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Summary 

Obsessive-compulsive disorder (OCD) is a common, chronic and disabling 

neuropsychiatric condition for which current treatments are ineffective in a large 

proportion of cases. The gold-standard instrument to assess the severity of OCD 

symptoms is the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), which was 

recently revised (Y-BOCS-II). However, its construct validity has been reported has 

moderate and its criterion-related validity for the diagnosis of OCD has never been 

tested. In the first chapter of this dissertation, I tested, for the first time, criterion-related 

validity of the Y-BOCS-II and demonstrated that a cut-off of 13 (total score) attains the 

best balance between sensitivity and specificity for the diagnosis of OCD. However, I 

confirmed that its divergent validity is far from excellent. This last finding led me to 

search for other potential markers of OCD. 

Several abnormalities have been demonstrated in OCD patients in studies 

using neuropsychological and neuroimaging approaches, but we still lack a consistent 

marker for the disorder which is able to discriminate patients with OCD from healthy 

subjects or from patients with other mental disorders, which is sensitive to treatment-

induced changes, and which can be mapped to brain circuits or function. An approach 

which has been followed over the last decade is considering OCD as a disorder of 

action learning systems of the brain. Sequential decision tasks have recently emerged 

as an influential and sophisticated tool to investigate action learning in humans through 

the reinforcement learning (RL) framework. According to the RL framework, actions 

can be learned in two different ways: model-based control works by learning a model 

of the dynamics of the environment and later using that model to plan future behavioral 

trajectories, while model-free control works by storing the estimated value of recently 

taken actions and updating these estimates by trial-and-error. Sequential decision 

tasks have been used to assess associations between dysfunction in RL control 

systems and certain behavioral disorders, such as OCD, where an unbalance between 

model-based and model-free RL has been hypothesized. In fact, using the most 

commonly applied sequential decision task, the two-step task, evidence has been 

produced suggesting that OCD patients have a deficit in model-based learning. 

However, in this specific paradigm, subjects typically receive detailed information 

about task structure prior to performing the task. Thus, it remains unclear how different 

RL systems contribute when subjects learn exclusively from experience, and how 

explicit information about task structure modifies RL strategy. To address these 

questions, I created a sequential decision task requiring minimal prior instruction, the 

reduced two-step task. I assessed performance both prior to and after delivering 

explicit information on task structure, in healthy volunteers, patients with OCD and 

patients with other mood and anxiety disorders. Initially model-free control dominated, 

with model-based control emerging only in a minority of subjects after significant task 

experience, and not at all in patients with OCD, who had instead a tendency to 

increase their use of model-free control. Once explicit information about task structure 

was provided, a dramatic increase in the use of model-based RL was observed, 
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similarly across healthy volunteers and both patient groups, including OCD. The 

debriefing also significantly decreased the use of model-free RL in healthy volunteers 

and in patients with mood and anxiety disorders, but not in OCD patients. Additionally, 

after instructions, model-free action value updates were influenced more by state 

values and less by trial outcomes, in all groups, and subject choices became more 

perseverative in healthy subjects, consistent with changes in exploration strategy. 

These results help in clarifying the RL profile for patients with OCD, with unspecific 

findings of deficient model-based control, and more specific findings of enhanced 

model-free control, in both cases prior to information about task structure. 

 Finally, as the literature is not yet consensual on how model-free and model-

based RL systems interact in human brain circuits, I developed a functional magnetic 

resonance imaging (fMRI) protocol to assess uninstructed and instructed sequential 

action choice. Preliminary results in healthy subjects suggest that the fMRI version of 

the reduced two-step task allows to separate predominantly model-free control (before 

instructions) from predominantly model-based control (after instructions), in the same 

subject, task structure and environment. Across all sessions, choice events were 

associated with increases blood-oxygen-level-dependent (BOLD) activity in the left 

precentral gyrus and reward events were associated with increased BOLD activity in 

the ventral striatum. I found that explicit knowledge about task structure modifies 

blood-oxygen-level-dependent (BOLD) activity in the paracingulate cortex (medial 

prefrontal cortex) during the transition from the first- to the second-step of the task. 

Future directions include using multivariate pattern analysis techniques to explore how 

the brain represents state space in sequential decision tasks and applying the current 

fMRI protocol in clinical populations. 
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Resumo 

A Perturbação Obsessivo-Compulsiva (POC) é uma doença neuropsiquiátrica 

comum, grave e incapacitante, para a qual os tratamentos actuais são ineficazes num 

grande número de casos. O instrumento mais utilizado para avaliar a gravidade de 

sintomas obsessivo-compulsivos é a Yale-Brown Obsessive-Compulsive Scale (Y-

BOCS), que foi recentemente revista (Y-BOCS-II). No entanto, a sua validade de 

construto (tanto divergente como convergente) tem sido reportada como moderada e 

a sua validade de critério para diagnóstico de POC nunca foi testada. No primeiro 

capítulo desta tese testei, pela primeira vez, a validade de critério da Y-BOCS-II e 

demonstrei que um ponto de corte de 13 (pontuação total) atinge o melhor balanço 

entre sensibilidade e especificidade para o diagnóstico de POC. No entanto, confirmei 

que a sua validade divergente está longe de ser excelente. Este último achado levou-

me a procurar outros potenciais marcadores de POC. 

Têm sido demonstradas várias anomalias em doentes com POC utilizando 

tarefas neuropsicológicas ou técnicas de neuroimagem. Contudo, não existe ainda 

um marcador consistente para esta perturbação, que seja capaz de discriminar 

eficazmente pacientes que sofrem de POC, que seja sensível à mudança após 

intervenções terapêuticas e para o qual seja possível estabelecer uma 

correspondência com circuitos ou função cerebral. Uma abordagem que tem sido 

seguida nos últimos anos considera a POC como sendo caracterizada por uma 

disfunção nos sistemas cerebrais responsáveis pela aprendizagem de acções. As 

tarefas de decisão sequencial emergiram recentemente como um instrumento 

importante e sofisticado para estudar a aprendizagem de acções em humanos através 

da abordagem de reinforcement learning (RL). De acordo com a teoria subjacente ao 

RL, as acções podem ser aprendidas de duas formas distintas: um sistema model-

based funciona através da construção de um modelo interno das dinâmicas do 

ambiente e utiliza esse modelo para planear trajectórias comportamentais futuras, por 

oposição a um sistema model-free, que funciona armazenando o valor estimado das 

acções que foram implementadas recentemente e actualizando essas estimativas por 

tentativa e erro. As chamadas tarefas de decisão sequencial têm vindo a ser utilizadas 

para estabelecer associações entre disfunção de sistemas cerebrais de RL e algumas 

perturbações neuropsiquiátricas, como a POC, sendo que um desequilíbrio entre os 

sistemas model-based e model-free tem sido descrito. Através da aplicação de uma 

dessas tarefas de decisão sequencial, a two-step task, existe evidência que sugere 

que os doentes com POC têm um défice no sistema model-based. No entanto, neste 

paradigma em particular, antes de desempenhar esta tarefa os indivíduos recebem 

informação detalhada sobre a estrutura da mesma. Assim, não é claro como os dois 

principais sistemas de RL interagem quando os indivíduos aprendem exclusivamente 

através de interacção com o ambiente e como a informação explícita afecta as 

estratégias de RL. No segundo capítulo desta tese, desenvolvi uma nova tarefa de 

decisões sequenciais que permite não só quantificar o uso de estratégias model-

based RL e model-free RL, mas também diferenciar entre o impacto do conhecimento 
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explícito da estrutura da tarefa e o impacto da experiência na mesma. Os resultados 

da aplicação da tarefa em indivíduos saudáveis demonstram que inicialmente a 

escolha de acções é controlada por aprendizagem model-free, com a aprendizagem 

model-based emergindo apenas numa minoria de indivíduos depois de experiência 

significativa com a tarefa, não emergindo de todo em indivíduos com POC, que por 

sua vez mostraram tendência para aumentar o uso de model-free RL com a 

experiência. Quando foi dada informação explícita sobre a estrutura da tarefa, 

observou-se um aumento dramático do uso de aprendizagem model-based, tanto nos 

voluntários saudáveis como em ambos os grupos clínicos. A informação explícita 

diminuiu o uso do sistema de aprendizagem model-free nos voluntários saudáveis e 

nos pacientes com perturbação do humor e ansiedade, mas essa diminuição não foi 

estatisticamente significativa no grupo de doentes com POC. Para além disso, depois 

das instruções, verificou-se em todos os grupos que a actualização do valor das 

acções  aprendidas através do sistema model-free passou a ser mais influenciada 

pelo valor dos estados atingidos e menos influenciada pela consequência dos 

ensaios. Outro efeito da informação explícita sobre a estrutura da tarefa nos 

indivíduos saudáveis foi tornar as escolhas mais perseverantes, o que é consistente 

com uma modificação da estratégia de exploração. Estes resultados ajudam a 

clarificar o perfil de utilização de estratégias de RL dos pacientes com POC, que 

apresentam défice inespecíficos de aprendizagem model-based e achados mais 

específicos de maior uso de aprendizagem model-free, em ambos os casos antes de 

obterem informação sobrea estrutura da tarefa. 

Por fim, como a literatura ainda não é consensual sobre a interação entre um 

eventual sistema de model-based RL e um sistema de model-free RL nos circuitos 

cerebrais em humanos, devenvolvi um protocolo de ressonância magnética funcional 

para avaliar a escolha de ação sequencial com e sem instruções. Os resultados 

preliminares, em indivíduos saudáveis, sugerem que a reduced two-step task permite 

separar comportamento que utiliza aprendizagem predominantemente model-free 

(antes das instruções) de comportamento que utiliza aprendizagem 

predominantemente model-based (após as instruções), no mesmo indivíduo, 

estrutura da tarefa e ambiente. A análise dos dados de imagem funcional sugere que 

o conhecimento explícito sobre a estrutura da tarefa modifica a atividade neuronal no 

córtex paracingulado (cortex prefrontal medial) durante a transição do primeiro para 

o segundo passo da tarefa. Objectivos futuros incluem o uso de técnicas de análise 

multivariada para explorar a representação cerebral dos estados da tarefa e a 

aplicação deste protocolo de ressonância magnética funcional em populações 

clínicas. 
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Y-BOCS-II  Yale-Brown Obsessive-Compulsive Scale Second Edition 

 

 

 

 

 



1.1. Obsessive-compulsive disorder 

21 
 

Chapter 1. Introduction 

1.1. Obsessive-compulsive disorder 

 

Obsessive-compulsive disorder (OCD) is a chronic and incapacitating 

neuropsychiatric disorder characterized by the presence of obsessions or 

compulsions, most frequently both1,2. Obsessions are recurrent and persistent 

thoughts, urges or images experienced as intrusive, unwanted or inappropriate, that 

cause marked anxiety or distress. The individual with obsessions makes (often 

unsuccessful) attempts to ignore or suppress those thoughts, urges or images. 

Compulsions are repetitive behaviors or mental acts that the subject feels driven to 

perform repeatedly, frequently in response to an obsession or according to rules that 

must be applied rigidly. These behaviors or mental acts are aimed at reducing anxiety 

or distress or at preventing some unwanted event, but are clearly excessive or 

unrealistically related with what they are supposed to reduce or prevent1,2.  

The lifetime prevalence of OCD is about 3% worldwide, having been estimated 

at 2.3% in the US and at 5.3% in Portugal3–5. It is the fourth most common psychiatric 

diagnosis – after phobias, substance-related disorders and depression6. The 

incidence of the disorder has a bimodal distribution, with a first peak in childhood 

(average age of onset of 10 years old)7 and another peak in adulthood (average age 

of onset of 20 years old), with earlier onset for males8. Approximately one third of adult 

OCD patients report that their symptoms started during childhood and, among 

children, two thirds of cases are boys9,10. 

OCD is not only common – it also produces a high level of impairment. It is 

ranked by the World Health Organization as the tenth medical condition overall in 

years lived with disability11.  OCD patients typically spend a large amount of time 

(usually more than an hour per day) performing compulsions or having obsessions 2. 

Almost all patients with OCD report that their obsessions cause them significant 

distress and anxiety, as opposed to similar intrusive thoughts in persons who do not 

have OCD12. The obsessions and compulsions may make even the simplest of daily 

activities stressful and time consuming. In terms of quality of life, persons who suffer 

from OCD report a persistent decrease compared to controls12. Moreover, when 

compared with persons with anxiety or depressive disorders, an OCD patient is less 

likely to be married, more likely to be unemployed and more likely to report impaired 

social and occupational functioning13. 

The recommended treatment for OCD is based on a combination of 

pharmacotherapy and cognitive behavior therapy (CBT). OCD pharmacotherapy 

typically includes serotonin reuptake inhibitors (SRI’s, mainly clomipramine and 

selective SRI’s, SSRIs, such as fluvoxamine or paroxetine) according to a dose-

response relationship (higher doses typically needed for better clinical response), or 

SSRI’s combined with antipsychotic agents,14–17. The most widely studied form of CBT 

is a variant called exposure and response prevention (ERP), which consists of a 
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graded, extended exposure to stimuli or situations that typically cause obsessions to 

occur, integrated with instructions that help the subject to abstain from performing the 

compulsions. Several studies demonstrate that ERP is effective in reducing OCD 

symptoms18–21. However, controlled trials have shown that even with a combination of 

ERP and pharmacotherapy of adequate duration and dosage 30 to 50% of patients 

remain treatment resistant22. In a recent naturalistic 2-year prospective study of the 

course of OCD, only 6% of treatment-seeking adult patients achieved complete 

remission23. 

 

1.1.1. Assessment 

 

While obsessions and compulsions form the core phenomenology of OCD, 

there is considerable heterogeneity in symptom presentation, which can vary widely 

across individuals. The gold-standard instruments used to assess symptom severity 

in OCD patients are the Yale-Brown Obsessive-Compulsive Scales (Y-BOCS). The Y-

BOCS has been used as the primary outcome in virtually all contemporary clinical 

trials in OCD24,25. The first edition of the Y-BOCS was published in 1989 by Goodman 

and colleagues26 and is a clinician-rated instrument divided in two sections: a 

dichotomous symptom checklist which assesses the presence of several types of 

obsessions or compulsions and a severity scale which quantifies the impact of the 

symptoms identified in the checklist. The severity scale is rated based on a semi-

structured interview that assesses the severity, frequency, duration and functional 

impact of obsessions and compulsions separately. Factor analysis using the symptom 

checklist of the Y-BOCS, has been used to try to identify OCD subtypes. While initial 

factor studies identified a three-factor model27, later studies proposed a four-28,29 or 

five-factor structure30. The largest meta-analytic study that investigated symptom 

dimensions in OCD found support for a four factor solution: the first factor consisted 

of symmetry obsessions with repeating, ordering and counting compulsions; the 

second factor included aggressive, sexual, religious, somatic and harm obsessions 

accompanied by checking compulsions; the third factor consisted of contamination 

obsessions with cleaning compulsions and the fourth factor included hoarding 

obsessions and compulsions31. Factor analysis of the severity scale of the Y-BOCS 

has typically shown a two-factor structure consistent with distinct severity dimensions 

for obsessions and compulsions32–35. However, other studies found a different two- 

factor structure, comprising an Interference factor (i.e., distress related to obsessions 

or not performing compulsions, time occupied by obsessive thoughts or compulsions, 

functional interference due to obsessions or compulsions) and a Resistance/Control 

factor (efforts to resist obsessions or compulsions, degree of control over obsessions 

or compulsions) 36,37.  

