). Moreover, RAP1
inhibition reduces melanoma cell adhesion and migration
by suppressing tumor cell extravasation and consequently

lung colonization in in vivo models (Freeman et al., 2010).
However, the molecular mechanisms by which RAL and
RAP1 influence cell proliferation and migration and their
respective prognostic value in melanoma patients have not
yet been explored. Overall, the imminent role of NRAS
mutations in melanoma aggressiveness and response to
therapy has been well established, although much is still
to discover about the impact of the remaining Ras family
members in melanoma pathophysiology and as putative
therapeutic targets.

RHO FAMILY MEMBERS INVOLVED IN
MELANOMA MIGRATION AND INVASION

The Rho family was the first to be associated with
cell migration (Hall, 2012). Indeed, the approximately
20 known members of this family were found to be
involved in actin cytoskeleton dynamics, membrane
traffic, cell polarity and tissue morphogenesis (Figure 2)
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FIGURE 2 | Schematic representation of the most important functions of Ras, Rho, Rab, Ran, and Arf family members. Ras proteins are mainly involved in the
activation of the Ras/RAF/MEK/ERK and PI3K-Akt signaling pathways, fundamental for cell survival, proliferation, and differentiation; receptor tyrosine kinase (RTK)
(1). Rho family members are essentially associated with actin cytoskeleton remodeling, pivotal for cell migration and spreading (2). Rab proteins are key in ensuring
the specificity of vesicular transport. Particularly, they also have an important role in the formation, distribution, and secretion of melanosomes from melanocytes and
melanoma cells to keratinocytes. (3). Ran proteins regulate the transport of cargoes between nucleus and cytoplasm (4). Arf family proteins are key regulators of
membrane traffic, controlling vesicle budding, tethering, and actin cytoskeleton organization (5).

(Jaffe and Hall, 2005; Heasman and Ridley, 2008; Sadok and
Marshall, 2014; Ridley, 2015). The structural architecture
and the continuous cytoskeleton remodeling are crucial for
cell motility and adaptation to different microenvironments
(Sadok and Marshall, 2014).

In the last decades, the role of Cdc42, Rac, and RhoA,
the best-characterized members of this family, was extensively
explored in relation to melanoma cell motility (Haga and
Ridley, 2016). Specifically, these proteins are known to be
involved in two mechanisms of melanoma cell migration, the
amoeboid and mesenchymal types, which are interconvertible
(Friedl and Wolf, 2003). Amoeboid migration is the preferential
motility type shown by cells when they traverse the extracellular
matrix. During this process, cells display a round shape (Sahai
and Marshall, 2003). Moreover, it is mediated by RhoA and
ROCK, which induce actomyosin contractility, essential for cell
locomotory force against the microenvironment (Sahai and
Marshall, 2003; Wilkinson et al., 2005). In contrast, cells present
an elongated morphology during mesenchymal migration, which
is a Rac-dependent and RhoA-independent process (Sahai and
Marshall, 2003; Stengel and Zheng, 2011). Furthermore, the
expression of Cdc42 constitutively active mutants induces cells
to adopt a rounded shape increasing melanoma cell invasion and
consequently allowing a mesenchymal–amoeboid transition. In
contrast, Cdc42 depletion and expression of dominant negative
mutants impair mesenchymal migration (Gadea et al., 2008)
(Table 1). As such, Cdc42 is involved not only in amoeboid
migration regulation but also in controlling mesenchymal

migration. Nevertheless, the mechanisms involved are not known
(Gadea et al., 2008). As melanoma cells can alternate between
both types of migration in order to adapt to microenvironment
changes (Friedl and Wolf, 2003), the targeting of both migration
modes is likely to be required to block melanoma metastasis
(Gadea et al., 2008).

