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Abstract 

Cancer is the second leading cause of mortality worldwide, 

despite the extraordinary advances in the last two decades due to 

the development of targeted therapies. These target particular 

molecules required for cell growth and tumorigenesis; 

nonetheless, de novo or acquired resistance to therapy often lead 

to patient relapse and disease progression. There is cumulating 

evidence supporting the importance of tumor microenvironment 

(TME)-driven mechanisms in cancer progression and drug 

resistance. Therefore, there is a need for cancer models in which 

critical components of the TME, such as the non-malignant cell 

types and the extracellular matrix (ECM), are represented and 

tissue architecture is maintained. 

The overarching aim of the work presented in this thesis was 

the development of cancer models to address targeted therapies in 

TME-relevant contexts. 

Chapter I reviews the state-of-art, in terms of breast cancer 

(BC) subtypes, available therapies, relevance of the TME for 

therapeutic response, and available experimental and 

computational models. 

In Chapter II, an ex vivo approach was explored to develop a 

BC patient-derived 3D cell model. Our strategy was based on 

encapsulation in alginate, an inert biomaterial, to promote the 

retention of the original TME, combined with dynamic culture, to 

promote diffusion of macromolecules and oxygen. The original 

tissue architecture and microenvironment components, namely 

epithelial, mesenchymal, endothelial, and immune cells, as well as 

an ECM composed of collagen fibers, were retained. Importantly, in 

the case of estrogen receptor α (ERα)-positive breast tumors, the 



 
 

x 
 

retention of the TME sustained ERα expression, at gene and protein 

level. Response to ERα stimulation and inhibition was observed at 

the level of downstream targets, demonstrating active ERα 

signaling. Moreover, the challenge experiments with the ERα 

inhibitor fulvestrant, widely used in endocrine therapy, stands as a 

proof-of-concept for the application of the model in the study of 

anti-endocrine targeted therapies. 

In Chapter III, we focused on the biochemical and mechanical 

properties of the alginate capsules, since mechanical cues have 

been reported to influence tumor progression. For this, we 

employed 3D in vitro co-cultures of tumor cells and fibroblasts, a 

model previously established by our group for the reconstruction 

of the microenvironment of solid tumors. We showed that alginate 

encapsulation sustains BT474 BC spheroids phenotype and 

proliferation. Moreover, we observed that the mechanical 

properties of the capsule were affected by its content: the presence 

of cancer cell spheroids reduced the stiffness relatively to empty 

capsules; fibroblasts contributed to a stiffening of the 

microenvironment, when compared to the mono-culture capsules. 

Overall, this study contributed for the characterization of alginate 

capsules, employed by many research groups. 

Finally, in Chapter IV, we addressed antibody transport within 

the TME. We explored the in vitro model system characterized in 

Chapter III to implement an integrated experimental and 

computational framework. The aim of the framework was to 

unravel how the several TME components influence antibody 

distribution. Encapsulated co-cultures were challenged with a 

fluorescent antibody and its location within the alginate capsules 

was tracked using light sheet fluorescent microscopy. The obtained 
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data was then used to benchmark a computational model, 

developed to simulate a digitized alginate capsule slice. The 

benchmarked model can also be used to generate other capsule 

configurations, according to user specifications. 

In the present thesis, we created and characterized new tools 

to tackle the influence of TME in targeted cancer therapies. We 

explored experimental approaches to establish ex vivo and in vitro 

cancer models, in which key features of the TME could be retained 

or reconstructed, respectively. The in vitro model was 

complemented by in silico approaches to describe transport of 

therapeutics within the reconstructed TMEs. These distinct, yet 

complementary approaches, are tools that can contribute to 

unravel the mechanisms underlying therapeutic response of solid 

tumors and as drug discovery platforms to assess novel targeted 

therapies. 

 

Key words: tumor microenvironment, ex vivo models, in vitro 

models, in silico models, targeted cancer therapy 

 

  



 
 

xii 
 

  



 

xiii 
 

Resumo 

O cancro é a segunda principal causa de mortalidade a nível 

mundial, apesar dos avanços extraordinários nas últimas duas 

décadas devido ao desenvolvimento de terapias direccionadas. 

Estas têm como alvo moléculas específicas que são necessárias ao 

crescimento celular e à formação de tumores. No entanto, a 

resistência inata ou adquirida à terapia conduz frequentemente a 

reincidência e à progressão da doença. Actualmente, existem 

evidências que apoiam a importância dos mecanismos moleculares 

relacionados com o microambiente tumoral (TME) na progressão 

do cancro e na resistência aos fármacos. Assim, existe uma procura 

por modelos de cancro em que os componentes críticos do TME, 

tais como tipos de células não-malignas e a matriz extracelular 

(ECM), estejam representados e em que a arquitectura dos tecidos 

seja mantida. 

O objectivo primário do trabalho aqui apresentado foi desenvolver 

modelos oncológicos para abordar terapias direccionadas no 

contexto do TME. 

O Capítulo I revê o estado da arte em termos de subtipos de cancro 

da mama (BC), terapias existentes, a relevância do TME na resposta 

terapêutica, bem como modelos experimentais e computacionais 

já publicados. 

No Capítulo II foi testada uma abordagem ex vivo de forma a 

desenvolver um modelo celular 3D, baseado em tecido tumoral 

mamário de pacientes. A nossa estratégia baseou-se no 

encapsulamento em alginato, um biomaterial inerte, de forma a 

promover a retenção do TME original. Recorreu-se a um sistema de 
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cultura dinâmico que facilita a difusão de macromoléculas e 

oxigénio. A aplicação desta estratégia resultou na retenção da 

arquitectura original do tecido, incluindo os componentes do 

microambiente tumoral (fibroblastos e células epiteliais, 

endoteliais e imunitárias, bem como a ECM composta por fibras de 

colagénio). É de salientar que, no caso de tumores mamários 

positivos para o receptor de estrogénio α (ERα), a manutenção do 

TME reteve a expressão ERα, tanto a nível transcricional e como 

proteico. A resposta à estimulação e inibição do ERα foi observada 

ao nível de genes-alvo a jusante, demonstrando assim que a 

sinalização ERα se encontrava activa. Além disso, as experiências 

com o inibidor de ERα fulvestrant (amplamente utilizado em terapia 

endócrina) representaram uma demonstração da aplicabilidade do 

modelo no estudo de terapias anti-endócrinas. 

O enfoque do Capítulo III foi a caracterização bioquímica e 

mecânica das cápsulas de alginato, dado que alguns parâmetros 

mecânicos têm sido reportados como moduladores da progressão 

tumoral. Para tal, utilizámos co-culturas 3D in vitro de células 

tumorais e fibroblastos, um modelo previamente estabelecido pelo 

nosso grupo para reconstrução do microambiente de tumores 

sólidos. Com este modelo, demonstrámos que o encapsulamento 

com alginato sustenta o fenótipo e a proliferação de esferóides de 

BC, BT474. Observámos ainda que as propriedades mecânicas da 

cápsula foram afectadas pelo seu conteúdo: a presença de 

esferóides de células cancerígenas reduziu a rigidez relativamente 

à de cápsulas vazias; e os fibroblastos contribuíram para um 

endurecimento do microambiente, em relação à cápsulas de mono-

cultura. Em suma, este estudo contribuiu para a caracterização de 
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cápsulas de alginato, amplamente utilizado por muitos grupos de 

investigação. 

No Capítulo IV abordámos o transporte de anticorpos no TME. 

Explorámos o modelo in vitro caracterizado no Capítulo III, de 

forma a implementar um framework experimental e computacional 

integrado. O framework teve como objectivo a representação dos 

diferentes componentes do TME e da sua influência no transporte 

de anticorpos. As co-culturas encapsuladas foram tratadas com um 

anticorpo fluorescente cuja localização dentro da cápsula foi 

rastreada utilizando light sheet fluorescence microscopy. Os dados 

obtidos foram então utilizados para treinar um modelo 

computacional, desenvolvido para simular uma fatia digitalizada da 

cápsula de alginato. Este modelo treinado pode ser utilizado para 

gerar novas configurações de cápsulas, de acordo com as 

especificações do utilizador. 

Nesta tese, criámos e caracterizámos novas ferramentas para 

avaliar a influência do TME na reposta a terapias de cancro 

dirigidas. Explorámos abordagens experimentais para estabelecer 

modelos de cancro ex vivo e in vitro, nos quais características 

importantes do TME foram respectivamente retidas e 

reconstruídas. O modelo in vitro foi complementado por 

abordagens in silico, de forma a descrever o transporte de 

fármacos no TME reconstruído. Estas abordagens distintas mas 

complementares, são ferramentas que tanto podem contribuir para 

descobrir os mecanismos subjacentes à resposta de tumores 

sólidos à terapia; bem como podem funcionar como plataformas 

para teste de novas terapias. 
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1. Breast cancer 

Breast cancer (BC) is a pathology which affects the mammary 

gland, characterized by an abnormal growth of cancer cells that 

eventually evolve and invade healthy regions 
1

. The vast majority of 

invasive BCs, and their in situ precursors, originate from the 

terminal duct-lobular unit (TDLU) 
2

. This is a structure in the breast 

composed of a lobule, which is a small cluster of acini, and the 

terminal duct 
3

 (Figure 1.1). BC can spread to other tissues in the 

body, giving origin to metastasis, mainly in lung, bone, lymph 

nodes and liver 
4

. 

 

 

Figure 1.1: Schematic of segment of breast lobe showing the 

TDLU, lobules, acini and the duct system 
2,3

. 

 

BC represents a major public health problem, since it is the 

cause of the greatest number of cancer-related deaths among 

women 
5

. Although organ-confined disease is mainly curable, 

metastatic and recurrent disease has poor prognosis with a 5-year 

survival of only 27% 
6

. In the USA, about 1 in 8 women will develop 

invasive BC over the course of their lifetime 
7

. More than 300,000 
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new BC cases are predicted to be diagnosed and more than 40,000 

people are predicted to die due to BC, in 2020 
7

. In 2008, the 

estimated total productivity loss as a result of premature mortality 

due to BC was $5.49 billion, for young women (aged 20–49) 
8

. 

Metastatic BC represent a significant economic and social burden 

associated with high costs for healthcare systems, with direct costs 

alone accounting for as much as $4.2 billion per year 
9

. In Europe, 

BC had an incidence estimated to be higher than 500,000 cases in 

2018, accounting for €15 billion in 2009, which corresponded to 

12% of the total cancer-related costs 
10

. 

Fortunately, advances in the screening methods (such as 

digital mammography coupled with advanced computer-aid 

detection), early diagnosis, and breakthroughs in treatments have 

increased BC survival rates 
11

. Since 1990, a decline in BC mortality 

started to be observed. This was due to the routine implementation 

of adjuvant therapy (that will be explained later on this chapter, 

section 4) and mammographic screening 
12

. BC research has 

contributed significantly to the discovery of molecular pathways 

involved in tumorigenesis, that are the basis of the targeted 

therapies currently used in the clinics 
13

. Nonetheless, BC relapse is 

still a relevant issue for a high number of patients: the high 

incidence of metastatic disease and drug resistance contribute to 

the high morbidity and mortality indexes 
14–16

. So, it is important to 

uncover the molecular mechanisms which stand behind drug 

resistance and develop novel drugs and therapeutic regimens that 

overcome those mechanisms. 
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2. Breast cancer classification 

BC is a genetically, histologically, biologically and clinically 

heterogeneous disease 
17,18

. Given such heterogeneity, different 

response to therapy and outcome are reported 
19,20

 and  various 

classification at histological and molecular levels have been 

purposed to categorize BC 
2,19

. 

Histologically, BC can be divided according with the 

invasiveness status of the disease into: in situ or invasive. In situ 

refers to tumors confined to the ducts (ductal carcinoma in situ, 

DCIS) and lobules (lobular carcinoma in situ, LCIS, Figure 1.2) 
2

. 

DCIS can be further divided in several subgroups according to the 

tumor architecture features 
2

. Regarding the invasive BC group, 

which refers to tumors that are not limited to the epithelial region 

but that have already penetrated into the surrounding stroma 
2

, it 

includes the “no special type” (NST) and “special type” (ST). The ST 

represents 25% of the invasive BC cases and contains tumor with a 

predominant (i.e. >90% of the tumor) differentiation 
2,21

. On the 

other hand, the NST represents the remaining 75% of the cases and 

contains tumor with heterogeneous features without any special 

differentiation patterns 
20

. 
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Figure 1.2: Healthy breast and two BC histological subtypes (ductal 

and lobular). Cancerous region is highlighted in dark purple in the 

mammary overall structure and the cell overgrowth highlighted in the 

region of the breast tissue where it occurs (orange region) 
2

. 

 

It is difficult to establish a relationship between histological 

classification and patient outcome 
22

. The significant differences, in 

terms of treatment and long-term survival, detected among 

patients having the same histological classification, support the 

belief that BC is an heterogeneous group of diseases 
22

. This 

highlights the need for a BC classification based on tumor features 

that can be related with prognosis. In the past decade, microarray‐

based gene expression profiling has been extensively applied to 

the study of BC and led to a classification based on molecular 

signatures, reflecting differences on tumor cell biology rather than 

on morphology 
20,22,23

. 
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The molecular classification of BC was proposed for the first 

time in 2000 by Perou, Sorlie et al. 
23

. It was based on the gene 

expression characterization patterns of a set of 65 surgical 

specimens of BC from 42 different individuals, using 

complementary DNA microarrays covering 8,102 human genes 
23

. 

Patients were clustered into different groups according with the 

overall transcriptome differences. They identified four groups of 

samples: estrogen receptor α (ERα) positive/luminal-like, basal-like, 

Erb-B2+/human epidermal growth factor receptor 2 (HER2) positive 

and normal-like BC 
23

. In a work published one year later, gene 

expression patterns were used as a prognostic marker with respect 

to overall and relapse-free survival 
24

. This work suggested to 

further divide the “estrogen receptor positive” in two distinct 

groups (luminal subtype A and subtype B), with distinctive 

expression profile 
23,24

. 

Currently, the standard molecular classification of BC divides 

tumors into five groups with unique biologic and prognostic 

features: luminal A, luminal B, HER2, basal-like and normal-like 
20,22

. 

Luminal tumors display high expression levels of luminal 

cytokeratins (CK), such as CK8, CK18 and CK19 
25

. Luminal A 

includes ERα-positive and HER2-negative cells with low levels of 

ki67 proliferation marker 
20,22

. Luminal B, with significantly worse 

prognosis than luminal A, includes ERα-positive and HER2-positive 

cells, with higher proliferation rates 
20,22

. The HER2 subtype includes 

cells with high expression of HER2 and low expression of ERα 
20,22

. 

This highly proliferative and aggressive BC subtype represents 

~15% of all the invasive BC cases 
22

 and usually has an unfavorable 

prognosis. The basal-like BC subtype accounts for up to 15% of all 

BC 
26

. Basal BC cells typically express basal CKs, such as CK5, CK6 
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and CK14, have low or undetectable ERα and HER2 levels and are 

highly proliferative 
22

. Most basal-like BC have a triple-negative 

phenotype (ERα-negative, progesterone receptor (PR)-negative and 

HER2-negative), but up to 20% express ERα or overexpress HER2 
27

. 

Patients with this subtype of BC have the worst prognosis among 

all BC subtypes because of the intrinsic aggressiveness and high 

tendency to relapse rapidly. In addition, current therapeutic 

options for basal-like BC are limited to chemotherapy and relapse 

occurs frequently due to drug resistance 
28

. 

A new molecular BC subtype, termed ‘claudin-low’, was 

proposed by Herschkowitz et al. 
29

. Claudin-low tumors are 

characterized by the low expression of genes involved in tight 

junctions and cell-cell adhesion, including claudins 3, 4 and 7, 

Occludin, and E-cadherin 
29

. The “claudin-low” group is 

characterized by inconsistent expression of basal keratins and low 

expression of HER2 and luminal markers, such as ERα and PR 
30

. 

When compared with other BC subtypes, “claudin-low” highly 

express genes involved in immune response, cell communication, 

cell migration, angiogenesis, extracellular matrix and cell 

differentiation 
30

. The majority of “claudin-low” tumors show poor 

prognosis 
30

. 

Despite the high relevance of gene expression analysis, 

namely in grouping and stratifying BC patients, its use on clinical 

samples is resource and time intensive. Therefore, in the clinics, 

immunohistochemical detection of biomarkers of each subtype 

(evaluation of morphology, ERα, PR and HER2 expression status) is 

still the generalized methodology used in diagnosis stage and to 

select treatment options 
31,32

. 
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3. Estrogen receptor signaling in breast cancer 

Estrogen receptor (ER) belongs to the steroid/nuclear 

receptor superfamily and has 2 isoforms in mammals: alpha and 

beta (ERα and estrogen receptor β (ERβ), respectively) 
33

. The 

isoforms are encoded by two different genes 
33

, mapped on 

chromosome 6 and 14, respectively 
34,35

. Although ERα role in BC 

has been extensively studied, the role of ERβ is still under 

investigation 
36

. ERα is a ligand-modulated transcription factor, 

responsible for the mediation of a plethora of cellular functions 

from development to carcinogenesis, whose structure is 

schematically represented on Figure 1.3 
37,38

. The ER protein is 

composed of several functional domains, associated with specific 

roles. From the NH2 terminal, ER structure consists on an activation 

function domain (AF)-1, followed by a DNA binding domain (DBD) 

and a hinge (H) region. Next to this region is the ligand binding 

domain (LBD) and the AF-2 
37

. 

 

 

Figure 1.3: ER structure. From the N-terminal to the C-terminal: 

activation function 1 region (AF-1), DNA-binding domain (DBD), hinge (H) 

region, ligand-binding domain (LBD), activation function 2 domain (AF-2) 

37

. 

ERα can function both as signal transducer, activating 

various cell signaling pathways, and as transcription factor (TF), 

modulating the expression of several target genes. As signal 

transducer, ER is involved in non-genomic pathways, while as TF is 

involved in the direct and indirect genomic pathways 
39

 (Figure 1.4). 
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Figure 1.4: Schematic representation of the different types of 

estrogen receptor alpha (ERα) signaling. Upon estrogen (E) binding to 

ERα, one of three different pathways might be activated: direct genomic, 

in which the E-ER complex binds to estrogen response elements (ERE) 

located in the transcriptional regulatory regions of specific genes; indirect 

genomic, in which the E-ER complex binds to transcription factors (TF) of 

genes that do not have ERE; non-genomic, in which the E-ER complex 

activates protein kinase signaling cascades, leading to transcription of 

specific genes 
39

. 

 

The activation/deactivation of any of the pathway types 

detailed on Figure 1.4 requires the presence of an ERα ligand, that 

interacts with the receptor by binding to the LBD region. In human, 

three different types of physiological estrogens are endogenously 

produced (endoestrogens): estrone (E1), estradiol (E2), and estriol 

(E3) 
40

. They are produced from cholesterol in the sex glands, such 

as ovaries and testes, and in other organs, such as liver and brain. 

E2 is found both in females and males, while E3 is mainly found 

during pregnancy and E1 post menopause 
40

. In addition to 

naturally produced estrogens within the body, a diverse array of 

small organic and inorganic molecules serve as ERα ligands 
38

. In 

this group one can find phytoestrogens (non-steroidal polyphenolic 
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compounds naturally produced by plants), xenoestrogens (non-

natural synthetic chemical compounds with estrogenic effects), 

metalloestrogens (small inorganic compounds in the form of heavy 

metal ions) and several molecules used in therapy, as described 

later in section 4 
38

. ERα ligands can have both stimulatory and 

inhibitory effects 
38

. ERα inhibitors, such as tamoxifen and 

fulvestrant, compete with the estrogen for the binding to ERα and 

block the downstream signaling. This way, they hamper cell growth 

and proliferation and reduce tumor progression 
41,42

. These 

inhibitors will be further explained in the section 4 of this chapter. 

 

The inactive ERα exists in a molecular complex with: 1) 

chaperones – heat-shock proteins (hsp), namely hsp70 and hsp90, 

which bind to the ERα’s LBD region; 2) co-chaperons, such as 

immunophilin and p23, which bind to hsp 
37,43,44

. This complex 

inactivates the transcriptional regulatory capabilities of ER but 

maintains its ability to bind to ligands 
43

. Upon estrogen binding, 

receptor dimerization, dissociation of hsp and association of co-

regulatory proteins occurs 
33

. In these conditions, ERα is able to 

bind to estrogen responsive elements (EREs; which are 13 bp 

palindromic consensus sequence separated by a 3-base spacer 
45

) 

present in the transcriptional regulatory regions of ERα-target 

genes. Here, ERα interacts directly with coactivator proteins and 

components of the RNA polymerase II transcription initiation 

complex, leading to enhanced transcription 
33

 (direct genomic 

pathway, Figure 1.4). Around one third of all estrogen responsive 

genes do not bear an ERE region 
46

. In these cases, the regulation 

of gene expression by ERα occurs by indirect genomic pathways 



Chapter I 

 

12 

 

(Figure 1.4). ERα interacts with other DNA-bound transcription 

factors and stabilizes their binding to the DNA and/or recruits 

coactivators 
33,39

. 

Several genes have been identified as estrogen-responsive 

genes, due to the presence of functional ERE in their promoter 
46

. 

Among them, one can find the trefoil factor-1 TFF1, also known as 

pS2 
47

, and others reported by Lone et al. 
46

. pS2 is an estrogen-

specific response gene, since only estrogen but not progestins, 

glucocorticoids, and androgens, can induce it 
48

. pS2 role is 

controversial, as it has been  reported by different groups to have 

either the capacity to induce or inhibit tumorigenicity 
49,50

. Buache 

et al. performed pS2 gain- and loss-of-function experiments in four 

human mammary epithelial cell lines 
49

. They concluded that 

constitutive expression of pS2 led to an increase in cell migration 

and invasion. Moreover, they observed that tumorigenicity capacity 

of MCF7-pS2 (MCF7 with pS2 overexpression) was the same as the 

parental MCF7. Additionally, they showed that cells with pS2 knock-

down had similar proliferation but higher colony-forming ability. In 

an in vivo mice model, they showed that in pS2 knock-down, 

tumors appeared earlier and had higher incidence than in their 

control counterpart 
49

, suggesting that pS2 inhibits tumorigenesis. 

In a different study, overexpression of pS2 in BC cell lines resulted 

in increased cell proliferation and survival 
50

. Additionally, it also 

increased cell migration and invasion and led to an increase in 

tumor size, in xenograft models. Ablation of pS2 led to a reduction 

in cell viability in vitro and tumor regression in vivo. Then, they 

concluded that pS2 clearly possess oncogenic functions in 

mammary carcinoma cells 
50

. 
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Another relevant gene controlled by ER is the progesterone 

receptor gene (PGR). Progesterone receptor (PR) works closely and 

in a reciprocal manner with ERα. In fact, it is not only an ERα-

induced gene target but also an ERα-associated protein that 

modulates its behavior 
31

. In one hand, PGR only has half ERE region 

in its promoter. The binding of ER to that region revealed to work 

more as an inhibitor than a stimulator, as it is expected when full 

ERE is present 
51

. On the other hand, as described by Mohammed 

et al., progesterone inhibited estrogen-mediated growth, both in 

an in vivo mouse model and in primary ERα-positive BC explants. 

Moreover, they showed that PR boosts the anti-proliferative effect 

of tamoxifen, in a MCF7 BC cell line xenograft model 
31

. They 

concluded that PR controls the chromatin binding and 

transcriptional activity of ERα 
31

, revealing the combined action 

between ERα and PR. 

In the group of genes regulated through indirect genomic 

pathways 
46

, one can find amphiregulin (AREG). Peterson et al. 

showed that AREG is required for estrogen-dependent growth of 

xenografts generated from the ER-positive cell line, MCF7 
52

. AREG, 

which is a ligand for the epidermal growth factor receptor (EGFR), 

is a critical mediator of the estrogen response in ER-positive BC 
52

. 

 

 ER is also involved in non-genomic signaling (Figure 1.4), in 

which estrogen binds to ER located in the cell membrane, leading 

to activation of several protein kinase cascade (e.g. ERK/MAPK, 

p38/MAPK, PI3K/AKT) 
53–57

. This eventually leads to indirect changes 

in gene expression through phosphorylation of transcription 

factors and activation of several pathways 
57

. Mitogen-activated 

protein kinase (MAPK) pathways constitute a highly conserved 
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family of kinase modules that work by transferring extracellular 

signals to the effectors that control diverse cellular processes, such 

as proliferation, differentiation, migration and apoptosis 
56

. MAPK 

are involved in initiation of cancer and are activated by 

phosphorylation 
56

. p38/MAPK activity can suppress tumor 

development and its signaling is important in cellular responses to 

conventional cancer therapies, including chemotherapy
56

. 

ERK/MAPK has been associated with the ability of cancer cells to 

grow independently of normal proliferation signals and is 

deregulated in approximately 30% of human tumors 
56

. PI3K/AKT is 

an important pathway regulating the signaling of multiple 

biological processes such as apoptosis, metabolism, cell 

proliferation and cell growth 
53

. The AKT signaling cascade, upon 

activation, induce production of phosphatidylinositol (3,4,5) 

trisphosphates (PIP3) by phosphoinositide 3-kinase (PI3K). These 

lipids work as plasma membrane docking sites for proteins such as 

AKT. In turn, AKT, that needs then to be phosphorylated to become 

active, can be inhibited by tumor suppressor phosphatase and 

tensin homolog (PTEN) through dephosphorylation 
53

. 

 In addition to the above-mentioned pathways, ERα can be 

activated in the absence of ligand.  This activation requires 

phosphorylation, in specific residues, that may be induced by 

growth factors, such as epidermal growth factor (EGF) and insulin-

like growth factor. This involves MAPK phosphorylation cascades, 

mentioned above, and guanine nucleotide-binding protein p21ras 

57,58

. 

ER expression itself is regulated by: TFs, DNA methylation, 

histone modification, RNA-binding proteins and microRNAs 
59

. 

Several promoters have been discovered upstream of the 



Introduction 

 

15 

 

translation start site of human ER: estrogen receptor promoter B 

associated factor 1 (ERBF-1), AP2, forkhead box protein (FOXO3a), 

forkhead transcription factor (FOXM1), nuclear proteins recognize 

G-A-T-A nucleotide sequences (GATA-3), zinc finger repressor B-

lymphocyte-induced maturation protein (BLIMP1) and factor 

nuclear kappa B (NF-kβ), which are reviewed in 
59

. 

ERα is involved in the BC carcinogenesis by controlling cell 

proliferation and metastasis. Among the genes regulated by ERα 

are cyclin D1 and c-myc 
59

, which are proto-oncogenes involved in 

cell proliferation and survival 
60,61

. Estrogen and ERα are also 

involved in the BC metastization process by controlling the 

expression of Snail and e-cadherin 
62,63

. Loss of e-cadherin and 

increased expression of snail is correlated with the epithelial-to-

mesenchymal transition and consequently to BC metastasis 
64

. 

 

4. Targeted breast cancer therapies 

BC therapy is typically based on the combination of several 

types of treatments which include non-targeted therapies, such as 

chemotherapy, radiotherapy, surgery and immunotherapy, and 

targeted therapies, which include hormonal therapy, antibodies 

and small-molecule inhibitors 
65,66

. 

 

4.1 Hormonal therapy 

Hormonal therapy, also known as endocrine therapy, is 

included in the group of targeted therapy, since it acts only in cells 

carrying a specific cellular target. In the context of BC, hormone 

therapy targets the hormonal receptor ERα and is part of the 

recommended therapy for ER-positive BC patient, being applied 
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usually during 5-10 years or more 
67,68

. These therapies halt tumor 

progression by blocking either estrogen synthesis or ER signaling 

pathways 
67

. This type of therapy has been shown to be 

advantageous by reducing recurrence rates for almost 50%, when 

comparing with untreated patients 
69

. Hormone therapies are 

divided according to their mechanism of action: aromatase 

inhibitors, selective ER modulators (SERMs) and ER down-regulators 

(Figure 1.5) 
70

. 

 

 

Figure 1.5: Types of breast cancer hormonal therapy. BC endocrine 

therapies include 3 different categories of molecules: aromatase 

inhibitors, which inhibit the production of estrogen from androgens; the 

selective ER modulators (SERMs) that agonizes/antagonize ER; selective 

ER down-regulators (SERDs), that fully antagonize ERα 
70

. 

Aromatase inhibitors, such as the anastrozole, letrozole and 

exemestane, are chemical compounds that hamper aromatase 

activity. These enzymes are involved in the conversion of 

androgens, such as testosterone, into estrogen. By blocking this 

enzyme, it is possible to reduce the amount of endogenous ligand 

(estrogen) available to bind to the receptor (ERα) 70

. This type of 

hormonal therapy is only used in post-menopausal women, alone 

as adjuvant therapy or sequentially with SERM therapy, such as 

tamoxifen 
68

. 