Despite showing consistent reliability, the first edition of the Y-BOCS raised  

concerns related to its factor structure, its divergent validity and its poor sensitivity to 

treatment-changes in severe cases, leading to a second edition of the Y-BOCS (Y-
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BOCS-II) being published in 201038. The Y-BOCS-II has shown excellent reliability, 

good convergent validity and better sensitivity to change in severe cases 38. However, 

its discriminant validity is limited, criterion-related validity has never been tested, and 

the factor structure of its symptom checklist remains a matter of debate38–41. On the 

second chapter of the present thesis, I will explore the validity of the Y-BOCS-II. 

 

1.1.2. Psychological theories 
 

Although OCD is a frequent and clinically well-characterized disorder, the 

pathophysiology underlying OCD remains poorly understood22. Our current knowledge 

on the etiology of OCD comes from various sources and scientific disciplines. The first 

tentative explanations were psychological formulations. Psychoanalytic theories of 

OCD lack empirical evidence but there is large evidence-based literature supporting 

cognitive and behavioral models of OCD. In 1950, Dollard and Miller42 adapted the 

two-factor model originally developed by Mowrer for fear conditioning43.  According to 

this model, an individual with OCD first learns anxiety or distress form associations 

between these feelings and an original neutral stimulus42. Then, through a process of 

conditioning, the originally neutral stimulus becomes a conditioned anxiety stimulus to 

which the patient gradually develops avoidance and escape responses. These 

responses – through their effectiveness in reducing anxiety – are strengthened and 

maintained over time. This cycle provided an interesting explanation for the 

compulsive aspect of OCD but failed to address how obsessions arise. Later cognitive 

theories proposed that obsessions were formed from a base of cognitive bias such as 

inflated concerns about normal events and a remarkably high expectation of negative 

consequences from these otherwise normal events44. According to this model, 

compulsions are considered rational avoidance behaviors that arise as a response to 

fear, anxiety and irrational beliefs. These cognitivist accounts paved the way for Albert 

Bandura’s social cognitive learning theory and modern cognitive-behavioral 

approaches to OCD45. According to this model, intrusive thoughts can become 

obsessions in subjects with OCD because they are appraised as personally important, 

highly unacceptable or immoral, or posing a threat. These cognitive appraisals will 

lead to high amounts of distress, which the patient tries to diminish via compulsions 

that result in temporary anxiety reduction, thus reinforcing the maladaptive beliefs that 

led to the obsession and perpetuating a circle. The cognitive-behavioral model for 

OCD has received the most empirical support of any psychological theory, both in 

terms of experimental evidence and through the use of the psychotherapy practice 

which shares the same name46. 

Although psychological theories provide comprehensive models for OCD 

symptoms per se, they do not explain why and how they arise in the brain. OCD is a 

clinically heterogenous phenotype and, as a consequence, biological markers are 

needed in order to establish more homogenous samples47. With that in mind, we turn 

to what genetics, neuroimaging and neuropsychological studies have demonstrated. 
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1.1.3. Genetics 
 

Family studies have suggested that there are hereditary factors underlying 

OCD48. First-degree relatives of patients with OCD are 3 to 12 times more likely to 

develop OCD49. The risk of OCD among relatives of OCD probands increases 

proportionally to the degree of genetic relatedness50. Twins studies in families with 

OCD have a long history51 – the first one was performed in 1929 – and overall have 

estimated the heritability of obsessive-compulsive symptoms within a range of 45% to 

65%52. Monozygotic twins have the highest concordance rates – between 80 and 87% 

- followed by dizygotic twins, with concordance rates between 47 and 50%52. However, 

the sample sizes from twin studies are usually too small to allow for accurate 

heritability estimates 53. 

Numerous groups have tried to localize the contribution of specific genes to the 

development of OCD. The most studied genes are associated with the glutamate 

system (glutamate transporter SLC1A1 or GRIN2B, encoding an NMDA-type 

glutamate receptor subunit), the serotonergic system (serotonin transporter SERT, 

serotonin receptors 5HT1B and 5HT2A) and the dopaminergic system (dopamine 

transporter DAT, dopamine receptors DR1, DR2, DR3, DR4)54,55. Association between 

OCD and immunity-related genes has also been found: a specific allele of the myelin-

oligodendrocyte glycoprotein precursor (MOG) gene seems to increase OCD risk56, 

while a specific TNF gene polymorphism seems to be protective57. The SLC1A1 gene 

is the only candidate gene that has been found in multiple independent samples, 

although the specific-associated polymorphism has varied58.  

Two OCD genome-wide association studies (GWAS) have been published by 

independent OCD consortia, the International Obsessive-Compulsive Disorder 

Foundation Genetics Collaborative (IOCDF-GC) and the OCD Collaborative Genetics 

Association Study (OCGAS)58,59. In the first of these studies, no single-nucleotide 

polymorphisms (SNP’s) were found to be associated with OCD at a genome-wide 

significance level58. In the second GWAS, the smallest P-value was detected for a 

SNP on chromosome 9p23, in close proximity to the protein tyrosine phosphate 

receptor D (PTPRD) gene, a member of the receptor protein tyrosine phosphatase 

family that regulates transmembrane signaling molecules and that promotes 

glutamate receptor differentiation pre-synaptically59. In 2018, a meta-analysis of the 

two consortia (including a total of 2688 OCD patients and 7037 genomically-matched 

controls) has found an association with several glutamatergic system genes (GRID2 

and DLGAP1) to add to other consistently implicated genes affecting this 

neurotransmitter system (SLCL1A1 and GRIN2B49, as mentioned previously)53. As in 

other psychiatric disorders, genetic studies have contributed to our understanding of 

the neurotransmitters which may be involved, but no specific genes have been found 

to cause the disorder and they have not led to new treatment approaches. 
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1.1.4. Neuroimaging and neuromodulation 
 

Research using functional neuroimaging in OCD has shown a high degree of 

concordance among different studies that is probably the highest among all psychiatric 

disorders60. Regarding structural imaging, studies using a region-of-interest approach 

show a decreased volume of the orbitofrontal cortex (OFC) and of the anterior 

cingulate cortex (ACC)61. Whole brain-based analysis using voxel-level analysis 

methods (voxel-based morphometry, VBM) have confirmed the reduced OFC and 

ACC volume and revealed increased striatal volume, as well as decreased volume of 

the parietal cortex62–64. Very recently, the ENIGMA project, a consortium meta- and 

mega-analysis, published its first results. In this study, which compiled the largest 

number of OCD brain scans ever analyzed, adult OCD patients show a larger volume 

of the pallidum65. OCD patients also show smaller hippocampal volume, but that 

seemed to be driven by comorbid depression65. The cortical branch of the ENIGMA 

study, which used surface-based analysis instead of voxel-based morphometry, has 

found lower surface area in the transverse temporal cortex and a thinner inferior 

parietal cortex66. Functionally, the most consistent abnormality in OCD, both in 

positron-emission tomography (PET) and functional magnetic resonance imaging 

(fMRI)  is increased activity in the medial and lateral orbitofrontal cortex, both in 

children and in adults, at rest or during neutral states61,67–70. There is also strong 

evidence pointing towards dysfunction of the caudate nucleus, particularly bilateral 

hyperactivity of the caudate head, again both in children and in adults (also at rest)61,67–

69,71. Some studies also find hyperactivity in the ACC, both in rest and in symptom 

provocation70,72,73. The findings from functional neuroimaging studies have led to the 

proposal to the cortico-striato-thalamo-cortical (CSTC) dysfunction model of OCD at 

the turn of the century (Fig. 1)74,75.  

This model is based on what is known about the basal ganglia. The basal 

ganglia consist of four main strutctures: striatum, globus pallidus, substantia nigra and 

subthalamic nucleus76. The striatum is separated by the internal capsule into the 

caudate (dorsomedial striatum in rodents) and the putamen (dorsolateral striatum in 

rodents). The globus pallidus has two functionally different segments (internal and 

external), as well as the substantia nigra (pars reticulata and pars compacta). The 

organizing principle of the cortico-basal ganglia circuits is that they are a set of parallel, 

partly segregated, multi-synaptic circuits that begin with a cortico-striatal glutamatergic 

projection from the cerebral cortex to the dorsal striatum (Fig. 1, top panel)74,75,77. The 

striatum then makes a GABAergic inhibitory projection to the internal segment of the 

globus pallidus and to the substantia nigra pars reticulata. The internal segment of the 

globus pallidus is the major output structure of the basal ganglia, projecting mainly to 

the thalamus, from where recurrent projections head to the original cortical area where 

each specific loop originated74,75,77. This is called the direct pathway, in opposition to 

an indirect pathway, which originates in the dorsal striatum but has a GABAergic 

inhibitory projection to the external segment of the globus pallidus. In the indirect 

pathway, the external segment of the globus pallidus sends another inhibitory 
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projection to the subthalamic nucleus, which then projects to the globus pallidus / 

substantia nigra with an excitatory glutamatergic synapse.   In healthy persons, the 

direct pathway facilitates thalamic dishinibition and, consequently, stimulation of the 

original cortical area, in a feed-forward circuit that facilitates movement or whichever 

neural process instated in the cortical area from which it receives projections. The 

indirect pathway has an inhibitory function by modulating the activity of the direct 

pathway. Different areas of the cerebral cortex project in a highly topographic way onto 

the striatum and the topographic termination pattern establishes functional domains 

that are replicated throughout the basal ganglia–thalamocortical circuits through highly 

topographic projections at each synaptic relay76,77. The different loops that pass 

through the basal ganglia are named after the presumed functions of the regions of 

the frontal cortex from which they originate: the skeletomotor loop (originating in the 

primary motor cortex, premotor cortex and supplementary motor area), the oculomotor 

loop (originating in the frontal eye fields and in the supplementary eye fields), the 

prefrontal/executive/associative loop (originating in the dorsolateral prefrontal cortex 

and the lateral OFC) and the limbic/emotion loop (originating in the medial OFC and 

the anterior cingulate cortex). According to the CSTC dysfunction model of OCD, there 

is an excessive activity of the direct pathway and a diminished activity of the indirect 

pathway in loops starting in the OFC and in the ACC74,75. 

 

 

Figure 1. Cortico-striato-thalamo-cortical (CSTC) dysfunction model of OCD. A) In the 

normally functioning CSTC loops which start in the OFC and the ACC (limbic/emotion loops), 

glutamatergic inputs from these areas excite the striatum. Striatal activation generates 
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GABAergic inhibitory signals to the internal part of the globus pallidus (GPi) and to the 

substantia nigra pars reticulata (SNr) through the direct pathway. This will decrease the 

inhibitory GABA signals from the GPi and the SNr to the thalamus and will thus result in 

excitatory glutamatergic signals from the thalamus to the OFC and ACC. In the indirect 

pathway, the striatum inhibits the external part of the globus pallidus (GPe), which will 

decrease its inhibition of the nearby subthalamic nucleus (STN). The STN will then be released 

to excite the GPi and the SNr, causing thalamic output inhibition. B) According to the CSTC 

dysfunction model, OCD patients have an unbalance between the direct and indirect pathway 

in the CSTC loops which start in the OFC and the ACC, with excessive activity in the direct 

pathway and decreased activity in the indirect pathway. Adapted from Pauls et al., 201455, 

Saxena & Rauch, 200074 and Milad & Rauch, 201275. 

 

Numerous studies have shown a reduction in metabolic activity in the OFC, 

caudate and ventrolateral prefrontal cortex post-treatment relative to pre-treatment in 

clinical trials assessing the effects of pharmacotherapy78–81 or CBT79,82,83  in OCD 

patients, which provides support for the CSTC model. Neuromodulatory treatment 

approaches which target the CSTC circuits have been tried in the last decades with 

promising results. Deep brain stimulation (DBS), a neurosurgical procedure in which 

electrodes are implanted deeply in the brain to convey direct electric current to specific 

brain regions has shown some efficacy in treatment-refractory OCD84,85. The most 

commonly targeted areas are the ventral striatum / nucleus accumbens86,87, the 

anterior limb of the internal capsule88,89 and the subthalamic nucleus90,91. Transcranial 

magnetic stimulation (TMS) has also shown promising results, with the advantage of 

being non-invasive. A recent meta-analysis has concluded that the target areas with 

strongest evidence of a significant effect are the dorsolateral prefrontal cortex 

(DLPFC) and the pre-supplementary motor area92. A less restrict meta-analysis added 

the OFC to this areas93. The United States (US) Food and Drug Administration (FDA) 

approved DBS as an humanitarian device exemption for treatment-refractory OCD in 

2008 and cleared a variant of TMS (deep TMS)94,95 that stimulates a broad prefrontal 

area in 2018. 

 

1.1.5. Neuropsychology 
 

Neuropsychology has contributed amply to our understanding of obsessive-

compulsive symptoms and has shown that OCD patients display an impaired 

performance in several tasks and paradigms. The deficits most consistently 

associated with OCD are cognitive inflexibility – (both in reversal learning and in 

attentional set-shifting tasks) and motor impulsivity (reflected in motor prepotent motor 

disinhibition in stop-signal reaction time task [SSRT])96. However, reversal learning 

has appeared to be intact in one study97 and motor inhibition in another98. Also, deficits 

in other dimensions of executive function have also been reported. Deficits in the 

Tower of London task, which measures planning capacity, have been reported and 
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are well replicated99,100. Gambling tasks such as the Iowa Gambling Task show 

inconsistent results: a number of studies have found deficits in the Iowa Gambling 

Task99 , yet another study has found no deficit in the same task101. Curiously, in a 

variant called the Cambridge Gambling Task, which does not require associative 

feedback learning, OCD patients showed no deficit102. 

Several researchers have tried to define neuropsychological endophenotypes 

associated with OCD. An endophenotype is a measurable component unseen by the 

unaided eye that lies halfway in the causal pathway between the clinical disorder and 

the underlying genotype103,104. It is a state-independent marker that does not include 

any of the symptoms that are necessary for the diagnosis of a particular disorder104. A 

valid endophenotype of a disorder should be present in unaffected family members of 

index cases. Endophenotypes represent simpler clues to genetic underpinnings than 

the disease syndrome itself, promoting the view that psychiatric diagnoses can be 

decomposed or deconstructed, which can result in more successful genetic analysis 

and a better clinical classification104. Compared with control subjects, OCD patients 

and their unaffected family members have worse performance on attentional set-

shifting105,106, motor inhibition105,106, error-monitoring107,108, planning (as assessed by 

the Tower of London task)99,109 and delayed (verbal and non-verbal) memory 

tests106,110, qualifying these neuropsychological measures as potential 

endophenotypes for OCD. Unfortunately, for many of these measures, negative 

studies also exist, suggesting that their sensitivity (and specificity) may be low68,97,98. 