Furthermore, CDC42 expression is upregulated in nodular
melanoma patients who died from metastatic disease, compared
to disease-free patients (Tucci et al., 2007). Additionally, a
positive association between CDC42 expression and thickness
was verified in metastatic melanoma patients (Tucci et al., 2007).
Accordingly, CDC42 expression was suggested as a prognostic
marker of shorter OS in melanoma patients (Tucci et al.,
2007; Stengel and Zheng, 2011). Interestingly, a recent study
showed that melanoma cell lines resistant to a BRAF inhibitor
(PLX4032) display increased CDC42 activity compared to non-
resistant melanoma cells (Mohapatra et al., 2019) (Table 1).
As such, pharmacological drugs capable of interfering with
CDC42 activity could induce conformational alterations in the
actin cytoskeleton, impairing the invasiveness of BRAF-resistant
melanoma cells (Mohapatra et al., 2019).

Despite mutations in Rho GTPase-encoding genes
representing uncommon events, it was described that RAC1-
activating mutations are present in approximately 4–9% of
melanomas (Krauthammer et al., 2012; Araiza-Olivera et al.,
2018; del Maldonado and Dharmawardhane, 2018). Particularly,
the P29S substitution is the most common RAC1 mutation found
in malignant melanomas, inducing RAC1 spontaneous activation
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TABLE 1 | Summary of the known roles of RAS superfamily small GTPases in cutaneous melanoma progression, resistance to therapy and clinical relevance.

Family Member
name

Expression Effect on cutaneous melanoma References

Ras NRAS ↑ No consensus regarding prognostic value Devitt et al., 2011; Jakob et al., 2012; Carlino et al.,
2014; Sperduto et al., 2017

Absent in benign lesions Shain et al., 2015

Increased proliferation, invasion, and migration Yajima et al., 2012; Liu S. et al., 2017

Thicker melanomas, elevated mitotic rate Devitt et al., 2011; Ellerhorst et al., 2011; Heppt et al.,
2017

RAL ↑ Tumorigenic growth Zipfel et al., 2010

Malignant phenotypes Mishra et al., 2010

RAP1 ↑ Melanoma growth and invasion Hernández-Varas et al., 2011; Rodríguez et al., 2017

Resistance to MAPK inhibitors Zhou et al., 2020

Rho CDC42 ↑ Mesenchymal–amoeboid transition Gadea et al., 2008

Poor prognostic factor Tucci et al., 2007

Resistance to BRAF inhibitors Mohapatra et al., 2019

RAC1 ↑ Increased melanoma thickness, mitotic rate and
ulceration

Mar et al., 2014

Melanoma growth and invasion Revach et al., 2016; Mohan et al., 2019

Promotes tumorigenesis Lionarons et al., 2019

Resistance to BRAF and MEK inhibitors Watson et al., 2014; Revach et al., 2016; Mohan et al.,
2019

Modulates melanoma immunogenicity Vu et al., 2015

RHOA ↑ Regulates cell proliferation, migration, invasion Guo et al., 2016; Wen et al., 2017; Liu et al., 2019

UV protection of melanoma cells Espinha et al., 2016

Smaller tumors and absence of metastases Kaczorowski et al., 2019

Prognosis biomarker of prolonged OS Kaczorowski et al., 2019

RAB3A N.A. Melanosome transport and distribution Araki et al., 2000

RAB4A N.A. Production of pro-Cathepsin L Barbarin and Frade, 2011

RAB5A ↑ Melanoma migration, invasion, and metastasis Silva et al., 2016

RAB7 ↑ Upregulated in earlier stages of tumorigenesis Alonso-Curbelo et al., 2014

Increased proliferative rate Alonso-Curbelo et al., 2014

↓ Low expression in more aggressive phenotypes Alonso-Curbelo et al., 2014

Expression pattern contributes for tumorigenesis and
metastasis regulation

Alonso-Curbelo et al., 2014, 2015

Rab RAB8 N.A. Melanosome transport and distribution Chakraborty et al., 2003

RAB17 N.A. Melanosome transport and distribution Beaumont et al., 2011

Melanoma growth Gilot et al., 2017

RAB22A ↑ Prognostic factor of poor outcome Su et al., 2016

RAB27A ↑ Melanosome distribution Hume et al., 2001

Regulates cell invasion and metastasis Guo et al., 2019

Prognostic biomarker of poor outcome Guo et al., 2019

RAB38 ↑ Regulates cell invasion and metastasis Huang et al., 2018

Prognostic biomarker of poor outcome Huang et al., 2018

Ran RAN ↑ High levels in metastatic melanoma Pathria et al., 2012; Caputo et al., 2015