Another anti-endocrine therapy approach is based on the 

use of molecules that block specifically ERα signaling named 

SERMs. These are competitive inhibitors of estrogen binding to ERα, 
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such as tamoxifen and raloxifene 
71

. Tamoxifen, also known as ICI 

46 474, is a non-steroidal anti-ER compound, belonging to the 

triphenylethylene chemical group of SERMs, that was developed to 

treat post-menopausal women carrying advanced disease 
72

. 

Nowadays it is used in both pre- and post-menopausal women 

68,70,72

. SERMs have mixed agonist and antagonist activity, depending 

on the target tissue 
70

. In the case of the BC tissue, tamoxifen works 

as an antagonist, blocking transcription of estrogen-regulated 

genes, reducing tumor proliferation 
70

. 

The third type of BC hormonal therapy is based on selective 

ER down-regulators (SERDs), that act similarly to ER modulators but 

have exclusively antagonist effect on the receptor 
73

. Fulvestrant, 

also known as ICI 182 780, is a SERD. It binds to ER, inducing a 

structural change in the receptor that inactivates the AF-1 and AF-

2 domains and inhibits the receptor dimerization. These changes 

lead to an increase in receptor surface hydrophobicity, reducing its 

translocation to the nucleus and promoting consequent faster 

proteasomal degradation 
42,74–76

. So, fulvestrant is both an ER 

competitor and selective estrogen receptor degrader 
77

. Upon 

fulvestrant binding, ER mRNA level is maintained and ER protein 

level is reduced 
78

. ICI 182 780 is currently indicated for the 

treatment of postmenopausal women with metastatic ERα-positive 

BC, after non-steroidal aromatase inhibitor treatment failure 
70

.  

Resistance to endocrine therapy might be intrinsic to the 

patient or acquired during treatment. In this last case are included: 

(1) mutations in amino acids in ERα, resulting in the constitutive 

transactivation of ERα in the absence of the ligand; (2) altered 

expression of ERα co-activators and co-repressors; (3) enhanced 

expression of transcription factors to which ERα binds in the 
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indirect genomic pathways; (4) microRNA action, for example, 

miRNA 221 and 222, that down-regulate the cell cycle inhibitor 

p27, which leads to continued cell division independent of ER 

blockers 
79

. 

 

4.2 Antibody therapy 

With the advances in cancer research, several cellular 

biomarkers have been proposed and their relationship with cancer 

development and progression has been reported. These 

discoveries boosted the development of more specific therapies, 

the so-called targeted anti-cancer agents, such as monoclonal 

antibodies and small-molecule inhibitors 
80

. 

Antibodies have the capacity to selectively target cells 

expressing a specific antigen 
80–82

. Since they are designed to act on 

a specific cellular target, they virtually present higher efficiency and 

less side-effects on non-targeted tissues, when comparing with 

non-targeted therapies 
83

. In the case of BC, examples are the anti-

HER2 antibodies. In the clinical setting, trastuzumab and 

pertuzumab antibodies have been used to target the HER2 receptor 

84

. Trastuzumab was, in fact, the first monoclonal antibody 

approved for the treatment of a solid tumor by the Food and Drugs 

Administration, in 1998 
81

. It is used in both metastatic and 

adjuvant settings 
81

. In clinical studies, combination of trastuzumab 

with chemotherapy and hormonal therapy showed a benefit in 

terms of increased disease-free survival and overall survival 
85,86

. 

Food and Drugs Administration also approved the use of an 

antibody-drug-conjugate (ADC) called trastuzumab-emtansine 

(Kadcyla
®

), which consists on Trastuzumab conjugated with the 

anti-proliferative molecule emtansine. This is derived from the 
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chemotherapy agent maytansine 
87,88

, which blocks microtubule 

polymerization, thus inducing apoptosis in target cells. This ADC 

was approved to be used as an adjuvant treatment of patients with 

HER2-positive early BC who have residual invasive disease after 

neoadjuvant taxane and trastuzumab-based treatment 
87

. 

The major drawback related with anti-cancer antibodies is 

the development of resistance. In fact, the majority of patients who 

achieve an initial response to trastuzumab-based regimens develop 

resistance within one year 
89

. Another drawback is related with the 

fact that several molecules and related pathways that are targeted 

by anti-cancer antibodies are also present in healthy cells, where 

they contribute to cell normal growth and homeostasis 
90

. One 

example is the HER2 which is also present on healthy tissues, 

although at a much lower extent (to 100 vs 2 copies of the gene 

per cell, in cancer and healthy tissue, respectively) 
91

. 

 

4.3 Small-molecule inhibitors 

 Small-molecule inhibitors (SMIs) are usually ≤500 Da in size, 

which allows them to translocate through the plasma membrane. 

Once inside the cell, they interact either with the cytoplasmic 

domain of cell-surface receptors, such as HER2 or EGFR, or 

intracellular signaling molecules, such as apoptotic proteins 
80

. 

SMIs present several advantages over antibodies such as: (1) oral 

bioavailability, (2) generally good tolerance and (3) due to their 

small size, they can penetrate” sanctuary sites” in the human body 

92

. 

Examples of SMIs approved for the treatment of BC include: 

lapatinib, palbociclib and ribociclib 
93

. Lapatinib is a tyrosine kinase 

inhibitor (TKI) that targets HER2 and is approved for the treatment 
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of HER2-positive BC 
93,94

. TKI are homologous of the adenosine 

triphosphate (ATP), which allow them to compete for the ATP-

binding domain of protein kinases (present on HER2, for example), 

preventing its phosphorylation and subsequent activation of the 

signal transduction pathways. This results in apoptosis and 

reduction of cellular proliferation 
94

. Lapatinib was approved by 

Food and Drugs Administration as a combination treatment with 

the aromatase inhibitor letrozole in HER2-positive, advanced BC 

patients that have failed standard chemotherapeutic treatment 
80

. 

Palbociclib and ribociclib are cyclin-dependent kinase (CDK) 

inhibitors that have been approved by Food and Drugs 

Administration for the treatment of advanced-stage hormone 

receptor-positive and HER2-negative BC, in combination with 

letrozole 
93,95,96

. Palbociclib inhibits specifically CDK4 and CDK6 
96

, 

that play important role in tumorigenesis since they control the G1-

S phase transition during cell cycle progression 
95

. So, inhibition of 

CDK leads to reduced cell cycle progression and cell proliferation 

95

. 

 

5. The role of tumor microenvironment in the 

response to anti-cancer therapy 

The tumor mass is not only composed by cancer cells; 

actually, other non-cancerous cells, can be found in the tumor 

environment (TME), such as fibroblasts, adipocytes, endothelial, 

immune cells, pericytes, myoepithelial cells and various progenitor 

cells 
97

. Besides them, several non-cellular components, such as 

extracellular matrix (ECM) and secreted signaling molecules (e.g., 

cytokines and growth factors) are also a part of the TME (Figure 

1.6). This intricate network of cellular and non-cellular components 
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has been reported to be a critical mediator of anti-cancer drug 

treatment outcome by playing important roles in tumor 

progression 
97,98

. While the TME of early-stage tumors confers anti-

malignancy functions, some cancer cells can tolerate the immune 

suppression and, in turn, reprogram the TME into one exerting pro-

malignancy functions 
99

. So, the understanding of the TME changes 

during this cancer progression is of high relevance when 

developing therapeutic strategies to tackle the tumor at a specific 

stage. 

Some tumors present natural resistance to therapy, not 

responding to the drugs from the beginning (innate resistance)
100

. 

In other cases, an initial response to the treatment is observed 

through cancer progression impairment, but cancer relapses due 

to acquired drug resistance 
101

. Tumor cell-driven mechanisms 

behind this resistance include the activation of DNA-repair 

mechanisms, alterations in drug metabolism and drug transporters 

101

. The latter can be responsible for an increasing drug elimination 

through the ejection of cytostatic therapeutic compounds to the 

extracellular space 
100

 and has a major influence in the failure of 

chemotherapy strategies 
100

. Among those drug transporters are 

ATP-binding cassette (ABC) efflux transporters, such as P-

glycoprotein, which are ubiquitously expressed and normally 

involved in transport of solutes 
100

. 

In this thesis section, the TME components, highlighted in 

Figure 1.6, are presented in the perspective of therapy-related 

effects. 
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Figure 1.6: Breast cancer tumor microenvironment contains tumor 

cells and other cellular and non-cellular components. Non-tumor TME 

cellular components include fibroblasts, endothelial cells, immune cells, 

adipocytes and pericytes. Non-cellular TME components include 

extracellular matrix, (such as collagen fibers and glycosaminoglycans) 

and signaling molecules (such as cytokines and growth factors) 
97,98

. 

 

5.1. Cellular components 

5.1.1. Tumor cells 

Tumor cells arise from healthy cells by a progressive series 

of transformations that lead to malignancy 
102

. Together with 

uncontrolled growth, tumor cells are further characterized by 

genomic alteration, increased cell mobility, changes at the cellular 

surface, among others 
103

. However, tumor cells are a 

heterogeneous population with variations at the morphological, 

genetic, epigenetic and phenotypic levels 
104

. 
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Tumor cells are the principal component of the TME and the 

primum movens of tumorigenesis and metastasis so, for that 

reason, they are the main target of anti-cancer therapies 
80,105

. A 

multidrug resistance transporter of the ATP-binding cassette 

superfamily of transporters, termed BC resistance protein (BCRP), 

was proposed to be involved in drug resistance 
106

. Overexpression 

of the full-length BCRP cDNA in MCF7 cells conferred resistance to 

mitoxantrone, doxorubicin, and daunorubicin and reduced 

daunorubicin accumulation and retention 
106

. Alternatively, 

continuous exposure of tumor cells to anti-cancer drugs can lead 

to the development of acquired resistance, due to genetic and/or 

epigenetic changes leading to a proapoptotic pathway blockade, 

and/or constitutive expression of anti-apoptotic proteins, as well 

as increased efficiencies in cellular DNA damage repair 

mechanisms 
107

. 

 

5.1.2. Fibroblasts 

Fibroblasts are mesenchymal cells derived from the 

embryonic mesoderm. They are the pillar of the connective tissue 

that holds the human body together. Fibroblasts produce ECM 

structural proteins (e.g., fibrous collagen and elastin), adhesive 

proteins (e.g., laminin and fibronectin), and ground substance 

(e.g., glycosaminoglycans (GAGs)) 
108

. In healthy tissue, in a wound 

healing scenario, fibroblasts sense and respond to mechanical 

changes and damage signals in the tissue and differentiate into 

activated fibroblasts (myofibroblasts) 
109

. These cells are 

responsible for tissue repair and wound healing through ECM 

production and remodeling and cross-talk with immune cells. 
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There are increasing evidence for the relevance of 

fibroblasts in the TME. In the “tumor is a wound that do not heal” 

theory it is hypothesized that the fibroblasts present on the tumor 

initially act in an anti-tumorigenic manner (by restraining growth 

and eliciting an anti-tumor immune response) 
109

. However, 

fibroblasts are activated by cancer cells to become pro-tumorigenic 

cells, cancer-associated fibroblasts (CAFs) 
110

. CAFs secrete survival 

cues that enhance cancer cell survival, remodel ECM to tumor 

invasion and reshape tumor immunity to generate an 

immunosuppressive environment, promoting tumor development 

109,110

. CAFs are a vastly heterogeneous stromal cell population, 

representing one of the major components of TME. In BC setting, 

CAFs are the most prominent stromal cell type 
109

. 

CAFs origin is controversial; in fact, not all CAFs derive from 

tumor-resident fibroblasts. CAFs have been shown to have diverse 

origins 
110

, including bone marrow-derived mesenchymal cells 
111

, 

adipocytes 
112

 and endothelial cells 
113

. CAFs are multiple 

subpopulations that have been divided in several CAFs subtypes: 

F1 tumor-restraining, F2 tumor-promoting, F3 secretory and F4 

ECM-remodeling 
114

. CAFs secretome include, transforming growth 

factor β (TGFβ), EGF, interleukins, fibroblast growth factors (FGFs), 

platelet-derived growth factors (PDGFs), protein ligands in the WNT 

signaling pathways, connective tissue growth factor (CTGF), 

prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) 

and metabolites, such as lactate 
110

. Several reports have shown that 

CAFs involvement in pro-tumorigenic functions occurs generally via 

modifications in their secretome 
110

. 

CAFs are key players in therapy resistance and disease 

relapse 
114,115

. The mechanisms behind these include induction of 



Introduction 

 

25 

 

epithelial-to-mesenchymal transition (EMT), activation of survival 

pathways, immune reprogramming or stemness-related programs 

and metabolic reprogramming in tumor cells 
114,115

. 

CAF-mediated drug resistance can be explained by 

environment-mediated drug resistance (EMDR): (1) based on 

soluble factors which include cytokines, chemokines and growth 

factors secreted by fibroblasts; (2) mediated by cell-adhesion 

between tumor cells and either fibroblasts or ECM components 

116,117

. Within group (1), a study by Straussman et al. used 23 stromal 

cell types to study their ability to influence the innate resistance of 

45 cancer cell lines to 35 anti-cancer drugs 
118

. They suggested that 

anti-cancer drugs capable of killing tumor cells when cultured 

alone, frequently rendered ineffective when tumor cells were 

cultured in the presence of stroma. This effect was particularly 

pronounced with targeted agents compared with chemotherapy. 

They studied in detail the mechanism of stroma-mediated innate 

resistance to the RAF inhibitor PLX4720, in melanoma cells. The 

authors showed that hepatocyte growth factor (HGF) secreted by 

stromal cells induced the activation of the MET receptor tyrosine 

kinase. This lead to reactivation of the MAPK and PI3K/AKT 

pathways, and consequently resistance to RAF inhibition 
118

. Within 

the group (2), it has was reported that adhesion of tumor cells to 

CAFs works as a drug-resistance mechanism, possibly via N-

cadherin homotypic binding, which activates anti-apoptotic protein 

AKT/PKB, increasing pro-survival AKT signaling in melanoma cells 

119,120

. 
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5.1.3. Endothelial cells 

Endothelial cells are the cells lining the blood vessels. In pre-

malignant stages of epithelial tumors, cancer cells are surrounded 

by a basal lamina that separates them from the connective tissue 

121

. In a more advanced stage of the disease, due to the big size of 

the cancer cell clusters and long distance to blood vessel, a hypoxia 

environment is created. This induces cancer cells to release pro-

angiogenic factors, such as VEGFA. Upon binding of this factor to 

specific receptors in neighboring endothelial cells, such as vascular 

endothelial growth factor receptor (VEGFR), angiogenesis is 

triggered 
122

. This process involves an intricate communication 

between endothelial cells and the surrounding matrix, involving 

maturation of primary blood vessels by pericytes and recruitment 

of vascular muscle cells. This results in the formation of immature 

and heterogeneous vasculature characterized by irregular and 

leaky blood vessels 
121,122

. These blood vessels with anomalous 

morphology and excessive branching lead to an increase of 

interstitial fluid pressure (IFP) and irregular blood flow throughout 

the TME, promoting further hypoxia 
121

. This high IFP makes 

difficult the delivery of anti-cancer drugs to target sites within the 

TME and has been correlated with poor prognosis 
105

. 

Anti-angiogenic therapy, which consists on angiogenic 

inhibitors, targets endothelial cells, since: (1) the survival of tumor 

cells is highly dependent on endothelial cells and these cells are in 

much less number so, it is easier to target them than the cancer 

cells; (2) since endothelial cells from different tissues are very 

similar, a unique effective anti-angiogenic drug might be sufficient 

to target those cells in different tumor types; (3) endothelial cells 

are genetically more stable than cancer cells, so they are less prone 
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to mutation and as a consequence develop therapy resistance 
123

. 

Although in the beginning anti-angiogenic drugs were considered 

to be less toxic than other cytotoxic drugs, it has been shown that 

they may induce severe side effects including lethal hemoptysis 

and intestinal perforation 
123

. 

Since the approval of the first anti-angiogenic therapy 

(bevacizumab to treat advanced colorectal cancer) in 2004, several 

other anti-angiogenic therapies have been approved to be used 

alone or in combination with chemotherapy 
124

. Currently, in the BC 

context, bevacizumab is the anti-VEGF monoclonal antibody most 

extensively evaluated 
125

. It was approved in 2008 by Food and 

Drugs Administration to treat metastatic HER2-negative BC. 

However, in 2011, Food and Drugs Administration withdrew this 

approval due to contradicting lack of overall-survival 
125

. 

Similarly, to cancer cells and fibroblasts, endothelial cells 

have also revealed acquired drug resistance. Gilbert et al. reported, 

using a lymphoma mouse model, that endothelial cells release 

interleukin-6 (IL-6) and tissue inhibitor of metalloproteinase (Timp-

1) in the thymus, upon chemotherapy. This creates a “chemo-

resistant niche”, located in the thymus, that promotes the survival 

of lymphoma cells that can serve as a reservoir for eventual future 

tumor relapse 
126

. Additionally, it has been reported that endothelial 

cells overexpress p-glycoprotein transporter, when compared with 

normal endothelial cells, which confers them resistance to 

doxorubicin and paclitaxel 
127

. Bani et al. showed that TKI and anti-

angiogenic compounds can reverse this resistance in vitro, leading 

to an increase of intracellular drug accumulation 
127

. They 

concluded that TKI interfere with ATPase activity of p-glycoprotein, 
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impairing its functionality, namely in excreting drug from 

endothelial cells 
127

. 

 

5.1.4. Immune cells 

The immune system is as intricate and complex system that 

aims to defend the organism from non-self-entities, such as 

bacteria, virus or even cancer 
128

. It involves several types of 

immune cells and their secreted signaling molecules. Altogether, 

the final role is to that neutralize, degrade or induce apoptosis of 

pathogens, infected cells or cells that are not recognized as “self” 

128

. Through a range of mechanisms, the cancer cells tend to escape 

immune surveillance and destruction, leading to tumor progression 

129

. In fact, within the TME, not only anti-tumor immune cells but 

also pro-tumorigenic immune cells can be found, playing distinct 

roles in the different stages of tumor progression 
130

. In the group 

of tumor-antagonizing immune cells one can name: effector T cells 

(including CD8+ cytotoxic T cells and effector CD4+ T cells), natural 

killer (NK) cells, dendritic cells (DCs), M1-polarized macrophages 

and N1-polarized neutrophils 
130

. The group of tumor-promoting 

immune cells consists mainly in M2-polarized macrophages, N2-

polarized neutrophils, regulatory T-cells (T-regs) and myeloid-

derived suppressor cells (MDSCs) 
130

. B-cells have a controversial 

role and so, are not included in neither of those groups 
130

. 

In the tumor setting, DCs are thought to endocytose dead 

neoplastic cells or cellular debris and their main function is to work 

as antigen presenting cells (APC) 
130,131

. They are also involved in 

sensing antigens released by cancer cells. Upon this stimulus, DCs 

become APC, and are transported to the lymph node. There, DCs 

prime resident T-cells, by exposing to them the cancer antigens. T 
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cells become activated effector T-cells (differentiation of antigen-

specific T cells) which have cytotoxic capacity 
131,132

. This process 

involves the MHC, present on the surface of DCs, and the T-cell 

receptor, localized on the surface of effector T-cells surface. This 

interaction triggers a series of proliferative events that lead to the 

expansion of the differentiated effector T cells populations 
132,133

. 

These are trafficked to the tumors mediated by interactions 

between CXC‐chemokine receptor 3 (CXCR3) expressed by T-cells 

with chemokines (such as CXCL9 and CXCL10) secreted by 

dendritic cells 
130,132

. In the tumor site, effector T-cells recognize 

cancer cells through interaction between its T cell receptor and the 

cancer antigen bound to MHC 
134

. After binding to its target, they 

secrete killing molecules, such as death ligands like FasL and TNF-

related apoptosis inducing ligand 
135

. This leads to the release of 

additional tumor-associated antigens that are sensed by DCs, 

initiating the cycle once again 
134

. Each of these steps are the result 

of coordination of stimulatory and inhibitory effects 
134

. This multi-

step process was proposed by Chen and Mellman as the “cancer-

immunity cycle” 
134

 (Figure 1.7). 
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Figure 1.7: Schematic representation of the immune-tumor network 

in the “cancer-immunity cycle”. Cancer cells release antigens which are 

sensed by dendritic cells (DCs)/antigen-presenting cells (APCs). These 

cells start presenting cancer antigens on their surface, which are 

recognized by several T-cell types, such as CD8+, CD4+ and activated T-

cells. Upon this contact, they become activated T-cells and are recruited 

from the lymph node to the tumor site. There, they recognize cancer cells 

and release molecules to kill cancer cells 
134

. Immune checkpoint inhibitor 

acts by binding to either programmed cell death protein 1 (PD1) or 

cytotoxic T-lymphocyte-associated protein 4 (CTLA4) present of the 

surface of T-cells, stimulating the release of anti-cancer molecules 
136

. 

 

The step of activation and regulation of CD8+ T-cells, upon 

presentation of cancer cell antigens by DCs, requires two signals: 

the first one came from the T-cell receptor (TCR), and the second 

one, co-stimulatory signal from immune checkpoints 
130

. These 

immune checkpoints can have either inhibitory or stimulatory 

effects. Within the inhibitory immune checkpoints, cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) and programmed cell 

death protein 1 (PD-1) are some examples 
130

. Within the 

stimulatory immune checkpoints, ICOS, OX-40 and GITR are some 

examples 
130

. 
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Another relevant immune cell type present in the TME is the 

macrophage that represents the main immune cell population of 

the TME in most cancers 
137

. Its major functions include 

maintenance of tissue homeostasis, engulfment and digestion of 

foreign substances and clearance of cellular debris and cancer cells 

138

. Macrophages play roles both in innate and adaptative immunity. 

In the cancer context, tumor-associates macrophages (TAMs) are 

obtained by differentiation of monocytes that are recruited to the 

tumor site 
138

 or from embryonic-derived macrophages already 

present in the tumor site 
137

. Upon monocyte recruitment and 

differentiation process, macrophages polarize into: classically 

activated macrophages (M1 macrophages) or alternatively activated 

macrophages (M2 macrophages) 
138

. The phenotype of TAMs is 

plastic and M1 and M2 are only the two extreme phenotypes of the 

several intermediate polarization states in which macrophages can 

be 
138

. M1 macrophages, whose activation can be induced with 

interferon gamma (IFN-γ) and granulocyte-macrophage colony-

stimulating factor (GM-CSF), produce pro-inflammatory cytokines 

with the role to kill non-self-entities 
138

. On the other hand, M2 

macrophage polarization can be obtained by stimulation with 

colony stimulating factor 1 (CSF-1), interleukin (IL)-4, IL-13, IL-10. 

These macrophages are involved in tissue remodeling and 

angiogenesis 
138

. So, TAMs have a dual role in tumorigenesis: they 

can promote tumor progression (by the secretion of IL-6, IL-8, and 

IL-10) or have anti-tumorigenic activity 
138

. 

Macrophages have been reported to be involved in 

resistance against several types of chemotherapy in different types 

of cancer 
139

. In BC, one example of TAM-mediated chemoresistance 

was described by Hughes et al. 
140

. They used a mouse model to 
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show the existence of a subpopulation of M2 TAMs that promotes 

tumor relapse, by accelerating tumor regrowth. These cells, that 

express VEGFA, accumulate near vascularized areas of the tumor 

upon chemotherapy 
140

. Another study by Shree et al. showed an 

increased macrophage infiltration and cathepsin protease levels in 

mammary tumors, in vivo, upon chemotherapy 
141

. Then, using a 

co-culture in vitro assay with BC cell lines with primary bone 

marrow-derived macrophages, they concluded that macrophage-

derived cathepsins prevent tumor cell death upon chemotherapy 

141

. 

Anti-cancer treatment targeting macrophages have been 

proposed by several strategies, such as by PD-1/PD-L1 blockade 

therapy or by using inhibitors of CSF-1R 
138

. 

 

5.1.5. Other cell types 

Other cell types found in the TME includes adipocytes. 

Analogously as it occurs for fibroblasts, normal adipocytes in the 

tumor environment are converted to cancer-associated adipocytes 

(CAAs) 
142

. There, they become storage of ketone bodies, fatty 

acids, pyruvate, and lactate that are seized by tumor cells. 

Additionally, they play roles in inflammation, metabolism and 

exosomes of cancer cells 
142

. In fact, CAAs release several factors, 

such as chemokine (C-C motif) ligand (CCL)2, CCL5, IL-6 and VEGF 

that alter BC cells in terms of p38/MAPK, ERK/MAPK and ER cancer 

cell pathways 
142

. In a study developed by Lehuédé et al., adipocytes 

were shown to promote doxorubicin resistance in both human and 

murine BC cell lines. Adipocytes increase the nuclear efflux of 

doxorubicin and its expulsion from tumor cells, in a process 
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mediated by major vault protein (MVP). In fact, co-culture of BC cells 

with adipocytes increased the MVP levels in cancer cells, when 

comparing with cancer cells cultured alone 
143

. Other studies also 

suggest that adipocytes and lipids metabolism can be responsible 

for drug-resistance in tumor cells 
144

. 

 

5.2. Non-cellular components 

5.2.1. Extracellular Matrix 

ECM is an interlocking mesh of water, minerals, 

proteoglycans, and fibrous proteins actively interacting between 

them and with the cellular compartment 
145,146

. Based on 

biochemical and structural characteristics, ECM can be classified as 

basement membrane or interstitial ECM 
145

. 

In normal tissues, the basement membrane is a barrier, 

located at the basal side of epithelial or endothelial cells, that 

allows the diffusion of gases and transport of signaling molecules 

145

. This membrane is composed mainly of collagen IV, laminin, 

fibronectin, and several types of proteoglycans 
145

. On the other 

hand, the interstitial ECM, mostly produced by mesenchymal cells 

such as fibroblasts, consists mainly of collagens I and III, 

fibronectin, GAGs and proteoglycans 
145

. In general, healthy tissue 

ECM differs from tumor ECM: this last one usually contains a more 

densely packed network of highly aligned collagen fibers 
147

. 

In the BC setting, ECM components include collagens, 

fibronectin, laminins, GAGs and proteoglycans and non-structural 

proteins, reviewed in 
148

. The predominant component of the ECM 

is fibrillar collagen, whose structure and mechanical properties 

strongly influence tumor cellular phenotype 
145

. During tumor 
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development both the basement membrane and the interstitial 

ECM suffer modifications. Cancer progression and development of 

metastasis is characterized by the epithelial-to-mesenchymal 

transition (EMT). In this process, epithelial cells acquire a 

mesenchymal phenotype associated with increased motility, 

expression of ECM remodeling enzymes, such as matrix 

metalloproteases (MMPs), and enhanced survival. These MMPs are 

crucial for cancer evasion, since they are enzymes that degrade 

molecules present in both the basement membrane and the 

interstitial ECM 
145

, allowing cell to migrate through the tumor 

interstitium. When cancer cells reach the basement membrane, 

MMP 2 and 9 degrade collagen IV and allow cancer cells to evade 

the tumor site and enter the blood stream 
149

. 

The ECM is responsible for hampering intra-tumoral 

diffusion of therapeutic antibodies and physical masking of target 

receptors on tumor cells 
150

. 

Collagen has been reported to highly influence antibody 

diffusion 
151–153

. Kihara et al. determined the diffusion coefficients 

of biomolecules of various radius (1-10 nm) in a collagen gel 

cultured with fibroblasts. They analyzed the diffusion of those 

biomolecules in collagen gels and they concluded that it is smaller 

near the cell vicinity, when comparing with collagen solution alone. 

Diffusion revealed to be restricted in the proximity of the cells, 

where collagen fibers are highly condensed 
151

. Netti et al., using 4 

different tumor cell lines (colon adenocarcinoma, glioblastoma, 

sarcoma and mammary carcinoma) grown in mice, found a 

correlation between IgG tumor penetration and the extension of 

the collagen network. They concluded that less penetrable tissues 

had an extended collagen network, which could be reversed by 
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collagenase treatment. Additionally, they suggested that, possibly 

by binding and stabilizing GAGs, collagen influences the tissue 

resistance to macromolecule transport 
152

. Davies et al. measured 

the diffusion coefficient of nonspecific IgG in three 

rhabdomyosarcoma subclones growing as in vitro multicellular 

spheroids or in vivo. They reported that, the higher the amount of 

collagen and sulphated GAGs, the lower was the antibody diffusion 

coefficient, for spheroids grown in vivo 
153

. On the other hand, Beyer 

et al. performed immunohistochemical studies of tumor sections 

from BC patients and xenografts. They observed co-localization of 

HER2 protein and laminin in HER2-positive BC and ovarian cancer 

biopsies. This suggest that laminin can mask HER2 on the tumor 

cell surface and, as a result, reduce therapeutic antibody access to 

its target site 
150

. 