A number of studies have tried to combine neuropsychological with 

neuroimaging approaches. Behavioral impairment on motor inhibition tasks such as 

the Stop-signal reaction time task (SSRT), occurring predominantly in OCD patients 

and unaffected relatives, has been significantly associated with reduced grey matter 

volume in the OFC and right inferior frontal regions, and increased grey matter volume 

in cingulate, parietal and striatal regions111. Combining functional MRI and 

neuropsychology has also proved to be a valuable strategy. For instance, in a seminal 

work by Chamberlain and colleagues these authors used a cognitive flexibility 

paradigm adapted for fMRI and were able to show that patients with OCD and their 

unaffected first-degree relatives exhibit under-activation of the bilateral lateral OFC 

during reversal of responses112. 

The main limitation of neuropsychological approaches to OCD is the lack of 

specificity of most findings, even those that have resulted from combining 

neuropsychological tasks and fMRI. Many of the most replicated impairments have 

also been described in other psychiatric disorders, from attention-deficit hyperactivity 

disorder to schizophrenia. As a consequence, while these approaches have 

unquestionably contributed to a much more profound understanding of the 

neurophysiology of OCD, we still lack a reliable biomarker for the disorder that proves 

able to discriminate OCD patients from patients with other neuropsychiatric disorders, 

which is sensitive enough to therapeutic interventions to be used as a reliable marker 

of clinical improvement , and which can be mapped onto brain circuits or function. 
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In the last decade, several authors focused on the fact that the CSTC loops that 

seem to be altered in OCD are well known by their role in supporting how the brain 

learns from action. One of the most distinctive features of OCD is the powerful urge 

felt by patients to perform specific acts, despite having full insight into how senseless 

and excessive these behaviors are, and having no real desire for the outcome of these 

actions. We will now review what is known about action learning in the brain and how 

this seems to be dysfunctional in OCD. 

 

1.2. Action learning in OCD 

1.2.1. Instrumental conditioning 

 

The first studies about action learning in OCD patients113 used tasks which were 

inspired by the animal literature of instrumental conditioning. The roots of instrumental 

conditioning date to the experiments performed by Edward Thorndike in the transition 

from the 19th to the 20th century114,115. These experiments, mainly performed in cats 

(but also in dogs, chicken and monkeys), consisted of putting the animal in what were 

called “puzzle boxes” with a closed door which would open only after the animal 

performed a specific sequence of actions (e.g. depressing a platform, then pulling a 

string, and then pushing a bar up and down). Thorndike observed that the time that 

each animal took to open the door diminished with successive experiments and 

formulated what came to be known as the Law of effect. This principle states that 

actions which are followed by pleasurable consequence become most likely to be 

repeated and actions which are followed by negative consequences become less likely 

to be repeated114,115. This law described what is generally known as trial-and-error 

learning and represents an enduring principle of learning. It had a major influence on 

Clark Hull116 and the behaviorists, for whom instrumental learning resulted from 

stimulus-response bonds which could be strengthened or weakened by subsequent 

reinforcement (here meaning “anything that modifies the probability of an action”). B. 

F. Skinner, one of the most prominent behaviorists, did not agree with the associative 

linkages proposed by Hull, but focused on the selection of spontaneously emitted 

actions117–119. He introduced the term operant conditioning to emphasize the role of 

actions on the environment and had a very important contribution by developing what 

came to be known as the Skinner Box, in which the animals could press a lever to 

obtain rewards which were delivered according to specific rules called reinforcement 

schedules117–119.  

Stimulus-response theories, which were the core of experimental psychology 

along the first half of the 20th, argued that behavior reflected the development of an 

associative structure according to which a representation of the stimulus context 

became, with increasing experience, more strongly connected to a motor system 

which would generate behavioral responses. Some authors, however, were fiercely 

opposed to these ideas. The most well-known was Edward Tolman, who wrote that S-
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R learning resulted in an animal coming to respond more and more ‘‘helplessly’’ to a 

succession of stimuli that ‘‘call out the walkings, runnings, turnings, retracing, 

smellings, rearings and the like which appear’’120. Tolman argued strongly that S-R 

was very poor to explain animal behavior and proposed that animals learn a maze 

task by forming a cognitive map of the environment, which then provides the 

necessary guidance mechanism for the observed learning. Tolman’s view was based 

on experiments performed by Blodgett121, examining the nature of learning that occurs 

in the absence of the driving force of reinforcement. Blodgett found that an animal 

exploring a maze environment without experiencing a reinforcing reward contingency, 

can still be shown to be engaging in what is known as latent learning121. Latent learning 

is ‘‘unmasked’’ when the animal is subsequently tasked to navigate toward a rewarded 

goal state in this same environment. Animals who are previously exposed to the maze 

show facilitation in learning relative to naive animals, suggesting that the preceding 

nonrewarded exposure epochs foster the development of a cognitive map that aids 

future attainment of the rewarded goal location122. 

The debate between “pure behaviorists” and “cognitivists” only became partially 

softened in the 80’s, with the experiments of Dickinson, Adams and Rescorla123–127. 

These authors cleverly manipulated the relationship between actions and its 

consequences in order to distinguish stimulus-response (which they named habitual) 

from action-outcome (which they named goal-directed) control of behavior (Fig. 2).  A 

specific behavior is considered goal-directed if it reflects knowledge of an association 

between an action and its outcome and takes into account the motivational value of 

the action128,129. In previously conditioned animals, this may be tested by two 

procedures: outcome devaluation and contingency degradation (Fig. 2)123,125. 

Outcome devaluation consists in manipulating the value of the reward, e. g. by pairing 

the reward consumption with lithium chloride-induced illness or by allowing free access 

to the reward outside the conditioning context. Contingency degradation consists in 

manipulating the contingency between the performance of an action and the delivery 

of the reward, e. g. after a period of training in which there is a specific contingency 

between pressing a lever and obtaining a reward (for example every 10 presses, on 

average), suddenly rewards start being delivered only when animals refrain from 

pressing. Goal-directed behavior is sensitive to both of these manipulations. On the 

other hand, an action can be rendered habitual through repetition123,124,130. In habitual 

behavior, a specific stimulus comes to elicit automatic responses which are 

independent of the consequences of the action (autonomous from the outcome) (Fig. 

3). This makes habitual behavior insensitive to manipulations of the action-outcome 

contingency or of the value of the outcome125. Habitual behavior is sometimes said to 

be controlled by its antecedent stimuli while goal-directed behavior is controlled by its 

consequences125,131. Goal-directed control has the advantage that it can quickly 

change the animal’s behavior when the environment changes its way of responding to 

the animal’s actions132. Habitual behavior has the advantage of responding fast when 

the animal is accustomed to the environment, but it is unable to quickly adjust to 

changes in the environment132. 
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Figure 2. Distinguishing goal-directed from habitual behavior using outcome 

devaluation in rodents.  

A) Left: hungry rats are trained to press a lever to obtain food. Middle: Feeding the animal to 

satiety devalues the outcome of pressing the lever (which is food). Right: Rats are confronted 

again with the lever to test if they still press for the devalued outcome and compared with 

control rats for which the outcome has not been devalued. This last test is performed without 

food delivery (in extinction) to make sure that behavior is based on previously learned 

associations. B) With low amounts of training (Undertrained, blue), a devaluation effect can 

be seen: animals reduce their responding for a devalued outcome (e. g., a food that had 

previously been fed to satiety), but continue to respond if the outcome is still valuable (i.e., 

has not been fed to satiety; Nondevalued). However, after extended instrumental training 

(Overtrained, red), they are insensitive to outcome value and continue to respond for a 

devalued outcome, reflecting a transition from goal-directed to habitual behavior. Adapted 

from Adams, 1982; Daw & O’Doherty, 2013 and Lingawi et al, 2015124,133,134. 

 

We know from our own personal experience that an action which starts out as 

goal-directed can turn into a habit with enough repetition (Fig. 4). Instrumental 

conditioning paradigms have shown that this also happens in rodents124. In a now 

classical experiment, Adams trained two groups of rats to press a lever for food 

rewards – crucially, one group was trained until they made 100 rewarded presses and 

the other group was trained until they made 500 rewarded presses (Fig. 2). After such 

training, an outcome devaluation procedure was carried out prior to a test (carried in 

extinction, to ensure behavior was based on previously learned associations) to 

analyze if the rate of pressing was reduced. Devaluation strongly reduced lever-



Chapter 1. Introduction 

32 
 

pressing in the low-training group but the rate of lever-pressing in the extensive-

training group was maintained, suggesting that the rats with minimal training remained 

goal-directed while the overtrained rats had developed a habit. 

 

Figure 3. Distinct action control systems identified in instrumental conditioning 

experiments.  

Instrumental conditioning paradigms, typically performed in rodents, have suggested that the 

brain can select actions using two different systems – goal-directed and habitual. In goal-

directed behavior, animals establish an association between an action and its outcome. In 

habitual behavior, actions are stamped in by reinforcement of associations between stimulus 

and action (or response). 

 

 However, it has also become apparent that it is not only the extent, but also the 

nature of training that underpins habit learning. In fact, Adams and Dickinson also 

examined the pattern according to which the reinforcer was provided during 

training123–125,130. They discovered that schedules in which rewards were delivered on 

the first action after a specific interval — either a fixed interval or a variable interval 

schedule – were more prone to lead to habitual behavior than schedules where the 

absolute number of responses is the deciding factor for obtaining reward (fixed or 

variable ratio schedules). This is a commonly used experimental manipulation for 

generating goal-directed or habitual behavior135, although it is not totally clear which 

of the factors that distinguish the schedules is responsible for this effect129. 
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Figure 4. Goal-directed and habitual actions. Goal-directed actions are performed in order 

to obtain outcomes. So, in goal-directed behavior, animals learn that their actions have 

valuable consequences and have knowledge of instrumental contingencies of specific 

outcomes and their current motivational values. If the outcome (the light coming on) becomes 

less valuable (e. g., the room being well illuminated), an action controlled by a goal-directed 

system will be not be performed. Also, if the contingency between the action and the outcome 

becomes degraded (e. g., a movement sensor is installed and light comes on without need to 

press switches) the action will not be performed. In habitual behavior, the fundamental idea is 

that, through repetition and learning, environmental stimuli come to automatically elicit 

responses that were initially made spontaneously by the animal. So, habits are elicited by 

antecedent stimuli – in a stimulus-response fashion – and not performed to obtain future 

outcomes. Therefore, when someone develops a habit of pressing a switch, the action will be 

performed when looking at the switch, even if the outcome has lost its value or the relation 

between action and outcome has been modified. Adapted from Robbins & Costa, 2017129. 

 

It should be noted that instrumental (or operant) conditioning differs from 

pavlovian (or classical) conditioning136 because in the former, delivery of a reinforcing 

stimulus is contingent on what the animal does, while in the latter, the reinforcing 

stimulus (i.e., the unconditioned stimulus) is delivered independently of the animal’s 

behavior128. Thus, in pavlovian conditioning, the association that governs behavior is 

between a stimulus predicting an outcome (stimulus-outcome), which is different from 

the stimulus-response association that governs habitual behavior and the action-

outcome association that governs goal-directed behavior128. Importantly, while 

outcome devaluation is used for instrumental actions to be established as goal-

directed or habitual125, pavlovian responses, both ‘preparatory’ (reflecting the 

motivational properties of the outcome) or ‘consummatory’ (reflecting the sensory 
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properties of the outcome)137 can also be sensitive to outcome devaluation 138. 

Consequently, the assessment of goal-directed behavior should also include 

contingency degradation, which allows the distinction from the stimulus-outcome 

associations that governs pavlovian responses128,139–141. 

The neural circuits underlying each of the two systems involved in instrumental 

conditioning have been extensively studied in rodents. The structures which support 

goal-directed and habitual action strategies have been shown to differ, particularly at 

the level of the basal ganglia142,143. In rodents, as in humans, the striatum is also the 

entry station of the entire basal ganglia and serves as a hub for cortico-basal ganglia 

reentrant loops, being capable of integrating inputs from the cortex, the midbrain and 

other structures144–146. While the limbic loops that run through the ventral striatum 

(nucleus accumbens) seem to mediate pavlovian stimulus-outcome associations and 

responses, the loops that run through the dorsal striatum are more involved in the 

control of instrumental actions141,142,147. In the dorsal striatum the medial regium (DMS) 

extends ventrally until the nucleus accumbens and receives most of its input from 

associative cortical areas (like the caudate in humans) and the lateral regions (DLS) 

receive most of its input from sensorimotor cortical areas (like the putamen in 

humans)148,149. Lesion studies (or receptor blockade studies) combined with 

instrumental conditioning paradigms have shown that associative CSTC loops 

involving the DMS150,151 and prelimbic subregion of the medial prefrontal cortex152–154 

are necessary for learning and performance of goal-directed behavior. At the same 

time, habit formation has been shown to depend on the DLS155 and on the infralimbic 

subregion of the medial prefrontal cortex156. These parallel DMS/DLS corticostriatal 

circuits dynamically interact with each other135,157, suggesting that competing CSTC 

circuits underlie the ability to switch between two different modes of performing the 

same action158,159. Interestingly, it has also been shown, in rodents, that the OFC has 

a crucial role in the shift between habitual and goal-directed behavior. Specifically, in 

vivo neuronal recordings reveal that OFC and DMS neurons become more engaged 

during goal-directed actions and DLS neurons become more engaged during habitual 

actions135. Also, chemogenetic inhibition of the OFC disrupts goal-directed actions, 

where optogenetic activation of the OFC increases goal-directed pressing for food 

rewards135. We should keep in mind that most of the neuroimaging differences 

between OCD and healthy subjects are precisely in the OFC and the caudate nucleus 

(which is the human equivalent of the DMS). 

As the abovementioned experiments provided clear cut results about brain-

behavior interaction in rodents, researchers tried to adapt these types of tasks to 

human subjects. The task which came to be known as the Fabulous Fruit Game was 

published in 2007 and is considered the first paradigm which tried to isolate action-

outcome (goal-directed) and stimulus-response (habitual) contributions to human 

behavior160. In the training stage, participants were asked to respond to different 

pictured stimuli (fruits) in order to gain rewarding outcomes (points). In some trials 

(“congruent discrimination”) the stimulus was the same as the outcome in each 

component, whereas in other trials (“incongruent discrimination”) the stimulus of one 
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component was the same as the outcome of the other component. In a subsequent 

(instructed) outcome devaluation test the authors assessed whether participants were 

able to flexibly adjust their behavior to instructed changes in the desirability of the 

outcomes. The authors show that incongruent trials renders actions resistant to 

outcome devaluation, suggesting habitual behavior, while after congruent trials actions 

are sensitive to outcome devaluation, suggesting goal-directed behavior160. Two years 

later the same group adapted this task for fMRI and showed increased activity in the 

ventromedial prefrontal cortex when behavior was sensitive to outcome devaluation 

(goal-directed)161. 