Arf ARF6 ↑ Increased metastatic disease burden Tague et al., 2004; Muralidharan-Chari et al., 2009;
Hongu et al., 2016; Wong and Ribas, 2016

Promotes lung colonization Grossmann et al., 2013; Hongu et al., 2016; Wong and
Ribas, 2016

Early and late stages of melanoma progression Grossmann et al., 2013; Wong and Ribas, 2016

Promotes lymphangiogenesis Lin et al., 2017

↑, upregulated; ↓, downregulated; N.A., data not available.

through the constitutive GDP/GTP nucleotide exchange (Hodis
et al., 2012; Davis et al., 2013). From a clinical point of view,
RAC1P29S mutation is associated with increased melanoma
thickness, high mitotic rate, ulceration, and the occurrence of

the nodular melanoma subtype (Mar et al., 2014) (Table 1).
Remarkably, the increased mitotic rate observed is due to the
formation of lamellipodia, which are dependent on continuous
actin polymerization and activate proliferative signaling cascades
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by inhibiting the neurofibromatosis type 2 (NF2)/Merlin tumor
suppressor (Mohan et al., 2019). Consequently, NF2/Merlin
inhibition by phosphorylation of the Rac effector PAK promotes
melanoma cell resistance to MAPK inhibitors (Mohan et al.,
2019) (Table 1). Consistently, the ectopic expression of RAC1P29S

in melanoma cell lines increases resistance to BRAF and MEK
inhibitor therapies (Van Allen et al., 2014; Watson et al., 2014;
Araiza-Olivera et al., 2018). Indeed, using a mouse xenograft
model, the authors observed that this mutation enhances
melanoma growth and invasion and confers drug resistance
against BRAF and MEK kinase inhibitors (Revach et al., 2016;
Mohan et al., 2019) (Table 1). More recently, using transgenic
mouse models, it was also demonstrated that Rac1P29S can
cooperate with BRAFV600E to promote melanoma tumorigenesis
(Lionarons et al., 2019). Besides triggering molecular cascades
that are pivotal for melanoma aggressiveness and response
to therapy, RAC1P29S can also alter the immune background
of these tumors. Accordingly, an increased PD-L1 expression
was found in patients with RAC1P29S mutant melanomas,
compared with wild-type RAC1 melanoma patients (Vu et al.,
2015) (Table 1). Hence, these studies suggest that the P29S
mutation can modulate melanoma immunogenicity to suppress
the immune response against the tumor. Considering the impact
of RAC1P29S mutation in melanoma, it would be interesting
to assess its relevance as a predictive biomarker of response to
anti-PD-1 therapies, since it could select the patients who would
most benefit from this therapy (Vu et al., 2015).

In addition to CDC42 and RAC1 GTPases, RHOA is also
part of molecular networks crucial for the control of melanoma
proliferation, migration, and invasion (Wen et al., 2017). Indeed,
it was described that CREPT promotes melanoma progression via
RHOA upregulation and activation (Liu et al., 2019). Likewise,
the inhibition of the RHOA GEF-H1 by a microRNA (miR-194)
suppresses RHOA activation and consequently melanoma cell
proliferation and invasion (Guo et al., 2016).

Recently, the role of RHOA in the effects caused by UV
radiation in metastatic melanoma cells was assessed. For that
purpose, RHOA was constitutively expressed or silenced in
melanoma cells and subsequently the cells were exposed to UV.
RHOA silencing was found to induce an increase in melanoma
sensitivity to UV, increasing the number of DNA damages caused
and dramatically reducing melanoma cell motility and invasion
(Espinha et al., 2016). As such, RHOA can regulate DNA repair
mechanisms, playing a central role in protection against UV
radiation, by mediating genomic stability of melanoma cells
(Espinha et al., 2016) (Table 1). Hence, this protein was suggested
as a promising therapeutic target to sensitize melanoma cells
to genotoxic damages (Espinha et al., 2016). Nevertheless,
in the clinical context, immunohistochemical analyses showed
that there is an increase in RHOA expression associated with
smaller tumors and an increase of tumor-infiltrating lymphocytes
(Kaczorowski et al., 2019) (Table 1). Furthermore, RHOA
expression is also correlated with the absence of metastases and
prolonged OS of melanoma patients (Kaczorowski et al., 2019).
In contrast to other published studies (Guo et al., 2016; Wen
et al., 2017), Kaczorowski et al. (2019) showed that RHOA might
have an antitumoral activity in primary melanomas. Despite the