Hyaluronic acid (HA) is accumulated in most human tumors, 

especially in various adenocarcinomas, such as BC 
154

, and has been 

reported also to play important roles in drug resistance. Ricciardelli 

et al. showed that carboplatin treatment increased the expression 

of production of HA. Also, they proved that HA can regulate the 

expression of ABC drug transporters, in ovarian cancer cells, 

contributing then to chemoresistance 
155

. In another work, Chen 

and Bourguignon showed that HA-CD44 binding is behind a 

chemoresistance mechanism in MDA-MB-468 BC cells 
156

. The 

authors showed that HA binding to CD44 promoted c-Jun nuclear 

translocation and consequent transcription of miR-21 gene (which 

is involved in BC progression). This led to enhanced expression of 

Bcl2 and inhibitors of the apoptosis family of proteins, which were 

already correlated to chemoresistance by suppressing apoptosis 
156

. 
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5.2.2. Cytokines 

Cytokine is a general term which include a large variety of 

chemokines, growth factors, pro- and anti-angiogenic factors, 

adipokines, soluble receptors and extra-cellular proteases 
107

. They 

are involved in several tumorigenic processes related with tumor 

development and metastasis, such as inflammation, angiogenesis, 

cell migration and apoptosis 
107

. 

Cytokines have been reported to play relevant roles in drug 

resistance 
107

. Conze et al. showed that expression of IL-6 increased 

drug resistance by activation of C/EBP transcription factors and 

consequent induction of expression of mdr1 gene (which encodes 

the p-glycoprotein transporter). This lead to a reduction of 

intracellular concentration of anti-cancer drugs 
157

. Another study 

found that, in a multidrug-resistant human BC cell line (MCF7/R), 

both IL-6 and IL-8 proteins levels were increased when in 

comparison with the parental sensitive cell line (MCF7). Drug 

resistance against paclitaxel and doxorubicin was partially 

neutralized upon anti-IL-6 and anti-IL-8 antibody treatment or 

inhibition of endogenous IL-6 and IL-8 with small interference RNA, 

showing the relevance of these two secreted molecules on cancer 

chemoresistance 
158

. 

Cytokines have been also reported to induce resistance to 

antibody anti-cancer therapy. Kim et al. reported that AREG, a 

ligand of EGFR, confers trastuzumab resistance to HER2 positive 

BC. They showed that addition of AREG, in a colony-forming assay, 

increased cell proliferation and reduced the anti-proliferative effect 

of the anti-HER2 antibody trastuzumab. Additionally, they state 

that: (1) the mechanism behind this observation involves the AKT 

and ERK pathways, which were activated by AREG and (2) AKT and 
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ERK were phosphorylated upon trastuzumab treatment in the 

presence of AREG 
159

. 

 

6. Breast cancer models 

The study of BC development and testing of new promising 

anti-cancer compounds are conducted in BC models. Broadly, these 

models can be divided into 2 main groups: experimental and 

computational (in silico) models. Within the first group, 3 types can 

be defined according with the biological sources and cell culture 

technique used: in vitro (cell-based approaches), in vivo (animal 

models) and ex vivo (tumor tissue cultured outside the body) 
160

 

(Figure 1.8). 

6.1. In vitro models 

In vitro cancer models, based on cell culture of cancer-

derived cell lines, have leveraged the study of tumor-associated 

phenomena, such as tumor cell growth, migration and invasion and 

drug delivery 
161

. Currently, in vitro models range in complexity and 

can be classified into 2-dimensional (2D) or 3-dimensional (3D) cell 

models 
161

. The vast majority of these models are based on cancer 

cell lines commercially available. In the specific context of BC, more 

than 90 cell lines exist 
162

 and several in vitro models have been 

reported along the years and reviewed by many 
163–165

. 
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Figure 1.8: Tumor models used in cancer research can be divided in 

2 main groups: experimental (in vitro, in vivo or ex vivo) and 

computational, or in silico 
163,164,166–173

. 

 

6.1.1 2D cell culture 

In vitro 2D cell cultures are the standard models used for 

screening candidate anti-cancer therapeutics 
174

. These models 

include culture of cells directly on flat substrates as monolayers 
175

 

(Figure 1.8). In the 2D cell culture methods, cells are grown in 

unrealistic conditions that do not recreate the physiological and 

pathophysiological situations 
161,175

. Mechanical and biochemical 

signals and cell-to-cell communication sensed by the cells in 2D 

conformations are clearly different from the in vivo situation 
175

. 

Therefore, cells cannot retain their tissue-specific architecture 

since they are forced to be in a flattened and stretched shape, with 

forced polarity 
175

. Despite its simplicity, most cancer biology 

research was based on those models 
175

. The 2D cultures have 

several advantages such as: can be easily implemented, are low 

cost and easily adapted to high-throughput systems 
161,175

. 

Additionally, several cell types, ECM components and soluble 

factors can be also included to increase the complexity of 2D 

models 
176,177

. 

The transwell systems, considered by many as a 2.5 D 

system, is employed in the assessment of the migration and 

invasion potential of cancer cells, that can be induced by several 

cues, such as chemical attractants
161

. The transwell platform 

comprises two chambers: in the most common setting of migration 

assays, cells are seeded on the top chamber (insert) onto a porous 

membrane, while in the bottom chamber, a chemoattractant is 
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added. Cell migration is assessed by evaluation of cell movement 

towards the bottom chamber 
161

. In the case of invasion assays, a 

component mimicking basement membrane is added on top of the 

porous membrane of the insert prior to cell seeding. This allows to 

assess the potential of cancer cells to invade through that 

membrane, as it occurs in the first stages of cancer evasion 
161

. 

Several variations of the transwell system exist and were reviewed 

by Katt et al. 
161

. The transwell system also allows co-culture and 

3D cell culture. It has been employed by several authors to mimic 

cellular barriers, such as the blood brain barrier 
178

. Endothelial and 

epithelial layers can be cultured in the upper and lower side of the 

upper chamber, respectively, while the tumor cells are cultured in 

the lower chamber 
179

. In other configurations tumor or stromal 

spheroids can be included in those chambers 
180,181

. The major 

advantage of the transwell system is that the cellular compartments 

are physically separated, facilitating endpoint analysis in the 

distinct cell compartments. On the other hand, this can also be 

seen as a disadvantage as most of the times these configurations 

have low physiological relevance 
161

. 

 

6.1.2 3D cell culture 

The growing recognition of the importance of the TME in 

cancer progression and therapy resistance (as referred in section 

5), together with technological and methodological advances, 

contributed to the recent shift from simple 2D flat cell culture to 

complex cell models that include several cell types, ECM 

components and soluble factors 
161

, in conditions physiologically 

and pathophysiologically more relevant. In these models, several 



Introduction 

 

41 

 

variables present on the TME can be included and studied, such as 

different cell types, ECM and biochemical cues 
161

. 

Amongst the 3D cell models available, the spheroids, the 

organoids and the systems based on bioprinting will be discussed 

in further detail. 

 

Spheroids 

Spheroids are the simplest 3D cell culture system. Their 

preparation can be achieved by: (1) stimulating single cells to 

generate spherical colonies by proliferation or (2) inducing single 

cells to aggregate into clusters that later grow in size due to cell 

proliferation 
182

. Techniques to prepare spheroids can be divided 

into dynamic or static methodologies. Agitation-based culture 

systems and microfluidic systems 
183

 (in the dynamic group) 
184

 and 

liquid overlay technique 
185,186

, hanging-drop 
187–189

, microwell arrays 

187

 and embedding in matrices 
190

 (in the static group) have been 

used to prepare spheroids (Figure 1.8, reviewed in 
161,187,191

). 

Agitation-based culture systems include gyratory rotation 

techniques, rotary culture systems and stirred suspension culture 

systems 
184

. In these systems, hydrodynamic forces generated by 

the agitation promote cell collisions, increasing adhesion binding 

kinetics at the cellular and molecular level, leading to spheroid 

formation 
184

. During the aggregation process, stirring rates must 

be controlled to promote cell aggregation while avoiding cell and 

spheroid damage by the shear stress 
184

. These systems allow 

spheroid mass production and long-term culture. However, control 

of size and composition, when preparing spheroids containing 

several cell types, is cell-type dependent and has to be adjusted 
184

. 

Moreover, high shear stress is sometimes imposed to control 
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spheroid size, hampering the use of these system with shear stress-

sensible cells 
161

. 

Several groups have proposed the use of microfluidics 

technique to prepare spheroids 
192

. One case includes the 

microfluidic-based methodology that uses patterned polymers 

together with PDMS to create molds, or PDMS molds with v-bottom 

microwells, where cells are seeded 
193,194

. Microfluidics methods 

allow to control spheroid size and growth parameters. Moreover, 

they allow performing the aggregation under perfusion condition 

161

, reducing nutrient and oxygen deprivation and waste products 

accumulation. The major drawback of these systems is related with 

the difficulty in collecting the spheroids and the preparation of the 

device itself 
161,195

. The most used type of microfluidic based-

methodology is named microwell-based microfluidic spheroid 

formation chip (µSFC) 
192

. It consists on a chip containing microwells 

connected by microchannels to the inlet. A cell suspension is 

introduced in the inlet, fills the microchannels and then deposit on 

the bottom of the microwells. In each of those microwells, a 

spheroid is formed 
192

. One example of this methodology applied 

in the BC context, was proposed by Wu et al., who established a 

proof-of-concept of the utilization of the platform for MCF-7 

spheroid self-assembly 
196

. The authors claim that this platform 

allows the formation of large amount of uniform spheroids (with 

narrow size distribution) and also the characterization of spheroids 

dynamics. They are formed due to trapping of cancer cells in U-

shape traps and their compactness is assured by a continuous 

perfusion system 
196

. However, validation of the platform with 

additional cell lines is still required considering that aggregation 

capacity may vary between cell lines and cell types 
184,197

. 
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Regarding the static culture methods, the liquid overlay 

technique (LOT) is based on a non-adhesive surface and gravity. As 

cells cannot adhere to the substrate, cell-cell interactions are 

promoted by proximity, leading to the formation of spheroids 
185

. 

It is a cost-effective technique that allows easy monitoring of 

spheroid formation. However, spheroid size and cell number 

cannot be controlled 
195

. In the hanging-drop (HD) technique, a 

droplet of single cell suspension is formed and left static, leading 

to cell sedimentation in the bottom of the droplet by gravity. Like 

in the LOT technique, gravity promotes cell-cell contact and 

spheroid formation 
185

. Although HD is cost-effective, it is also time-

consuming and does not allow for long-term cultures 
195

. Microwell 

arrays, which are round-bottom nonadherent 96-well plates where 

cells are seeded, can also be used to prepare spheroids 
187

. 

Commercially available multiwell plates, including round bottom 

nonadherent wells or wells at the micro scale, like the AggreWell™ 

system, can be also used to prepare spheroids. These are simple 

methods that allow easy monitoring of the aggregation process, in 

which co-cultures can be easily implemented 
195

. Due to their 

inherent static nature, these methods can promote nutrient and 

oxygen deprivation and waste accumulation, reducing its potential 

to be used when long-term aggregation periods are needed 
161

. 

Alternative methods include the embedding of single cells in 

scaffolds and hydrogels to give origin to spheroids. Examples 

include AlgiMatrix 
190

 and carboxymethyl cellulose. The later 

compound, when added to culture medium, increases its viscosity, 

preventing the cells from sediment or adhere to the culture device, 

leading to spheroid formation 
185

. Combinations of the methods 

above described were already reported. An example is the work 
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proposed by Frei et al. that presented a platform joining hanging-

drop and microfluidics to prepare spheroids 
198

. 

The abovementioned methods can be applied to a single cell 

type, originating mono-cultures, or to a combination of multiple 

cell types, originating co-cultures 
176,177

. After spheroid preparation, 

they can be cultured per se on the same platform they were 

prepared (e.g. microfluid device, spinner vessel 
175

) or can be 

combined with scaffolds for long-term maintenance (e.g. 

encapsulation in a hydrogel 
199,200

). 

 

Organoids 

Another type of 3D model widely used is the organoid. The 

term mammary organoid has been used since the 1980s, when 

Mina Bissel seminal work established that functional differentiation 

of mammary epithelial tissue was dependent on 3D architecture 

and interaction with basement membrane 
201

. Recently, organoids 

have been defined as 3D multicellular structures in which cells self-

organize to recapitulate some of the organ functions 
166,202

. Within 

the scope of this current definition, organoids can be established 

from embryonic stem cells, induced pluripotent stem cells, somatic 

stem cells, and cancer cells (in this case are also called tumoroids). 

The establishment of tumoroids starts with cancer cells isolated 

from cancer tissue. Those cells are cultured in basement membrane 

mimetics, in the presence of specific growth factors and small 

molecule inhibitors which expand and differentiate the epithelial 

cell population 
203

. Sachs et al. reported the derivation of more than 

one hundred breast cancer organoids, which recapitulated the 

diversity of the disease 
204

. These organoids were obtained by 

isolating BC cells from surgical BC tissue. After mincing and 
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enzymatic digestion cells are placed in basement membrane 

mimetics (e.g., Matrigel) and cultured in the presence of niche 

factors, which in vivo are secreted by the stroma, and have been 

previously reported to be required for the formation of organoids 

205

. 

Organoids have been used to study genetic mutations 

leading to tumor initiation and progression 
206

. Additionally, 

organoids have been applied in drug development 
203

, in particular 

in precision medicine approaches, aiming to determine individual 

patient drug sensitivity or identify predictive biomarkers 
203

. 

 

Bioprinting 

Bioprinting is a recently proposed technology with great 

potential to generate not only spheroids but also more complex 3D 

cancer cell models. It consists on printing to a substrate or liquid 

reservoir, in a layer by layer fashion, several components (that can 

include cells, ECM and biomaterials) with a tailored pattern, in 

order to mimic native tissue architecture 
167

. Then, this technology 

allows to reproduce both the structural heterogeneity and 

biomolecule gradients that play important roles in cancer 
167,207

. 

Bioprinting can be achieved using one of three techniques: 

microextrusion bioprinting, laser-assisted bioprinting or inkjet 

bioprinting, which have different spatial resolution, allow different 

cell densities to be printed and different gelation methods 
167

. In 

the case of the microextrusion bioprinting, a continuous flow of 

bioink is generated through pneumatic or mechanical forces. In the 

case of the laser-assisted, a laser is used to guide or induce cell 

deposition. In the case of the inkjet bioprinting, bioink droplets are 

created by a heater or a piezoelectric actuator 
167

. To prepare 3D 
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cell models using bioprinting, two possible strategies exist: first to 

print the scaffold and then to seed the cells (two-step fabrication) 

or, alternatively, print both at the same time (one-step fabrication). 

An alternative is based on scaffold-free printing, in which only the 

several cell types, capable of producing their own matrix, are 

printed 
167

. One example of the use of 3D bioprinting for generation 

of BC models is the work by Wang et al.. The authors bioprinted 

primary BC cells surrounded by different thicknesses of adipose 

derived mesenchymal stem/stromal cells (ADMSCs), to mimic 

different obesity status and challenged the model with 

chemotherapy to address resistance 
208

. Another example that 

highlights the potential of bioprinting to recapitulate cellular 

organization of the tumor tissue is the work by Langer et al.. The 

authors prepared scaffold-free co-cultures of tumor cells (several 

BC subtypes) surrounded by stromal cells (different cell types) 
209

. 

They demonstrated that the several cell types could be successfully 

co-cultured and that chemotherapy and targeted therapies 

sensitivity could be assessed in the system 
209

. 

 

Organ-on-a-chip 

Numerous technologies have been proposed in recent years 

for the generation of advanced in vitro tumor models. One of the 

most relevant examples is the organ-on-chip and human-on-a-chip 

concept 
168

. These consist on the 3D combination and deposition, 

on a microfluidic device, of cells and ECM, which are perfused 

through hollow microchannels with culture medium in order to 

maintain cell viability for long periods of time 
168

, simulating the 

connections between organs by the circulatory system. One 

example of BC tumor-on-chip was presented by Choi et al. 
210

. They 
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created a chip containing a layer of epithelial cells on top of a layer 

of fibroblasts, separated by an ECM-derived membrane. On top of 

epithelial cell layer, BC spheroids were deposited to mimic the 

initial phases of BC development (ductal carcinoma in situ). This 

tumor-on-chip model was used as a proof-of-concept to test a 

chemotherapy drug which was perfused in the lower channel to 

simulate intravenous administration 
210

. 

 

6.2. In vivo models 

Animal models are a gold standard in cancer research. 

Mouse is the most used animal, since is easy to maintain and 

handle, has a short reproductive cycle and share genomic and 

physiological properties with humans 
211

. Mouse model can be 

created by genetically engineering strategies, human/mouse 

cell/tissue transplantation or viral/physical/chemical insults 
169

. 

Genetically engineered mouse model (GEMM) are genetically 

modified mice containing in its genome cloned human cancer 

genes (such as the HRas oncogene). This model however fails to 

recapitulate sporadic cancer appearance due to accumulation of 

genetic events in a single cell, as it occurs in human cancers 
212

. So, 

other mouse models have been developed and currently several 

types of GEMM models are available, such as the conditional GEMM. 

In this model, a given allele is phenotypically wild type until 

stimulation, with exogenous chemicals or viruses, is performed in 

a tissue- and time-specific manner. These allow somatic 

inactivation of tumor suppressors or activation of oncogenes, by 

recurring for example to the Cre-lox system 
213,214

. These models are 

germline GEMMs since mice carry genetically engineered alleles in 

all cells, including the germline. Their preparation requires several 
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steps, such as targeting embryonic stem cells, generation of 

chimeras, germline transmission and complex mice intercrosses. 

Therefore, their development and validation are time-consuming, 

laborious, and expensive 
212

 and so, they are not easily adapted to 

high-throughput translational research and drug testing 
215

. This 

led to the development of non-germline GEMMs (nGEMMs; mouse 

models carrying genetically engineered alleles in somatic cells, but 

not in germline cells) 
212,215

. One example is the clusters of regularly 

interspaced short palindromic repeats (CRISPR)/Cas9-based mouse 

model 
216

. 

Other mouse model is the transplantation mouse or 

xenograft, which it is based on immunocompromised mice lacking 

an effective immune system in order to avoid transplant rejection 

217

. According with the origin of the tissue/cells to be transplanted, 

they can be categorized into: cell line-derived xenografts (CDXs), if 

human established cell lines are implanted; patient-derived 

xenografts (PDX), if human tumor tissue is grafted 
217

. Alternatively, 

syngeneic mouse models (graft using cancer cells from mice) can 

also be prepared 
212

. Transplantation models can also be 

categorized according with the place within the mouse body where 

cells/tissue are/is transplanted: orthotopic (transplanted to the 

same body site from which the tumor was originated), ectopic 

(when transplanted to a different site from the site of origin) and 

intravenous, usually injected in mouse tail-vein, for metastasis 

study in vivo 
218

. The subcutaneously-injected mice model is the 

standard model used in the development and evaluation of new 

drugs in the pharma industry 
219

. 

The representative potential of CDX is low since, contrarily 

to the heterogeneous tumors observed in humans with several cell 
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populations, an homogenous mass of tumor is injected in mice 
220

. 

To surpass this problem, tumor tissue-transplanted mouse models 

(PDXs) were developed, in order to obtain the different cell 

populations of the original tumor. PDX models allow preservation 

of many relevant features of the primary human tumor, including 

histological features, behavioral characteristics (such as 

invasiveness and metastatic capacity) and most importantly, 

response to therapy 
217

. However, in PDX, human tumor tissue 

availability is as issue. Another important aspect is that PDXs are 

generated in immunocompromised mice, therefore the influence of 

the immune system cannot be addressed. Moreover, the initially 

transplanted human stroma and immune infiltrate tend to be 

replaced by mice stroma over passage 
217

. In order to circumvent 

the drawbacks related to the absence of the immune system, the 

latest developments in mice models have been focused on 

humanized mice, which consists in immunodeficient mice 

engrafted with human cells or tissues, in order to overcome the 

differences between mice and human physiology 
221

. Syngeneic 

mouse models circumvent the need for an immune-compromised 

animal, allowing to evaluate the role of the immune response in 

cancer progression 
218

. These enabled the investigation and 

development of various immune therapies 
222

 nonetheless, they 

may not represent human specific signaling. 

In BC, ER represents a very important receptor, as described 

previously. So, having an ER-positive BC animal model is of high 

relevance. As observed in 2D culture, upon xenotransplantation in 

vivo, the most aggressive cell subtypes tend to overpopulate the 

transplant, biasing these models towards the triple-negative BC 

subtype 
217

. Additionally, only a few ER-positive cell lines can 
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generate xenografts in mice and they require estrogen 

supplementation 
223

. The challenges of modelling ER-positive BC in 

mice has been recently reported 
224

. A comparison study of all BC 

GEMM showed that only the Stat1
−/−

 and the Pik3ca-H1047R models 

develop ER-positive tumors 
225

. CDX mouse models of ER-positive 

BC cell lines are based on: (1) BT474 cell line (subcutaneous) 
226

, 

MCF7 cell line (orthotopic transplantation into mammary fat pad) 

227

 and T47D cell line (subcutaneous) 
228

. Xenografts of ER-positive 

BC are typically injected in the mammary fat pad, which leads to 

changes in tumor cell phenotype. In fact, it was demonstrated that 

when luminal tumor cells were injected in the mammary fat pad, 

their characteristics were lost and cells acquired a basal-like 

phenotype 
223

. Moreover, the engraftment rate is very low (2.5%) 

and ER+ tumor cells need exogenous estrogen to grow. Due to all 

of these drawbacks, injection in the milk ducts was proposed by 

Behbod et al. as a more relevant site of injection: intraductal mouse 

models (MIND) 
229

. This system was latter better characterized by 

Sflomos et al. 
223

. The authors observed that tumor cells were able 

to recreate advanced BC stages, such as the breakdown the 

basement membrane and invasion of the stromal space into the fat 

pat. In this case, engraftment rates increases to 30-100% and there 

was no need for estrogen supplementation 
223

. This strategy is a 

great improvement over the models described previously, since it 

allows the engrafted cells to be maintained in a luminal-epithelial 

like phenotype, typical of the ER-positive tumors. However, this 

strategy still has drawbacks, such as the technical difficulties in 

performing the implantation, the long time needed for engraftment 

and expansion of tumor cells in mice (at least one month), the lack 
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of immune system, and the exclusive presence of murine cells in 

the stromal compartment 
223

. 

In addition to mice, other animal models that have proposed 

for cancer research, such as zebrafish 
230

. These small fishes have 

high genetic homology to humans, and their embryos are 

transparent, which facilitates analysis of engrafted cancer cell 

growth and metastasis. Zebrafish is easy to maintain and has 

reasonable cost 
230

. Moreover, it allows genetic manipulation at low 

cost and within short time 
230

. Within the BC field, Drabsch et al. 

demonstrate that the zebrafish sustains invasion and metastasis 

upon transplantation of human BC cell lines with different 

metastatic potentials into the blood. Moreover, they showed that 

that animal model can be used to study the role TGF-β signaling in 

BC invasion and metastasis 
231

. Additionally, dogs and primates 

have also been used as spontaneous BC models 
170,171

. 

 

Even though animal models have assisted  the discovery of 

cellular and molecular mechanisms associated to cancer 

tumorigenesis and the drug development process, they are still far 

from being able to recapitulate fully human cancer etiology, 

development and metastization, which reduces their predictive 

value 
217,232–235

. 

 

6.3. Ex vivo models 

Ex vivo models consist on the culture of freshly isolated tumor 

samples with the aim to preserve the original tissue architecture 

and heterogeneity, and the surrounding microenvironment 
172

. The 

most described ex vivo models are based on tissue slice and 

explant culture. In these models, the tumor samples can be from 
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human or animal origin 
236

 and can be cultured: (1) in suspension 

in culture media 
172

, (2) in an air-liquid interface 
237

, (3) in a scaffold 

that mimics the ECM 
238

. 

In the 60s Matoska and Stricker, suggested the culture of 

cubes of tumor tissue combined with a collagen gel support. 

However, problems related with oxygen and nutrient diffusion were 

reported due to the size of the microtissues 
172

. To overcome 

oxygen and nutrient diffusion problems associated with that 

technique, Nissen et al. later adapted the methodology to obtain 

uniform, microscopically controlled tissue slices 
239

. In fact, since 

then several other models were proposed based on these tissue 

slices. An example is the model proposed by van der Kuip et al. 

that used a tissue punch to generate 0.2 mm thick BC tissue slices 

that were cultured for 3 days in suspension. This method was used 

as a drug testing platform to address taxol sensitivity 
172

. 

Several ex vivo BC models were developed which aimed at 

retaining ERα, given its role in BC carcinogenesis and as it is a target 

of endocrine therapy (as described above). Milani et al. 
240

 reported 

the maintenance of epithelial–mesenchymal interactions and 

viability of BC tissue slices for 24h, which were employed to 

evaluate the vitamin D pathway 
240

. To overcome possible oxygen 

and nutrient diffusion problems, due to the size of the tissue slices, 

Parajuli and Doppler proposed the use of precision cut slices, which 

allow to control the slice thickness. They applied this strategy to 

mammary tumor collected from mice and studied the action of 

cytokines and cytotoxic drugs for up to 48 h: apoptotic scores and 

gene expression were assessed in tissue slices treated with IFN-γ 

and cell death was induced by doxorubicin 
241

. Additionally, 

Pennington et al. showed that breast tumor tissue slices could be 
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infected by an oncolytic adenovirus and that the virus was able to 

replicate in the slices 
242

. Davies et al. performed a comparison 

study between different strategies to culture of breast tumor 

tissue, among others
237

. They compared tissue slices floating in 

culture medium or placed on a filter support, in direct contact with 

air. Tissue morphology and integrity was better for tissue slices 

cultured on the filters and in the presence of atmospheric oxygen. 

However, the authors observed necrosis and stress biomarkers in 

the area of the tissue in contact with the filter, whereas the area in 

contact with the air was enriched in mitotic cells 
237

. Additionally, 

ERα-positive cells were not efficiently retained  in filter supports 
237

. 

Naipal et al. reported an optimization that combines manual or 

automated tissue slicing (to obtain an optimized tumor slice 

thickness), specific growth medium and shake-based dynamic 

culture 
243

. Results revealed that cell proliferation was preserved for 

7 days of dynamic culture, without significant morphological 

differences from the original tissue. The authors also showed that 

those tissue slices could be used to study chemotherapy 
243

. Muraro 

et al. reported the use of a perfusion-based bioreactor combined 

with a collagen scaffold to culture BC tissue 
238

. They showed that 

cell viability was higher in perfused tissue when compared with the 

one cultured in static conditions. Even though, in the perfused 

system, after 14 days, viable cells represented only 20-25% of the 

total cells in the tumor fragments. Tissue slices cultured in the 

perfusion system sustained the patterns of cancer driving genes of 

the original tissue 
238

. To show that the system could be used to 

test BC therapies, perfused tissue slices were incubated with 

standard-of-care compounds. When incubated with an ERα targeted 

therapy, fulvestrant, for 21 days, a reduction in ERα-positive 



Chapter I 

 

54 

 

epithelial cells was observed 
238

. When treated with an antibody 

against HER2, pertuzumab, a reduction of viable HER2-positive 

tumor cells was reported 
238

. However, no ERα or HER2 signaling 

pathways were assessed to verify the functionality of those cellular 

receptors: only cell viability was evaluated. 

The ex vivo ERα-positive BC models described were able to 

maintain cell viability, architecture and hormonal receptor 

expression typically for a week. This brings difficulties when trying 

to use those models for long-term monitoring of disease 

progression and for interrogation of the long-term effects of drug 

treatments. Furthermore, reaching robust conclusions is more 

difficult than when using cell lines due to the inherent 

heterogeneity between patients and material limitation 
244

. In 

regard to analysis endpoints, several techniques routinely applied 

to in vitro models might be difficult to apply on ex vivo tissues, due 

to the limited amount of material 
244,245

. Additionally, some of the 

methodology used to supports BC tissue take advantage of 

collagen scaffolds that are biologically active animal-derived 

biomaterials which bring variability and ethical concerns 
246

. 

Overall, tissue slices and explants seem a promising and 

powerful way to create valuable cancer models, retaining the 

original tumor tissue architecture including the cellular and non-

cellular components of the TME 
244

. This represents an invaluable 

tool to study the role of 3D architecture and stromal interactions 

with the tumor cells 
245

. Since the original features of the tumor 

tissue are maintained, treatment responses are potentially closer 

to ones observed in patients than in in vitro models where tissue 

cell populations and architecture is hardly recapitulated. 
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6.4. In silico models 

In silico refers to analyses “performed in a computer” or “via 

computer simulation” 
160

. It includes both the processing of large-

scale data and the use of computational models that represent key 

features of a physical system, as mathematical equations 
160,247

, in 

order to describe its behavior. 

Computational models used in cancer research can be 

divided in two main groups: probabilistic and deterministic models 

248

. In the former, the events have a certain probability to occur, so 

they are associated with a degree of randomness 
248

. In the latter, 

the events are described by mathematical equations that always 

produce the same output for a given input 
248

. 