Valentin and colleagues developed the first instrumental learning task using 

devaluation through specific satiety in humans162. They scanned 19 healthy subjects 

in fMRI while they learned to choose actions which were associated with contingent 

delivery of liquid food rewards (orange juice, tomato juice or chocolate milk). After 

training, one of the foods was devalued by feeding subjects to satiety on that food. 

Afterwards, participants went back to the fMRI scanner and were exposed again to the 

same instrumental choice but in extinction (to make sure that behavior was based on 

previously learned associations and not on newly made associations). The authors 

found that the orbitofrontal cortex showed a strong modulation in its activity when 

comparing the devalued with the non-devalued action162. Another study used a 

contingency degradation procedure instead of outcome devaluation 163. Here subjects 

were scanned while they pressed a button to gain small monetary rewards while the 

response-reward relationship changed over time. Blood-oxygen-level-dependent 

(BOLD) activity in the medial orbitofrontal cortex and in the caudate (the human 

analogous of the rodent DMS128) was higher in sessions when rewards were highly 

contingent on actions163. Also, the medial prefrontal cortex tracked local changes in 

action-outcome correlations163.  

Although these experiments shed some light on the human basis of goal-

directed (action-outcome) behavior, they provided no information about the neural 

substract of habitual (stimulus-response) actions. To our knowledge, only Tricomi and 

colleagues tested habitual behavior in humans, using a design following the same 

principles of the animal literature164. In this experiment, healthy humans were given 

either a low (1 day) or a high (3 days) amount of training, with button presses leading 

to a rewarding outcome delivered in a variable-interval (VI) schedule of reinforcement. 

Performance was then assessed in extinction after outcome devaluation by specific 

satiety. The rewarding outcomes were food rewards and subjects were asked to fast 

before the experiment. Responding was totally self-paced, in contrast with the 

previously described human studies which were trial-based but in line with the animal 

paradigms. During the extinction test, participants in the 1-day group reduced their 

response rates during presentation of the cue linked to the devalued food, as would 

be expected if their behavior was goal-directed. On the other hand, participants in the 

3-day group continued to respond for the devalued food, indicating that their behavior 

had become insensitive to changes in outcome value over the course of training. A 

within-group analysis of fMRI data from the extensively trained subjects comparing 
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later sessions (when behavior was habitual) to earlier sessions (when it would likely 

have been goal directed) highlighted increased cue-related activity in right posterior 

putamen/globus pallidum, consistent with the rodent findings showing involvement of 

the dorsolateral striatum in habitual responding164.  

The conceptual proximity between habits, as described above, and the 

phenomenology of OCD – as well as the similarity between the brain areas involved 

in operant conditioning and in OCD – have motivated an interception between these 

research topics. As mentioned previously, OCD poses a paradox because patients 

recognize that their concerns (obsessions) are unrealistic and that their behavior 

(compulsions) is excessive or even absurd. However, their life can get stuck in 

repeating the same action – pressing a light switch or washing their hands – over and 

over again. Gillan and colleagues raised the hypothesis that goal-directed action 

control is compromised in OCD and that compulsive acts are driven by maladaptive 

habits113. To test this hypothesis, they used the Fabulous Fruit Game160, which was 

previously shown to test the capacity to form action-outcome (goal-directed) 

associations. Importantly, the authors modified the design by adding a “slips of action” 

test, in which participants had to respond to stimuli that signaled devalued or still 

valued outcomes. In this “slips of action” test, the goal-directed and the habitual 

systems should compete for behavioral control. The authors also used a questionnaire 

to ask whether participants had developed explicit knowledge of the relationship 

between stimuli, actions and outcomes. They found that explicit knowledge of the 

relationship between actions and outcomes was impaired in OCD patients and that 

they made more errors in the “slips of action” test, suggesting a deficit in goal-directed 

control and/or an hyperactive habit system113. These results were interpreted at the 

time by the authors of the paper as a bias towards habitual behavior. However, as 

recently acknowledged by the same group165, the slips of action test – similarly to other 

instrumental conditioning tests – does not allow to distinguish between low use of goal-

directed behavior and high use of habitual behavior. 

Among the different adaptations of instrumental conditioning tasks for use in 

humans, the one which is closer to the animal paradigms was the Tricomi task164. As 

that task has never been applied in OCD patients, in preliminary experiments I decided 

to replicate it in healthy subjects. In each training session, participants had access to 

two buttons, each one giving access to a food reward (“M&M’s” or “fritos”). Participants 

were asked to fast for at least 6h prior to the task. Each session consisted of 

consecutive task (20s-40s) and rest (20s) blocks, with each of the task blocks giving 

access to one of the two rewards. Task and rest blocks were pseudo-randomized, with 

an indication in each block of the active reward/button. Participants were told to press 

the buttons as much as they wanted and the availability of a reward was represented 

in the screen by the respective image. Rewards were probabilistically delivered 

according to one of two reinforcement schedules: one group was trained in a variable 

interval (VI) schedule of reinforcement and another group was trained in a variable 

ratio (VR) schedule of reinforcement. In the VI schedule, a reward was available, on 

average, every 10 seconds, being delivered on the first button press after the specific 
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interval for that trial. In the VR schedule, a reward was available, on average, every 

30 button presses. After the training phase, an outcome devaluation procedure was 

carried to test goal-directed vs. habitual behavior. Thus, free access was given to one 

of the food rewards to induce its devaluation by specific satiety. After this procedure, 

behavior was tested for a brief period in extinction (without rewards being delivered) 

allowing to test the effect of previous conditioning and not the effects of the reward per 

se. It would be expected that when conditioning induced goal-directed behavior, as 

demonstrated in rodents using VR schedules, more button presses would occur for 

the valued outcome that for the devalued outcome. Regarding habitual actions, which 

should result from VI schedules of reinforcement according to experiments in rodents, 

these differences would not be expected as the performance of actions would not be 

dependent on its consequences. 

 

 

Figure 5. Adaptation of an instrumental conditioning experiment to human 

subjects.  

A) In the training phase, subjects could press an arrow key to gain access to m&M’s and 

another arrow key to get access to Frito’s. Different stimuli on the screen signaled which food 

reward was available at each block. Rewards were delivered according to a 10-seconds 

Variable Interval or according to a 10-presses Variable Ratio reinforcement schedule. B, left 

panel) Outcome devaluation procedure through specific satiety: subjects could eat m&m’s or 

Fritos until it was no longer pleasant to them. B, right panel) Extinction test: the discriminative 

stimuli were again shown in the screen and the participants could press the keys. During this 

3-minute (extinction) test, responding no longer resulted in rewards. (Castro-Rodrigues et al., 

unpublished). 

 

The operant conditioning task was applied with a VI schedule in 24 healthy 

volunteers, from which 14 completed a short-training protocol (two 8-minute sessions 

in one day) and the remaining 10 completed a long-training protocol (three 8-minute 
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sessions in three consecutive days). After devaluation of one of the outcomes, there 

was a decrease in hunger, and a decrease in pleasantness of the devalued outcome, 

when comparing pre-devaluation with post-devaluation (Fig. 5). Pleasantness of the 

non-devalued outcome did not change. An outcome devaluation index was calculated 

as a proportion between the number of actions performed to obtain the devalued 

outcome and the number of actions performed to obtain the non-devalued outcome. 

In agreement with previous findings 164, the devaluation had a behavioral impact in the 

short-training group (devaluation index < 1) but not in the long-training group 

(devaluation index ≈ 1). In short, VI schedule of reinforcement lead initially to the 

acquisition of goal-directed behavior that with extended training gives rise to habitual 

behavior. However, this transition was unstable as it was not verified in the second 

half of subjects who were tested. In another group of 17 subjects, a VR schedule was 

used – in 8 of them with short-training and 9 with long-training. The devaluation effects 

in hunger and pleasantness scales were similar to the ones described above. 

However, and in disagreement with the findings in animal models, the devaluation 

index did not demonstrate the acquisition of goal-directed behavior, independently of 

the duration of training. 

 

Figure 6. Results from the adaptation of an instrumental conditioning paradigm 

to healthy human subjects. A, left panel) Self-report rating scales for the group trained under 

the VI schedule of reinforcement. A, right panel) Devaluation index (proportion between key 

presses for devalued outcome and key presses for non-devalued outcome in the extinction 

test) in the VI low-training group and in the VI high-training group. B, left panel) Self-report 

rating scales for the group trained under the VR schedule of reinforcement. B, right panel) 
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Devaluation index in the VR low-training group and in the VI high-training group. VI = Variable-

Interval. (Castro-Rodrigues et al., unpublished). 

 

De Wit and colleagues in Amsterdam, and the Robbins group in Cambridge 

reported last year that they were incapable of replicating the overtraining findings from 

Tricomi and colleagues165. They have shown in five separate experiments, with three 

different learning procedures (including the Fabulous Fruit Game and an avoidance 

paradigm) that extended training does not significantly enhance habits in humans165. 

These five experiments include two failed independent replications of the report by 

Tricomi that overtraining induces habitual behavior in humans165. Interestingy, the only 

difference between these replications (and the replication I also tried to perform) is 

that the original study was performed inside an fMRI scanner. This has led others 129 

to propose the habitual behavior shown there could have been induced by the stress 

of being in a confined space, as it has been shown that stress shifts goal-directed to 

habitual behavior in rodents 166. The authors of this paper also point out that, in the 

analyes performed by Tricomi and colleagues, it is not totally clear that the BOLD 

signal in the putamen is directly related with behavioral sensitivity to outcome 

devaluation165. It thus seems that it is not trivial to experimentally induce habits in 

healthy humans as a function of behavioral repetition and that there currently exists 

no procedure that can reliably be used to do so165. 

Moreover, outcome devaluation has clear limitations as a paradigm for 

experimental human neuroscience. Firstly, the critical devaluation test during which 

behavioral strategies are dissociated must be short, because it is performed in 

extinction, limiting the number of choices or actions performed. Secondly, devaluation 

is a unidirectional single-opportunity manipulation of value. In fact, across the last 

decade, some authors have concluded that operant conditioning tasks, although very 

useful to study food rewards in rodents, work less well for other types of rewards and 

in humans129,132. These types of paradigms require extensive amounts of training 

before there is a possibility of testing for use of goal-directed vs. habitual behavior. 

Furthermore, they do not allow for separate assessment of habitual and goal-directed 

processes – meaning that either failures of goal-directed control or excessive habit 

formation could drive the failures to adjust action performance after devaluation. 

Finally, these experiments generate relatively small size datasets, with few trials per 

individual for analyses132. There is thus need for behavioral paradigms that generate 

large action selection datasets, with parametric variation of decision variables. In 

recent years, multistep decision tasks, which are inspired by reinforcement learning 

theory, have been developed with the objective of better quantifying and studying how 

humans learn from actions.  
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1.2.2. Reinforcement learning 

 

Reinforcement learning (RL) is a field of computer science and machine 

learning that studies how agents of any sort can learn by interacting with their 

environment167. At its origins in the artificial intelligence field, an agent was an artificial 

system, such as a robot or a computer program. More recently, however, it has been 

hypothesized that the brain may also be implementing behavior through RL 

algorithms168–171. In fact, although RL theory was developed by the community which 

studied artificial intelligence, it drew significant inspiration from psychological learning 

theory167,171,172. RL problems involve four important components: states, actions, 

transitions and rewards132,167. States are contexts or stimuli in the environment that 

the agent observes and which are the basis for making choices; actions are behavioral 

choices made by the agent, that may or may not be available at each state; transitions 

are modifications from one state of the environment to another which are occasioned 

by actions; rewards are the basis for evaluating choices and can be food, water, money 

or any scalar measure of performance of the agent132,167. In the typical RL framework, 

a learning agent observes the state of its environment repeatedly and then chooses 

an action to perform. This action will change the state of the world (according to a 

transition function, which is typically unknown to the agent) and will probabilistically 

lead to a payoff (a scalar reward signal). Utilities quantify the subjective immediate 

worth of states in terms of rewards and punishments and depend on the motivation of 

each subject (for example, food has a higher utility when hungry)132. Two important 

definitions follow from that described previously: policy and value. In RL, policy is a 

mapping from states to actions (which is typically probabilistic) and value is the 

expected long-term sum of rewards167. In the RL framework, the goal of the agent is 

to learn to choose the policy that maximizes the value function (leading to the highest 

long-run sum of rewards)167. 

Several methods to solve RL problems have been described167, namely 

algorithms that specify how the agent’s policy is changed as a result of its experience. 

A common way of classifying RL methods is by distinguishing model-based RL from 

model-free RL, where the term model refers to a mental, not a computational model. 

In fact, their main difference is whether or not these algorithms build a representation 

– a model – of the dynamics of the environment which can be used to simulate 

trajectories in a task (Fig. 7). A model-free system does not build such a model but 

relies on estimating the value of each state or action – it relies on stored values for 

state–action pairs (Fig. 7)167. These values are estimates of the highest return the 

agent can expect for each action taken from each state – generally speaking, they tell 

how “good” or “bad” it is to be in those states or to take specific actions. They are 

obtained over previous experience in the environment. When the action values have 

become good enough estimates of the optimal returns, the agent just needs to select 

at each state the action with the largest action value in order to make optimal 

decisions. This strategy is “model-free” because it has no representation of the 

environment’s causal structure (i.e., the transition function between states and the 
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reward function in each state). Instead, it incrementally builds a look-up table or 

function approximation from which values can be quickly computed. Typically, in order 

adjust to its expectations, a model-free system uses a reward prediction error as a 

learning signal. The most known example of a prediction error is the temporal 

difference (TD) predictor error173. In fact, model-free predictions are supposed to be 

of the long-run sequence of actions starting on one step, so the ideal prediction error 

would measure the difference between the total amount of reward that is delivered 

over the long-run and the amount of reward that is predicted. However, waiting to 

experience all those rewards in the long run is usually impossible. The TD prediction 

error obviates this requirement via the trick of using the prediction at the next step to 

substitute for the remaining rewards that are expected to arrive167. In any case, 

prediction errors are based on the rewards that are actually observed during learning 

and train predictions of the long-run worth of states, criticizing the choices of actions 

at those states accordingly. Further, the predictions are sometimes described as being 

cached, because they store previous experience. 

 

 

Figure 7. Parallels between instrumental conditioning and reinforcement learning.  