reduced number of samples (n = 134), this is the first published
study to analyze RHOA expression in patient-derived melanoma
samples. Thus, the contradictory results could be explained by
the distinct methodological approaches and melanoma models
used, and the absence of a clear distinction between the impact
of RHOA expression on primary vs. metastatic melanoma.
Additionally, the results obtained could also be influenced by the
detection of other isoforms of Rho GTPases. Thus, further studies
employing murine models and using larger cohorts of patients
should be performed to clarify the impact of RHOA expression
in melanoma aggressiveness and progression.

Altogether, the studies described demonstrate that
cytoskeleton dynamics, controlled by Rho GTPases, plays a
critical role in cell signaling, which consequently dictates the
mechanisms of melanoma cell proliferation and motility. Hence,
cell morphology can be a key factor to promoting melanoma
cell growth and metastasis. Clinically, CDC42, RAC1, and
RHOA expression in patient samples can provide relevant
knowledge about melanoma thickness, ulceration, prognosis,
and drug resistance. Similar to RAS family proteins, the interest
in targeting RHO GTPases for melanoma patients treatment
is increasing, although few drugs passed beyond an earlier
preclinical stage (Lin and Zheng, 2015).

RAB FAMILY PROTEINS AND THEIR
ROLE IN MELANOMA METASTASIS AND
MICROENVIRONMENT MODULATION

Rab GTPases represent the largest evolutionary conserved
family within the Ras superfamily, containing almost 70
members described in humans (Wandinger-Ness and Zerial,
2014; Guadagno and Progida, 2019). Early studies demonstrated
that these proteins are present in almost all cell compartments
and ensure the specificity and directionality of membrane traffic
(Stenmark and Olkkonen, 2001; Zhen and Stenmark, 2015)
(Figure 2). Indeed, Rab proteins are known to regulate all steps of
membrane traffic, namely, vesicle formation, motility, tethering,
docking, and fusion (Bhuin and Roy, 2014) (Figure 2).

Rab proteins have been one of the families of the Ras
superfamily mostly studied (Guadagno and Progida, 2019).
However, their role in tumor progression emerged more
recently. A broad study using a directed proteomic quantification
approach evaluated the differential expression of Ras small
GTPases in primary and metastatic melanoma cell lines, in order
to establish a general profile of the most relevant ones (Huang
et al., 2018). Based on this, RAB27A and RAB38 were found
upregulated in metastatic melanoma, relative to the matched
primary melanoma cell lines derived from human samples
(Huang et al., 2018).

The localization of Rab27a to melanosomes and its role
in controlling the distribution of these melanin-containing
compartments in melanoma cells was described almost two
decades ago (Hume et al., 2001). Both Rab27a and Rab38
promote cell invasion, although the mechanisms used by each
one are distinct. On the one hand, RAB27A induces melanoma
invasion through the production of pro-invasive exosomes
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carrying out protein cargos such as EPHB4, Glypican1, and BMP
1, previously described as a pivotal protein for melanoma cell
motility (Yang et al., 2006; Aikawa et al., 2008; Peinado et al.,
2012; Guo et al., 2019, 2020). On the other hand, RAB38 regulates
melanoma cell invasion by increasing the expression and activity
of two MMPs, MMP-2 and -9 (Huang et al., 2018). This effect is
also mediated by the MITF, the master regulator of melanocyte
development, which leads to an increase in RAB38 expression in
metastatic melanoma (Huang et al., 2018). Considering the role
of these proteins in melanoma invasion and the observation that
RAB27A and RAB38 expression were associated with shorter OS
of melanoma patients, these GTPases were proposed as drivers
of melanoma metastasis (Huang et al., 2018; Guo et al., 2019)
(Table 1). Similarly, RAB22A expression is also a prognostic
factor of poor outcome in melanoma patients, showing an
increased expression in primary melanomas compared with
benign nevi (Su et al., 2016; Zhou et al., 2017). Notably, this
protein was associated with the proliferation, migration, and
invasion ability of melanoma cells, being proposed as a potential
therapeutic target in melanoma (Table 1).