A cancer model can represent different biological levels, 

based on the scale of the phenomena to be modeled: (1) molecular 

level, which considers genomic, transcriptomic and signaling 

pathways, together with biochemical reactions; or (2) 

microenvironment and tissue level, in which events are considered 

at the scale larger than the nano-scale 
249,250

. In this last case, the 

representation of the tumor and its components can be achieved 

following several different strategies (Figure 1.9), which differ on 

how cells are represented: continuum masses or as sets of discrete 

elements 
173,251

. Discrete cells can be distributed homogeneously in 

a grid-like pattern, where all cells have a specific number of 

neighboring cells, or heterogeneously, leading to a variable 

number of neighboring cells 
173,251

. 
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See caption in the next page. 
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Figure 1.9: Different types of computational models exist to model 

tumors. A) Schematic representation of different mathematical models of 

multicellular systems. (a) in a continuous model, the properties of the cells 

are considered as an average of all the cells of a specific type; (b) in a 

cellular automata model each cell is allocated to a lattice and has 

independent features; (c) in a particle center-based cells are allocated off-

lattice with variable number of neighbors; (d) in cellular Potts each cell is 

allocated to several lattices; (e) in IBCell cells have variable shape with 

different dimensions; B) table summing up the features of each model 

type; adapted from Rejniak and McCawley 
173

. 

 

Among the several tumor-related phenomena that have been 

modelled in silico, great relevance can be attributed to models that 

tackle anti-cancer drug delivery and distribution within the TME 

(several TME elements can influence therapy resistance, as 

previously explained in section 5). During tumor drug delivery, 

several steps can be considered from the moment of drug 

administration until this reaches its target cells in the TME 
252

. Here 

we focus entirely on the drug transport phase between leaving the 

vasculature and reaching the target cancer cells (Figure 1.10). 
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Figure 1.10: Schematic representation of drug transport barriers, 

within the tumor interstitium, that hinder drug delivery between the 

vasculature and the target cell. Therapeutic molecules (identified by the 

blue and yellow stars) enter the blood stream after systemic injection. 

Near the tumor site, these molecules cross over the vascular wall and 

reach the tumor interstitium. There they face several barriers, such as 

different cell types (immune cells in purple and fibroblasts in pink) and 

ECM components, e.g. collagen fibers (purple lines), GAGs (red spheres) 

and laminin (light red crosses), until they reach the target cancer cell 

(green cell) 
252

. This transport phase is represented by the dashed black 

arrows. 

 

Within the TME, the preferential drug transport mechanism 

is highly variable, ranging from pure diffusion to a combined 

convection diffusion mechanism. The following contributions use 

diffusion as their core transport mechanism within the TME. Groh 

et al. assessed the spatio-temporal evolution of drug concentration 
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within the tumor using diffusion-based models 
253

. The tumor was 

modelled by three different approaches: (1) cell-centre model, in 

which the computational nodes surround the central vessel; (2) 

radially symmetric models with circular-compartment regions and 

(3) continuum homogeneous model. In any of the cases, drug 

delivery is performed by a vessel located in the center of the tumor. 

Three-compartments are considered: (1) the extracellular space; 

the intracellular space, which include (2) free and (3) bound 

intracellular drug compartments. In each of those compartments, 

drug balance equations (including diffusion in the continuum 

model) are applied 
253

. Xie et al. developed a hybrid three-

dimensional computational model to study how the environment 

influences drug diffusion and drug-tumor interactions, among 

other features 
254

. Drug concentration over time is calculated by a 

continuum diffusion-reaction model. This is combined with a 

discrete cell automaton model (accounting for the evolution of the 

invasive solid tumor), creating then the hybrid model. The tumor is 

defined by an avascular or vascular circular shape structure that 

include proliferative, necrotic, invasive and quiescent cells and 

deposited and degraded ECM 
254

. Another example is the work 

developed by Hamis et al. who also developed a hybrid model by 

the combination of a cell automaton model with continuum model 

defined by differential equations 
101

. This on-lattice model 

considers intra-, inter- and extra-cellular dynamics to study 

chemotherapy drug by a reaction-diffusion model that includes 

also includes drug diffusion, production, consumption and decay 

rates. The model was defined with cellular resolution and in each 

lattice point a blood vessel, ECM and either sensitive or resistance 

cells might be allocated 
101

. 
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Other contributions on the topic consider instead the 

combined convective-diffusive transport. Venkatasubramanian et 

al. assessed the effect of an heterogeneous environment on drug 

efficacy, using a model based on mass balance equations 
255

. For 

the drug balance equation, diffusive and convective (due to cell 

movement) transport were considered. In this case, the drug 

diffusivity coefficient accounts for combined effects of both 

extracellular diffusion and transmembrane transport (drug binding 

and uptake). Additionally, to account not only for the transport but 

also for the effect of the drug, a pharmacokinetic model was 

applied 
255

. Rejniak et al. studied the role of tumor architecture on 

the interstitial molecule transport by diffusion and advection 
256

. 

For that, they simulated the transport of a drug from a capillary, 

located on one side of the computational domain, with several 

types of tumor architectures (cells with different radius and in 

different amounts) 
256

. Later Karolak and Rejniak improved this 

model by applying a modular approach in which drug concentration 

can be set as continuum or discrete, drug transport can be set 

either as diffusion, advection or combination of both and the 

cellular uptake can occur by membrane diffusion or receptor 

binding 
257

. Mascheroni and Penta investigated the impact of the 

geometry of the tumor vasculature on drug transport 
258

. The model 

they developed considers two different scales: micro- and macro-

scale. While in the macro-scale the domain is homogeneous, in the 

micro-scale the differences in the vasculature are considered. The 

computational solution solves the macroscopic problem of the 

homogeneous domain, assuming the drug is transported by both 

advection and diffusion, in both the capillaries and the tumor 

interstitium 
258

. 
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Collagen fibers are one of the most relevant components in 

hindering drug transport within the TME, as explained in Section 5. 

Therefore, the ability to model this ECM element can be crucial in 

understanding its influence in drug distribution. This study is not 

restricted to models tailored specifically towards this problem. In 

fact, some models that were not designed for the study of collagen 

fibers or the transport of drugs can be considered. One example is 

the work developed by Ogston, that studied the transport of 

compact particles through solutions of chain-polymers 
259

. Clague 

and Phillips studied the effect of solute-fiber interaction 

(hydrodynamic interactions) on the hindered diffusion of a 

spherical macromolecule in random media comprised of cylindrical 

fibers 
260

. Stylianopoulos et al. developed a model considering 

steric, hydrodynamic and electrostatic interactions 
261

 between 

fibers and molecules to diffuse. In these models the fibers can be 

seen as the collagen fibers, while the particles are the drug 

molecules. 

To assess if computational models can recapitulate specific 

phenomena, they need to be both calibrated and validated with 

data. These data can be either direct measurements of variables of 

interest in the developed model (obtained experimentally 
262

 or 

from clinical data 
263

) or more complex data, that require additional 

processing to be used, such as images. For instance, the concept 

of using image digitization in order to create inputs for a 

computational model was used by Rejniak and co-workers. They 

apply it to in vivo data, in order to benchmark a pharmacokinetics/ 

pharmacodynamics tumor model 
262,264

 and also to organoid 

cultures to study differences between healthy and malignant cells 

262

. In vivo data was also used by Boujelben et al. and Caraguel et 
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al. 
265,266

. The first group used that data to recreate an accurate 

tumor vasculature where the simulation was applied 
265

 and the 

second group used fluorescence in vivo imaging as reconstructed 

input to the computational framework 
266

. Computational models 

can also be benchmarked by experimental data in the sense that 

any discrepancies between the results of the two models can point 

out important components of the systems that were overlooked in 

the computational model, or even suggest additional experimental 

models and settings to clarify that difference 
247,267

. 

Computational models can run numerous independent 

experiments in a relatively fast and efficient fashion. Data can be 

extracted without interfering with the system evolution and all the 

variables of the system can be controlled or modified 
268

. While 

computational models cannot replace experimental models, they 

can be used as a complementary tool 
160

 to support the reducing, 

refining and replacing (3Rs) animal experiments 
253

. Computational 

models can be used to investigate mechanisms behind 

experimental observations and to simulate many scenarios as a 

basis to select the most relevant experiments and thus reduce 

experimental burden and costs. 

 

7. Aims and scope of this thesis 

The tumor microenvironment is currently acknowledged as 

a potential source of targets for cancer therapy and a driving force 

of clinical drug resistance to targeted therapies. The aim of this 

thesis was to develop and characterize cancer models that 

recapitulate key aspects of the tumor microenvironment, suitable 

to address efficacy and resistance mechanisms of targeted 
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therapies. To achieve this goal, we employed in vitro, ex vivo and 

in silico approaches for modeling BC (Figure 1.11). 

In Chapter II, the main objective was to develop a strategy 

for preservation of BC tissue ex vivo, retaining the TME components 

for culture periods long enough to address targeted therapies and 

resistance mechanisms. We developed a strategy based on 

entrapment of BC tissue into alginate and culture under dynamic 

conditions. We reasoned that by using alginate encapsulation to 

promote the original TME retention, while resourcing to dynamic 

culture to guarantee efficient diffusion of nutrients and oxygen, 

tissue microstructures would retain architectural integrity. 

Moreover, we hypothesized that retention of the original 

microenvironment would favor the maintenance of ERα-positive BC 

phenotype and ERα signaling, a driving force of this type of tumor 

and the target of endocrine therapy. Therefore, the second 

objective of Chapter II was to evaluate the presence of ER transcript 

and protein in ex vivo cultures of ER-positive BC and interrogate ER 

signaling. 

In Chapter III, we explored TME in vitro cell models, based 

on alginate encapsulation of cancer cell lines and fibroblasts. The 

objective was to characterize biological, biochemical and 

mechanically those models. We employed an array of 

methodologies, namely atomic force microscopy, scanning 

electron microscopy, immunofluorescence and histochemistry to 

characterize the biomaterial and cellular components of the cell 

models. 
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Figure 1.11: Schematic representation of the research objectives 

pursued in this thesis and the experimental approaches followed to 

attain them. BC: breast cancer; ERα: estrogen receptor α; TME: tumor 

microenvironment. 

In Chapter IV, the objective was to implement a 

computational framework to study antibody transport within the 

TME. The in vitro model characterized in Chapter III was challenged 

with fluorescent antibodies, whose distribution was live-tracked 

using light sheet microscopy. An in silico model comprising 

diffusive transport and saturation mechanisms was calibrated with 

the in vitro experimental data to recapitulate antibody transport. 
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Abstract 

Estrogen receptor α (ERα) signaling is a defining and driving 

event in most breast cancers; ERα is detected in malignant 

epithelial cells of 75% of all breast cancers (classified as ER-positive 

breast cancer) and, in these cases, ERα targeting is the main 

therapeutic strategy. However, the biological determinants of ERα 

heterogeneity and the mechanisms underlying therapeutic 

resistance are still elusive, hampered by the challenges in 

developing experimental models recapitulative of intra-tumoral 

heterogeneity and in which ERα signaling is sustained. Ex vivo 

cultures of human breast cancer tissue have been proposed to 

retain the original tissue architecture, epithelial and stromal cell 

components and ERα. However, loss of cellularity, viability and ERα 

expression are well-known culture-related phenomena. 

Breast cancer samples were collected and brought to the 

laboratory. Then they were minced, enzymatically digested, 

entrapped in alginate and cultured for one month. The histological 

architecture, cellular composition and cell proliferation of tissue 

microstructures were assessed by immunohistochemistry. Cell 

viability was assessed by measurement of cell metabolic activity 

and histological evaluation. The presence of ERα was accessed by 

immunohistochemistry and RT-qPCR and its functionality evaluated 

by challenge with 17β-estradiol and fulvestrant. 

We describe a strategy based on entrapment of breast cancer 

tissue microstructures in alginate capsules and their long-term 

culture under agitation, successfully applied to tissue obtained 

from 63 breast cancer patients. After one month in culture, the 

architectural features of the encapsulated tissue microstructures 
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were similar to the original patient tumors: epithelial, stromal and 

endothelial compartments were maintained, with an average of 97% 

of cell viability compared to day 0. In ERα-positive cases, fibers of 

collagen, the main extracellular matrix component in vivo, were 

preserved. ERα expression was at least partially retained at gene 

and protein levels and response to ERα stimulation and inhibition 

was observed at the level of downstream targets, demonstrating 

active ER signaling. 

The proposed model system is a new methodology to study ex 

vivo breast cancer biology, in particular ERα signaling. It is suitable 

for interrogating the long-term effects of anti-endocrine drugs in a 

set-up that closely resembles the original tumor microenvironment, 

with potential application in pre- and co-clinical assays of ERα-

positive breast cancer. 

 

Key words: cancer, patient-derived tissue microstructures, 17β-

estradiol, estrogen receptor alpha, fulvestrant, encapsulation, 

alginate 
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1. Background 

Breast cancer (BC) is the most commonly diagnosed cancer 

among women worldwide 
1

. It is a heterogeneous disease with 

distinct biological features and clinical outcomes. Almost 75% of 

diagnosed BC express estrogen receptor-alpha (ERα), being 

classified as ERα-positive (ER+) BC 
2

. ERα acts as a ligand-dependent 

transcription factor for genes associated with cell survival, 

proliferation, and tumor growth 
3

. Therefore, targeting the ERα-

signaling pathway is the main therapeutic strategy for the 

treatment of ER+ BCs. Nonetheless, the disease often progresses in 

30% of the patients undergoing hormonal therapy due to resistance 

2

. Thus, there is a need to select patients that would respond to 

endocrine therapy and to elucidate the molecular mechanisms 

behind endocrine resistance, as well as to identify biomarkers that 

predict drug response and resistance and novel therapeutic targets 

in resistant tumors. 

When cultured in classical 2D monolayers, ER+ BC cell lines 

fail in recapitulating the typical intratumoral ERα heterogeneity 
4

 

and, due to cell confluency, cannot be kept continuously for more 

than one week 
5

, hampering the possibility to perform cycles of 

drug treatment for more than one week. Only a few ER+ cell lines 

can generate xenografts in mice, requiring supplementation with 

estrogen 
6

. Recently, an estrogen supplementation-independent in 

vivo model was reported, based on intraductal implantation of ER+ 

tumor cells. The demonstration that the intraductal but not the 

mammary fat pad microenvironment favors epithelial malignant 

cells of the luminal subtype, consolidated the role of the tumor 

microenvironment (TME) in sustaining ER+ tumor cells 
6

. Although 
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there is a report showing that it is possible to propagate normal 

primary breast ER+ cells in 2D 
7

, there are no reports for 

propagation of primary ER+ BC cells using this culture system. In 

fact, ER+ BC primary cells cultured in 2D loose cellularity and ERα 

expression after a short culture period. 

Ex vivo cultures have been explored to sustain ER+ 

malignant epithelial cells within the original BC microenvironment 

8

. Typically, these models retain tissue architecture and 

heterogeneity for short periods of time, around 3 to 4 days of 

culture 
9,10

. Naipal et al. reported extension of culture time up to 7 

days by exploring dynamic culture conditions 
11

. Recently, Muraro 

et al. reported high cell viability and maintenance of ER expression 

up to 14 days in culture, when combining a collagen scaffold and 

a medium perfusion system 
8

. Nonetheless, this methodology 

supports BC tissue maintenance by taking advantage of collagen 

scaffolds, biologically active animal-derived biomaterials which 

bring variability, as well as environmental and ethical concerns 
12

. 

Here, we hypothesized that retention of the original 

microenvironment would favor the maintenance of ER+ BC 

phenotype and ERα signaling. We implemented an ex vivo strategy 

based on the encapsulation of tissue microstructures in alginate, 

an inert biomaterial, combined with dynamic culture, aiming to 

maintain the original tissue structure, cell populations and 

extracellular matrix (ECM). We have recently shown that alginate 

microencapsulation of cancer cell spheroids and TME cellular 

components promotes tumor-stromal crosstalk and retention of 

secreted ECM components towards reconstruction of TME features 

13,14

. Therefore, we reasoned that by using alginate encapsulation to 

promote the original TME retention, while resourcing to dynamic 
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culture to guarantee efficient diffusion of nutrients and oxygen, 

tissue microstructures would retain architectural integrity and 

potentially ER signaling. 

 

2. Methods 

2.1. Ethics statement 

BC samples were collected at the Lisbon Oncology Hospital 

(Instituto Português de Oncologia de Lisboa Francisco Gentil – 

IPOLFG). The use of patient material was approved by the IPOFLG 

ethics committee and all patients have signed an informed consent 

form to agree to donate the material for research purposes. All 

tissues were anonymized before transfer to the laboratory for 

further processing. 

 

2.2. Cell culture 

MDA-MB-231 cell line was obtained from the American Type 

Culture Collection (ATCC). MDA-MB-231 cells were cultured in 

Dulbecco's Modified Eagle Medium (DMEM) high glucose and 

pyruvate medium (Gibco), supplemented with 10% (v/v) fetal bovine 

serum (FBS, Gibco) and 1% (v/v) Penicillin/Streptomycin (P/S, Gibco) 

at 37 °C in 5% CO2. Mycoplasma contamination was routinely 

checked. 

 

2.3. Collection and processing of patient material 

This study was elaborated on treatment-naïve patient-

derived BC tissue. The method for processing and culture was 

successfully applied to 63 female breast tumors (Table 1). Tumor 

samples were collected during surgery and immediately 

submerged in phenol red-free DMEM/F-12 (Gibco), supplemented 
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with 1% (v/v) P/S (Gibco) and 10% (v/v) FBS (Gibco). Samples were 

kept at 4 °C and transported to the laboratory within 1 to 3 hours 

after surgery (Figure 2.1A). Sixty-three BC samples were collected, 

with an average weight of 315±225 mg (Figure S2.1). 

Tissue samples were mechanically dissociated with two 

surgical scalpels to obtain pieces of 1 to 2 mm of diameter. 

Subsequently, the minced tissue was resuspended in phenol red-

free DMEM/F-12, HEPES medium (Gibco) containing 0.09 U/mL of 

Collagenase A (Roche), 30 U/mL of Benzonase (Merck Millipore), 

10% (v/v) FBS (Gibco) and 1% (v/v) P/S (Gibco). Digestion was 

performed in an incubator at 37 °C, in a humidified atmosphere 

containing 5% CO2. After 12-15 hours of enzymatic digestion, 

tumor fragments (tissue microstructures, average of 1 mm
3

) were 

sedimented by centrifugation at 100x g for 5 min at 4 °C and 

washed with Phosphate-Buffered Saline (PBS; Life Technologies) 

(Figure 2.1A). 
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Figure 2.1: Alginate encapsulated tissue microstructures maintained 

parental tumor architecture. a Experimental workflow for the 

establishment of long-term cultures of BC patient-derived tissue 

microstructures: samples were collected at the hospital and brought to 

the laboratory within 1-3 hours of surgery. Tissue samples were 

mechanical processed and subjected to mild enzymatic digestion. The 

obtained BC tissue microstructures were encapsulated in alginate and 

cultured for up to one month. Along culture, tissue microstructures were 

interrogated: cell viability assessment, immunohistochemistry analysis 

(IHC), Second Harmonic Generation (SHG) microscopy and estrogen 

receptor α (ER) stimulation and inhibition were performed. b Hematoxylin 

and eosin of biopsy (top row) and corresponding encapsulated 

microstructures at one month of culture (bottom row) (scale: 200 µm). 
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Table 2.1: Clinico-pathological parameters of the breast cancer 

patients. pT: primary tumor; pN: primary node. 

Clinico-pathological 

parameters 

(n) 

Female tumor samples 63 

Mean age at diagnosis 62 (42-89) 

Hormone receptors   (n) Percentage of tumors 

ERα status 59 94 

PR status 51 81 

HER2 status 11 17 

Triple negative status 1 2 

Histological subtype (n) Percentage of tumors 

Invasive breast 

carcinoma of no-

special type (NST) 

51 81 

Lobular carcinoma 10 16 

Mucinous carcinoma 2 3 

Tumor grade* (n) Percentage of tumors 

1 2 3 

2 50 79 

3 9 14 

Not defined 2 3 

Tumor size** (n) Percentage of tumors 

pT1 38 60 

pT2 22 35 

pT3 3 5 

Lymph node 

involvement status** 

(n) Percentage of tumors 

pN0 41 65 

pN1 21 33 

pN2 1 2 

* Tumor grade was classified according with WHO Classification of Tumors (5
th

 edition, 

volume 2). 

** Tumor staging (pT and pN) was classified according with the American Joint 

Committee on Cancer TNM system (8
th

 revision). 
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2.4. Tissue microstructure encapsulation and culture 

Tissue microstructures were entrapped in alginate, 

employing protocols previously developed by our team 
14

. Briefly, 

tissue microstructures were dispersed in 1 mL of 2% (w/v) of 

Ultrapure Ca
2+

 MVG alginate (UP MVG NovaMatrix, Pronova 

Biomedical, Oslo, Norway) dissolved in NaCl 0.9% (w/v). 

Encapsulation was performed using an electrostatic bead generator 

(Nisco VarV1, Zurich, Switzerland), with an air flow rate of 10 mL/h, 

at 5.3 V under air pressure of 1 bar, using a 1.1 mm nozzle. The 

resulting alginate droplets containing tissue micro fragments (1-2 

fragments/droplet) were cross-linked in a 100 mM CaCl2/10 mM 

HEPES (pH 7.4) solution for 10 min, washed three times in a 0.9% 

(w/v) NaCl solution and finally equilibrated in culture medium. 

Encapsulated tissue microstructures were then transferred into 6-

well plates and placed under orbital shaking (100 rpm), in a 

humidified incubator, with 5% CO2. Encapsulated tissue 

microstructures cultures were maintained up to 30 days, with 50% 

medium exchange every 3-4 days (Figure 2.1A). Cultures were 

maintained in human mammary epithelial cell (HMEC) culture 

medium: DMEM/F12 phenol red free with 1% P/S (v/v) solution 

(both from Life Technologies), 5 ng/mL Epidermal Growth Factor 

(EGF), 10 μg/mL Insulin, 0.5 μg/mL Hydrocortisone, 0.5 μg/mL 

Transferrin, 0.1 mM Isoprotenol, 0.1 mM Ethanolamine, 0.1 mM O-

Phosphoethanolamine, 70 μg/mL Bovine Pituitary Extract (all 

reagents are from Sigma-Aldrich) and 100 μg/mL Primocin 

(InvivoGen Europe). Non-encapsulated tissue microstructures were 

maintained under the same culture conditions. Encapsulated tissue 

microstructures were assessed for cell viability, architecture, cell 

populations, ECM deposition, ERα presence and signaling, as 



A novel culture method that sustains ERα signaling in human breast 

cancer tissue microstructures 

91 

 

described below; the extent of assessment performed for each 

sample was determined by the initial sample size. 

 

2.5. Cell viability assessment 

Cell viability was correlated with resazurin reduction 

capacity (PrestoBlue™ Cell Viability Reagent, ThermoFischer 

Scientific), according to manufacturer’s instructions. Encapsulated 

and non-encapsulated samples were incubated for 1 hour with 

PrestoBlue reagent in culture medium, at 37 °C, in a humidified 

atmosphere incubator, containing 5% CO2. Medium was sampled in 

quadruplicate and resazurin reduction evaluated by fluorescence 

detection (ext/em 560/590 nm) in a fluorimeter (Infinite®200 PRO 

NanoQuant, Tecan Trading AG). Resazurin reduction was evaluated 

for 1 month, once a week. Data is represented as fold-change in 

resazurin reduction relative to the first week of the assay. 

 

2.6. Histological and immunohistochemistry analysis 

Samples were collected after 1 month of culture and alginate 

capsules were de-polymerized with 50 mM 

ethylenediaminetetraacetic acid (EDTA) for 5 min at RT. De-

encapsulated tissue microstructures were centrifuged at 300x g, 5 

min at 4 °C, washed with PBS, fixed with formol overnight at RT. For 

paraffin cell-block preparation, the cellular suspension was 

centrifuged for 5 min, at 1270x g, resuspended in 10% (v/v) 

buffered formalin (VWR BDH Chemicals, ref. 9713.9010) to which a 

drop of haematoxylin was added for specimen counterstain, and 

stored in a 1.5 mL microtube. The remaining supernatants were 

subjected to a second centrifugation, for 5 min, at 1990x g. The 

supernatant was discarded and four drops of liquefied HistoGel 
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(Thermo Scientific, ref. HG-4000-012) were added to the pellet. 

After gentle homogenization with a Pasteur pipette and 

centrifugation for 2 min, at 1990x g, the sample was placed at -

20 °C for 5 min to solidify. The cone shape solidified sample was 

removed from the microtube, cut along the meridional section and 

placed in a biopsy cassette, which was then immerged in a 

container with buffered formalin to be included in paraffin. After 

processing, the samples were sectioned and stained with 

hematoxylin and eosin (H&E) (Dako CoverStainer for H&E 

equipment, Agilent, Santa Clara, CA, USA). Paraffin blocks were 

sectioned (3 μm) for H&E and immunohistochemical staining. 

Immunohistochemistry (IHC) was carried out using standard 

procedures implemented at IPOLFG; antigen retrieval was done 

using Cell Conditioning 1 (CC1, Ventana) and tissue staining was 

performed using an automated IHC/ISH slide staining Ventana 

BenchMark Ultra (all from Ventana Medical Systems, Inc). 

Antibodies and details on the protocol used are indicated in Table 

S1. Histologic analysis was performed by an expert breast 

pathologist. IHC analysis was performed for cultures derived from 

BC samples of 18 patients. Due to primary material limitations, E-

cadherin, CD45, ki-67, ER and p63 levels were assessed in 8 

different samples; vimentin was assessed in 9 and CD31 in 2. 

 

2.7. Multi-photon microscopy 

Fibrillar Collagen was assessed by multi-photon microscopy. 

After 1 month in culture, encapsulated tissue microstructures were 

collected, fixed in PFA 4% (w/v) in PBS for 30 min, washed thrice 

with PBS and kept at 4 °C until further analysis. Samples were 

imaged with two-photon-excited fluorescence (TPEF), second 
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harmonic generation (SHG) and infrared (IR) absorption in a home-

made multiphoton microscope 
15

. The excitation laser was a 

Ti:Sapphire at 810 nm and the laser power, at entrance of the 

microscope, was of 40 mW. Initial tests performed with 100 mW 

resulted in no observable sample damage. The Illumination 

objective was an Olympus 25x 1.05 W. The TPEF signal was 

collected through a photomultiplier tube (PMT) in backward 

direction (using a LP410 filter) while IR absorption and SHG 

(405/25 filter) were collected in forward direction through a Nikon 

25x 1.10 W objective, using a photodetector and a PMT 

respectively. During acquisition, 3-4 images were averaged to 

reduce noise. 

 

2.8. Challenge with ERα agonist and antagonist 

At day 28-30 of culture, encapsulated BC tissue 

microstructures were stimulated with 10 nM 17β-estradiol (Sigma-

Aldrich). Three days before 17β-estradiol challenge, encapsulated 

tissue microstructures were washed thrice with PBS and were then 

kept in phenol red-free HMEC medium without insulin, 

hydrocortisone and EGF, which may trigger activation or 

phosphorylation of ER 
16–21

. Alternatively, a 50% culture medium 

exchange was performed by the time of 17β-estradiol challenge. 

Control wells were also included, in which only ethanol (17β-

estradiol vehicle) was added to a final concentration of 0.001% 

(v/v). After 24h of exposure, encapsulated tissue microstructures 

were collected and alginate dissolved (as described in section 6 of 

Materials and Methods). Challenge with 17β-estradiol was 

performed in encapsulated microstructures derived from 16 
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different patients, of which 9 in depleted medium and 7 in 

complete medium. 

Encapsulated tissue microstructures were also challenged 

with fulvestrant (ICI182,780), an ER antagonist and degrader. For 

these experiments, 3-5 days after encapsulation HMEC medium 

was supplemented with 1 μM fulvestrant 
22,23

 (Tocris Bioscience). 

Twice a week, half volume of culture medium was changed and 

fulvestrant was replenished to keep a constant concentration. After 

2 weeks, samples were centrifuged at 300x g, 5 min at 4 °C, washed 

with PBS and processed for IHC (as detailed above) or RT-qPCR 

analysis. Samples for RT-qPCR were stored in RNAlater Stabilization 

Solution (Roche), according with the manufacturer’s instructions, 

until further analysis; samples for western blot were snap frozen at 

-80 °C. Challenge with fulvestrant was performed in encapsulated 

microstructures derived from 8 different patients, of which 7 were 

evaluated by RT-qPCR and 3 by Western Blot. 