In RL, situations are called states and outcomes are called rewards167. Policy is a mapping 

from states to actions (“which actions should be performed in each state”). There are two 

families of algorithms that can be implemented in order to choose the best policy: model-based 

and model-free167. Model-based RL works by building a model of the dynamics of the 

environment, just like the goal-directed action control system in instrumental conditioning. The 

model is then used to simulate possible trajectories and choose the action which has the 

highest value (expected long-sum of rewards). Model-free RL works by estimating the value 

of states and actions by trial-and-error and updates these estimates based on a reward 

prediction error (the difference between a reward that is being received and the reward that is 

predicted to be received). This ends up in repeating actions that lead to rewards in the past, 

just like habitual behavior in instrumental conditioning158. Due to its complementary strengths, 
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it is advantageous for an agent to use both strategies: model-based RL in environments that 

change frequently and model-free RL in stable environments132,158. 

In model-based RL, the model is an internal representation of the environment 

which allows the agent to predict how the environment will change depending on the 

agent’s actions (Fig. 7)132,167. This environment model typically consists of a state-

transition model and a reward model. The state-transition model is a decision tree 

which represents the probability of each state giving access to a different state 

depending on each possible action. The reward model associates the distinctive 

features of the goal boxes with the rewards to be found in each. A model-based agent 

can decide which action to choose at each state by using the internal model to simulate 

sequences of action choices to find a path yielding the highest return. In this case the 

return is the reward obtained from the outcome at the end of the path. After learning 

the model, a model-based agent can use it to construct a value function or policy – 

that process is called planning. Comparing the predicted returns of simulated paths is 

a simple form of planning (Fig. 8). When the environment of an agent using model-

free RL changes, the agent has to experience the new characteristics of the 

environment in order to update its’ expectations132,158,167. For a model-free agent to 

change the action its current policy associates with specific a state, it has to move to 

that state, act from it and experience the consequences, probably several times. In 

contrast, a model-based agent can take into account information about environmental 

changes before having to experience their consequences.  

 

 

Figure 8. Model-based and model-free RL strategies to solve a sequential action-

selection problem.  

Top: a rat navigates a hypothetical maze with distinctive goal boxes at different end points, 

each associated with a reward having the value shown. Lower left: a model-free strategy relies 

on stored action values for all the state–action pairs obtained over many learning trials. To 
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make decisions the rat just has to select at each state the action with the largest action value 

for that state. Lower right: in a model-based strategy, the rat learns an environment model, 

consisting of knowledge of state-action-state transitions and a reward model consisting of 

knowledge of the reward associated with each distinctive goal box. The rat can decide which 

way to turn at each state by using the model to simulate sequences of action choices to find 

a path yielding the highest amount of reward. Adapted from Sutton & Barto, 2018171 and Niv 

et al., 2006174. 

 

In short, RL algorithms are a class of algorithms that have a narrow 

characterization: they try to maximize a specific cost function, the discounted sum of 

future expected reward171. Here discounted means that obtaining a reward now is 

better than obtaining a reward in the future. Such a function would clearly be important 

for animal survival and, as such, researchers hypothesized that such RL algorithms 

might be implemented in the brain. In the turn from the 20th to the 21st century, 

neuroscientists started to test the hypothesis that the brain is an evolutionary-shaped 

RL system on its own right, with studies in rodents, primates and humans132,171. These 

types of studies have sought for correspondence between signals in the brain, such 

as neuronal firing or BOLD activity, and signals which play fundamental roles in RL 

algorithms, namely terms in an RL equation or algorithm. In fact, one of the most 

transformative observations in this area of neuroscience was precisely the result of a 

study where neuronal activity was recorded in awake monkeys while receiving juice 

rewards in a pavlovian task175. It was observed that neurons in the ventral tegmental 

area (VTA) – one of the two main regions with dopamine-producing neurons, the other 

being the substantia nigra – began to signal the presence of a stimulus predicting 

reward, and stopped responding to the reward itself175. Also, if the predicted reward 

was omitted after learning, the same VTA neurons showed diminished responses at 

the time where reward was expected. These findings suggest that the (phasic) release 

of dopamine from the VTA to other areas (such as the OFC, the nucleus accumbens 

and the amygdala) may be signaling the presence of reward relative to its prediction, 

instead of simple reward delivery. This concept of a “prediction error” is precisely a 

term which is included in a model-free RL algorithm called the TD learning that I have 

mentioned previously. Initial human imaging studies that used RL methods to examine 

the representation of values and prediction errors mainly focused on model-free 

prediction and control, without exploring model-based effects176–178. These showed 

that the BOLD signal in regions of dorsal and ventral striatum correlated with a model-

free temporal difference prediction error, the exact type of signal thought to be at the 

heart of reinforcement learning. Others have used special fMRI techniques to highlight 

the brainstem nuclei and, with designs mimicking the study with monkeys described 

above, have found the same prediction error in the VTA179. 

More recently, several experimental paradigms have provided as sharp a 

contrast between model-free and model-based for human studies, as animal 

paradigms have provided between goal-directed and habitual control. The first of these 

studies was performed by Gläscher and colleagues180 and drove inspiration from 
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Tolman and his concept of cognitive maps122. The authors designed a two-stage 

Markov decision task that allowed to separate signals of a reward prediction error 

(RPE) during some trials from signals of a state prediction error (SPE) during other 

trials. A Markov-decision process (MDP) is a fundamental concept in reinforcement 

learning. MDP’s are a classical formalization of sequential decision making, where 

actions influence not just immediate rewards, but also subsequent situations, or states, 

and through those, future rewards. Thus, MDPs involve the need to trade-off 

immediate and delayed reward, similarly to many real-world problems. As pointed out 

previously, the RPE is part of model-free algorithms and, in this study, the SPE was 

considered part of a model-based algorithm – by incorporating discrepancies between 

the learned model and observed state transitions. In order to dissociate SPE from 

RPE, volunteers were first exposed to the state space (their actions originated different 

states) without any rewards, providing an assessment of a pure SPE in a first fMRI 

session. Next, during a break, subjects were told reward contingencies and trained the 

reward mapping with a simple choice task. Then, they went back to the scanner and 

made choices to obtain rewards (here providing an assessment of the RPE). The 

authors found the presence of RPE’s in the ventral striatum (which receives one of its 

major inputs from the VTA) and of SPE’s in the lateral prefrontal cortex and in the 

intraparietal sulcus180. However, the contribution of model-free or model-based 

systems were tested separately and this design is closer to a latent learning paradigm 

than to a sequential action selection problem. 

The original two-step task, first published by Nathaniel Daw and colleagues in 

2011181, was designed to encourage a balance between use of model-based and 

model-free RL. It is a two-stage Markov decision task in which, on around 200 

consecutive trials, participants are required to make 2 choices to arrive to a rewarded 

or a non-rewarded outcome (Fig. 9). An initial choice between 2 options leads 

probabilistically to one of two 2nd-step “states”. At the 2nd-step, another choice 

between two options is required, each of which is associated with a different chance 

of delivering a small monetary reward. Crucially, each 1st-step option leads more 

frequently to one of the 2nd-step states (a “common” transition), whereas it leads to 

the other state in a minority of the choices (a “rare” transition). Also, the chances of 

reward associated with the four 2nd-step options change slowly and independently 

across the trials. Because a model-based system is able to incorporate the probability 

of state-state transitions into its decision-making, while a model-free system is not, the 

predictions made by these systems are different after some combinations of events181. 

The model-free strategy is insensitive to the structure of the task and it will simply 

increase the likelihood of performing an action if it previously led to reward, regardless 

of whether this reward was obtained after a common or a rare transition. On the other 

hand, an agent using a model-based strategy would show differences in behavior 

following common and rare transitions. For example, when a model-free agent obtains 

a reward after a rare transition, it will choose the same first-step option on the next 

trial, since action values are updated based exclusively on the reward that follows the 

action181. In contrast, a model-based agent, who can represent the task transition 
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structure, will be more likely to switch to the previously unchosen 1st-step option, since 

this behavior is more likely to lead to the 2nd-step state which was just rewarded. 

Using these predictions about first-step choice behavior, it is possible to infer the 

influence of the RL controllers in terms of the main effect of reward (model-free) and 

the interaction between reward and transition (model-based) on the probability of 

staying with the same 1st-step choice181. Using this task, Daw and colleagues have 

shown that humans use a mixture of model-based and model-free RL while performing 

the task (Fig. 9, panel D). The task has also revealed BOLD signals associated with 

model-based and model-free computations both in the ventral striatum and in the 

medial prefrontal cortex181. 

 

Figure 9. Original two-step task structure and results. 

A) Trial events: On each trial, a first-step choice between two stimuli (identified by two tibetan 

characters) leads to a second-step choice which can give access to a small monetary reward 

(represented as a dollar coin). B) Task structure: Each first-step choice leads more frequently 

to one of the two second-step states (a “common” transition) and less frequently to the other 

(a “rare” transition”). To encourage learning, each of the four second-step possible options is 

associated with an independent reward probability which fluctuates slowly over trials. C) 

Probability of repeating the same first-step choice according to the events on the previous 

trial. Left panel: An agent which uses model-free RL will show higher probability of repeating 

the same first-step choice after trials that lead to a reward than after unrewarded trials, 

regardless of whether a common or rare transition occurred. Right panel: An agent which uses 

model-based RL will also take into account the transition that occurred, such that a rare 

transition will affect the value of the other first step choice and its stay-probability plot will show 
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an interaction between the factors of reward and transition. D) Behavioral data from healthy 

subjects shows a hybrid model with hallmarks of both strategies. Adapted from Daw et al. 

2011181. 

Wunderlich designed another sequential decision task, in order to explore the 

neural correlates of forward-based planning182. It was a minimax decision task which 

allowed to contrast forward planning with the correlates of extensively trained 

behavior182. It consists of a three-layer maze with the first-choice being made by the 

participant, the second-choice made by the computer and the third-choice again by 

the participant, then reaching a probabilistic reward. The results pointed towards a 

representation of forward planning values in the caudate (the human analogous of the 

rodent dorsomedial striatum128), a representation of extensively trained actions in the 

putamen (the human analogous of the rodent dorsolateral striatum128). Also, the 

ventromedial prefrontal cortex (vmPFC) was found to represent the value of the 

chosen option across both systems, suggesting that it may act to compare between 

them. Lee and colleagues, on the other hand, have tried to explore how control 

changes from a model-based (goal-directed) system to a model-free (habitual) system 

and vice versa183. They developed an arbitrator model which included three different 

levels of computation – learning; reliability estimation and reliability competition. In the 

first level, a model-free system generates a reward prediction error and a model-based 

system generates a state prediction error. At the second level, each of the systems 

calculates an estimate of the reliability of its specific prediction error. At the third level, 

these two reliability estimates in order to set a weight that regulates which of the two 

systems controls behavior. To test this model, the authors developed a two-stage 

Markov decision task in which participants gained access to colored tokens which 

gave access to monetary rewards. The task consisted of two types of trials – specific 

and flexible goal trials. Specific goal trials encouraged model-based RL while flexible 

goal trials favored the use of model-free RL. The state transition probabilities were 

also manipulated in order to favor model-based or model-free RL. Using this task, 

BOLD activity in the inferior lateral prefrontal and frontopolar cortex encoded the 

reliability signals and the output of a comparison between both signals183. 

Although they could seem similar, these types of tasks are different from 

classical tasks such as perceptual decision making or probabilistic reversal learning, 

where the only uncertainty about the outcome of each decision is whether reward will 

be directly delivered, making model-based prediction of future state and model-free 

prediction of future reward ineluctably confounded. However, neither the Glascher, the 

Wunderlich nor the Lee task were tested in clinical populations or subject to in-vivo 

neuromodulatory approaches (such as TMS). On the other hand, the two-step task 

became a popular approach to study the balance between use of model-free and 

model-based RL in healthy and in clinical populations. Importantly, Voon and 

colleagues found deficits in model-based control in OCD using the two-step task (Fig. 

10)184. In the same study, patients with methamphetamine-addiction and with binge 

eating disorders also presented the same deficits184. Deficits in model-based control 

have also been found in other conditions such as schizophrenia and alcohol 
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dependence185,186. Furthermore, Eppinger and colleagues studied age-related 

differences in model-free and model-based RL using the Daw two-step task187. Their 

results demonstrate age-related deficits in model-based decision-making, which were 

especially pronounced if a reward which was not expected indicated the need to shift 

the decision strategy – in this situation, younger adults explored the task structure 

while older adults showed some evidence of perseveration187. Also, in younger adults. 

high working memory (WM) capacity was associated with greater use of model-based 

RL and this effects was higher when the reward probabilities were more distinct187. 

Another group focused specifically in this effect of working memory and its relationship 

with the stress response 188.  These authors paired an acute stressor with the two-step 

task, assessed baseline WM capacity and used salivary cortisol to measure 

hypothalamic-pituitary-adrenal axis stress response188. They manipulated stress 

levels by using the cold pressor test task, an acute stress induction in which subjects 

submerged their arms in ice water for 3 minutes188. They found that the stress 

response attenuated the contribution of model-based but not of model-free RL. 

Furthermore, the stress-induced behavioral modifications were modulated by 

individual WM capacity – low WM-capacity subjects were more susceptible to 

detrimental stress effects than high WM-capacity subjects188. Following the hypothesis 

that model-based RL requires cognitive resources, the same author also 

demonstrated that having humans performing a secondary task leads to increased 

reliance on model-free RL strategies 189. Moreover, it was also shown that, across 

trials, participants negotiated the trade-off between the two systems in a dynamic 

fashion, as a function of concurrent demands of executive function – and subject’s 

latencies of choice reflected the computational expenses of the strategy they decided 

to use189. Others have used a similar approach to find that individual differences in 

processing speed covary with a shift from model-free to model-based control in the 

presence of above-average WM function190. 

  

 

Figure 10. Performance of OCD patients, other clinical populations and healthy controls 

in the original two-step task. W is a weighting parameter in the computational model 

reflecting the balance between model-free (w = 0) and model-based control (w=1). Healthy = 

healthy volunteers, Binge = Binge eating disorder, OCD = obsessive-compulsive disorder, 

Meth = methamphetamine-dependent. Adapted from Voon et al., 2015 184. 



Chapter 1. Introduction 

48 
 

 

Other groups took a different approach and used non-invasive brain stimulation 

techniques to modify cortical activity and observe the effects of this manipulation on 

RL strategies191. These authors demonstrated that, when using the two-step task, it is 

possible to shift the balance between model-free and model-based control by 

disrupting activity in the dorsolateral prefrontal cortex (DLPFC) using theta burst 

transcranial magnetic stimulation191. They showed that disrupting activity in the right 

DLPFC leads to a dominance of model-free control, while disruption of left DLPFC 

impaired model-based performance only in those participants with low WM capacity191. 