Additionally, RAB7 has a relevant role not only in the earlier
stages of melanoma, regulating melanoma cell proliferation, but
also in the late stages of this disease (Alonso-Curbelo et al., 2014;
Zhao et al., 2017) (Table 1). Interestingly, RAB7 preferentially
accumulates in melanoma cell lines and samples compared to
other types of cancer, as part of a lysosomal-associated signature
(Alonso-Curbelo et al., 2014, 2015). Indeed, RAB7 regulates
lysosomal-associated proteolytic activity in melanoma cell lines.
However, immunohistochemical analysis of normal skin and
primary and metastatic melanoma tissues derived from patients
revealed that RAB7 expression levels are not constant during
melanoma progression (Zhao et al., 2017). In earlier stages of
melanoma development, this protein is upregulated (Zhao et al.,
2017). In contrast, when melanoma cells start to acquire a
more aggressive phenotype displaying invasive features, RAB7 is
found downregulated (Zhao et al., 2017). Therefore, low levels
of RAB7 expression in primary tumors are associated with an
increased risk of melanoma metastasis (Alonso-Curbelo et al.,
2014). The discovery of this melanoma cell-specific mechanism
suggests that RAB7 expression pattern can be important to
understand the mechanisms of melanoma aggressiveness and
metastasis (Table 1).

In addition to Rab27a, other Rab proteins such as Rab3a,
Rab8, and Rab17 are involved in melanosome transport and
distribution (Figure 2), including in melanoma cells, playing an
important function in the transfer of melanin from melanocyte
dendrites to keratinocytes (Araki et al., 2000; Chakraborty et al.,
2003; Beaumont et al., 2011) (Table 1). Despite being involved in
melanosome transport, RAB17 also enhances melanoma growth
in vivo (Gilot et al., 2017) (Table 1). Indeed, Rab proteins not
only are involved in several molecular mechanisms subverted
by cancer cells but also contribute for tumor microenvironment
modification, conferring appropriate conditions for melanoma
progression. For example, RAB4A expression directly affects
the production of pro-cathepsin L, a cysteine protease that
contributes for the resistance to complement-mediated cell
lysis in melanoma cells (Barbarin and Frade, 2011) (Table 1).

Hence, RAB4A upregulation promotes an increase in pro-
cathepsin L secretion, although the mechanisms by which this
occurs are unknown. Moreover, under hypoxia conditions, Rab5a
expression is upregulated and seems to be required for melanoma
migration, invasion, and metastasis in vivo (Silva et al., 2016),
although its prognosis value was not determined (Table 1).

Several studies have reported the dysregulation of Rab
proteins in melanoma, although few have yet elucidated the
molecular networks involved, which could be important to
identify new potential therapeutic targets (Huang et al., 2018).
It is widely accepted that exosomes are mediators of cell–cell
communication and the ones derived from tumor cells can
carry factors that induce malignant transformation (Maia et al.,
2018). Since the formation and delivery of exosomes is mediated
by Rab proteins, it is crucial to test their association with
metastasis molecular signatures to uncover effective biomarkers
of melanoma progression. In the clinical setting, these studies
would be of extreme relevance to understand whether there is
some correlation between the expression of RAB proteins and
melanoma thickness, ulceration, and metastasis.