 

2.9. Gene expression analysis 

Tissue microstructures were thawed, total RNA was 

extracted in a tissue lyser (Precellys Evolution Homogenizer, Bertin 

Instruments) and purified using the RNAeasy Kit (Qiagen), 

according to the manufacturer’s instructions. Reverse transcription 

was performed using Sensiscript RT kit (Qiagen), also according 

with the manufacturer’s instructions. qPCR was performed in 

triplicates, using the SYBR green I Master kit (Roche), in a 

LightCycler 480 II (Roche). We evaluated expression of ERα (ESR1) 

and its downstream target genes, pS2, AREG and PGR 
24

, and of two 

housekeeping genes, RPL22 
13

 and 36B4 
24

. Primer sequences are 

provided in Table S2. Due to the scarcity of ERα negative BC 
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samples, a ERα and PR negative BC cell line, MDA-MB-231, was 

employed as basal expressing control 
25

. Results are shown as fold 

change in mRNA amount compared to the vehicle control (CTRL), 

calculated according to the 2
-ΔΔCt

 method 
26

, considering a geometric 

mean of the 2 housekeeping genes used. 

 

2.10. Western Blot analysis 

Samples were thawed, resuspended in Laemmly Buffer (20% 

Glycerol, 4% SDS in 100 mM Tris Buffer, pH 6.8) and lysed in a 

Tissue homogenizer (Precellys Evolution, Bertin Instruments). BC 

Microstructure lysates were recovered, sedimented to remove cell 

debris, sonicated and stored at -80 °C until use. 

Protein quantification was performed in a Nanodrop ND-

2000C (Thermo Scientific). Proteins were denatured and loaded in 

an electrophoresis gel (NuPAGE 4-12% Bis-Tris Gel) under reducing 

conditions for 50 min (200 V) and then electrophoretically 

transferred using a Bio-Rad wet system (30 V, 18 hours, 4°C) into 

Nitrocellulose membranes. Membranes were blocked for 1 h in TBS 

with 0.1% (w/v) Tween 20, 5% (w/v) non-fat dried milk and further 

incubated with the primary antibodies (Mouse anti-Human ERα, 

1D5 Clone, Dako, final dilution 1:500; Rabbit anti-β tubulin, H-235, 

SC-9104, SantaCruz, final dilution 1:1000, used as loading control) 

and respective secondary HRP-conjugated secondary antibodies 

(Sheep anti Mouse IgG NA931; Donkey anti Rabbit IgG NA934; GE 

Healthcare, final dilution 1:20000). Membranes were developed 

using Amersham ECL Select Western Blot Detection Reagent (GE 

Healthcare) and visualized using a ChemiDoc System (BioRad). 
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2.11. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 

version 6.0 (GraphPad Software). Data were analyzed as indicated 

in the figure legends. The Mann-Whitney test was performed to 

evaluate statistical difference between conditions. Data are 

presented as mean ± SD, unless otherwise specified. 

 

3. Results 

3.1. Alginate encapsulated tissue microstructures 

maintain parental tumor tissue characteristics for at least one 

month of culture 

To establish an ER+ BC ex vivo model, we investigated the 

possibility of retaining the TME and consequently ERα signaling of 

patient-derived tissue microstructures immobilized within alginate 

capsules and cultured under agitation (Figure 2.1A). Encapsulated 

tissue microstructures were cultured for up to 30 days, showing 

high cell viability, as indicated by maintenance of resazurin 

reduction capacity along culture time (97±28% by the end of week 

4, relatively to the beginning of the culture, Figure S2.2A). 

Moreover, detection of extracellular lactate in culture medium (data 

not shown), as an indicator of high metabolic activity 
27

 

corroborated the high cell viability within the encapsulated tissue 

microstructures. 

The original tumors were very heterogeneous, not only 

between but also within patients (Figure 2.1B): tissue architecture 

varied in epithelial versus stromal content, cell organization and on 

the presence/absence of immune cells (CD45+ cells). A complete 

mixture of malignant epithelial cells and stromal cells was rarely 

observed. Instead, there were islets of tumor cells surrounded by 
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multiple stromal cells (Figure 2.1B, upper panels). These 

histopathological characteristics were maintained in encapsulated 

tissue microstructures cultured for a month (Figure 2.1B, lower 

panels). By day 30 of culture, E-cadherin, vimentin, CD31 and CD45 

were immunohistochemically-detected (Figure 2.2A). The detection 

of membranous E-cadherin indicated that carcinoma cells 

maintained the typical cell-cell adhesions and differentiated 

phenotype 
28

. On the other hand, vimentin detection confirmed the 

presence of stromal cells. CD45, also known as leucocyte common 

antigen, is a transmembrane glycoprotein present in all nucleated 

cells of the hematopoietic lineage 
29

 and has been broadly used to 

assess immune cell population presence in breast tissue, such as 

tumor-infiltrating lymphocytes 
30–32

. CD45
+

 cells were detected in 5 

out of the 8 cases which presented immune cells in the original 

tissue (Figure 2.2A). In two analyzed tissue microstructures, CD31 

positivity confirmed the presence of endothelial cells (Figure 2.2A). 

Absence of cells positive for the basal/myoepithelial marker p63 

was observed similarly to the original tumors (Figure S2.2B). Ki67-

positive cells were also detected at different levels, indicating the 

presence of proliferating cells even after one month of culture 

(Figure 2.2B). Although at low levels, this is consistent with the 

parental tissues, where the median of proliferating cells was 20% 

(Q1=15; Q3=30). Second harmonic generation analysis (SHG) of 

encapsulated BC tissue microstructures revealed dense and 

organized/fibrillar collagen fibers in peripheral regions of the 

samples analyzed, surrounding areas of cellularity (Figure 2.3). As 

a culture control, non-encapsulated tissue microstructures were 

cultured in parallel. A significant decrease in resazurin reduction 

ability after 3-4 weeks of culture was observed, suggesting a 
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reduced cell viability of these cultures. Remarkably, cell viability 

was increased in encapsulated versus non-encapsulated tissue 

microstructures (Figure S2.2C). 

Altogether, we were able to extend the lifespan of BC explant 

cultures for up to one month whilst maintaining tissue architecture, 

the different cell types of the BC microenvironment, and cell 

viability. 
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Figure 2.2: Alginate encapsulated tissue microstructures maintained 

cell populations and contain proliferating cells. a 

Immunohistochemistry analysis of: E-cadherin (epithelial cells); vimentin 

(stromal cells); CD45 (immune cells); CD31 (endothelial cells) at one 

month of culture b Immunohistochemistry analysis of Ki-67 (cell 

proliferation) of encapsulated microstructures at one month of culture 

(scale bars: 200 µm for low magnification and 100 µm for high 

magnification). 

 

 

Figure 2.3: Encapsulated tissue microstructures maintained collagen 

fibrillar structures. Second Harmonic Generation (SHG) microscopy at 

one month of culture: yellow – Two-Photon Excitation Microscopy (TPEF); 

blue - collagen fibers (scale bar: 50 µm). 
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3.2. ERα expression and functionality are sustained over 1 

month of culture 

After one month in culture, ER+ carcinoma cells were still 

detected in the encapsulated tissue microstructures by IHC analysis 

(Figure 2.4A), typically in lesser extent that in the original sample. 

When sample material was not sufficient for IHC evaluation, mRNA 

was quantified, relatively to MDA-MB-231, a human cancer cell line 

which does not express ERα nor PR 
25

 (Figure S2.3A). All samples 

presented higher expression of the ERα gene (ESR1) than MDA-MB-

231 cells, indicating ERα gene expression after one month of 

culture (Figure S2.3B and Figure S2.5). 

To assess ERα function, encapsulated tissue microstructures 

derived from ER+ BC from 9 distinct patients were stimulated with 

10 nM 17β-estradiol for 24 hours and the mRNA levels of the ER 

target genes evaluated: protein PS2 (also known as Trefoil Factor 1 

-TFF1-, pS2), progesterone receptor (PGR) and amphiregulin (AREG) 

24

. AREG and PGR were upregulated upon challenging with 17β-

estradiol compared to vehicle-controls (mean fold increase in AREG 

and PGR expression of 3.4±5.6 and 6.3±11 respectively, Figure 

2.4B, Figure S2.4A). Strikingly, we detected a generalized 

upregulation of pS2 (in 7 out of 9 tissue microstructures), with a 

mean fold increase in gene expression of 45±45, compared to the 

vehicle-treated control (Figure 2.4B, Figure S2.4A and Figure S2.5). 

In general, there was a trend for a positive correlation between 

ESR1 basal expression and the expression of the three ER target 

genes upon estrogen challenge (Figure S2.4B, R>0 by Pearson 

Correlation), even though not significant, probably due to the 

intrinsic variability of primary tumors and the sample size. Tissue 

microstructure cultures derived from ER-negative BC tumors were 
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also treated with 17β-estradiol and no upregulation of ER 

downstream genes was observed (Figure S2.4C). This data further 

corroborates that the original phenotype is maintained in culture. 

A different set of encapsulated tissue microstructures derived from 

ER+ BC samples of 7 tumors, were maintained in HMEC medium 

until 17β-estradiol challenge. These showed a mild stimulation of 

ERα target genes (on average, 2.3-, 1.8- and 1.2-fold increase 

relatively to vehicle control for pS2, PGR and AREG, respectively, 

Figure S2.4D). 

To further confirm intact ERα signaling in encapsulated 

tissue microstructures, cultures derived additional ER+ BC samples 

were exposed to fulvestrant (or ICI182,720), a ERα full antagonist 

33

 widely used in endocrine therapy 
34

. After 2 weeks of exposure, a 

generalized down regulation of AREG compared to vehicle controls 

was observed (Figure 2.4C). For two of the tumors, we also 

evaluated PGR and pS2 response and observed a strong reduction 

of mRNA levels compared to vehicle controls (Figure 2.4D). 

Additionally, we assessed ERα protein levels in three of the tumors 

and observed a tendency for reduction compared to vehicle control 

conditions (Figure S2.6). Collectively, these results indicate that 

ERα is expressed in encapsulated tissue microstructures derived 

from ER+ BC samples and can respond to stimulation and 

inhibition. 
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See caption in the next page. 
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Figure 2.4: Estrogen receptor α (ER) expression and functionality are 

maintained in alginate encapsulated tissue microstructures up to 1 

month of culture. a Immunohistochemistry detection of ER in biopsy (top 

row) and encapsulated tissue microstructures culture for a month (bottom 

row) (scale bars: 200 µm for low magnification and 100 µm for high 

magnification). b Encapsulated tissue microstructures were cultured for 3 

days in depleted medium and stimulated with 17β-estradiol; expression 

of ER downstream target genes was assessed by RT-qPCR (amphiregulin - 

AREG, progesterone receptor - PGR and protein PS2 - pS2, N=9). Data are 

shown as fold change in gene expression upon 17β-estradiol challenge 

relatively to vehicle-exposed control (CTRL). c,d Encapsulated tissue 

microstructures were cultured for 3-5 days in complete medium, before 

challenge with fulvestrant for two weeks; ER downstream targets were 

assessed by RT-qPCR (AREG, PGR and pS2, N=7). Data are shown as fold 

change in gene expression upon fulvestrant challenge relatively to 

vehicle-exposed control. Statistical analysis was performed by the Mann-

Whitney test (*p-value<0.001). 

 

4. Discussion 

ERα signaling is considered a defining and driving event 

contributing to ER+ BC carcinogenesis; ERα overexpression in 

primary tumors has been linked to disease progression, influencing 

patient survival 
35–37

. Nonetheless, approximately 30% of patients 

with ER+ BC fail to respond to endocrine therapy 
2

. Several reports 

have shown the intricate relation between response to therapy and 

TME components, such as fibroblasts 
38–40

 and ECM components 
41,42

. 

Therefore, it is paramount to define the biological determinants of 

ERα intra-tumoral heterogeneity and the mechanisms underlying 

therapeutic resistance. However, this knowledge has been 

hampered by the challenges in developing experimental models 

recapitulative of intra-tumoral ERα heterogeneity and in which ERα 

signaling is sustained, essential to address long-term effects of 

tumor-stromal interactions in ERα signaling and drug response 

mechanisms against ER. 
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Here, we propose a culture strategy in which patient-derived 

tissue microstructures retain ER+ carcinoma cells for at least one 

month of culture; of note, these cells still respond to ER stimulation 

and inhibition, therefore constituting a functional ex vivo model of 

ER-positive BC. Tissue microstructures that were entrapped in 

alginate capsules and cultured under dynamic conditions 

maintained high cellularity, low levels of tumor cell proliferation, 

as reported for human ER+ BC 
43

 and parental tissue architecture 

(including epithelial, stromal and endothelial cell compartments 

and deposited fibrillar collagen). Although all interrogation was 

limited to one month of culture, as we have not detected signs of 

tissue microstructure decline in cell viability up to that timepoint, 

we conjecture that the lifespan of encapsulated tissue 

microstructures could be extended for even longer periods. 

We hypothesized that using tissue microstructures within 

the millimeter size range would be more favorable to attain an 

accurate representation of intra-tumoral heterogeneity and TME, 

than more miniaturized ex vivo models. To overcome the major 

limitations of ex vivo cultures – the reduced lifespan and zonation 

due to diffusional gradients 
44

, we resourced to dynamic culture 

conditions. Agitation improves mass transfer, promoting nutrient 

and oxygen diffusion, reducing the formation of gradients typically 

observed for tissue microstructures within the above mentioned 

size range 
45,46

. Moreover, we encapsulated in alginate, a 

biocompatible, inert hydrogel 
47

 since it has defined composition 

and confers support and protection from agitation-induced shear 

stress 
14,48,49

. This contributes to the preservation of tissue 

architecture and cell viability, but also promotes the built-up of 

relevant cell microenvironment factors. In fact, we have previously 
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shown that cells entrapped in alginate capsules, and cultured under 

agitation, accumulate secreted soluble factors (e.g., cytokines) and 

ECM components, promoting homotypic and heterotypic cellular 

crosstalk, cell migration and reconstruction of cancer-related 

microenvironments 
13,14

, such as an immunosuppressive 

microenvironment in a non-small cell lung cancer model 
13

. In terms 

of ECM components, we not only observed the maintenance of TME 

cellular components in the encapsulated tissue microstructures, 

such as the stromal cells, which are involved in the secretion of 

collagen 
50

, but also ECM components as collagen fibers. These 

were detected by SHG microscopy, a technique broadly applied to 

BC tissue 
51

. In all the encapsulated tissue microstructures analyzed 

fibrillar collagen presence was observed. Increased collagen 

density has been shown to directly promote BC tumorigenesis 
52

. 

Moreover, collagen is strongly associated with mammographic 

density used as a measurement of risk of BC 
53

 and is responsible 

for drug resistance since it prevents the penetration of therapeutic 

agents, such as antibodies 
54

. 

The preservation of tumor heterogeneity and TME are critical 

to closely mimic the in vivo situation 
4,55

. We observed a high degree 

of heterogeneity between distinct parental tissues - not only the 

levels of ER-positivity were different, but also the percentages and 

physical distribution of carcinoma and stromal cells - that were 

recapitulated in the derived tissue microstructures. In 5 out of 8 

tissue microstructure cultures derived from tumors with immune 

cell infiltrate, CD45-positive cells were retained even after one 

month of culture, although in low amounts. This is in accordance 

with the typically low frequency of immune cell infiltrates in ER+ 

tumors 
56

. 
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After 1 month in culture, p63 was not detected in tissue 

microstructures, in accordance with what is reported for luminal 

BC. In fact, the myoepithelial marker p63 is present in basal cells 

of a variety of healthy epithelial tissues 
57

, such as in normal breast 

tissue. However, its expression in BC is rare 
58,59

. On the other hand, 

tissue microstructures presented low levels of Ki-67; in fact, ERα-

positive subtypes have lower proliferative indexes than other BC 

subtypes 
60

. The intrinsic low levels of cell proliferation and the 

reduced amount of patient tissue available to set-up tumor 

microstructure cultures, limit their application in high throughput 

assays. 

The maintenance of ER+ cells in culture is a major 

accomplishment, as ERα ablation ex vivo has been a major issue in 

ER+ BC research 
61

. The sustained expression of ERα is pivotal for 

the study of the luminal A BC subtype, as cell proliferation is ER-

dependent and targeted therapies typically rely on prolonged 

treatment with ERα antagonists 
62

. After one month in culture, we 

detected ER+ cells in the encapsulated tissue microstructures, 

typically in a less extent than in the original tumor. ERα 

functionality was evaluated by challenging encapsulated tissue 

microstructures, with either activator (17β-estradiol) or inhibitor 

(fulvestrant) molecules. Our results show differential expression of 

PGR, AREG and pS2 in tissue microstructures originated from 

different ER+ BC patients, suggesting that the model reflects inter-

patient heterogeneity. This may be in terms of basal expression 

levels of the target genes analyzed, ER transcriptional response and 

potential presence of ER-independent regulatory pathways 
4,63

. pS2 

is a well-known direct downstream ERα target, which is under the 

positive control of an ERE consensus sequence located 400 bp 
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before transcription starting site 
64

. Our results show a higher 

upregulation of pS2 when comparing with AREG and PGR. In fact, it 

has been reported for the ER+ MCF-7 BC cell line that, upon 

estrogen exposure, pS2 expression strongly increases compared to 

PGR, at mRNA and also at protein levels 
65,66

. We have also observed 

the effects of fulvestrant at the level of ERα protein, as the drug is 

described to accelerate ERα degradation 
33

. 

Aiming to retain ER+ cells, we employed a culture medium 

enriched in molecules with reported ER stimulatory effects, such as 

insulin, hydrocortisone and EGF 
16–21

. 17β-estradiol and EGF may 

also be produced by the breast fibroblasts present in culture 
67–69

. 

Our observation of reduced effects upon 17β-estradiol stimulation 

in tissue microstructures cultured in complete medium compared 

with tissue microstructures cultured in depleted medium in the 3 

days preceding stimulation, corroborates the presence of soluble 

ER activators in culture. Further studies are required to understand 

the signaling events that contribute to the maintenance of ERα 

signaling under the culture conditions here presented, which will 

potentially also contribute to further disclose its role in ER+ BC. 

 

5. Conclusions 

Overall, we advocate a new methodology for ER+ BC TME 

modelling, in which the original cell populations, the native ECM 

and tissue architecture are represented, and ER function sustained. 

This ex vivo culture system can contribute to the study of breast 

cancer biology, in particular ERα signaling and 

microenvironmental-driven molecular mechanisms. Moreover, due 

to the extended culture time, the system can be a useful tool to 
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study novel anti-endocrine therapies and other therapeutic 

modalities. 
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9. Supplementary information 

Table S2.1: Immunohistochemistry analysis: reagents and conditions 

used for. 

Primary antibody 

clone 

Supplier Dilution Antigen 

retrieval 

Detection 

system 

E-cadherin (NCH 

38) 

Dako 

 (M3612) 

1:80 

(28 minutes) 

40 min 

with CC1* 

Optiview# 

Oestrogen receptor 

(SP1) 

Ventana 

(28 minutes) 

Pre-diluted 

(28 minutes) 

64 min 

with CC1* 

Ultraview# 

KI67 (30-9) Ventana 

(790-4286) 

Pre-diluted 

(16  minutes) 

32 min 

with CC1* 

Optiview# 

CD45 (2B11-

PD7/26) 

Dako 

(M0701) 

1:1000 

(32 minutes) 

56 min 

with CC1* 

Optiview# 

Vimentin (clone V9) Dako 

(M0725) 

1:150 

(12 minutes) 

24 min 

with CC1* 

Optiview# 

P63 (clone 4A4) Biocare 

Medical 

(CM163C) 

1:200 

(24 minutes) 

48 min 

with CC1* 

Optiview# 

CD31 (clone 1A10) Novocastra 

(NCL-CD31-

1A10) 

1:80 

(16 minutes) 

32 min 

with CC1* 

Optiview# 

 

Table S2.2: RT-qPCR analysis: primer sequences. 

Symbol Gene name Forward Primer 

(5'-3') 

Reverse primer 

(3'-5') 

ERα Estrogen receptor α CCACCAACCAGTGC

ACCATT 

GGTCTTTTCGTA

TCCCACCTTTC 

PGR Progesterone 

receptor 

CGCGCTCTACCCTG

CACTC 

TGAATCCGGCCT

CAGGTAGTT 

pS2 Protein PS2/ 

Trefoil factor 1 

TCGGGGGTCGCCTT

TGGAGCAG 

GAGGGCGTGAC

ACCAGGAAAAC

CA 

AREG Amphiregulin TGGAAGCAGTAACA

TGCAAATGTC 

GGCTGCTAATGC

AATTTTTGATAA 

RPL22 Ribosomal protein 

L22 

CACGAAGGAGGAGT

GACTGG 

TGTGGCACACC

ACTGACATT 

36B4 Acidic ribosomal 

phosphoprotein P0 

GTGTTCGACAATGG

CAGCAT 

GACACCCTCCA

GGAAGCGA 
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Figure S2.1: Sample weight. 

 

 

Figure S2.2: Encapsulated BC tissue microstructures do not present 

myoepithelial markers and maintain high metabolic viability. a Metabolic 

activity was assessed along culture. b Immunohistochemistry analysis of 

p63 (myoepithelial cells) at one month of culture; (scale bar: 60 µm). c 

Metabolic activity was assessed in encapsulated and non-encapsulated 

tissue microstructures derived from the same patients. 
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Figure S2.3: a Hematoxylin and eosin staining and 

immunohistochemistry for ERα of MDA-MB-231 (ER-negative cell line) cells 

cultured in 2D (scale: 200 µm). b ERα gene (ESR1) expression in 

encapsulated microstructures cultured for one month relatively to MDA-

MB-231 cells. 
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See caption in the next page. 
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Figure S2.4: a Encapsulated tissue microstructures were cultured for 

three days in depleted medium before stimulation with 17β-estradiol; 

expression of ER downstream target genes was assessed by RT-qPCR 

(amphiregulin - AREG, progesterone receptor - PGR and protein PS2 - pS2, 

N=9); quantitative evaluation of data shown in Figure 2.3b). b Correlation 

diagrams of expression of ERα gene (AREG) and ER target genes (PGR, pS2 

and AREG). The dots represent the log (mRNA fold change relative to 

control) of each gene for a given BC patient microtissue and the lines 

represent the linear regression (Pearson correlation with R indicated on 

each graph). For all cases, no significant correlation was found (p-

value>0.7). c ER-negative BC encapsulated tissue microstructures cultured 

in complete medium were challenged with 17β-estradiol and expression 

of ER downstream target genes was assessed by RT-qPCR (AREG, PGR pS2, 

N=2). d Encapsulated tissue microstructures cultured in complete medium 

were challenged with 17β-estradiol and ER downstream target genes were 

assessed by RT-qPCR (AREG, PGR and pS2, N=7). Data are shown as fold-

change in gene expression upon 17β-estradiol challenge relatively to 

vehicle-exposed control (CTRL). 

 

 

Figure S2.5: Encapsulated tissue microstructures were cultured for three 

days in depleted medium before stimulation with 17β-estradiol; 

expression of ER downstream target genes was assessed by RT-qPCR 

(amphiregulin - AREG, progesterone receptor - PGR and protein PS2 - pS2). 

Data is presented individually for each tumor. 
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Figure S2.6: Encapsulated tissue microstructures were cultured for 3-5 

days in complete medium, before challenge with fulvestrant for two 

weeks; ERα protein was detected by western blot; β-tubulin was used as 

loading control (N=3, representative blot out of 2 technical replicates). 
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3D cancer cell models in alginate 

capsules: biochemical and mechanical 

characterization 

 

 

This chapter was adapted from: 

Ana Luísa Cartaxo, Henrique Almeida, Tomás Calmeiro, Daniela Gomes, Elvira Fortunato, 

Catarina Brito; 3D cancer cell models in alginate capsules: biochemical and mechanical 

characterization, in preparation  
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Abstract 

Cancer is the second leading cause of mortality worldwide. 

Currently there is an effort towards the development of in vitro 

cancer models more predictive of clinical efficacy, such as three-

dimensional (3D) cell models. Biomaterials have been broadly used 

as scaffolds and supports for cells in 3D configurations. Alginate, 

a natural polysaccharide with high biocompatibility and bio-inert 

has been explored by several authors for generation of 3D cell 

models. Alginate encapsulation combined with agitation-based 

culture systems has been proposed by our group as a system able 

to recreate tumor microenvironment features. In this study, 

alginate capsules containing cancer cell spheroids, alone (mono-

cultures) or together with fibroblasts (co-cultures), were produced 

using an electrostatic bead generator. Encapsulated mono- and co-

cultures were maintained in spinner vessels; non-encapsulated cell 

spheroids were also cultured, as control. Analysis by scanning 

electron microscopy revealed the surface porosity of the capsules. 

These retained their sphericity and size during the two weeks of 

culture. Encapsulation sustained the phenotype and proliferation 

of the tumor cells, avoiding the fusion of spheroids observed in 

non-encapsulated cultures. After two weeks of culture, capsule 

stiffness was evaluated by atomic force microscopy. The presence 

of cells decreased the Young modulus of alginate capsules. 

Moreover, capsules containing co-cultures of tumor cells and 

fibroblasts presented higher Young modulus than capsules 

containing tumor cell mono-cultures, in accordance with the 

increased stiffness reported for advanced breast cancer. 
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Collectively, the results presented contribute to the 

characterization of alginate encapsulated cancer cell models. 

 

Key words: 3D cell models, alginate, cancer, cell encapsulation, co-

culture, Young modulus 
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1. Background 

Cancer cell models based on three-dimensional (3D) culture 

and co-culture of different cell types have been proposed over the 

last years to better represent features of cancer than 2D cell models 

1

. Biomaterial-based 3D cell models have been proposed by 

numerous authors, from naturally-derived (e.g. Matrigel, collagen, 

silk, alginate) to synthetic (e.g. poly-lactic acid, poly-glycolic acid), 

or hybrid and semi-synthetic (e.g. modified hyaluronic acid, 

chitosan-poly-caprolactone) materials
2

. Due to its interesting 

properties, alginate has been widely used, either alone or in 

combination with other biomaterials to create scaffolds for seeding 

or embedding of cells 
3–6

. Alginate is biocompatible and bio-inert 
7

. 

Also, it is a transparent biomaterial which makes it compatible with 

light microscopy techniques 
8

, highly employed in cell biology 

studies. Mechanical properties of alginate hydrogels, such as the 

Young modulus (YM), can be controlled by the cell density 
9

, ion 

cross-linking concentration 
10

 and alginate composition 
11

 and 

concentration 
12–14

. Cells and their surrounding microenvironment 

can regulate cell features in a reciprocal manner 
9,15

. On one hand, 

the use of high density of cells can physically interfere with the 

cross-linking reaction, inducing the formation of softer alginate 

hydrogels 
9

. On the other hand, in 3D hydrogels, material stiffness, 

plays a key role by influencing cell phenotype and behavior 
16

. In 

fact, durotaxis, i.e. migration in response to a stiffness gradient, 

generally causes cells to migrate toward stiffer regions 
17

. 

Our group developed an in vitro 3D cell co-culture system 

based on cell immobilization in alginate capsules and dynamic 

culture to recapitulate features of the tumor microenvironment 

(TME) 
6

. Capsules containing cancer cell spheroids, co-cultured with 



Chapter III 

 

126 

 

other cell types found in the TME, such as fibroblasts and immune 

cells, recapitulate specific features, such as the presence of the 

epithelial and stromal compartments, tumor-fibroblast cross-talk, 

e.g. mediated by secretion of pro-inflammatory cytokines and 

extracellular matrix components, such as collagen I 
6

. 

Herein, we focused on the characterization of the 

biomaterial compartment of these models. Alginate capsules (1.1% 

w/v; crosslinked with barium), containing tumor cell spheroids in 

mono-culture or in co-culture with fibroblasts, were generated and 

characterized biologically, biochemically and mechanically. 
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2. Materials and methods 

2.1. Cell lines and 2D cell culture 

BT474 breast cancer (BC) cell line derived from a human 

ductal carcinoma was selected in this study since it is among the 

most frequently used luminal-like BC cell lines. A lung cancer cell 

line, NCI-H157 (#CRL-5802; from now on referred as H157), 

previously characterized by our team as encapsulated cancer cell 

model 
18

, was also employed. Both cells were obtained from 

American Type Culture Collection (ATCC). Human dermal 

fibroblasts (hDFs) isolated from human skin were obtained from 

Innoprot. For the three different cell types, 2D static cultures (in T-

flasks) were maintained at 37 ⁰C in an incubator with humidified 

atmosphere containing 5% CO2 and 21% of O2. Tumor cells were 

sub-cultured twice a week at 1x10
4

 and 2.5x10
4 

cell/cm
2 

seeding
 

cell densities, for H157 and BT474, respectively; hDFs were split 

once a week at a seeding density of 0.5x10
4

 cell/cm
2

. For each sub-

culture, cells were trypsinized by exposing the cell monolayer to 

0.05% trypsin-ethylenediaminetetraacetic acid (trypsin-EDTA; 

Invitrogen) for 3-5 min, until total cell dislodging from the 

plasticware surface. Cell were resuspended in complete medium to 

inactivate trypsin and viable cells were counted using trypan blue 

exclusion method 
19

. All cell lines were routinely checked for the 

absence of mycoplasma contamination. They were cultured in 

adherent and static conditions until establishment of the 3D 

cultures (Figure 3.1), using as culture media Dulbecco's Modified 

Eagle Medium (DMEM) low glucose supplemented with 10% fetal 

bovine serum (FBS, Life Technologies) and 100 U/mL penicillin-

streptomycin (P/S, Life Technologies), 2% GlutaMAX (Life 

Technologies) and glucose (Sigma Aldrich) to a final concentration 
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of 2 g/L or Roswell Park Memorial Institute (RPMI) 1640 with 10% 

FBS and 100 U/mL P/S for BT474, DMEM supplemented with 10% 

FBS, 100 U/mL P/S, 1 mM sodium pyruvate (Life Technologies), 12 

mM HEPES (Life Technologies) and 0.1mM non-essential amino 

acids  (Life Technologies) for H157 and Iscove's Modified 

Dulbecco's Medium (IMDM, Life Technologies) supplemented with 

10% FBS and 100 U/mL P/S for hDFs. 