The construct validity of the correspondence between goal-directed behavior and 

model-based RL and between habitual behavior and model-free RL has also been 

tested. Friedel et al.192 used a devaluation paradigm162 and the two-step task to 

address this question in healthy humans. There was a positive correlation between 

model-based control during the multistep task and goal-directed behavior in the 

outcome devaluation task. The authors concluded that a single framework may 

underlie these different operationalizations and that their findings support the construct 

validity of both approaches192. However, not all authors agree with the correspondence 

between habitual behavior and model-free RL133. 

In order to reach a better understanding of the processes underlying the use of 

reinforcement learning controllers in humans, both in healthy and clinical populations, 

sequential decision tasks need to be optimized. The two-step task, the paradigm that 

came to be used in several different neuropsychiatric disorders, presents some 

limitations. As in most human decision tasks, subjects performing the two-step task 

receive extensive prior instruction about task structure. Though there is extensive 

literature showing that instruction profoundly shapes human behavior in operant193–195 

and fear196,197 conditioning, as well as value-based decision making198–200, instruction 

effects have not been explored in multi-step tasks where model-based and model-free 

control can be dissociated. It therefore remains unclear how these different RL 

mechanisms contribute to action selection in situations where subjects must learn task 

structure directly from experience, and how providing explicit information about task 

structure modifies each system’s computations. Also, the findings from the fMRI 

studies using sequential decision tasks reviewed above are not fully compatible. To 

address these questions, I developed a new sequential decision task and applied it in 

healthy subjects, in patients with OCD and, to control for the effects of medication and 

anxiety, in patients with mood and anxiety disorders (Chapter 3). I also adapted the 

same task for functional magnetic resonance imaging and designed a protocol to 

explore brain activity during performance of instructed and uninstructed sequential 

action choice (Chapter 4). 
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1.3. Aims 

 

Aim 1 – Establish the criterion-related validity of the Y-BOCS-II for the 

diagnosis of OCD (Chapter 2) 

 

Aim 2 – Develop a new sequential decision task to explore instructed and 

uninstructed reinforcement learning strategies in OCD patients and controls 

(Chapter 3) 

 

Aim 3 – Create a protocol to collect functional imaging data during 

performance of a new sequential decision task (Chapter 4) 
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Chapter 2. Criterion-validity of the Y-BOCS-II for diagnosis 

of OCD 

2.1. Abstract 

 

While the Yale-Brown Obsessive-Compulsive Scale Second Edition (Y-BOCS-

II) is the gold-standard for measurement of obsessive-compulsive (OC) symptom 

severity, its factor structure is still a matter of debate and, most importantly, criterion 

validity for diagnosis of OC disorder (OCD) has not been tested. This study aimed to 

clarify factor structure and validity of the Y-BOCS-II.  

We first validated and quantified the psychometric properties of a culturally 

adapted Portuguese translation of the Y-BOCS-II (PY-BOCS-II). The PY-BOCS-II and 

other psychometric instruments, including the OCD subscale of the Structured Clinical 

Interview for the DSM-IV, used to define OCD diagnosis, were administered to 187 

participants (52 patients with OCD, 18 with other mood and anxiety disorders and 117 

healthy subjects). In a subsample of 20 OCD patients and the 18 patients with other 

diagnoses Y-BOCS-II was applied by clinicians blinded to diagnosis.  

PY-BOCS-II had excellent internal consistency (Cronbach’s α=0.96) and very 

good test-retest reliability (Pearson’s r=0.94). Exploratory factor analysis revealed a 

two-factor structure with loadings consistent with the Obsessions and Compulsions 

subscales. There was good convergent validity but divergent validity was acceptable 

at best. The area under the curve (AUC) of the receiver operating characteristics 

(ROC) curve suggested elevated accuracy in discriminating between patients with 

OCD and control subjects (AUC=0.96; 95% confidence interval [CI]: 0.92 - 0.99), that 

was retained in comparisons with age, gender and education matched controls 

(AUC=0.95; 95% CI: 0.91 - 0.99), as well as with patients with other mood and anxiety 

disorders (AUC=0.93; 95% CI: 0.84 - 1). Additionally, a cut-off score of 13 had optimal 

discriminatory ability for the diagnosis of OCD, with sensitivity ranging between 85 and 

90%, and specificity between 94% and 97%, respectively when all samples or only the 

clinical samples were considered. 

The PY-BOCS-II has excellent psychometric properties to assess the severity 

of obsessive-compulsive symptoms, reflecting obsessive and compulsive dimensions, 

compatible with currently defined subscales. Importantly, we found that a cut-off of 13 

for the Y-BOCS-II, total score has good to excellent sensitivity and specificity for the 

diagnosis of OCD. However, we confirmed that the Y-BOCS-II has problems in 

divergent validity, particularly regarding symptoms of depression. 

 

2.2. Introduction 

 

Accurate assessment of OCD is critical due to its under-diagnosis, difficulty in 

establishing accurate diagnosis and need for careful and specific treatment planning 

and evaluation201. The Yale-Brown Obsessive-Compulsive Scale is a clinician-
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administered instrument, developed in 1989 to assess the presence and severity of 

obsessive-compulsive symptoms26,202. It is divided into a symptom checklist and a 

severity scale. The symptom checklist comprises 54 dichotomous items assessing 

current or prior presence of specific obsessions and compulsions. The severity scale 

consists of 10 items that quantify the impact of obsessions and compulsions identified 

using the symptom checklist. These 10 items are 5-point Likert-type scales 

characterizing the time spent on compulsions (item 1), interference from obsessions 

(item 2), distress associated with obsessions (item 3), resistance to obsessions (item 

4), subject’s control over obsessions (item 5) and equivalent items for compulsions 

(items 6-10). The Y-BOCS has shown good psychometric properties and sensitivity to 

the therapeutic effects of medication and psychotherapy26,202–206. However, several 

problems have been identified for this scale, including a poor conceptual fit of the 

“resistance to obsessions” item, possibly contributing towards inconsistent factor 

structure, with some studies finding a two-factor (obsessions and compulsions) and 

others a three-factor structure (obsessions, compulsions and resistance to 

obsessions), as well as low sensitivity to change in severe cases and poor divergent 

validity relative to depressive symptoms32,33,35,38,207,208. 

To address some of these problems a revised version, the Y-BOCS-II, was 

published in 200038, with several differences relative to the original scale. Specifically, 

the obsessions and compulsions checklists are not formally subdivided into different 

symptom groups, some items in the symptom checklist were reworded and expanded, 

and a new checklist for avoidance was created. Additionally, in the severity scale, the 

item assessing “resistance against obsessions” was replaced by an item of 

“obsessions-free interval”, the scoring for each item was revised from 0-4 to to 0-5, 

and the order of assessment of items was changed. Furthermore, avoidance was 

considered in the definition of severity, namely for the items of interference from 

obsessions and interference from compulsions. Finally, the definitions of obsessions 

and compulsions were rephrased, with several ancillary items removed from the text. 

Y-BOCS-II has excellent psychometric properties, with strong internal consistency, 

high test-retest and interrater reliabilities and strong correlations with other clinician-

rated measures of obsessive-compulsive symptom severity, namely the National 

Institute of Mental Health Global Obsessive Compulsive Scale (NIMH-GOCS), and 

only moderate correlations with measures of worry and depressive symptoms38. 

These authors also conducted an exploratory factor analysis, the results of which were 

consistent with the obsession and compulsion severity subscales. Thus, the Y-BOCS 

scales are typically considered the gold-standard instrument in assessing severity of 

obsessive-compulsive symptoms201,209, with the Y-BOCS-II translated and validated 

for other languages other than English39,40.  

Further exploration of the psychometric properties of the Y-BOCS-II is pertinent 

to for several reasons. In fact, to our knowledge, criterion validity of this scale has not 

been previously tested by comparing OCD patients with control samples, such as 

healthy subjects or, most importantly, patients with other similar disorders. Such 

comparisons would be important to define a cut-off value, allowing clinicians to 

establish that obsessive or compulsive symptoms may reflect an OCD diagnosis, 
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rather than symptoms of a mood or anxiety disorder (e.g. rumination in depressive 

disorders and fear or worries in anxiety disorders)210. Furthermore, the underlying 

factor structure of the Y-BOCS-II is still a matter of debate209, with the original 

American and the Thai versions showing a two-factor structure, as described above, 

while the Italian version had a different factor structure, with distinct dimensions38–40. 

Finally, the temporal stability of the Y-BOCS-II has only been tested in short intervals 

(at most 2 weeks) and it is clinically relevant to understand temporal stability for longer 

periods38,39,41. 

Here we explored the psychometric properties of a culturally adapted 

Portuguese translation of the Y-BOCS-II (PYBOCS-II), including internal consistency, 

factor structure, test-retest reliability, convergent validity and divergent validity. 

Importantly, we focused on the scale’s criterion validity, through comparisons of total 

scores between patients with OCD and control subjects, including both healthy 

volunteers and patients with other mood and anxiety disorders, as defined by a gold-

standard instrument for diagnosis of OCD.  

 

2.3. Objectives 

 

2.3.1. Explore the factor structure of the Y-BOCS-II severity scale 

 

2.3.2. Analyze convergent and divergent validity of the Y-BOCS-II 

 

2.3.3. Test criterion-validity of the Y-BOCS-II for the diagnosis of OCD in adults 

 

2.4. Methods 

2.4.1. Participants 

 

The protocol was approved by the Ethics Committee of Champalimaud Centre 

for the Unknown and by the Ethics Committee of Centro Hospitalar Psiquiátrico de 

Lisboa. Eligibility was assessed in 223 participants, recruited in either of the two 

clinical settings. Patients with a clinical diagnosis of OCD (n=60) were referred to the 

study by attending psychiatrists and psychologists, while control patients with other 

psychiatric diagnoses (n=35) were selected randomly from the institutional databases 

at each institution. A convenience sample of 128 healthy community dwelling subjects 

was also recruited at each of the two institutions. Exclusion criteria for all samples 

were: acute medical illness, active neurological disease or clinically significant focal 

structural lesion of the central nervous system; acute episode of neuropsychiatric 

disease requiring hospitalization; history or clinical evidence of chronic psychosis, 

dementia, developmental disorders with low intelligence quotient or any other form of 
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cognitive impairment; current substance or alcohol abuse or dependence; and 

illiteracy or otherwise not understanding the study’s instructions. For all participants 

except those in the OCD sample, current diagnosis of OCD, as assessed by structured 

diagnostic interviews (OCD subscale of the Structured Clinical Interview for the DSM-

IV and MINI Neuropsychiatry Interview), was also an exclusion criterion. For the 

healthy volunteer sample, current or past history of any psychiatric disorder, as 

assessed by the MINI Neuropsychiatry Interview, was an additional exclusion criterion. 

Among the 223 participants that were assessed, 52 OCD patients, 18 patients with 

non-OCD mood or anxiety disorders and 117 healthy participants were eligible for the 

study.  

 

2.4.2. Measures 

2.4.2.1. Y-BOCS-II 

 

The Y-BOCS-II consists of two main components: a 67-item symptom checklist 

and a 10-item severity-scale38. In the symptom checklist, 29 items assess the 

presence of specific obsessions, another 29 items assess the presence of specific 

compulsions, and the remaining nine items assess the presence of avoidance. Each 

item is dichotomously rated for current (i.e., within the past month) and past presence. 

In the severity scale, items assess, for the previous week, time spent with either 

obsessions or compulsions (items 1 and 6 respectively), obsession-free interval (item 

2), resistance to compulsions (item 7), degree of control over either obsessions or 

compulsions (items 3 and 8 respectively), distress associated either with obsessions 

or with the impossibility of performing compulsions (items 4 and 9 respectively), and 

interference from either obsessions or compulsions (items 5 and 10 respectively). 

Avoidance items are considered to assess severity for either item 5, for avoidance 

related obsessions, or item 10 for avoidance related to compulsions. Each of the 10 

items is rated in a 6-point scale (0-5) and 2 subscales are typically considered: an 

obsessions subscale (items 1-5) and a compulsions subscale (items 6-10). A more 

detailed description of the scale is given in the Introduction of this Chapter (section 

2.2). 

The YBOCS-II was not previously validated for use in adult populations 

speaking European Portuguese. To guarantee that linguistic and semantic 

equivalence of the Y-BOCS-II was preserved for use in such populations, we used a 

3-step translation/back-translation method to obtain a Portuguese YBOCS-II 

(PYBOCS-II). For the first step, multiple independent translations from US English into 

European Portuguese, performed separately by four bilingual experts in Psychology 

or Psychiatry of Portuguese dominant language, were obtained, and then joined into 

a single consensus translation by the 4 translators. In the second step, back-

translation of the consensus Portuguese translation back into English was performed 

by two bilingual translators, of English dominant language, that were not involved in 

the original translation. This was followed by comparison of the back-translated 

versions by the original translation team, for creation of a consensus back-translation. 
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In the last step, the consensus back-translation was compared with the original version 

by the initial translation team, and also sent for review and comments by the original 

authors of the Y-BOCS-II. This allowed for adjustments of the consensus Portuguese 

translation, to obtain a refined consensus Portuguese translation of the Y-BOCS-II. 

This version was then discussed among a panel of Portuguese-speaking experts in 

the fields of Psychiatry or Psychology, including but not limited to the original 

translation team, for assessment of face validity and proposal of additional 

adjustments for cultural adaptation. Finally, the scale was applied to a group of 10 

patients suffering from OCD, followed by interviews for qualitative assessment of 

duration, cognitive effort and adequate comprehension of items. Considering the input 

from these patients, the translation was further adapted, and the final version of the 

PY-BOCS was defined. 

 

2.4.2.2. Structured Clinical Interview for the DSM-IV, OCD Subscale (SCID-OCD) 

 

The OCD Subscale of the SCID-IV is a semi-structured interview that allows for 

the diagnosis of current OCD according to DSM-IV criteria211. It has been validated for 

Brazilian Portuguese by Del-Ben and colleagues212 and we adapted this version for 

European Portuguese. The SCID-OCD was used to discriminate between participants 

with and without OCD, for the purpose of criterion validity assessment. 

 

2.4.2.3. MINI Neuropsychiatric Interview 

 

The MINI is a brief structured clinical interview divided into 15 modules213. It 

allows for detection of major depressive disorder (MDD), dysthymia, suicide risk, 

manic and hypomanic episode, panic disorder, agoraphobia, social phobia, 

generalized anxiety disorder (GAD), OCD, post-traumatic stress-disorder, alcohol 

abuse or dependence, substance abuse or dependence, psychotic disorders, 

anorexia nervosa and bulimia nervosa, based on the rapid screening of DSM-IV 

diagnostic criteria. The interview has been translated to European Portuguese by 

Guterres, Levy and Amorim214. We used this version of the MINI to assess comorbidity 

and identify exclusion criteria. 