DIFFERENTIAL EXPRESSION OF RAN
FAMILY PROTEINS DURING MELANOMA
PROGRESSION

The Ran family is composed by one single member in humans,
which is the most abundant small GTPase and is mainly found in
the interphase nucleus (Zheng, 2004; Wennerberg et al., 2005).
In contrast to the other families, Ran GTPase is specialized
in the transport of cargoes between the cytoplasm and the
nucleus through the nuclear pore complex (Güttler and Görlich,
2011) (Figure 2). The communication between these two cellular
compartments promotes the import of transcriptional factors
that are essential for genome transcription (Matchett et al., 2014).
Inside the nucleus, Ran GTPase is predominantly present in the
GTP-bound form, being essential to maintain the exportin–cargo
interaction, while in the cytoplasm, Ran is mainly found in the
GDP-bound form, required for the cargo release (Cavazza and
Vernos, 2016). The switch from GTP-bound to GDP-bound Ran
is required for the export of macromolecules to the cytoplasm,
by stabilizing the complex formed between the exportin and the
bound cargo (Kuersten et al., 2001). In the cytoplasm, where
GTP-bound Ran is inactivated, the complexes formed by the
exportin and the cargoes are disassembled in order to release the
cargo (Dahlberg and Lund, 1998). In contrast, GDP-bound Ran
is required in the cytoplasm for nuclear cargo import and during
this process GTP-bound Ran is only needed for the final release
of the imported cargo (Lui, 2009). Besides controlling cytoplasm-
nucleus trafficking, Ran also regulates mitotic spindle assembly
during mitosis (Zheng, 2004).

According to a study by Caputo et al. (2015) increased
RAN expression levels were detected in 48% of metastatic
melanoma patients (Table 1). Additionally, RAN upregulation
was also found in melanoma cell models, compared to normal
melanocytes and in metastatic melanoma, compared to primary
melanoma samples and melanocytic nevi (Pathria et al., 2012;
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Caputo et al., 2015). Moreover, it was described that AurkA
could be a downstream target of Ran, as Ran silencing reduces
AurkA expression (Caputo et al., 2015). Since Ran regulates
mitotic spindle assembly, its downregulation may generate
genomic instability and decrease melanoma cell proliferation, as
previously verified for ovarian and pancreatic cancer cell lines
(Barrès et al., 2010; Deng et al., 2013). Nevertheless, the role
of this protein in melanoma proliferation and invasion was not
explored yet. Indeed, the nucleocytoplasmic transport of several
molecules could be enhanced by Ran upregulation, increasing
the cytoplasmic accumulation of several proteins pivotal for cell
proliferation and invasion. As such, further studies should be
performed to evaluate whether Ran could be an important player
during melanoma tumorigenesis and progression.

ARF FAMILY MEMBERS CONTROL
MELANOMA METASTASIS THROUGH
THE ACTIVATION OF SEVERAL
MOLECULAR NETWORKS

Similar to the other members of the Ras superfamily, Arf family
proteins are key regulators of membrane traffic, controlling
vesicle budding, tethering, and actin cytoskeleton organization
(Chavrier and Goud, 1999; D’Souza-Schorey and Chavrier, 2006)
(Figure 2). This family includes 6 members (Arf1–6; Arf2
is not expressed in humans), which are classified into three
classes according to their sequence homology: class I (Arf1 and
Arf3), class II (Arf4 and Arf5), and class III (Arf6) (Donaldson
and Jackson, 2011). Based on their structural similarity, Arl
proteins are also included in the Arf family (Kahn et al., 2006).
Overall, this family includes a total of 30 members in humans
(Sztul et al., 2019).