 

2.2. Generation of alginate capsules 

A solution of 1.1% (w/v) of Ultrapure Ca
2+

 MVG alginate (UP 

MVG NovaMatrix, Pronova Biomedical, Oslo, Norway), dissolved in 

NaCl 0.9% (w/v), was prepared in sterile conditions. 

Microencapsulation was performed using an electrostatic bead 

generator (Nisco Encapsulator) with an air flow rate of 10 mL/h, at 

5.3 volts, with air pressure of 1 bar. Alginate droplets were cross-

linked in a 20 mM BaCl2 bath, adjusted to 290-300 mOsm using 

NaCl, buffered at pH 7.4. The resulting microcapsules were washed 

three times in a 0.9% (w/v) NaCl solution. A nozzle with 0.7 mm 

diameter was employed to generate alginate microcapsules with a 

diameter of approximately 700 μm. 
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Figure 3.1: Schematic representation of the experimental layout. 

Cancer cell lines were expanded, collected and inoculated as single cell 

suspensions in a spinner vessel, for aggregation. The cancer cell 

spheroids formed were encapsulated, either alone (leading to the 

formation of encapsulated mono-cultures), or together with human 

fibroblasts (leading to the formation of encapsulated co-cultures). As a 

control, non-encapsulated spheroids are also maintained in culture. 

Empty alginate capsules were also prepared. Encapsulated and non-

encapsulated cultures were maintained for 14 days under dynamic 

conditions. Biochemically and mechanically characterization of the system 

was performed by scanning electron microscopy, atomic force 

microscopy, immunofluorescence and immunohistochemistry. 

 

2.3. Generation of tumor cell spheroids in stirred-tank 

culture systems 

Twenty-five million tumor cells were inoculated as single cell 

suspension into wall-baffled spinner-flasks with straight blade 

paddle impeller (Corning® Life Sciences), placed on a magnetic 

stirrer in an incubator at 37 ⁰C, with humidified atmosphere 

containing 5% CO2 and 21% of O2 (Figure 3.1), as described before 

20

. To prevent cell attachment to the spinner vessel walls, these 

have been previously coated with 2-3 mL of dimethyldichlorosilane 

(Merck 8.03452, Germany), as described previously 
21

. Stirring rates 

were set as described in our previous report 
20

, according to the cell 

line characteristics, in order to promote initial spheroid formation 

and limiting spheroid fusion. 

 

2.4. Cell microencapsulation and culture in stirred-

tank culture systems 

Tumor cell spheroids were collected for encapsulation once 

compact and spherical spheroids formed (at day 1 and 3 of culture, 

for BT474 and H157 cells, respectively). For mono-cultures, 2x10
4

 

spheroids were collected from spinner vessel culture, washed with 
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Phosphate-Buffered Saline (PBS; Thermo Fisher Scientific) and 

dispersed in 1 mL of 1.1% (w/v) of Ultrapure Ca
2+

 MVG alginate (UP 

MVG NovaMatrix, Pronova Biomedical, Oslo, Norway), dissolved in 

NaCl 0.9% (w/v) solution, as previously described 
6,18,20

. 

Alternatively, for the establishment of co-cultures of tumor cells 

with fibroblasts, a single cell suspension of 4x10
6

 hDFs was mixed 

with a suspension of 2x10
4

 tumor cell spheroids and dispersed in 

1 mL of the alginate solution. Encapsulation was performed as 

detailed in section 2.2. The resulting cell-loaded microcapsules 

(diameter of approximately 700 μm) were washed three times in a 

0.9% (w/v) NaCl solution and once in culture medium before being 

transferred to new spinner vessel. At the same time, spheroids 

were also collected from the spinner vessel and directly transferred 

to a different spinner vessel, as non-encapsulated condition. Non-

encapsulated and encapsulated mono- and co-cultures were kept 

in the culture medium of each cell line (section 2.1). Cultures were 

maintained at 80 rpm, up to 14 days. Each 3-4 days, 50% of the 

culture medium was replaced with fresh culture medium. Samples 

were collected throughout the culture period for further 

characterization, at specific time points (See section 2.5). 

 

2.5. Spheroid and capsule characterization 

During BT474 aggregation period, several samples were 

collected (0, 22, 24, 27, 30 and 49 h after spinner inoculation). 

Non-encapsulated and encapsulated mono- and co-cultures were 

also sampled at various time-points: 0, 2, 5, 7, 9, 12 and 14 days 

after encapsulation. The characterization methods are detailed in 

subsequent subsections. 
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2.5.1. Cell viability 

Cell viability was assessed by a cell membrane integrity 

assay which uses: the cell permeant dye fluorescein diacetate (FDA; 

Sigma-Aldrich, Steinheim, Germany), which is metabolized into 

fluorescein by cytoplasmic esterases 
22

; the cell impermeant dye, 

propidium iodide (PI; Invitrogen), which binds DNA 
21

. FDA was used 

at 10 μg/mL, to label live cells, and PI at 1 μM to identify dead cells. 

Spheroids or capsules were incubated for 5 min at room 

temperature (RT) with the fluorescent labels and then analyzed 

using a fluorescence microscope (DMI6000 Leica Microsystems 

GmBH, Wetzlar, Germany). 

 

2.5.2.  Spheroid distribution within capsules 

Encapsulated spheroid distribution was evaluated for mono-

culture capsules at days 0, 2, 5, 7, 9, 12 and 14 of culture. At each 

time point, mono-capsules were imaged in a fluorescence 

microscope (DMI6000, Leica Microsystems GmbH, Wetzlar, 

Germany). For the analysis, a group of cells was considered a 

spheroid when individual cells could not be counted. Spheroid 

distribution per microcapsule was analyzed by manually counting 

the number of capsules and the number of spheroids in each 

capsule, present in 1 mL of culture.  

 

2.5.3. Spheroid size  

Spheroid size was evaluated during aggregation and in 

mono- and co-culture capsules at days 0, 2, 5, 7, 9, 12 and 14 of 

culture. Non-encapsulated spheroids were analyzed directly. 

Alginate microcapsules were dissolved in a chelating solution (100 

mM EDTA, 10 mM HEPES, pH 7.4, for 5 min at RT, and washed twice 
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with PBS, to harvest the cancer spheroids. Spheroids were imaged 

in a fluorescence microscope (DMI6000, Leica Microsystems 

GmbH, Wetzlar, Germany). Spheroid area and Feret’s diameter were 

measured by adjusting the threshold until the border of each 

spheroid and quantification was performed using ImageJ open 

source software (Rasband, W.S., ImageJ, U. S. National Institutes of 

Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-

2018). 

 

2.5.4. Cell phenotype and proliferation 

Samples were collected at day 14 of culture and fixed in 4% 

(w/v) paraformaldehyde (PFA, ≥95%, Fluka) with 4% (w/v) sucrose 

(≥99.5%, Sigma-Aldrich), in PBS, for 30 min at RT. Then, they were 

washed 3 times with PBS and kept at 4 ⁰C until further analysis. For 

cryo-sectioning, samples were dehydrated with 30% (w/v) sucrose 

overnight. Then they were embedded in Tissue-Tek O.C.T. (Sakura, 

Alphen aan den Rijn, Netherlands) and frozen at −80 ⁰C. Samples 

were sectioned at a thickness of 10 μm using a cryo-microtome 

(Cryostat I, Leica, Wetslar, Germany). 

Immunofluorescence (IF) was performed according to 

previously published methods 
23

. In brief, cells were permeabilized 

for 10 min with 0.1% Triton X-100 (w/v) and blocked for 30 min 

with 0.2% (w/v) Fish Skin Gelatin (FSG; Sigma–Aldrich). Primary 

antibodies (Table S1) were diluted in 0.2% (w/v) FSG and incubated 

for 2 h, at RT and secondary antibodies (Table S1) diluted in 0.125% 

(w/v) FSG and incubated for 1 h, at RT. Samples were mounted in 

ProLong Gold Antifade Mountant containing DAPI (Life 

Technologies) and visualized using a fluorescence microscope 

(DMI6000, Leica Microsystems GmbH, Wetzlar, Germany). 
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For Ki-67 quantification, ImageJ open source software 

(Rasband, W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018) 

was used. The percentage of Ki-67 positive cells was obtained by 

diving the number of cells expressing Ki-67 by the total number of 

cells present in the spheroid. This analysis was performed for a 

minimum of three spheroids per experiment, from two 

independent experiments. 

 

2.5.5. Extracellular matrix deposition 

At day 14, encapsulated mono- and co-cultures were 

collected and fixed as described above (Section 2.5.4). Then, 

capsules were embedded in 2% (w/v) high melting temperature 

agarose (Lonza), dehydrated in a graded series of ethanol and 

embedded in paraffin wax (Merck Millipore). Paraffin blocks were 

then sectioned (3 μm thickness) on a rotary microtome (RM 2135, 

Leica). 

Spheroid’s structure and compactness and cell distribution 

were assessed by visual inspection of Hematoxylin and Eosin (H&E; 

Sigma-Aldrich) staining. The presence of collagen fibers was 

assessed by Picrosirius Red (PSR; Polysciences Europe GmbH, 

Eppelheim, Germany) staining. Glycosaminoglycans (GAGs) and 

alginate were stained with Alcian Blue (AB; Polysciences Europe) 

and Aldehyde Fuschin (American MasterTech). Both these stainings 

were performed in accordance with supplier instructions. 

Histological slides were digitalized in a NanoZoomer SQ whole slide 

scanner (Hamamatsu Photonics) and viewed and processed in 

QuPath software. 
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2.5.6. Capsule morphology 

The surface of empty capsules was assessed by scanning 

electron microscopy (SEM). Capsules were dried on adhesive carbon 

tabs (12 mm, Agar Scientific) or on silicon wafers and coated with 

iridium in order to avoid charging effects during image acquisition. 

SEM was carried out in a Zeiss AURIGA CrossBeam microscope. 

Surface analysis was done on secondary electron imaging mode 

using acceleration voltages of 2 and 5 keV. Pore size was measured 

for 77 different pores. Capsule size was measured in two different 

capsules. Membrane thickness was measured in one capsule. 

 

2.5.7. Capsule’s mechanical properties assessment 

In the last culture day (14 days after microencapsulation), 

capsules from mono- and co-cultures were collected and fixed as 

previously detailed. Atomic force microscopy (AFM)-based 

mechanical dynamic characterization was performed to compare 

the nanoscale elastic properties and behavior of empty, mono- or 

co-culture capsules. Alginate microcapsules were embedded in 1% 

(w/v) high melting temperature agarose (Lonza), forming a thin 

film, which maintained the capsules in a fixed position during AFM 

acquisitions. These capsules were covered with PBS to maintain 

hydration before and during AFM measurements in a MFP-3D Stand 

Alone (Asylum Research) AFM system operated in alternate contact 

mode (AC mode). Elastic behavior was studied through load-unload 

force curves (force spectroscopy) in liquid environment (PBS) using 

commercially available silicon nitride probes (Long cantilever of 

Olympus TR-800PB; f0 = 13 kHz, 0.16 N/m; Olympus Corporation). 

The probes were left to stabilize at least 3 hours prior to calibration 

through Sader’s method 
24

. The Youngs modulus of the samples 
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was approximated by fitting Sneddon’s model 
25

 to the force curves 

on augmented reality built-in software packages in IgorPro 

(Wavemetrics). A minimum of 28 force curves were obtained for a 

minimum of three capsules of each condition. For the analysis of 

empty capsules, 3 independent capsules batches were used. For 

the cell-containing capsules, 1 batch of capsules was used for each 

condition. 

2.6. Statistical analysis 

Statistical analysis was carried out using GraphPad Prism 5 

software. All experiments and analysis were performed at least in 

triplicate. The statistical test applied and the considered 

corresponding p-value are referred on the legend of each 

corresponding graph. 

 

3. Results 

Empty hydrogel alginate capsules were prepared by 

crosslinking of alginate with barium chloride using an electrostatic 

bead generator. Capsule morphology and membrane thickness 

were assessed by SEM. Empty alginate capsules were left to dry on 

carbon tape/silicon wafer, covered with a thin film of iridium and 

then imaged (Figure 3.2A-E). We observed a capsule diameter of 

204±1 µm (Figure 3.2A), which differed from the average diameter 

observed for hydrated capsules (around 700 µm, Figure 3.4). 

Alginate capsules are hydrogels, cross-linked polymeric networks 

which retain a significant fraction of water within their structure 
26

; 

during drying for SEM preparation, capsules loose water by 

evaporation, which probably justifies the observed capsule 

shrinkage. We observed that capsules were composed by surface 

thick membrane (approximately 10 µm, Figure 3.2B). At the capsule 
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surface, we could identify pores (Figure 3.2C, D and E), with an 

average size of around 113 nm (Figure 3.2F). 

 

A B 

  

C D 

 
 

E F 

  

Figure 3.2: Scanning electron microscopy of alginate microcapsules. 

Alginate capsules were dried on carbon tape, coated with iridium and 

imaged: A) individual capsule, scale bar: 100 µm; B) membrane region of 

a capsule; scale bar: 10 µm; C), D) and E) pore region of the membrane 

of several capsules; (C) scale bar: 10 µm; (D) and (E) scale bar: 1 µm; F) 

pore size distribution. Data is represented as mean ± SD (N=2). In A), B), 

and C), representative micrographs are presented. 
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BT474 spheroids were prepared from single cells, as 

previously described by our group 
20

. Spheroids were harvested 

from culture when they reached an average diameter of 120 µm, 

which corresponded to 22 h post inoculation (Figure S3.1). 

Spheroids were encapsulated either alone or with fibroblasts, to 

generate mono- and co-cultures, respectively. In parallel, non-

encapsulated spheroids were also maintained in culture. 

Alginate capsules containing both mono- and co-cultures 

were measured at 2 hours of culture, to allow for equilibration in 

culture medium. The diameter observed for mono- and co-cultures 

was of 755 ± 20 and 780 ± 20, respectively (Figure 3.3). By day 14 

of culture, no major differences were observed, in the average 

diameter of capsules from mono- and co-cultures (672 ± 42 and 

713 ± 26, respectively Figure 3.3). Moreover, capsules retained 

their spherical shape along culture time, with no detectable 

deformed or broken capsules by day 14 of culture (Figure 3.4A). 

 

A B 

  

Figure 3.3: Alginate capsule diameter along culture time, in mono- 

and co-cultures. At 2 hours (Day 0) and day 14 of culture, 1 mL of capsule 

suspension was collected and the size of alginate capsules was evaluated. 

Data is represented as mean ± SD (N=2). 
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Concerning the cellular compartment, typically, 1 to 3 tumor 

cell spheroids were distributed per capsule, with fibroblasts 

organized around them, as previously described by our group for 

another BC cell line 
6

. Both cell types maintained high cell viability 

over the 14 days of culture (Figure 3.4A), without significant 

changes in the number of spheroids per capsule (Figure S3.1A). On 

the other hand, BT474 non-encapsulated spheroids reached a 

diameter of 580 ± 71 µm by day 14, higher that their encapsulated 

counterparts (Figure 3.4B and Figure S3.2B). In both the mono- and 

co-culture encapsulated conditions, spheroid protrusion from the 

alginate capsules was observed during culture, without 

compromising capsule structure (Figure 4A). Compactness and 

roundness of the BT474 encapsulated spheroids were maintained 

through culture in both mono- and co-cultures (Figure 3.4A and 

Figure 3.7A). 
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Figure 3.4: Non-encapsulated and encapsulated BT474 cell spheroids, 

in mono-culture or in co-culture with fibroblasts. A) At day 0, 7 and 14 

of culture, cell viability was assessed by live/dead assay (FDA-green, live 

cells; PI-red, dead cells) for non-encapsulated spheroids, encapsulated 

spheroids in mono-culture and in co-culture with fibroblasts; scale bar: 

500 µm. Representative pictures of 3 independent experiments. B) At day 

2, 5, 7, 9, 12 and 14, spheroid diameter of non-encapsulated (grey), 

encapsulated mono- (blue) and co-cultures (purple) was evaluated. Data is 

represented as mean ± SD (N≥2). 
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In terms of tumor cell phenotype, encapsulation did not 

affect BT474 cells, which formed compact spheroids, with BT474 

cells presenting cortical F-actin (Figure 3.5A and B) in the cell-cell 

interaction regions, as previously described for carcinoma cell lines 

27

. Moreover, BT474 cells continued to express the luminal cell 

marker CK-18 
28

, associated with their epithelial nature (Figure 

S3.3). The BT474 cell line is a luminal B BC cell line, which 

overexpresses Human Epidermal Growth Factor Receptor 2 (HER2) 

(Figure S3.3), an important breast carcinogenesis driver, used in 

the discrimination of BC subtypes and as therapeutic target 
29,30

. By 

day 14 of culture, encapsulated spheroids and their non-

encapsulated counterparts presented similar detection of CK-18 

(Figure 3.5C and D) and HER2 (Figure 3.5E and F). Immunodetection 

of the proliferation marker Ki-67, at day 14 of culture, showed a 

low number of positive cells dispersed throughout the spheroids, 

both in non-encapsulated and encapsulated spheroids (Figure 3.5G 

and H). Quantification of Ki67-positive cells indicated that 

encapsulated mono-cultures featured higher levels of proliferation 

that the non-encapsulated counterparts (Figure 3.5I). 
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Figure continues on the next page. 
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Figure 3.5: Phenotypic characterization of encapsulated and non-

encapsulated BT474 spheroids. After 14 days of culture, non-

encapsulated and encapsulated BT474 spheroids were immunolabelled 

for f-actin (A and B), CK-18 (C and D), HER2 (E and F) and Ki-67 (G and H), 

scale bar: 100 µm; I) Quantification of Ki-67 levels, data is presented as 

mean ± SD (N=6). Statistical analysis was performed using the non-

parametric Mann-Whitney with ** p-value<0.01. 

 

After two weeks of culture, the stiffness of the alginate 

capsules containing mono- and co-cultures were assessed by AFM. 

This scanning probe microscopy has nanometric resolution and the 

YM can be obtained from the data 
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The YM determined for empty capsules was of 214±112 kPa. 

Capsules from mono- and co-cultures with 14 days presented lower 

YM (Figure 3.6): 16±13 and 40±12 kPa, for BT474 encapsulated 

mono- and co-cultures, respectively. In fact, encapsulated co-
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presence of fibroblasts induced generalized higher stiffness of the 

capsules, we have analyzed encapsulated cultures from another 

tumor cell line (H157). Once again, the YM of encapsulated co-

cultures was higher than for mono-cultures (81±44 and 26±8 kPa, 

respectively). 

 

 

Figure 3.6: Young modulus of alginate capsules: empty, from mono- 

and co-cultures Young modulus of empty and 14-days cultured capsules 

was analyzed through AFM. BT474 mono and co-cultures represented in 

orange; H157 mono and co-cultures represented in blue). Data 

represented as mean ± SD (N=3). 

 

In a previous study of the lab, we have observed that 

encapsulated co-cultures of H157 cells, fibroblasts and 

macrophages presented increased deposition of extracellular 

matrix (ECM) components in the capsules, namely collagen I and IV 

and fibronectin 
18

. As collagen is described as mainly produced by 

fibroblasts 
32

 and deposition of collagen has been associated with 

stiffening of tumor tissue 
33

, we reasoned that ECM deposition in 
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encapsulated co-cultures might be responsible for the stiffening 

detected by AFM. To assess ECM matrix deposition, encapsulated 

cultures were stained for two of the most described components of 

the ECM, collagens and GAGs. 

In encapsulated BT474 mono-cultures, picrosirius red 

staining of collagen was detected within spheroids (pink staining, 

Figure 3.7); there was no detectable collagen deposition within the 

capsules. Under polarized light, collagen fibrillar form was 

detected in very limited regions, in between tumor cells (white 

yellowish staining, Figure 3.7E and F); in accordance, we could not 

detect collagen fibers by second-harmonic generation microscopy 

(data not shown). No differences were observed when comparing 

encapsulated mono- and co-cultures (Figure 3.7). 

GAGs were detected with alcian blue (that stains acidic 

polysaccharides and negatively charged mucins in blue) and 

aldehyde fucshin (that stains sulfated GAGs in purple). A light 

purple staining was observed in BT474 spheroids (Figure 3.7G and 

H), indicating low GAG accumulation relative to H157 spheroids, 

which were strongly stained (Figure S3.4). In all tested conditions, 

no accumulation of GAGs was detected outside of the spheroids, 

except the blue concentric ring surrounding the cells, probably 

indicative of the alginate capsule’s membrane (Figure 3.7G and H). 
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Figure 3.7: BT474 mono- or co-culture capsules show low 

accumulation of collagen and GAGs after 2 weeks of culture. After 14 

days of culture, alginate capsules were fixed with PFA and A), B) H&E; C), 

D) Alcian blue/aldehyde fuschin under light microscopy E), F) Alcian 

blue/aldehyde fuschin under polarized light; G), H) Picrosirius red 

histochemical evaluations were performed; black arrows point at the 

capsule while the red arrows point at the spheroid, scale bar: 100 µm 

(N=1). 

 

4. Discussion 

Several 3D models of the TME have been developed based 

on the combination of cells and biomaterials. Specifically, alginate 

has been applied by several authors to create models of breast 
6

, 

lung 
18

 and liver cancer 
34

. In this work, we have characterized 3D 

cancer cell models composed of alginate microencapsulated tumor 

cell spheroids together with human fibroblasts. By structural 

analysis, we show that empty alginate capsules have surface 

porosity. By comparison of non-encapsulated and encapsulated 

spheroids, we concluded that encapsulation avoided spheroid 

fusion and sustained cancer cell phenotype, as shown by typical 

epithelial cell markers, and proliferation. Mechanical evaluation of 

both empty and cell-containing alginate capsules revealed that the 
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presence of cells made alginate capsules smoother and the 

addition of fibroblasts increased capsule stiffness. 

Capsules were cultured in a dynamic system that allow 

culture sampling in a non-destructive manner 
35

. Also, agitation 

contributes to the maintenance of high cell viability by promoting 

a homogeneous distribution of oxygen and nutrients and a reduced 

formation of chemical and thermal gradients
35

. Characterization of 

empty alginate capsules revealed a hydrogel with a non-smooth 

porous surface. This may suggest that the capsule does not hamper 

the diffusion of macromolecules 
6

, including cytokines, released by 

the several cell types, as observed previously by our group using 

alginate co-culture capsules containing MCF-7 cells and fibroblasts 

6

. Additionally, the size of capsule’ pores is higher than antibodies. 

This suggests that these capsules can also be challenged with 

antibodies, which are currently used in clinics as cancer 

therapeutics. The average pore size we measured in the alginate 

capsules, within the nanometer range, is in agreement with the 

reported values on the literature for alginate hydrogels, reviewed 

by Simpliciano et al. 
36

. The surface morphology we observed in the 

empty alginate capsules is in agreement with the observations 

reported by Arica et al. 
37

. The authors prepared empty and 

ibuprofen-loaded calcium alginate beads and analyzed their 

surface morphology by SEM. Results revealed beads with rough 

surface morphology and visible large wrinkles, for both blank and 

drug-loaded particles 
37

. 

During two weeks of culture, capsules maintained their 

sphericity and size, without visible damage. In co-cultures, 

fibroblasts arranged themselves around the tumor spheroids 

creating distinct epithelial and stromal compartments, as 



3D cancer cell models in alginate capsules: biochemical and 

mechanical characterization 

149 

 

previously observed for co-cultures of MCF7 cells and fibroblasts 
6

. 

Encapsulation sustained the phenotype of the cancer cells, as 

suggested by the sustained detection of CK-18 and HER2. 

Encapsulated spheroids maintained their size over the two weeks 

of culture, compared to non-encapsulated spheroids, for which 

significant higher diameters were observed, concomitant with a 

significant decrease in spheroid concentration. This is probably 

due to spheroid fusion, induced by the agitation in the non-

encapsulated spheroids, and avoided by the space limitation 

imposed by the capsule in encapsulated spheroids. Moreover, we 

observed lower detection levels of Ki-67 in non-encapsulated than 

encapsulated spheroids, suggesting that spheroid fusion, rather 

than cell proliferation explains the increased diameter of non-

encapsulated spheroids over encapsulated ones, for the same 

culture time. Encapsulated spheroids from co-cultures showed 

higher diameter than those from mono-cultures. This is in 

agreement with what has been reported by Jeong et al. when 

culturing HT-29 cells as tumor spheroids in a collagen-matrix 

inside a microfluidic chip 
38

. They compared spheroid diameter 

after 3 and 5 days of culture under mono- or co-culture with 

fibroblasts. In both time points, they observed larger spheroids in 

co-culture compared to mono-culture 
38

. 

To mechanically characterize the alginate encapsulated 

model, stiffness was evaluated through analysis of YM, inferred by 

AFM. The YM depends solely on the intrinsic mechanical properties 

of the materials, being independent of the device geometry 
11

. Cell-

containing capsules were softer that empty capsules, with YM 

obtained for mono- and co-culture BT474 capsules falling within 

the range of BC tissue YM (10-43 kPa) 
39

. The lower stiffness of 
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capsules containing cells could be explained by the time in culture 

medium itself, which can be enough to soften the capsules with 

cells, by influence of culture medium compounds on the alginate 

capsules network. Additionally, the difference of stiffness between 

empty and cell-containing capsules is in agreement with was 

observed by Tian and Chen 
9

. Using alginate hydrogels with varying 

quantity of cells, they concluded that an increase in cell density 

leads to a decrease in scaffold strength. Nonetheless, when 

comparing mono- and co-culture capsules, we observed that the 

latter were stiffer, for both cell lines analyzed, despite the higher 

number of cells encapsulated. This may be explained by the 

secretion of molecules by fibroblasts and tumor cells under the 

influence of the fibroblasts. Secreted molecules, such as collagen, 

can interfere with the overall mechanical properties of the 

hydrogels. In fact, deposition of collagen has been associated with 

stiffening of tumor tissue 
33

. Aiming to elucidate if increased ECM 

deposition in co-cultures could explain the differences in YM 

observed, we employed histochemical methods to detect collagens 

and GAGs. We could not see differences between mono- and co-

culture conditions, as there was no detectable ECM outside the 

cellular compartment of the capsules. Nonetheless, in previous 

works by our group we have detected collagens within capsules of 

co-cultures of several tumor cell lines and fibroblasts, employing 

immunofluorescence and colorimetric methods 
6,18

. A possibility is 

that the processing of the paraffin embedded samples was too 

harsh, as in fact, also fibroblasts were almost not detected. Further 

studies are required to elucidate the presence of ECM components 

within the capsules and their influence on the mechanical 

properties of the system. 



3D cancer cell models in alginate capsules: biochemical and 

mechanical characterization 

151 

 

 

Collectively, the results presented contribute to the 

characterization of alginate encapsulated cancer cell models. These 

models can be a useful tool to study for example anti-cancer 

therapy distribution within the TME. In fact, not only 

chemotherapeutic drugs but also antibodies can be tested since 

alginate capsule’ pore size is bigger than the antibody size 
40

. This 

potential application is studied in more detailed in the Chapter IV 

of this thesis. 
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8. Supplementary material 
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Figure S3.1: BT474 cell line forms spherical and compact spheroids 

after one day of culture in spinner vessel. A) Spheroid diameter and 

spheroid concentration throughout culture time was measured (N=1); 

data is represented as mean ± SD; B) Live/dead assay (FDA-green; PI-red) 

(scale bar 100 µm). 
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Figure S3.2: Spheroid distribution per capsule and spheroid 

concentration in non-encapsulated cultures. A) At day 0, 7 and 14 days 

of culture of encapsulated mono-culture, 1 mL of culture was collected 

and the quantity of spheroids inside each alginate capsule was counted 

(N≥2). B) At day 0, 7 and 14, of non-encapsulated culture, 1 mL culture 

was collected and the number of spheroids was counted (N=2). 