 

2.4.2.4. Beck Depression Inventory II (BDI-II) 

 

The BDI-II is a 21-item self-report screening instrument that assesses the 

presence of depressive symptoms in the previous 15 days215. Responses are scored 

from 0 (‘absent’) to 3 (‘severe’). It was validated to the Portuguese adult population by 

Campos and Gonçalves216. We used the BDI-II results to assess divergent validity with 

the PY-BOCS-II 

 

 



Chapter 2. Criterion-validity of the Y-BOCS-II for diagnosis of OCD 

56 
 

2.4.2.5. State-Trait Anxiety Inventory (STAI) 

 

The STAI is a widely-used 40 item self-report screening instrument that 

assesses the presence of anxiety symptoms217. It is composed of two subscales: the 

STAI-state and the STAI-trait.  Trait anxiety corresponds to feelings of tension, 

apprehension and increased autonomic activity and is a relatively stable personality 

trait217,218. People with high trait anxiety have a tendency to perceive more situations 

as dangerous or threatening than people who have lower trait anxiety scores. State 

anxiety, on the other hand, fluctuates over time according to the presence of stressors. 

Individuals with high trait anxiety scores also tend to have higher state anxiety 

scores217,218. The scale was validated for use in Portuguese-speaking adults by 

Santos and Silva219. 

 

2.4.2.6. Coimbra Obsessive Inventory (COI - Inventário Obsessivo de Coimbra) 

 

The COI is a self-report scale, developed for the Portuguese population, that 

assesses obsessive and compulsive symptoms through 12 dimensions, namely doubt 

and indecision, intrusive thoughts and covert rituals, magical thinking, slowness and 

repetition, need for control, need for order and symmetry, collection and hoarding, 

religious obsessions and compulsions, somatic obsessions, and obsessive and 

aggressive impulses220. It is subdivided in “frequency” and “emotional distress” 

subscales. The COI score was used to assess convergent validity for the PY-BOCS-

II. 

 

2.4.3. Procedures 

 

In the non-blinded sample, after participants had responded to a global clinical 

questionnaire, instruments were applied in the following order: MINI, SCID-IV, PY-

BOCS-II, BDI, STAI, COI. In the blinded sample, in a first session participants 

responded to the clinical questionnaire and the following instruments were applied, in 

the same order: MINI, SCID-IV, BDI, STAI, COI. In a second session, conducted by 

another researcher who did not have access to the first results, PY-BOCS-II was 

applied. Temporal stability was tested in a subsample of 27 OCD patients and 72 

healthy participants by applying PY-BOCS-II a second time, four weeks after initial 

testing. 

 

2.4.4. Data analysis 

 

Descriptive statistics were calculated for sociodemographic and psychometric 

data, including means and standard deviations, minimum and maximum absolute 

values and percentage. We used independent samples t-tests to compare means 

between groups, except for gender (in which chi-square was used), with two-tailed 

significance values and the alpha-level was set to 0.05. We assessed several 
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psychometric properties of the PY-BOCS-II. To estimate reliability, we analyzed 

internal consistency using Cronbach’s α and temporal stability using Pearson’s 

correlation coefficient. To assess dimensionality, exploratory factor analysis (EFA) 

with principal axis factoring and oblique rotation was performed in the Severity Scale. 

Factor analysis of the Symptom Checklist was not performed due to insufficient 

sample size of the OCD sample (a sample size of 5 to 10 participants per item is 

generally recommended - for 67 items a much larger sample size would be needed)221. 

To assess construct validity, we used Pearson’s correlation coefficient of PY-BOCS-II 

scores with COI scores for convergent validity, and with BDI scores and STAI scores 

for divergent validity. Finally, criterion validity was analyzed by studying the 

relationship between PY-BOCS-II scores and SCID-OCD classification using receiving 

operator characteristic (ROC) curves. Such curves are obtained by plotting the true 

positive rate (i.e. sensitivity) in function of the false positive rate (1-specificity), with 

each point in the curve representing a sensitivity/specificity pair corresponding to each 

possible decision threshold. Here, the area under the curve (AUC) of the ROC curve 

reflects the probability that randomly chosen individual with OCD had a higher PY-

BOCS-II score than a randomly chosen individual without OCD diagnosis (with 

diagnosis defined by the SCID-OCD) The decision threshold, or cut-off value, for OCD 

diagnosis was then chosen according to the ROC curve as the total score that 

maximized sensitivity and specificity over all possible values. 

In the non-blinded sample, after participants had responded to a global clinical 

questionnaire, instruments were applied in the following order: MINI, SCID-IV, PY-

BOCS-II, BDI, STAI, COI. In the blinded sample, in a first session participants 

responded to the clinical questionnaire and the following instruments were applied, in 

the same order: MINI, SCID-IV, BDI, STAI, COI. In a second session, conducted by 

another researcher who did not have access to the first results, PY-BOCS-II was 

applied. Temporal stability was tested in a subsample of 27 OCD patients and 72 

healthy participants by applying PY-BOCS-II a second time, four weeks after initial 

testing. 

 

2.5. Results 

2.5.1. Descriptive statistics 

 

Sociodemographic data and mean scores of all psychometric instruments are 

presented in Table 1. While the control group was slightly younger than the OCD 

group, there were no significant differences in gender or education between samples. 

In the OCD sample, the most common comorbid diagnoses were MDD (38%), GAD 

(17%), prior MDD (15%), panic disorder (15%) and social phobia (12%). In the mood 

and anxiety disorders sample, the diagnoses were MDD (61%), GAD (39%), prior 

MDD (28%), past manic or hypomanic episode (22%), panic disorder (17%) and 

dysthymia (11%).  
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Table 1. Sociodemographic and psychometric data from each sample. 

 
For all variables, mean and standard deviation are shown, except for gender (presented as 

percentage of males). Differences were tested using chi-square for gender and independent 

samples t-test for the other variables (p-values displayed). OCD, Obsessive-compulsive 

disorder; Y-BOCS-II, Yale-Brown Obsessive-Compulsive Scale-II; BDI-II, Beck Depression 

Inventory-II; STAI, State-Trait Anxiety Inventory; COI, Coimbra Obsessive Inventory. 

 

 

Descriptive statistics of individual PY-BOCS-II Severity Scale items in the OCD 

sample are presented in Table 2. The PY-BOCS-II total score had a weak positive 

correlation with age (r=.28) when considering all participants, but in OCD patients this 

correlation was non-significant. Also, across all participants, there were no statistically 

significant differences between genders in any of the psychometric measures (t<1.23; 

p>0.21), and the correlations with education were either non-significant (for the PY-

BOCS-II total score) or weak (r<0.3 for all other psychometric measures). 

 

Table 2. Individual Y-BOCS-II item summaries for the OCD sample. 

 
For each item of the Y-BOCS-II, the mean, standard deviation and the percentage of 

endorsement for each possible item score (range 0-5) is displayed. OCD, Obsessive-

compulsive disorder; Y-BOCS-II, Yale-Brown Obsessive-Compulsive Scale-II; SD, Standard 

deviation; comp, compulsions; Sk, Skewness; Ku, Kurtosis; Item-total corr, Item-total 

correlation; α if deleted, Cronbach’s α if item is deleted. 
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2.5.2. Reliability 

 

A Cronbach’s alpha of 0.96 was obtained for the PY-BOCS-II severity scale, 

demonstrating robust internal consistency. A slightly lower value (0.94) was found for 

both the Obsessive subscale and Compulsive subscales, when tested separately. 

Furthermore, Cronbach’s alpha remained stable with removal of any item from the 

scale (0.96 for all items), and corrected item-total correlations were in the range 

between 0.8 (item 4) and 0.87 (item 9). 

 

Regarding temporal stability, assessed in 99 participants in the global sample, 

a Pearson’s r of 0.94 (p<0.001) was obtained for the correlation of PY-BOCS-II total 

score at the first application and the same score 30 days later. When considering only 

the OCD sample (n=27), test-retest reliability was slightly higher (r=0.95, p<0.001). 

Finally, the temporal stability of the Obsessive subscale was higher than the temporal 

stability of the Compulsive subscale, both when considering all participants (r=0.94 vs. 

r=0.89 respectively) or only OCD patients (r=0.92 vs. r=0.84 respectively).  

 

2.5.3. Dimensionality  

 

We conducted exploratory factor analysis using principal axis factoring with 

promax rotation in the OCD sample. The Kaiser-Meier-Olkin measure of sample 

adequacy was 0.836, above the recommended value of 0.6, and the Bartlett’s test of 

sphericity was significant (Χ2
(45) = 265.75, p<0.001). Two factors with eigenvalues > 1 

were obtained (eigenvalues of 5.05 for the first factor and 1.47 for the second factor) 

and this two-factor solution was consistent with the deflection of the scree plot (Fig. 

11). The pattern matrix revealed that items 6-10 had higher loadings on factor 1 (all > 

0.4) and items 1-5 on factor 2. Item 3 had relatively small loadings on both factors, 

although with slightly higher loading on factor 2. The correlation between factor 1 and 

factor 2 was 0.55.  

 

 
Figure 11. Scree plot (exploratory factor analysis) and pattern matrix for Y-BOCS-II 

factors in the OCD sample. In the pattern matrix, standardized weights of a regression 
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analysis in which item responses are predicted from their levels of the underlying factors are 

represented. Factor loadings above 0.4 or highest factor loading shown in bold. 

 

2.5.4. Construct Validity 

 

Measures for construct validity, using correlations between the PY-BOCS-II 

and several self-report psychometric measures, are shown in Table 3. For convergent 

validity, we found a significant and strong correlation between the PY-BOCS-II total 

score and the score for a self-report obsessive-compulsive inventory (COI) r=0.67, 

p<0.001), with similar correlations with each of the COI subscales (r=0.67 for the 

frequency subscale and r = 0.66 for the emotional distress subscale, both with 

p<0.001). For divergent validity, the correlations between the Y-BOCS-II total score 

and the STAI-state scores was only moderate (r=0.43, p<0.001), higher, but still 

moderate, for the BDI score (r=0.57, p<0.001), and strong for the STAI-trait (r=0.68, 

p<0.001). Furthermore, the PY-BOCS-II Compulsions subscale had lower correlation 

with BDI and both STAI scores than the Obsessions subscale (Table 3) suggesting a 

better divergent validity for the Compulsions subscale. 

 

Table 3. Correlations between psychometric measures and Y-BOCS-II partial and total 

score in all participants. 

 
Pearson’s product moment correlation coefficient used as correlation measure. All correlations 

are highly significant (p’s < 0.001). Y-BOCS-II, Yale-Brown Obsessive-Compulsive Scale-II; 

COI, Coimbra Obsessive Inventory; BDI-II, Beck Depression Inventory-II; STAI, State-Trait 

Anxiety Inventory 

 

2.5.5. Criterion validity 

 

To assess criterion validity, we created Receiver Operating Characteristic 

(ROC) curves (Fig. 12), using the SCID-OCD as the discriminator between participants 

with OCD (n=35) and controls (n=135; Fig. 12 left panel). An area under the curve 

(AUC) of 0.96 (95% Confidence interval [95% CI]: 0.92, 0.99) was obtained, and 

further analyses of the ROC curve values showed that a PY-BOCS-II total score of 13 

points, when used as a cut-off for diagnosis, correctly identifies OCD with a sensitivity 

of 85% and a specificity of 97% (table 4).  
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Figure 12. ROC curves for use of the Y-BOCS-II to identify OCD.  

Plot of the true positive rate (1—specificity) against the false positive rate (sensitivity) for the 

different possible cut-offs of the Y-BOCS-II using the SCID-OCD as the diagnostic instrument. 

In the left panel, all participants were considered. In the middle panel, OCD and age-, gender-

, and education-matched controls (balanced mixture of healthy subjects and patients with 

mood and anxiety disorders) are considered. In the right panel, patients who completed a 

blinded assessment are considered. ROC, Receiver operating characteristic; Y-BOCS-II, 

Yale-Brown Obsessive-Compulsive Scale-II; OCD, Obsessive-compulsive disorder; AUC, 

Area under the curve. 

 

Table 4. Coordinates for the ROC curve of the Y-BOCS-II using all participants 
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To further explore the discriminatory capacity of the Y-BOCS-II, a similar 

analysis was performed comparing the OCD sample with a group of age-, gender- and 

education matched controls (frequency-matched balanced mixture of healthy subjects 

and patients with mood and anxiety disorders; Fig. 12 middle panel). The AUC was 

similar (AUC=0.95; 95% CI: 0.91, 0.99) and a total score cut-off of 13 points remained 

optimal, with sensitivity of 85% and specificity of 96%. Importantly, the same analyses 

were repeated in data from a subgroup of patients with either OCD (n=20) or other 

mood and anxiety disorders (n=18), for whom PY-BOCS-II was applied by a 

researcher blinded to diagnosis and to the results of other psychometric tests. In this 

group (Fig. 12 right panel), AUC was only slightly lower (AUC=0.93; 95% CI: 0.84, 1) 

and the 13-point cut-off resulted in sensitivity of 90%, and specificity of 94%, in 

diagnosis of OCD. 

 

2.6. Discussion 

 

Here, we have translated and successfully validated the Y-BOCS-II for the 

Portuguese adult population. A translated and culturally adapted version of the scale 

had excellent reliability and was valid for assessment of the severity of obsessive-

compulsive symptoms. Our results further supported a two-factor structure for the 

scale, consistent with the obsessions and compulsions subscales proposed by the 

original authors. Importantly, and addressing the main objective of this study, we have 

demonstrated, to the best of our knowledge for the first time, that the YBOCS-II 

adequately discriminates between OCD and non-OCD patients, and that a cut-off of 

13 points for the Y-BOCS-II total score has excellent sensitivity and specificity. 

Our results on reliability of the PY-BOCS-II are in line with the studies that have 

previously assessed the psychometric properties of this scale. Storch and colleagues 

found strong internal consistency (Cronbach’s alpha = 0.89), similar to what was 

described later for the Thai (0.94) and Italian (0.83) versions of the scale38–40. 

Regarding test-retest reliability, high values were reported  in the original description 

of the psychometric properties of the scale (Intraclass correlation [ICC] > 0.85), as well 

as for the Italian version (ICC = 0.74), while the Thai version did not assess this 

psychometric dimension38–40. Recently, psychometric properties of the original 

American version of the Y-BOCS-II were retested, with findings of good internal 

consistency (Cronbach’s alpha = 0.86), acceptable test-retest reliability (r = 0.64-0.81) 

and excellent inter-rater reliability (ICC 0.97-0.99)41. Our findings for internal 

consistency (Cronbach’s alpha = 0.96) and test-retest reliability (r = 0.94-0.95) are in 

the upper range of prior studies, suggesting that the process of translation and cultural 

adaptation was successful. Furthermore, other authors have suggested that temporal 

stability be tested with longer test-retest intervals than 2 weeks38,39,41. Ours is, to our 

knowledge, the first study to demonstrate stability of test scores after 4 weeks. 