Currently, among Arfs, only Arf6 was reported as playing a
critical role in melanoma. Despite the difficulties related with
the measurement of Arf6 activation state due to GTP instability,
the aberrant activation of this protein was confirmed in human
melanoma samples compared with matched normal skin tissue
(Wong and Ribas, 2016). Additionally, ARF6 ectopic expression
reduces tumor growth and increases the invasive ability of
melanoma cells in an immunocompromised mouse model
(Muralidharan-Chari et al., 2009). Similarly, Arf6 overexpression
increases metastatic disease burden, accelerating melanoma
metastasis and lung colonization in an immunocompetent
mouse model (Hongu et al., 2016; Wong and Ribas, 2016)
(Table 1). Indeed, Arf6 can modulate distinct molecular networks
essential for early and late stages of melanoma metastasis
(Grossmann et al., 2013; Wong and Ribas, 2016). Particularly,
Arf6 role on melanoma progression and tumorigenesis is
mediated by Ras/RAF/MEK/ERK signaling pathway, which
activates Rac1, leading to cytoskeleton remodeling and the
formation of invadopodia (Tague et al., 2004; Muralidharan-
Chari et al., 2009). In addition to Ras/RAF/MEK/ERK, the
PI3K-Akt pathway is also required for Arf6-mediated metastasis.
Moreover, Arf6 was described to increase PI3K protein levels and
be sufficient and indispensable for PI3K/Akt activation, kinases

that are mainly located in peripheral cellular compartments
and induce melanoma invasion (Wong and Ribas, 2016).
Furthermore, WNT5A has emerged as an important player of
cancer invasion. As expected, WNT5A activates ARF6 also in
melanoma, controlling the shuttling of β-catenin between the
plasma membrane and cytoplasm (Grossmann et al., 2013). In
this context, ARF6 disrupts N-cadherin and β-catenin complexes,
weakening adherens junctions, in order to regulate melanoma
invasiveness and promote pulmonary metastasis (Grossmann
et al., 2013). The role of Arf6 in several pathways related to
melanoma dissemination has been extensively explored, and
there is evidence that this protein also contributes for the
lymphangiogenesis process occurring under physiological and
pathological conditions (Lin et al., 2017). This effect is mediated
by β1-integrin internalization, which is pivotal for the VEGF-C-
associated cell migration and consequently for vascular network
formation in melanoma (Lin et al., 2017) (Table 1).

In contrast with Arf proteins, the biochemical characterization
and knowledge about the functions of Arls is lagging behind.
Previously, the presence of a specific ARL1 variant (C148R) was
assessed in 351 familial and sporadic melanomas and associated
with an increased risk for heterozygous carriers to develop
melanoma (Frank et al., 2006). To our knowledge, this is the
only study describing the role of an Arl protein in melanoma.
Considering the essential functions of Arls in membrane traffic
and their impact in the tumorigenesis and progression of several
types of cancer, it is likely that they play important roles in
melanoma tumorigenesis and progression. Therefore, further
studies are warranted to evaluate the role of Arl proteins in
melanoma and the molecular pathways involved.

TARGETING RAS SMALL GTPases

In the last decade, several inhibitors have been proposed to target
Ras GTPases as an attempt to reduce cell migration and invasion,
thereby impairing tumor progression (Prieto-Dominguez et al.,
2019). Indeed, Ras small GTPases have been suggested as good
candidate therapeutic targets, although to date there are no
drugs currently available in the clinical practice that target these
proteins (del Maldonado and Dharmawardhane, 2018; Prieto-
Dominguez et al., 2019). The first therapeutic strategies designed
for this purpose were aimed to inhibit their expression. However,
Ras GTPases have been referred to as undruggable targets due
to their structural features with limited small-molecule binding
pockets (O’Bryan, 2019). Additionally, one of the main barriers
to the success of these approaches is the ubiquitous expression
of most of these proteins among human tissues and their
essential physiological functions for cell homeostasis and survival
(Casalou et al., 2020). Hence, the targeting of Ras GTPases could
have harmful effects on tissues not affected by the disease. In this
context, a growing interest in blocking GEF and GAP activities,
inhibiting GTP or membrane binding, as well as in targeting of
downstream effectors of these proteins is underway. Indeed, this
strategy could overcome the damaging effects caused by the direct
inhibition of proteins that play essential functions in most or all
the cells in the body.
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For instance, salirasib is a Ras inhibitor that blocks the membrane
association of Ras proteins, whose safety and tolerability were
already assessed in patients with refractory/relapsed tumors in
a phase I trial (Furuse et al., 2018). This drug was indicated
for phase II trials and seems to be a promising therapeutic
strategy for patients with RAS mutations who have no specific
therapeutic options (Furuse et al., 2018). EHT1864 is an
inhibitor with high affinity for Rac GTPases, impairing their
activity by inhibiting GTP binding (Katz et al., 2012). This
inhibitor suppresses cell invasion and proliferation in triple-
negative breast cancer cell lines by reducing the PI3K-Akt
pathway activation (Hampsch et al., 2017). NSC23766 is another
Rac1 inhibitor that blocks the interaction of Rac1 with its
GEFs TRIO and TIAM1. Despite several in vitro assays having
demonstrated a reduction in the invasion ability of distinct
types of tumor cells after NSC23766 treatment, this inhibitor
has been described as inefficient for clinical administration due
to its low efficacy (Bid et al., 2013). LM11, a specific inhibitor
of GEF binding to Arf1, reduces cell proliferation, migration,
and metastasis in a zebrafish model of breast cancer (Xie
et al., 2016). Rab7 was the first member of the Rab GTPase
family to be the target of an inhibitor, namely, CID1067700
(Agola et al., 2012). Moreover, Rab25 is a target of the RFP14
peptide, which impairs Rab25 binding to GTP (Mitra et al.,
2017). The design of small molecules targeting Rab GTPases is
delayed compared with the discovery of inhibitors for other Ras
GTPase families. The specificity of the inhibitors is of extreme
importance to prevent the inhibition of other proteins that are
not dysregulated.