  



3D cancer cell models in alginate capsules: biochemical and 

mechanical characterization 

157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3.3: Immunofluorescence microscopy of BT474 cells cultured 

in 2D. BT474 cells cultured in 2D were immunolabelled for f-actin (A), CK-

18 (B), HER2 (C) and Ki-67 (D). 
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Figure S3.4: GAG detection in encapsulated cultures of H157 tumor 

cells. After 14 days of culture, alginate capsules were fixed with PFA and 

aldehyde fuschin and alcian blue staining were performed to detect 

glycosaminoglycans in general and alginate, respectively (N=1); scale 100 

µm. 
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Table S3.1: Antibodies used for immunodetection. 

Antibody 

description 
Clone Origin Reference Supplier 

Anti-Ki67 SP6 rabbit ab27619 Abcam 

Anti-CK-18 – FITC 

conjugate 
CY-90 mouse F 4772 Sigma 

Anti-HER2 - rabbit A0485 DAKO 

Anti-phalloidin – 488 

conjugate 
- - A12379 

Life 

Technologies 

Anti-rabbit Alexa 594 - goat A-11037 
Life 

Technologies 

Anti-mouse Alexa 

488 
- goat A11001 

Life 

Technologies 
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A computational diffusion model to 

study antibody transport within 

reconstructed tumor microenvironments 
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Catarina Brito, Inês A. Isidro; A computational diffusion model to study antibody transport 

within reconstructed tumor microenvironments, submitted to BMC Bioinformatics 
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Abstract 

Antibodies revolutionized cancer treatment over the past decades. 

Despite their successfully application, there are still challenges to 

overcome to improve efficacy, such as the heterogeneous 

distribution of antibodies within tumors. Tumor microenvironment 

features, such as the distribution of tumor and other cell types and 

the composition of the extracellular matrix may work together to 

hinder antibodies from reaching the target tumor cells. To 

understand these interactions, we propose a framework combining 

in vitro and in silico models. We took advantage of in vitro cancer 

models previously developed by our group, consisting of tumor 

cells and fibroblasts co-cultured in 3D within alginate capsules, for 

reconstruction of tumor microenvironment features. 

In this work, a computational model of antibody transport within 

alginate capsules was established, assuming a purely diffusive 

transport, combined with an exponential saturation effect that 

mimics the saturation of binding sites on the cell surface. Our 

tumor microenvironment in vitro models were challenged with a 

fluorescent antibody and its transport recorded using light sheet 

fluorescence microscopy. Diffusion and saturation parameters of 

the computational model were adjusted to reproduce the 

experimental antibody distribution, with root mean square error 

under 5%. This computational framework is flexible and can 

simulate different random distributions of tumor 

microenvironment elements (fibroblasts, cancer cells and collagen 

fibers) within the capsule. The random distribution algorithm can 

be tuned to follow the general patterns observed in the 

experimental models. 
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We present a computational and microscopy framework to track 

and simulate antibody transport within the tumor 

microenvironment that complements the previously established in 

vitro models platform. This framework paves the way to the 

development of a valuable tool to study the influence of different 

components of the tumor microenvironment on antibody 

transport. 

 

Key words: antibody diffusion, tumor microenvironment, 3D in 

vitro cancer models, computational modelling, light sheet 

fluorescence microscopy 
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1. Background 

The value of antibodies as antitumor therapies has been 

largely demonstrated over the last two decades 
1

. Despite the 

generalized success, there are still challenges to overcome, such 

as the largely reported poor tissue penetration and heterogeneous 

distribution of antibodies within solid tumors 
2

. Efficacy of 

therapeutic antibodies is conditioned by several transport barriers, 

from systemic administration until reaching the target cells 
3

. These 

barriers ultimately cause a reduction of the therapeutic molecule 

concentration that reaches the target tumor cells, decreasing its 

therapeutic effect 
3–5

. Specifically within the tumor 

microenvironment (TME), higher heterogeneity is found when 

comparing with healthy tissue: tumors present altered vasculature, 

desmoplastic and inflammatory microenvironment and 

extracellular matrix (ECM) alterations 
6

. Within the ECM, collagen 

fibers and glycosaminoglycans (GAGs) have been previously 

described as influencing the transport of therapeutic molecules 
7–9

. 

So, it is crucial to assess antibody transport within this intricate 

network with high impact on therapy efficiency. 

Experimental (i.e. in vitro, in vivo and ex vivo) and 

computational (in silico) models have been developed to help 

understand how tumor heterogeneity influences drug distribution 

within the TME 
6,10,11

. Those two types of models can and should be 

combined to develop a comprehensive framework to study and try 

to answer that question. 

Several computational models have been developed over the 

years to describe and simulate the transport and interactions of 

drugs within the tumor by considering the main transport 

mechanisms, such as diffusion and convection, degradation and 



 A computational diffusion model to study antibody transport within 

reconstructed tumor microenvironments 

167 

 

internalization 
10,12–16

. These models can be used to study the 

complex interaction between several tumor components and drug 

pharmacokinetics and distribution. They can represent the tumor 

with different levels of detail, from a simplistic homogeneous 

tumor mass to complex heterogeneous non-equally distant cancer 

cells. However, they do not consider the impact on antibody 

distribution of specific elements of the TME, such as collagen 

fibers, that have been reported to have a severe influence in this 

distribution 
7–9

. 

The assessment and tracking of distribution of drugs in vivo, 

in tumor tissue or in tumor-like structures or complex cell 

cultures/tissue mimetics is also technically challenging 
13,17

 and 

typically relies on methods that do not allow real-time tracing of 

antibody distribution 
17–20

 due to limitations of microscopy 

techniques and of the biological sample 
17,21

. 

Our group has been developing modular 3D cell models of 

the tumor microenvironment. These in vitro cancer models, 

comprise cancer cells, and fibroblasts and other cellular 

components, that can be conjugated in different amounts and 

proportions, to mimic features observed in patient tumors 
22,23

. 

In this work, 3D in vitro cancer models were used as an 

experimental platform to assess antibody distribution within the 

TME. Light sheet fluorescence microscopy (LSFM) was implemented 

to perform real-time antibody tracking with high resolution 3D 

imaging over time, together with low photobleaching of the sample 

fluorescence 
24

. An in silico model of antibody diffusion within the 

TME, developed specifically as a complement to the 3D in vitro 

models, was calibrated based on these data. Assuming a purely 

diffusive antibody transport and considering that binding sites on 
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cell surface become saturated over time, Fick’s law was combined 

with an exponential saturation equation. The computational model 

was able to describe the antibody concentration profile observed 

experimentally with very good agreement. Additionally, we show 

this platform can be used to generate random spatial distributions 

of the TME elements (tumor cell spheroids, fibroblasts and ECM 

fibers) inside the capsule, following a tunable stochastic approach. 

 

2. Results 

2.1. Experimental observation of antibody diffusion 

through 3D capsule 

Antibody transport within the alginate capsule was tracked 

using a custom-made LSFM setup. A fluorescent anti-CD44 

antibody was used to challenge the encapsulated co-culture of 

tumor cells and fibroblasts. Over time, fluorescent signal was 

increasingly detected in cells within the capsules, following a radial 

trend from the periphery to the inside of the capsule (Additional 

file 1). The central plane of the 3D capsule acquisition was selected 

to allow visualization and model calibration (Figure 4.1, Additional 

file 2). 
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Figure 4.1: Fluorescence after antibody challenge for a representative 

capsule section. A) 0 min; B) 30 min; C) 90 min; D) 120 min; E) 150 min; 

F) 180 min after the antibody challenge; scale bar: 100 µm. 
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Image processing was used to trace antibody fluorescent 

signal profiles in defined regions of interest (ROIs), corresponding 

to cell spheroids or clusters of few cells (Figure 4.2A). For cell 

cluster II, close to the capsule periphery, we observed a fast 

increase in fluorescence intensity, which stabilized early into a 

plateau (Figure 4.2C). For cell cluster V, further away from the 

periphery, we observed a delay in the increase in fluorescence 

intensity and the plateau was reached at least 30 min later (Figure 

4.2F). 

The delay time had a positive correlation with the cell cluster 

distance to the capsule periphery, although with a high variability 

(Figure 4.2B-F, Figure S4.A). It is reasonable to expect the presence 

of heterogeneous physical and biological barriers in the antibody 

diffusion path which can influence the delay time. For example, 

cluster III was farther away from the periphery than cluster I, but 

both show a similar delay (Figure S4.A). 

The experimental fluorescence profiles were fitted with 

mathematical models for S-shaped curves, often used to describe 

population growth 
25

. All selected clusters had the best fit, with 

R
2

>0.98, with the Richards model, given by 

"P (t)=
M

[1 + α exp(-M β t)]γ
 (1) 

𝛼 = [(
M

P
0

)

1

γ
- 1 ]  exp(M β t

0
) (2) 

in which P is the mean fluorescence and α, β, γ and M are constants 

25

. 

The fitted smoothed curves describe well the overall 

fluorescence intensity profiles (Figure 4.2, Table 4.1). Nonetheless, 

for some of the cell clusters, when the fluorescence intensity 
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becomes detectable, the adjusted curve showed a slight bias 

towards a shorter delay than was seen in the experimental data 

(Figure 4.2C, E). Consistently with the previous observations, the 

curve parameters do not follow a clear trend depending on the 

cluster distance to the capsule periphery or the cluster size. 

 

Table 4.1: Properties for selected cell clusters and parameters for the 

adjusted fluorescence profiles. 

Cell 

cluster 

Distance to 

capsule periphery 

(μm) 

Area 

(μm
2

) 

 Fitted parameters  

M β γ R
2

 

I 83.0 232 54.1 6.42×10
-4

 4.40 0.9868 

II 88.1 270 80.2 4.88×10
-4

 15.1 0.9884 

III 115.0 211 55.2 10.1×10
-4

 2.44 0.9980 

IV 124.7 265 109 4.40×10
-4

 1.87 0.9978 

V 127.3 439 75.0 7.09×10
-4

 1.78 0.9925 
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Figure 4.2: Fluorescence profiles for selected cell clusters and fitted 

curves. A) Definition of selected cell clusters (scale bar: 100 µm); B-F) 

Experimental mean fluorescence profiles from LSFM data (red dots) and 

fitted curves (blue lines) for the selected cell clusters I through V, 

respectively. Curve parameters for Eq. (1-2) are shown in the Table 1. 

 

2.2. Computational model emulates antibody transport 

within the capsule 

A digitization approach was used to obtain a capsule section 

equivalent to the one used in the experimental study (Figure S4.2A-

C). The initial diffusivities (Figure S4.2D) were set taking into 
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account the range of values for this parameter reported on the 

literature 
26–28

 and the experimental results over time (Figure 4.1). 

By changing Dmedium the “radially moving front” of the antibody 

distribution can be controlled. Based on experimental 

observations, Dmedium was fixed at 0.15 μm
2

/s and Dcell was 

subsequently fixed at 0.0015 μm
2

/s. 

The computational model has antibody distribution profiles 

over time which are very similar to the ones obtained 

experimentally, when looking to diffusion through the extracellular 

intra-capsule space (Figure 4.3, Additional file 3). The model 

diffusivity coefficients decrease over time on the exposed surface 

of the cell spheroids, as imposed by the saturation equation (Figure 

S4.3, Additional file 4). 
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See caption in the next page.  
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Figure 4.3: Simulated antibody concentration profile throughout the 

digitized capsule, over time. Computational images for selected 

timepoints using saturation parameters a = 1, n = 1 and p = 1: A) 0 min; 

B) 30 min; C) 90 min; D) 120 min; E) 150 min; F) 180 min; white 

circumference represents the capsule periphery; scale bar: 100 µm. 

 

Antibody concentration profiles in the cell clusters were 

adjusted to account for binding and saturation of the antigens. To 

fit the computational model, the parameters of the saturation 

equation, Eq. (4), were adjusted by minimizing the root mean 

square error (RMSE) between the normalized experimental and 

computational profiles, for the 5 selected cell clusters (Figure 

4.4A). The proposed model, using Fick’s law combined with 

exponential saturation, was able to represent the experimental 

profiles with an RMSE up to 5% (Figure 4.4B-F and Table 2). The 

best parameters varied between cell clusters, even for clusters with 

similar distance to the capsule periphery such as clusters I and II 

and clusters IV and V. 
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Figure 4.4: Computational antibody concentration profiles after 

fitting of the saturation parameters a, n and p to selected cell 

clusters. Adjusted computational curve: blue line; smoothed 

experimental data: red line; scale bar: 100 µm. 
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Table 4.2: Fitted saturation parameters for the computational model 

and RMSE. 

 

 

 

 

 

 

 

 

 

 

Even though a 5% RMSE was considered low, the systematic 

deviation observed consistently in the same direction across cell 

clusters (lower log phase slope for the computational model) 

suggests the influence of biological or biophysical mechanisms not 

considered in the model. Consistently, representing signal delay as 

function of cluster distance to capsule periphery showed that the 

computational delay is smaller than the experimental by 

approximately 10 min (Figure S4.A). Comparing the slope against 

cluster area showed that, with the exception of cluster II, there is 

an approximately constant deviation between the computational 

and experimental models (Figure S4.B). 

The computational model was also tested without the 

saturation equation, Eq. (4). The sigmoidal profile observed 

experimentally cannot be replicated with any combination of the 

adjusted parameters, in this case Dcell and Dmedium (Figure S4.4 and 

Table S4.1), meaning that a purely diffusive model is unable to 

explain the behavior observed in the experimental runs. 

 

Cell 

cluster  

a n p RMSE 

I 1.01 1.73 1.33 0.05 

II 1.00 1.00 1.00 0.01 

III 1.13 0.53 1.34 0.04 

IV 0.43 1.91 1.40 0.03 

V 0.79 1.57 1.42 0.03 
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2.3. Implementation of a modular framework: tuned 

random distribution of TME elements inside the capsule 

The framework used to create the capsules allows us to 

simulate several distinct but equivalent capsules, i.e. with the same 

number of cancer cell spheroids and fibroblasts, but with different 

distribution. It is based on a tunable stochastic algorithm, which 

mimics the observed experimental distributions. Along with the 

cancer cells and fibroblasts, we also included a representation for 

collagen fibers. Some examples of the versatility of this framework 

are shown in Figure S4.5. 

This framework was tested in silico by creating two identical 

capsules, one with and one without collagen fibers (Figure 4.5A, 

scenarios i and ii respectively). The diffusivity coefficient for the 

collagen fiber was set as zero (total barrier), as it has been reported 

that this ECM component hinders antibody diffusion 
7–9

, while the 

remaining TME elements maintained the previously described 

diffusivity parameters (Figure 4.5B). Antibody concentration 

distributions were compared for both capsules for the second and 

last time frames (Figure 4.5C-D). For the capsule without fibers, the 

antibody diffuses radially and homogeneously to the interior of the 

capsule (Figure 4.5C-D, scenario i). When fibers are added, 

antibody distribution throughout the capsule is highly 

heterogeneous as fibers perpendicularly aligned to the diffusion 

direction retain the antibody (Figure 4.5C-D, scenario ii). This 

difference is also clear in the antibody concentration profiles for 

the three selected clusters in each scenario (Figure 4.5E). Cluster 1 

is near the periphery and the antibody diffusion profile is very 

similar for both settings. Cluster 2 is in the internal portion of the 

capsule and is surrounded by fibers that impede diffusion, which 
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in turn virtually nullifies the antibody concentration. Finally, cluster 

3 displays an intermediate situation, the antibody concentration 

profile in the presence of fibers follows a similar trend than in the 

absence of fibers but with lower total. 

 

 

See caption in the next page. 
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Figure 4.5: Example of a tuned stochastic computational capsule with 

and without fibers. Simulation with Dmedium=0.15 μm
2

/s, Dcell=0.0015 

μm
2

/s, a=1, n=1, and p=1, for two scenarious: (i) without fibers and 

(ii) with fibers. A) Graphical representation of one random tuned capsule, 

with the indication of the selected clusters; B) Initial diffusivity coefficients 

throughtout the capsule; C-D) Antibody concentration for two different 

time points (30 and 180 minutes, respectively); E) Antibody concentration 

profile for the three cell clusters identified in A (blue – cluster 1, orange – 

cluster 2, green – cluster 3); scale bar: 100 µm. 

 

3. Discussion 

In the present work, we developed a computational model 

that reproduces in silico antibody transport within a 3D in vitro 

cancer model. The in silico model was trained with live tracking 

data of a fluorescent antibody, generated by LSFM. This 

microscopic technique allowed us to assess which cells within the 

alginate capsules, were binding to the antibody and to what extent. 

LSFM overcomes the limitations of classical fluorescent microscopy 

techniques, as it provides a good optical sectioning for volumetric 

rendering, being less aggressive to fluorophores and sample, 

reducing photo-bleaching and phototoxicity 
24

. 

Experimental results show that the time delay until a 

detectable fluorescence intensity was attained for each cell cluster 

has a weak linear correlation with cell cluster distance to the 

capsule periphery. This hints at the capsule interior being an 

anisotropic medium with some degree of heterogeneity. Molecules 

secreted by the cells, such as collagens and glycosaminoglycans, 

cannot be detected under the microscope and cause antibody 

retention 
7–9

, being likely responsible by some of the observed gaps 

between the computational and experimental models. Additionally, 

it may be associated with heterogeneous antibody presentation, in 

particular because there are 2 cell types being analyzed together. 
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We assumed a purely diffusive mechanism of antibody 

transport, i.e. antibody transport is controlled exclusively by 

concentration gradients. Convection was considered negligible 

since no significant flow of culture medium was imposed on the 

experimental setup. The lack of significant flow implies a near zero 

Péclet number 
29

 and, therefore, corresponds to a diffusion-driven 

transport. However, convection could be incorporated in the model 

for different experimental conditions. 

Kinetic equations for antibody binding described in the 

literature 
30,31

 require a priori knowledge of kinetic parameters, 

such as binding and dissociation constants. Because these values 

are not always available, we opted for a simpler approach, where a 

generic exponential equation was used to describe the saturation 

of binding sites as the antibody concentration increases and less 

antigens become available. Our simulated antibody distribution 

profiles showed that binding site saturation can be correctly 

represented using this approach. The saturation parameters a, n 

and p control the shape of the sigmoidal curve (Figure S4.6). 

Parameters n and p change the sigmoidal curve by controlling its 

slope. So, n and p can be biologically correlated with ease of 

antibody binding to the cell cluster. As n increases, a longer time 

is needed to observe any reduction in the diffusivity coefficient. As 

such, n can be correlated with the initial contact of the antibody to 

the cell cluster, when the antibody concentration is very small. 

Conversely, p controls the stages closer to saturation, when a much 

higher antibody concentration is present on the cell clusters. 

Parameter a controls mainly the time required to reach the plateau. 

Thus, a can be correlated with the amount of available binding sites 

on the cell cluster or with binding velocity. Ergo, cell clusters with 
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smaller a value require a higher antibody concentration to bind to 

all the available binding sites.  

Computational model parameters were optimized to fit each 

selected cell cluster. This means that, for each fitted model, all 

clusters were given the same a, n and p parameters as the selected 

cluster. Following this procedure, we observed that different 

parameters fit different clusters. It was not possible to find a 

combination of a, n and p that provided a good fit (RMSE<5%) for 

all the cell clusters simultaneously. A modest but systematic 

deviation was observed in the simulated fluorescence profiles for 

all cell clusters, which suggests mechanisms that are not being 

considered are interfering with the antibody transport. 

This framework can be used as a basis for future work, 

where further improvement can be attained by going from a 2D to 

a 3D in silico representation of the capsule. This will allow for a 

more relevant and realistic study of the antibody transport 

throughout the capsule. 

 

4. Conclusions 

We describe a computational model that reproduces 

antibody transport within an in vitro tumor microenvironment 

model, containing different cellular components. Moreover, we 

showed that the combination of 3D in vitro cell models and light 

sheet fluorescence microscopy enables the experimental 

assessment of therapeutic antibody distribution within the tumor 

microenvironment. Drug molecules with different properties 

(different sizes and charges), ranging from small molecules such 

as chemotherapeutic drugs, to larger molecules such as antibodies, 

can be studied using the same approach. 
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Ultimately, the combined experimental and computational 

framework can be employed not only to decipher how different 

elements within the TME can influence drug transport, but also, 

once that influence is understood, to work as a predictive tool. This 

would help reducing experimental burden and costs by performing 

a computational screening of specific conditions prior to 

experimental testing. 

 

5. Methods 

5.1. Experimental setup, data collection and processing 

5.1.1. Cell lines and 2D cell culture 

NCI-H157 (#CRL-5802; from now on referred as H157) Non-

Small Cell Lung Carcinoma (NSCLC) cell line was obtained from 

American Type Culture Collection (ATCC). Human Dermal 

Fibroblasts (hDFs) isolated from human skin were obtained from 

Innoprot. Cells were cultured under 2D static conditions, 

maintained at 37 ºC in an incubator with humidified atmosphere 

containing 5% CO2 and 21% of O2.  

Tumor cells were sub-cultured twice a week with a seeding 

density of 1×10
4

 cell/cm
2

 and maintained in Tumor Cell Culture 

Medium, composed of Dulbecco's Modified Eagle Medium (DMEM) 

supplemented with 1 mM sodium pyruvate (Life Technologies), 12 

mM HEPES (Life Technologies) and 0.1 mM non-essential amino 

acids (Life Technologies). hDFs were split once a week, at a seeding 

density of 0.5×10
4

 cell/cm
2

 and cultured in Iscove's Modified 

Dulbecco's Medium (IMDM, Life Technologies) supplemented with 

10% (v/v) fetal bovine serum (Gibco) and 100 U/mL penicillin-

streptomycin (Gibco). 

 



Chapter IV 

 

184 

 

5.1.2. Cell microencapsulation and stirred suspension 

culture  

H157 cell spheroids were generated in all-baffled spinner-

flasks with a straight blade paddle impeller (Corning Life Sciences), 

according to the aggregation protocol previously established in-

house 
32

. Spheroids were collected 3 days after spinner inoculation 

for the establishment of co-cultures, as described previously 
22

. 

Briefly, 2×10
4

 spheroids were mixed with a single cell suspension 

of hDFs and the mixture was dispersed in 1.1% (w/v) of Ultrapure 

Ca
2+

 MVG alginate (UP MVG NovaMatrix, Pronova Biomedical), 

dissolved in 0.9% (w/v) NaCl solution 
22,23

. Microencapsulation was 

performed using an electrostatic bead generator (Nisco 

Encapsulator) with an air flow rate of 10 mL/h, at 5.3 V with air 

pressure of 1 bar, to generate capsules of approximately 700 μm; 

alginate droplets were cross-linked in a 20 mM BaCl2 bath. 

Encapsulated co-cultures were cultured for 2 weeks under agitation 

(shake flasks, 80 rpm), with medium exchange twice a week (half 

of the volume replaced by fresh Tumor Cell Culture Medium). 

 

5.1.3. Light sheet fluorescence microscopy setup 

All the images were acquired with a custom-made LSFM 

system, an improved version of the SPIM-fluid system 
33

. The 

illumination path consists in three CW lasers with excitation 

wavelengths of 488, 561 and 637 nm (Cobolt; MLD 50 mW, DPL 

100 mW and MLD 150 mW, respectively). Laser beams are 

expanded using a telescope system, composed of two achromatic 

doublets (Thorlabs, AC254-050-A-ML (f = 50 mm) and AC254-200-

A-ML (f = 200 mm)), creating a flat top Gaussian beam profile. The 

light sheet is created by a pair of galvanometric mirrors (Thorlabs, 
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GVSM002), which pivoting planes are properly conjugated with the 

back focal aperture of the objective lens (Nikon, 4x PlanFluor NA 

0.13). Double side illumination is achieved by duplicating these 

elements and adding a 50/50 beamsplitter cube (Thorlabs, CCM1-

BS013). A relay lens set, with two achromatic lenses (Thorlabs, 

AC254-075-A-ML (f = 75 mm)) is used as a bridge, so optical planes 

are properly conjugated in the right arm. In the detection path, a 

water dipping objective (Nikon 10x 0.3) is used to collect the 

generated fluorescence from the top of the incubation chamber, as 

in an up-right microscope configuration. An achromatic doublet 

with focal distance of 200 mm (AC254-200-A-ML) is used to form 

the image onto the sCMOS camera chip (Hamamatsu Orca 

Flash4.0). Different emissions are selected using a motorized filter 

wheel (Thorlabs, FW102C), equipped with three filters (Chroma and 

Semrock: 520/15 (GFP), 590/50, 638LP (Cell tracker deep red)). 

The scanning of the sample is performed by translation of the 

whole physiological chamber with a motor (PI M-501.1DG) through 

a fixed horizontal light sheet plane (Figure S4.7). The Flexi-SPIM 

microscope features a custom developed software based on 

LabVIEW (National Instruments). This software allows the user to 

access settings of the various devices on a single graphical user 

interface. An Arduino UNO board, connected via USB to the 

workstation, is integrated in the LabVIEW software providing 

control of the shutters, bright-field illumination and sample 

rotation. The custom-made LSFM allows for different possibilities 

for the sample mounting. In order to provide flexible, fast and easy-

to-use sample loading capabilities, an imaging chamber was 

designed and 3D printed using fluorinated ethylene propylene 

(FEP). FEP presents a refractive index similar to water (1.33) and is 
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CO2 permeable. So, it allows for live imaging on specimens using 

water-dipping objectives. Prior to imaging acquisition, samples 

were loaded into FEP tubes and transported towards the detection 

objective field of view using a programmable syringe pump (Tecan, 

Cavro Centris). Once here, the two motors can rotate the sample, 

in order to choose the view of interest. This mounting system offers 

the possibility to easily insert, aspirate and discard the specimens 

without the need of agarose, enabling the possibility for high-

throughput studies with relatively big samples (up to 1 mm 

diameter). 

 

5.1.4. Antibody challenge, image acquisition and 

processing 

The fluorescent antibody (anti-CD44 Monoclonal Antibody 

(IM7), PE, eBioscience) was diluted in Tumor Cell Culture Medium, 

to a final concentration of 13 µg/mL, close to the range of 

therapeutic antibody concentration found in patient serum 
34,35

. 

Individual capsules were harvested from culture and loaded 

into the microscope tube in order to obtain a control image of the 

intrinsic autofluorescence and to assess general capsule features 

(in the bright-field). The capsule was then removed from the FEP 

tube, immersed in the antibody solution and reloaded in the 

microscope. Fluorescence was acquired in the 561 nm laser line. A 

3D stack of the capsule containing 235 planes separated by 3 µm, 

covering 705 µm, was acquired every 2 minutes. Acquisition was 

performed over a total of 3 h. 

The fluorescence intensity profiles for selected cell clusters 

(Figure 1-2) were obtained from the central plane of the capsule. 

Each cluster was marked using a ROI defined by a circular domain. 
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The fluorescence intensity over time was integrated and converted 

to a profile. All image processing was performed using Image J 

(Rasband, W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018). 

Further details on image processing are described in the 

Supplementary Materials and Methods. 

To smooth the experimental data noise, the five cluster 

profiles were fitted to growth curve models 
25

 and the model type 

showing the best fit (highest R
2

) was selected. For comparison 

between the profiles of the selected clusters, the delay time and 

the slope of log phase of the curve were calculated. The first of 

these parameters can be seen as a measurement of the time 

required for the antibody to reach that cell cluster in sufficient 

concentration to be detected. It was calculated as the time interval 

from the beginning of the experiment until the mean fluorescence 

value became larger than 5% of the total achieved fluorescence for 

that selected cluster. The slope of the log phase was obtained by 

calculating the slope of a linear fit, adjusted for this phase alone. 

For consistency, we assumed log phase of the curve to correspond 

to the portion of the model that takes place when the measured 

value (i.e. fluorescence and antibody concentration) corresponds to 

15% to 85% of its maximum observed value. 

 

5.2. Antibody diffusion model within the alginate capsule 

Antibody transport within the alginate capsule was assumed 

to be purely diffusional. In fact, assuming the capsule is immersed 

in a static fluid, no relevant convective transport is expected to 

occur 
36

. This diffusive behavior is modelled by Fick’s second law, 

which in bidimensional space is defined by 
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∂C

∂t
=D (

∂
2

C

∂x
2

+

∂
2

C

∂y
2

) (3) 

in which D is the diffusion coefficient (Dmedium for the medium and 

Dcell for the cells), C is the concentration of the antibody, t is the 

time, and x and y are the Cartesian coordinates. 

Cells detain a limited number of antigens where antibodies 

can bind. So, as the antibody binds, the number of available 

binding sites on the cell surface is reduced until reaching 

saturation, in which all or the vast majority of the binding sites are 

bound to an antibody molecule. This biological effect can be 

translated in terms of variation of diffusivity of the antibody in the 

cells and was assumed to follow an exponential saturation curve 

described by 

D
cell

t+Δt
=D

cell

t
×exp (-a×

Cnorm

n

(1-Cnorm
)p

) (4) 

in which a, n and p are adjustable parameters, Dcell is the diffusivity 

coefficient in the cells and Cnorm is a normalized concentration. The 

latter takes into account the fact that the concentration at which 

the cells get saturated is much smaller than the antibody 

concentration in the medium and is given by 

C
norm

=
Ci,j

t

Cinj×0.01
 (5) 

in which Cinj is the antibody concentration of injection and C
t

i,j is the 

concentration of antibody in a cell localized in the position i,j. 