Despite the difficulties associated with the design of efficient
inhibitors for Ras GTPases, advances in the knowledge of the
mechanisms involved in the function of these proteins could shed
light on new promising therapeutic approaches.

CONCLUSION AND FUTURE
PERSPECTIVES

The Ras superfamily members play distinct and pivotal roles
during melanoma tumorigenesis and progression (Table 1).
Specifically, they are associated with melanoma patients’ response
to targeted and immunotherapies, reinforcing their importance
as potential predictive biomarkers. Rho GTPases play a prevalent
function in melanoma metastatic processes, being fundamental
to determining the mechanisms underlying amoeboid and
mesenchymal types of migration. Rab proteins can mediate a vast
number of invasion mechanisms, although it would be interesting
to further assess their role in melanoma microenvironment
modification, since there is evidence supporting the influence
of these proteins in metabolic pathways to promote resistance
to immune responses. Unfortunately, the current knowledge
about the action of Ran and Arf family members in melanoma
is limited, specifically in the case of Arl proteins, whose
involvement in melanoma oncobiology remains unknown.

The metabolic heterogeneity of melanoma cells is another
important factor contributing for their ability to adapt to the

microenvironment conditions and induce tumor progression
and metastasis. In this perspective, it would be interesting
to investigate the mechanisms involved in the interplay
between Ras small GTPases, tumor microenvironment, and
metabolic pathways. Even more important than understanding
the individual role of these proteins is to explore their
cooperative contribution for complex metabolic–molecular–
immune networks, given that compensatory mechanisms could
mask their individual contribution. Considering the invasive
properties of melanoma, Ras small GTPases could be important
mediators to elucidate what patients show more propensity
to develop a worse prognosis, defining the subset of patients
requiring adjuvant therapy to prevent metastatic disease.

The use of Ras superfamily members as therapeutic targets
may be an efficient approach for metastatic melanoma patients
since they are master regulators of melanoma cell migration
and invasion. Indeed, targeting the main pathways involved in
melanoma metastasis could be the most promising strategy to
decrease the aggressiveness and lethality of this type of neoplasm.
Thus, the study of regulators and effectors that interact with
Ras small GTPases should be a focus of research to develop
therapeutic strategies that ensure the specific targeting of tumor
cells. Furthermore, this specificity can also be achieved by
resorting to drug delivery systems that only target the tumor.

Considering the complexity of the Ras superfamily members
functions, much is still to discover about the singular and
cooperative effects, as well as the spatiotemporal regulation of
its members in melanoma. The understanding of melanoma
biology will allow us to gain insight about the mechanisms
involved in its progression and simultaneously on how to
impair these processes. Overall, further studies are required
to develop efficient and specific strategies to target these
proteins, as an attempt to improve melanoma patients’ OS
and life quality.
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