The model proposed here works under the following 

assumptions: (i) no significant antibody degradation occurs; (ii) the 

initial antibody concentration inside the capsule is zero; (iii) cell 

growth and death are not relevant; (iv) cell movement is neglected; 

(v) ECM formation, degradation or re-structure is negligible within 

the time interval of the experiment; (vi) initial Dcell was set as being 
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100 smaller than initial Dmedium for all cells (single cells, cancer cell 

spheroids and fibroblasts) and (vi) Dmedium is constant over time and 

through the extracellular space inside the capsule. 

Additionally, we also consider that antibody diffusivity 

within the spheroid varied with the spheroid radius according with 

D𝑐𝑒𝑙𝑙
𝑑

=D𝑐𝑒𝑙𝑙
𝑚𝑎𝑥 × (

𝑑

𝑟𝑠𝑝ℎ
) (6) 

in which Dcell

d

 is the diffusivity coefficient of a cell in the spheroid 

whose distance to the cancer spheroid center is d, Dcell

max

 is the 

diffusivity coefficient of the cells located in the outer layer of the 

spheroid and rsph is the spheroid radius. 

 

5.3. Computational model fitting and simulation 

5.3.1. Definition of the initial setup: capsule domain 

The computational model and all simulations were 

implemented and run in Python (version 3.7). To numerically solve 

Fick’s second law in Eq. (3), the finite differences method was 

applied. This method to solve differential equations requires a 

discretized domain. So, a two-dimensional square grid (mesh) with 

200×200 equally spaced nodes and a 1000 µm side was created. 

Method convergence was evaluated as described in Supplementary 

Materials and Methods section and Figure S4.8. Each element 

(node) was assigned a range of intrinsic attributes (coordinates: x 

and y; type: cancer cell, fibroblast or ECM; diffusivity; and 

concentration). This grid is further split between two major 

domains: a central circular domain, representing the alginate 

capsule (centered in the mesh and with a radius of 350 µm) and its 

surrounding medium, representing the culture medium outside the 

alginate capsule. For the definition of nodes within the alginate 
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capsule two alternative approaches were performed: one based on 

capsule digitization and another one based on tuned random 

distribution of TME elements (Figure 4.6A and B, respectively). 
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Figure 4.6: Experimental and computational workflow. A) 

Methodology applied in the digitized capsule approach (LSFM: light sheet 

fluorescence microscopy). B) Methodology applied in the tunable 

stochastic approach on an example. 

 

5.3.2. Capsule digitization from experimental 

capsule images 

Digitization of the capsule allowed to reproduce the 

experimental capsule in silico, with cancer cell spheroids and 

fibroblasts localized in the same positions. Based on the last frame 

of the experimental antibody diffusion video for a specific capsule 

slice (Additional file 2), Python Imaging Library (PIL) was used to 

convert the figure into a binary input (Figure 4.6A). The cancer cell 

spheroid was added manually, according with the contrast phase 

images acquired experimentally. 

 

5.3.3. Tunable random distribution of TME elements 

A stochastic framework, in which the TME elements are 

randomly distributed inside the capsule was also implemented. 

This process is tunable by the user who can set the total number of 

each TME element to include in the capsule (Figure 4.6A). From 

images of several capsules, two circular regions of cell distribution 

can be identified inside the capsule. So, first, the capsule domain 

was divided in two rings, with the inner ring corresponding to 80% 

of total radius. Cancer cell spheroids were defined as circular 

entities with a selected radius, whose localization can be set by the 

user or randomly. Since antibody cell targets might not be present 

in all cells, targeted and non-targeted cells can be considered in 

the model. The pre-defined number of cancer cells and fibroblasts 

(as single cells or small clusters) were randomly distributed with a 

preference towards the outer ring, as the experimental results 
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showed they were more prevalent in this area. Fibroblast average 

radius was assumed to be 11.5 µm as single cells 
37

 or 17.5 µm in 

the cluster form (measured from the experimental images). 

Collagen fibers can also be included and randomly distributed 

within the capsule domain. These fibers were assumed to have 30 

μm length 
38

, to have 4 possible orientations (0, 45, 90, 135º) and 

zero diffusivity. The overall process of model development is 

schematized in the workflow in Figure S4.9 and Figure 4.6. 

 

5.3.4. Benchmark of the computational model with 

experimental data 

Experimental fluorescence profiles and computational 

antibody concentration profiles were normalized so as to vary 

between 0 and 1 and thus allow their comparison (Figure 4.6A). 

The benchmarking of the computational model by the 

experimental data was performed by implementing the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm to find the 

saturation parameters a, n and p of Eq. (4) which minimize the root 

mean square error (RMSE) for a set of selected cell clusters. The 

RMSE between the experimental and computational normalized 

profiles is given by 

RMSE=√∑
(y

î
-y

i
)
2

n

n

i=1

 (7) 

in which n is the number of points in which computational and 

experimental values are compared, ŷi is the predicted value from 

the computational model and yi is the observed values in the 

experiments. 
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All cells were assumed to be target cells of the antibody, 

since CD44 is detected in both hDFs 
39

 and H157 cells 
40

. 

 

5.3.5. Boundary conditions 

The capsule external domain was defined as having a fixed 

antibody concentration of 13 μg/mL, as in the experimental setup. 

We assume that, for the modelled timeframe, the depletion of the 

medium is not significant since the volume of antibody solution is 

two orders of magnitude higher than the capsule volume. 

 

6. List of abbreviations 

BFGS: Broyden-Fletcher-Goldfarb-Shanno; ECM: extracellular 

matrix; FEP: fluorinated ethylene propylene; GAG: 

glycosaminoglycan; hDFs: Human Dermal Fibroblasts; LSFM: light 

sheet fluorescence microscopy; NSCLC: Non-Small Cell Lung 

Carcinoma; PIL: Python Imaging Library; RMSE: root mean square 

error; TME: tumor microenvironment 
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12. Supplementary information 

Table S4.1: Fitted Dcell and Dmedium by application of the BFGS algorithm, 

assuming a purely diffusive mechanism without cell saturation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4.1: Comparison of profile features (delay time and slope) 

with cell cluster features (distance to capsule periphery and section 

area) obtained experimentally and for the computational model. A) 

Experimental delay vs distance to periphery. B) Slope of log phase of the 

curve vs area of the cell cluster. 

Cell 

cluster  

Dmedium 

(μm
2

/s) 

Dcell 

(μm
2

/s) 

RMSE 

I 0.164 0.126 0.06 

II 0.659 0.110 0.09 

III 0.712 0.156 0.11 

IV 0.151 0.103 0.04 

V 0.210 0.166 0.06 
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Figure S4.2: Definition of the initial setup by application of Python 

Imaging Library (PIL) tool. A) Read-out from Fiji of the last frame for the 

selected capsule section; B) digitized capsule obtained by application of 

PIL tool to A); C) component distribution and aggregate placement in 

accordance with B) and identification of the selected cell clusters 

equivalent to the experimental capsule section (Figure 2A); D) Diffusivity 

coefficient distribution within the capsule in the computational model for 

the digitized capsule. 
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Figure S4.3: Diffusivity coefficient on the computational model over 

time, for the digitized capsule. Computational model was run for a=1, 

n=1, p=1: A) 0 min; B) 30 min; C) 90 min; D) 120 min; E) 150 min; F) 180 

min. 
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Figure S4.4: Comparison of best fittings obtained considering only 

Fick’s law (blue curve) or Fick’s law combined with exponential 

saturation (orange curve) to the experimental data (red curve). 
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Figure S4.5: Tunable stochastic computational model examples. A 

modular tuned stochastic computational framework was developed and 

its versatility allows the user to set a defined amount of cancer cells 

aggregates and fibroblasts as single cells or clusters and also collagen 

fibers. First column shows models with varying amount of single and 

small clustered cells. Second column shows capsules with different 

number of aggregates. The third column shows variation in cancer 

aggregate radius. The fourth column shows the inclusion of several 

quantities of collagen fibers. 
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Figure S4.6: Exponential saturation equation for several different 

inputs. 
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Figure S4.7: Schematic representation of the LSFM acquisition portion 

with a photography showing a zoom on the FEP chamber. Lasers 

illuminate the sample (loaded on a TEP tube) from two directions. The 

acquisition camera is located 90º in relation with the lasers plan. 
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Figure S4.8: Mesh convergence study: 100x100, 200x200 and 

300x300. Initial and final time-points for the model run with the specific 

mesh size. 
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Figure S4.9: A flow diagram of the tunable stochastic computational 

framework. The model starts by defining the mesh and creation of the 

domain. Then, verifies if fibroblasts, cancer aggregates and fibers are to 

be included in the model. Then, the remaining free space in the mesh is 

defined as the extracellular space and the diffusivity for all the parts of 

the system is set. Then, it calculates the concentration of the antibody in 

each node of the mesh by using the discretised second Fick’s law. With 

these new values, it calculates the new cell diffusivity coefficients. This 

process runs iteratively until reaching the maximum time, in which it 

closes the cycle and creates the antibody concentration profiles. 
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Supplementary Materials and Methods 

S1. Image processing procedure 

All image processing was performed using Fiji, ImageJ 

software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018). 

Data collected from LSFM experiments were sets of sequential 

images of the fluorescence of several sections of each alginate 

capsule over time. For further analysis, only one capsule section 

corresponding to middle plan was selected. First, we selected 

regions of interest (ROI) corresponding to the areas where cluster 

of cells were identified. The image was converted to 8-bit, a 

threshold mask was applied and the image was transformed into 

binary. The diffusion profiles (mean grey values over time) were 

obtained using the Z-axis profiler plugin. Five representative cell 

clusters of one capsule were selected for this analysis. 

 

S2. Method convergence with varying mesh size 

A method convergence study was performed choose the 

mesh size. Different mesh sizes were tested to assess if the 

obtained antibody concentration profiles were not significantly 

affected by increasing the mesh step. The step process was the 

following: 1) create a mesh using the fewest, reasonable number 

of elements and analyze the antibody concentration profile inside 

the capsule; 2) recreate the mesh with a denser element 

distribution, and compare the new obtained antibody 

concentration profiles to those obtained with the previous mesh. If 

the final antibody distribution throughout the capsule is equivalent 

in the tested conditions, then the mesh size selected for the study 

was thin enough to give accurate results. In this study, we 
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compared meshes with size (number of nodes in x and y) of 

100x100, 200x200 and 300x300, maintaining the 1000 µm side 

(Figure S8). 

 

13. Additional files 

All additional files can be found in: 

https://osf.io/yd5vu/?view_only=93e411b15dba44249811d82d7

4d9162a 

Additional file 1: Video of the LSFM maximum intensity projection 

for all acquired frames, corresponding to 3h (AVI, 6044 kb) 

Additional file 2: Video of the LSFM selected capsule central plane, 

corresponding to 3h (AVI, 4865 kb)  

Additional file 3: Video of the simulated antibody concentration 

over the 3 h time interval (MP4, 483 kb) 

Additional file 4: Video of the evolution of simulated diffusion 

coefficients over time throughout the capsule (MP4, 486 kb) 
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1. Discussion 

 

Cancer is the second leading cause of mortality worldwide, 

despite the extraordinary advances in the last two decades due to 

the development of targeted therapies. These therapies target 

specific molecules required for cell growth and tumorigenesis; 

nonetheless, resistance often leads to patient relapse and disease 

progression. This resistance can be partially explained by the 

crosstalk and modulation by the several tumor microenvironment 

(TME) cellular and non-cellular elements. To study this intricate 

network, cancer models incorporating TME features have been 

proposed. 

This thesis aimed to establish and characterize ex vivo, in 

vitro and in silico TME models, as tools to study cancer targeted 

therapies (Figure 5.1). 
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Figure 5.1: Aim and achievements of each research chapter of the 

thesis. BC: breast cancer; ECM: extracellular matrix; ERα: estrogen 

receptor α; TME: tumor microenvironment. 

 

1.1. Development of long-term ERα-positive breast cancer 

ex vivo model 

Estrogen receptor α (ERα) represents one of the most 

relevant receptors in breast cancer (BC), since it a main driver of 

tumorigenesis in ERα-positive BC and, for that reason, is the focus 

of endocrine therapies. Despite the application of several of these 

therapies in the clinics for the treatment of ERα-positive BC, tumoral 

therapeutic resistance is an issue. To study the mechanisms that 

underly the resistance BC models in which ER signaling is sustained 

are needed. 

We hypothesize that by combining alginate encapsulation 

and agitation-based culture, it would be possible to maintain BC 

tissue architecture for longer periods of time, with retention of the 

cellular components and, therefore functionality of ERα. When 

applied to partially digested ERα-positive BC tissue (tissue 

microstructures, Chapter II), we verified that this strategy allowed 

for the culture of microstructures with high cell viability, that 

maintained the original tissue architecture for at least one month. 

ERα expression and functionality were also assessed by protein and 

mRNA detection and by inhibition with a standard-of-care 

compound and stimulation with estrogen (an ERα ligand) and 

evaluation of ERα-targeted genes. We reported that gene 

expression of the individual ERα-targeted genes varied in BC 

microstructures from different patients, when the same stimuli was 

applied. This might be explained by the inherent heterogeneity 

both within and between patient-derived tissues. In agreement, 
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Centenera et al. observed a very heterogenous PgR mRNA level on 

patient-derived explants upon estrogen stimulation 
1

. Gohno et al. 

reported the same results for ESR1 and PGR for luminal A BC 

samples 
2

. 

In the present thesis, the components responsible for the 

maintenance of the ERα signaling in the ex vivo model were not 

assessed. Though, we hypothesize that the maintenance of the 

TME, and specifically the stromal cells, greatly contribute to the 

preservation of ERα signaling. As a matter of fact, stromal cells are 

known to produce the enzyme aromatase, which increases intra-

tumoral estrogen levels and, consequently, contribute to the 

activation of the receptor 
3,4

. Additionally, in an in vivo mouse 

model of intraductal engraftment of ERα-positive cells, it was 

shown that the TME plays an important role in maintaining ERα-

positive cells. While the mammary fat pad environment induces a 

basal phenotype on the implanted cells, an intraductal 

transplantation results in the maintenance of ERα-positive cells 
5

. 

The relevance of our model is evident when comparing with 

both BC gold-standard 2D monolayer cell culture and mice models. 

In the first, both cell viability and ERα expression/functionality are 

kept, however, cells lack not only heterogeneity but also the three-

dimensional (3D) architecture found in tumor tissue 
6

. Most mice 

models are based on genetically engineered animals that develop 

ERα-negative tumors. In the case of xenograft mice models, 

hormonal supplementation is usually required, leading to 

unphysiological estrogen levels in mouse serum 
5,7

. One exception 

can be found in Sflomos et al., which reported an intra-ductal 

mouse model that does not require estrogen supplementation for 

the maintenance of transplanted ERα-positive cells 
5

. 
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Our results showed that alginate encapsulated 

microstructures have higher and more homogenous cell viability 

than their non-encapsulated counterparts. This may suggest that 

the alginate capsule has both a protective role against shear stress 

and a structural role in maintaining the TME inside the capsule. 

Additionally, the cultured microstructures revealed dense and 

organized/fibrillar collagen which hints that the developed culture 

method also allowed the maintenance of the extracellular matrix 

(ECM) elements. Both cell viability and ECM deposition were 

sustained for at least one month in culture. Some previously 

published explant models employed bioactive collagen as 

biomaterial 
8,9

. One of these described culture under perfusion, 

attaining high cell viability  sustained up to two weeks 
8

. In this 

same report, tissue slices were treated with an anti-ERα drug and 

cell viability was assessed but, however, ERα signaling was not 

evaluated 
8

. In other scaffold-free models, cell viability was 

maintained for only up to four 
10

 or seven days 
11

. This reduced time 

hinders the use of these models to test of the long-term effects of 

ERα-targeted therapies. 

The developed BC ex vivo model represents the longest 

reported culture time of BC tissue with maintenance of the ERα 

signaling and can be used to study the mechanism of resistance 

development against several hormonal therapies (e.g. reduction of 

ERα levels or upregulation of HER2 
12

). We challenged this model 

with fulvestrant, but other hormonal therapies could also be tested, 

namely selective ER modulators such as the clinically used 

tamoxifen. In addition, it can be used to study ERα-related signal 

transduction pathways, such as MAPK/Ras and PI3K/AKT signaling 

pathways 
13

. Furthermore, it can be applied as a personalized 
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medicine tool since an individual patient’s tumor can be challenged 

with several therapies prior to treatment, allowing for the selection 

of the best course of therapy. These models can aid in the discovery 

of novel therapeutic targets. In the future, the developed model can 

be better characterized in terms of the other BC relevant cellular 

receptors, such as progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER2). Such a study may 

include the challenging of encapsulated microtissues with 

standard-of-care therapies that target these receptors, namely the 

pertuzumab therapeutic antibody. 

Finally, some already available platforms to culture 3D in 

vitro cell models can be applied to patient-derived microtissues. 

Microfluidic techniques are suitable to be used with these, as the 

techniques are designed to work with small amounts of biological 

material. The tumor-on-a-chip strategy could be implemented with 

tumor tissue, rather than cell-based reconstruction of the TME. The 

flow of culture medium would promote both nutrient and gas 

diffusion and drug challenges can be easily implemented through 

the inlet channel. Additionally, the application of microfluidic 

techniques would allow for a reduction of reagent consumption. 

Further improvement can be attained by creating the more complex 

body-on-a-chip, in which tissue from several organs can be 

combined in a single chip. This could be used in the study of 

metastasis by including one tumor tissue and several healthy 

tissues in the chip. Bioprinting can also be used in combination 

with patient-derived tissues, since that technique allows to print 

ECM components in specific regions. This combination could be 

used to study how specific ECM elements can influence several 

cellular processes. 
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The work developed in Chapter II shows that the 

combination of alginate encapsulation with a dynamic culture 

system is a good strategy for long term maintenance of ERα-

positive BC explants, ex vivo, and for the interrogation of the drug 

treatment effects on a culture setting more similar with the in vivo 

situation. 

 

1.2. Experimental and computational cancer model as 

tools to study antibody targeted therapy 

TME has been reported to play a role in anti-cancer therapy 

efficacy. For instance, ECM components such as collagen fibers and 

GAGs have been previously described as key influencers on the 

transport of therapeutic molecules 
14–16

. The study of the role of 

several TME components on drug distribution can be achieved with 

the use of both computational and experimental models. 

Several in silico models have been reported that describe 

and simulate tumors at different levels, ranging from molecule to 

tissue scale 
17

. Previous contributions to the topic discuss drug 

distribution to and within the TME 
18–20

. However, a computational 

model that can detail on the influence exerted by the amount or 

distribution of different individual TME components on antibody 

transport is still inexistent. As such, in Chapter IV, we developed 

a computational framework to tackle this problem. 

Our group has been developing in vitro models of TME that 

include several non-cancer cell types, such as fibroblasts and 

immune cells, and ECM accumulation 
21,22

. These models consist of 

alginate capsules containing the several cell types: tumor cells from 

distinct tumor types (such as breast, and lung cancer) and stroma. 

We focused on the biological characterization of these models, 
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including cell maturation and polarization; secretion and 

accumulation of cytokines and ECM, among others 
21,22

. However, 

the mechanical characterization of these models is also relevant, 

as mechanotransduction can heavily influence cancer features 
23–25

. 

Consequently, in Chapter III, we characterized our in vitro TME cell 

models. The mechanical properties of the alginate capsules were 

assessed in terms of their stiffness. Cell-filled capsules were softer 

than empty capsules, regardless of their cellular composition. This 

may be explained by the fact that the occupation of the capsule by 

cells interferes with alginate crosslinking, which reduces the 

number of binding sites between alginate and the counter-ion, 

finally leading to the formation of a softer hydrogel 
23,24

. Different 

stiffnesses were also observed between mono- and co-culture. 

Nonetheless, the stiffness of capsules containing mono and co-

cultures was within the range reported for BC tissue 
26

. 

We further evaluated capsule surface’s porosity by scanning 

electron microscopy. Results showed the commonly used alginate 

capsules are hydrogels with surface porosity, as it was already 

suggested in the literature 
27,28

. In turn, this porosity allows for both 

gas and nutrient exchange 
28

. We concluded that the average pore 

size in alginate capsules was c.a. 100 nm, 1 order of magnitude 

larger than antibodies (14.5 nm x 8.5 nm x 4.0 nm). As these are 

the largest therapeutic molecules 
29

, this would suggest that the 

capsule is not a physical barrier and that the in vitro model may be 

used to address antibody-based therapies. In fact, in Chapter IV, 

we developed a framework to study antibody transport consisting 

of an in silico model, benchmarked with experimental data 

acquired using Light Sheet Fluorescence Microscopy (LSFM) applied 

to the in vitro model characterized in Chapter III. To the best of 
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our knowledge: (1) this work represents the first usage of LSFM to 

live track antibody distribution within the TME; (2) no study exists 

detailing the influence of the amount or distribution of different 

individual TME components on antibody transport. As a matter of 

fact, routine assessment and tracking of antibody distribution 

within the spheroids or xeno-transplanted tumors is performed by 

either: a) incubation of antibodies or fragments followed by 

detection using avidin-biotin method and peroxidase 
30

, or b) by the 

use of fluorescence labelled antibodies and detection by 

immunohistochemistry using microscopy techniques 
31,32

. We 

started by comparing confocal microscopy and LSFM. The selection 

of LSFM technique agrees with the conclusions of Lazzari et al., in 

which they show that it is preferable to confocal microscopy on the 

assessment of drug distribution in tumor co-culture aggregates. As 

the latter only allows scanning up to a depth of 100 µm, 

information on deeper layers is lost, a problem that is circumvented 

by using LSFM 
33

. When analyzing the fluorescence profiles for 

several cell clusters within the alginate capsule, we observed a 

weak correlation between cell cluster distance to capsule periphery 

and the time needed to detect a fluorescence signal. This might be 

explained by either different amounts of antigen on the surface of 

different cells or that the capsule interior has some degree of 

heterogeneity caused by localized ECM accumulations. 

In Chapter IV, the transition from experimental to 

computational models derive from two key assumptions regarding 

antibody distribution. Firstly, we assumed that antibody transport 

is purely diffusive under Fick’s law; and secondly, that antigen 

saturation during antibody binding follows a generic exponential 

growth curve. To test this hypothesis, we digitized the central 
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section of a co-culture alginate capsule, obtained using LSFM. To 

this digitized section, we applied what can described as a “hybrid” 

model, similar to the majority of recently developed models 
34

 of 

antibody transport. We used a combination of an on-lattice model 

(i.e. cell distribution) with continuous model techniques (i.e. 

solving the diffusion equation with a finite difference approach). 

Using the developed model, we created predictive computational 

profiles that closely mirror the observed experimental ones. As we 

used the experimental data to benchmark our computational 

model, any discrepancies between the two models hint at the 

absence of important components of the system in the 

computational model. The lack of discrepancies allows us to 

conclude that, as we previously assumed, antibody diffusion is the 

main transport mechanism within the alginate capsules. The 

benchmarked code was further used to generate virtual capsules. 

For this, we applied a stochastic tuned approach, which allows the 

user to set specific features and assess antibody diffusion patterns 

under different initial conditions. With this approach, we tested the 

influence of collagen fibers on antibody distribution profiles for the 

two identical capsules. As collagen fibers act as perfect barriers, 

our results show that their presence severely hinders the ability of 

the antibody to reach the target cells, as was experimentally 

demonstrated by Davies et al. and Kihara et al. 
14,16

. 

In Chapter III we also evaluated ECM accumulation. This 

could clarify the differences observed between the stiffness of 

mono- and co-culture capsules (observed in Chapter III). 

Furthermore, it would help in the confirmation of the existence of 

a heterogeneous medium (an inherent physical barrier to antibody 

transport) present on the co-culture capsule (assessed in Chapter 
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IV). In fact, fibroblasts are the major producers of collagen in the 

TME 
35

. Collagen has been linked to an increased stiffness 
36

 and to 

biomolecule hindered diffusion 
14,16

. Collagen and GAGs deposition, 

which were assessed by immunohistochemistry were low in mono- 

and co-culture capsules. Conversely, we had observed higher levels 

using other detection techniques in other 
21,22

. It should be possible 

however to increase ECM accumulation by implementing 

modifications in the alginate itself. Alginate alone does not 

promote cell adhesion, due to lacking of binding sites 
28

 which 

might be limiting ECM production. However, when alginate is 

combined with other polymers (e.g. chitosan) or ECM components 

(e.g. fibronectin peptide arginine-glycine-aspartic acid), cell 

adhesion is enhanced 
28

. This helps promoting a tissue-like 

environment, where cells are adhered rather than in suspension. 

The in vitro model characterization presented on Chapter 

III furthered the knowledge on both surface porosity and 

mechanical features of alginate capsules, which are extensively 

employed in several applications 
21,22,37,38

. The model can be further 

improved by adding extra cell types (endothelial cells or immune 

cells) and assess how these variations can influence the mechanical 

properties of alginate capsules. Further testing would be required 

to verify the influence of cell types and/or ECM deposition on the 

surface pore size distribution. Additionally, as electrostatic charges 

can also play a role in drug-TME interactions, the alginate capsule’s 

electrical charge should be also evaluated.  

In Chapter IV, we showed that a combination of LSFM 

applied to 3D in vitro cell models and computational modelling is 

a stepping-stone to study therapeutic antibody distribution within 

a tumor. The developed in silico model can be used as a “testing 
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tool”, in which potential experimental conditions can be tested 

before being pursued experimentally. This model can also work as 

a predictive tool, hinting at which specific TME conditions produce 

a given drug diffusion output. In the future, the computational 

framework could be further developed (and benchmarked) to 

account for the complexity of the ex vivo model developed in 

Chapter II. This in turn would imply a further knowledge on the 

diffusion barriers that exist in real tissue, as opposed to a 

reconstructed one. In the ex vivo model, a plethora of cell types 

and diffusion barriers (e.g. significant fibrillar collagen deposition 

as shown in Chapter II) are inherently present. By contrast, in in 

vitro models only some cell types are available, and ECM is not in 

its native form. 

The in silico model could be enhanced by coupling it with a 

detailed measurement of the diffusivity coefficient by fluorescence 

recovery after photobleaching (FRAP) or fluorescence correlation 

spectroscopy (FCS). These can be performed in different regions of 

the capsule over time and would allow a better description of the 

experimental data, helping to decipher intra-capsule 

heterogeneity. In the developed computational model, we assumed 

a constant antibody diffusivity in the TME but this might not be the 

case. Having clear data on the spatio-temporal evolution of this 

coefficient would result, thus, on higher predictive power for the 

computation framework. We developed the in silico model in 2D 

conditions, due to computational power constraints. While 3D 

modelling would be more conclusive, using purely 2D models we 

were able to hint at a non-radial antibody diffusion. Labeling of 

cells with a fluorescence tracer prior to antibody challenging would 

allow to discern between cells with bound and unbound antibody. 
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This can help identify both possible regions where preferential 

diffusion of antibody occurs and regions where the antibody cannot 

reach. 

 

2. Final Remarks 

With this thesis we proposed three different types of TME 

models that can be used as mutually complementing tools for the 

assessment of targeted drug response. Overall, this work expanded 

the knowledge in the fields of experimental and computational 

cancer models and targeted cancer therapies. 

Both experimental models described in the thesis were 

maintained in a dynamic system in which culture progression can 

be evaluated using non-destructive sampling 
39

. Likewise, agitation 

helped sustaining high cell viability by ensuring a homogeneous 

distribution of both oxygen and nutrients as well as a reduced 

thermochemical gradients 
40

. The ex vivo model maintained all the 

TME components architecturally organized as in the human 

tumors. Due to its human origin, the amount of tissue that can be 

obtained is a major problem. This in turn can be a major 

disadvantage in drug screening assays. Conversely, the in vitro 

model is based on virtually unlimited cell sources, which makes it 

suitable for assays requiring large numbers of cells. In these 

models, interpreting results is facilitated due to the easier 

separation and consequent analysis of the several components of 

the model. However, since the tumor is “reconstructed” in the lab, 

native tissue architecture is difficult to replicate. Finally, in silico 

models are cost-efficient when compared with cell and tissue 

culture. They allow for a pre-evaluation of several different 
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conditions before pursuing them experimentally. Nonetheless, 

they cannot simultaneously mimic all the biological and chemical 

processes that naturally occur in cancer.  

To conclude, ex vivo, in vitro and in silico models should not 

be seen as separate tools but pieces of a larger puzzle. While strong 

as individual approaches to the study of cancer, they are at their 

finest when integrated in a larger framework. 
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