Regarding dimensionality, and due to lack of consensus regarding the factor 

structure of the Y-BOCS-II, we decided to perform an exploratory factor analysis (EFA) 

rather than a confirmatory factory analysis (CFA), as was common in previous studies. 
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While,  in general terms, our results replicate previous findings of a two-factor solution 

corresponding to obsessions and compulsions, there a few subtle but noteworthy 

differences38,40. Specifically, for the original and Thai versions of the task, interference 

from obsessions (item 5) had high loadings (>.4) on both factors, with the authors of 

the Thai version also reporting higher loadings of distress associated with obsessions 

(item 4) on the compulsions factor than the obsessions factor40. Loadings in our data 

were more clearly distributed between the two factors, with the first five items mainly 

loading on a factor that is consistent with an Obsessive dimension, and the last five 

items loading mainly on the second factor, consistent with a Compulsive dimension. 

Unexpectedly, item 3 (“control over obsessions”) loaded similarly on both factors, 

possibly because a subset of patients may feel that their level of control over 

obsessions is dependent on the frequency and severity of compulsions. Importantly, 

our results are in marked contrast with those for the Italian version of the scale,  which 

revealed a “symptom severity” factor (items 1-4 and 6-9) and “interference from 

symptoms in daily life” factor (items 5 and 10)39. It is unclear whether these differences 

in factor structure reflect true cultural differences across different countries with 

respect to the presentation of OCD, or are merely due to methodological differences, 

namely regarding sample size.  

With regards to convergent validity, the PY-BOCS-II showed a correlation of 

0.67 with self-reported obsessive-compulsive symptom scores in the COI. This 

correlation was observed even though a high score in the COI reflects a high number 

of different symptoms causing distress, but not necessarily the severity of individual 

symptoms26,222, while the Y-BOCS-II measures severity of OCD symptoms regardless 

of the number of different symptoms. Other authors have found low to moderate 

correlations between Y-BOCS-II scores and scores on self-reported OCD symptom 

assessment tools such as  the Obsessive-Compulsive Inventory-Revised (OCI-R), 

while correlations with clinician-rated obsessive-compulsive symptom scales such as 

the National Institute of Mental Health Global Obsessive Compulsive Scale are 

stronger (e.g., r=.85)38.  Assessing convergent validity against a clinician-rated scale 

would thus, in all likelihood, have yielded a more robust correlation for the P-Y-BOCS-

II. For divergent validity, the PY-BOCS-II total score showed a moderate correlation 

with both depression and state-anxiety scores, and a strong correlation with trait-

anxiety scores.  This observation replicates the findings of previous studies on the 

psychometric properties of the Y-BOCS, that also found weak correlations with self-

reported measure of anxiety and moderate to strong correlations with self-reported 

measures of depression such as  the Inventory of Depressive Symptomatology – Self-

Report (r=.35)38,  the Patient Healthy Questionnaire (r=.45)40, the BDI (r=.40)39. , or 

the Depression Anxiety Stress Scale – Depression subscale (r=.41)41. Together, the 

currently available data suggests that divergent validity regarding depression 

symptoms is, at best, only moderate. This was also a problem with the first edition of 

the Y-BOCS, and may be related to the high co-morbidity between OCD and major 

depressive disorder (MDD), which may be as high as 50%223–225. As to the robust 

correlation between the PY-BOCS-II and STAI-trait anxiety, it may simply reflect the 

fact that patients with more severe OCD tend to have higher levels of longstanding 
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comorbid anxiety, rather than a true limitation in the scale’s ability to discriminate 

between these two dimensions  

Our findings of higher correlations with self-reported depression and anxiety 

symptoms in the Obsessive subscale than in the Compulsion subscale suggest that 

the latter may have better divergent validity. This finding is in line with the results from 

Storch and colleagues. In their study, the Y-BOCS-II Compulsion subscale had higher 

correlations with the NIMH-GOCS and with the OCI-R and lower correlations with the 

PSWQ and with the IDS-SR when compared with the Obsessions subscale38. For the 

Thai version of the Y-BOCS-II, the correlations of subscales with depressive 

symptoms were non-significant and in the Italian version such were not presented39,40. 

This finding is particularly interesting because it could suggest higher tendency for 

obsessions than for compulsions in patients with comorbid OCD and MDD and higher 

tendency for compulsions in patients with OCD only. 

The main objective of this chapter, however, was to clarify criterion validity for 

this scale. AUC of the ROC curves demonstrated that the Y-BOCS is accurate in 

discriminating between patients with OCD and other without the disorder. To our 

knowledge, this is the first study exploring criterion-related validity of the Y-BOCS-II in 

OCD patients, healthy controls and in patients with other psychiatric disorders. The 

cut-off value that we propose (13) is in line with previous findings using the first edition 

of the Y-BOCS206. Using that first version, Farris and colleagues have shown that a 

posttreatment YBOCS score of ≤ 14 was the best predictor of symptom remission and 

that a posttreatment YBOCS score of  ≤ 12 was the best predictor of wellness (defined 

as symptom remission, good quality of life and high level of adaptive functioning)206. 

However, it is important to note that this study focused on treatment response and that 

while the first edition of the YBOCS has an upper limit of 40 points, the upper limit of 

Y-BOCS-II is 50 points. Nonetheless, the cut-off we propose can be useful from a 

diagnostic perspective, because clinicians often assess patients with obsession-like 

ideas or compulsive-like behaviors, which may or may not suffer from OCD. 

Nevertheless, our study is not free of limitations. Regarding validation of the 

PY-BOCS-II, information about inter-rater reliability would be reassuring. However, all 

previous studies of psychometric measures of the Y-BOCS-II which have performed 

this analysis have found excellent inter-rater reliability38,39,41. Furthermore, it would 

have been desirable to have a control group without significant differences in age, 

particularly considering the weak positive correlations with age across all psychometric 

instruments used. However, the Y-BOCS-II had the weakest correlations with age and, 

in the OCD group, the correlation between Y-BOCS-II and age was non-significant. 

Nevertheless, to eliminate any potential effects of such differences in the ROC curves, 

we selected a sample of age-, gender- and education-matched controls and repeated 

our main analysis only with this group, obtaining confirmation of our previous results. 

Also, in a subsample of individuals (32 OCD participants), raters were not blind to 

diagnosis, which could lead to criterion contamination. To account for this potential 

limitation, we also created ROC curves using only the subset of OCD and non-OCD 

patients that were assessed in a blinded fashion. While the number of participants 

included in this analysis was lower, the results obtained were very similar to the 
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remaining ROC curves thus validating our findings. In the future it could be important 

to repeat this specific analysis using larger OCD and non-OCD clinical samples. The 

use of the SCID-OCD as a diagnostic instrument can also be considered a limitation 

because it has never been validated for the Portuguese population. However, it has 

been validated for Brazilian Portuguese and the adaptation to European Portuguese 

was very straightforward. It is also important to acknowledge that Hoarding Disorder, 

which was part of OCD in DSM-IV, is considered a separate disorder in DSM-5. 

However, none of the participants included in this study presented exclusively 

hoarding symptoms (Y-BOCS Symptom Checklist items 26 and 46). Finally, future 

studies could address the properties of the Y-BOCS-II regarding classification of 

treatment sensitivity, as has been done for the first version of the scale. 

In conclusion, we have successfully translated and validated the Y-BOCS-II for 

use in the Portuguese adult population, showing that the Portuguese version of the Y-

BOCS-II maintains the psychometric properties of the original version in evaluating the 

severity of obsessive-compulsive symptoms. Using this version of the task we have 

also, for the first time, assessed criterion validity of the Y-BOCS-II, by exploring the its 

capacity to distinguish between patients with OCD and subjects in several clinical and 

non-clinical groups, using both a blinded and a non-blinded design. Our results 

suggest that a Y-BOCS-II total score cut-off of 13 has good sensitivity and excellent 

specificity in identifying OCD. However, we also found problems in divergent validity 

with symptoms of depression and anxiety, as previously described by others. 
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Chapter 3. Application of a new sequential decision task in 

healthy and clinical populations 

3.1. Abstract 

 

Multi-step decision tasks have emerged as an influential tool to investigate 

reinforcement learning (RL) in humans, and to assess associations between RL and 

certain behavioral disorders, such as obsessive-compulsive disorder (OCD), where 

deficits in model-based RL have been described. Prior to performing these tasks, 

subjects typically receive detailed information about task structure. Thus, it remains 

unclear how different RL systems contribute when subjects learn exclusively from 

experience, and how explicit information about task structure modifies RL strategy. To 

address these questions, we created a two-step task requiring minimal prior 

instruction, and assessed performance both prior to and after providing explicit 

information on task structure, in healthy volunteers, patients with OCD and patients 

with other mood and anxiety disorders. Initially, model-free control dominated, with 

model-based control emerging only in a minority of subjects after significant task 

experience, and not at all in patients with OCD or patients with mood and anxiety 

disorders. However, once explicit information about task structure was provided, a 

dramatic increase in the use of model-based RL was observed, similarly across 

healthy volunteers and both patient groups, including OCD. Importantly, only in 

patients with OCD, model-free strength RL increased with uninstructed experience 

and was not significantly changed by the debriefing, contrary to the remaining groups. 

Additionally, in all groups, after instructions, model-free action value updates were 

influenced more by state values and less by trial outcomes, and, in healthy volunteers, 

subject choices became more perseverative, consistent with changes in exploration 

strategy. Our results suggest that, in domains where humans lack prior knowledge, 

model-free RL predominates in sequential decision problems, particularly among 

patients with OCD, and that given specific task information, model-based RL emerges 

in healthy volunteers as well as patients with several psychiatric disorders, including 

OCD. 

 

3.2. Introduction 

 

Within psychology and neuroscience, it is thought that the brain uses multiple 

systems to choose which actions to perform125,129,132,170,226,227.  One widely held 

distinction is made between goal-directed and habitual actions, the former mediated 

by predictions of the specific outcomes of each action, and the latter induced 

automatically by specific stimuli or states123–126. This cognitive and behavioral 

classification of actions is thought to correspond, at least in part, to a computational 

distinction between two different types of reinforcement learning (RL) algorithms 

designated respectively as model-based and model-free132,167,170,181. Model-based RL 
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learns the state-action-state transition structure of the environment, allowing 

behavioral trajectories to be simulated. The value, i.e. long run utility, of different 

actions can be evaluated online using this model in conjunction with the learned 

immediate rewards available in each state. This allows for statistically efficient use of 

experience and behavioral flexibility, at the cost of the computational demands of 

planning. Model-free RL by contrast, maintains trial-and-error estimates of the value 

of each state or action, and updates these based on reward prediction errors. Model-

free RL supports rapid action selection at low computational cost, but uses experience 

less efficiently, hence taking longer to adapt to changes in the environment. It is 

thought that the brain takes advantage of the complementary strengths of both 

approaches through metacognitive mechanisms which estimate whether the payoff for 

more accurate prediction is worth the computational costs of planning170,183,228. 

Multi-step decision tasks have emerged as a powerful approach to identify 

model-based and model-free RL in humans180–183. In such tasks, subjects move 

through a sequence of states to obtain rewards, typically with non-stationary reward 

or transition probabilities, forcing ongoing learning. The contribution of model-based 

and model-free RL are assessed by looking at the granular pattern of how subjects 

update their choices in light of recent experience. The most popular such task is the 

‘two-step’ task, employing a choice between two actions which lead probabilistically to 

two states where rewards may be obtained181. Each action commonly leads to one of 

the states but, on a minority of trials, may alternatively lead to the state commonly 

reached by the other action. In this task, model-based and model-free RL are identified 

according to how the trial outcome (rewarded or not) and state transition (common or 

rare) interact to affect the subsequent choice. Under model-free control, the agent will 

tend to repeat first-step choices that are followed by reward, irrespective of the state 

transition. In contrast, under model-based control, while the agent will behave similarly 

after common state transitions, the opposite behavior should be observed following 

rare transitions, i.e., changing the first-step choice if a reward was obtained and 

repeating the first-step choice if a reward was not obtained. The two-step task has 

been used to study neural correlates of model-based and model-free control in healthy 

subjects181,187,188,190–192,229–234, and to investigate decision making in clinical 

populations185,186,235–237, typically integrating the balance between model-based and 

model-free control into a single weighting parameter. 

As in most human decision tasks, subjects performing the two-step task receive 

extensive prior instruction about task structure. Although there is an extensive prior 

literature showing that instruction profoundly shapes human behavior in operant193–195 

and fear196,197 conditioning, as well as value-based decision making198–200, instruction 

effects have not been explored in multi-step tasks where model-based and model-free 

control can be dissociated.  It therefore remains unclear how these different RL 

mechanisms contribute to action selection in situations where subjects must learn task 

structure directly from experience, and how providing explicit information about task 

structure modifies each system.  

To address these questions, we created a modified version of the two-step task, 

requiring minimal prior instruction, that was initially applied with no prior information 
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about the task state space, transition structure, or reward probabilities, and then 

repeated following debriefing about these elements of the task structure. Behavior in 

this task was tested in healthy volunteers as well as in a sample of patients with OCD, 

previously reported to have deficits in model-based RL235,237 (Fig. 12), to control for 

the effects of psychotropic medication and the effects of unspecific mood and anxiety 

symptoms, in a sample of patients with other mood and anxiety disorders.  

 

3.3. Objectives 

 

3.3.1. Develop a new sequential decision task which allows to isolate instructed 

and uninstructed RL strategies 

 

3.3.2. Explore the effects of experience and the effects of explicit knowledge on 

model-based and model-free control in healthy subjects 

 

3.3.3. Assess model-based and model-free RL strategies in OCD patients in 

uninstructed and instructed sequential action choice 

 

3.4. Results 

 

3.4.1. Model-based control develops with task experience 

 

One-hundred and eight healthy volunteers were recruited both in Lisbon and 

NY to characterize behavior in the reduced two-step task. Sociodemographic and 

psychometric data from these individuals are shown in table 5.  

 

Table 5. Sociodemographic data and results from psychometric scales and 

neuropsychological tests. 

 

a only in Lisbon sample; b only in New York sample; YBOCS-II = Yale-Brown Obsessive-

Compulsive Scale-II; STAI = State-Trait Anxiety Inventory; BDI-II = Beck Depression 

Inventory-II 
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Two slightly different versions of the task were tested as described in figure 13. 

Healthy volunteers in Lisbon were randomized between the Fixed version (n=40) and 

the Changing version (n=42), while in NY only the former was applied (n=27). In either 

version of the task, participants performed 1200 trials on a single day, divided in 4 

sessions of 300 trials each. Analysis of behavior at reward probability side-reversals, 

namely the pre-reversal fraction of correct first-step choices and exponential fit of post-

reversal first-step choice change (see Fig. 13C), were used to assess overall task 

performance (see methods for details). Assessment of reinforcement learning strategy 

(model-based vs. model-free), however, was performed according to stay-probability 

analysis, in addition to fitting reinforcement learning models to observed behavior. For 

stay-probability analysis, the effect of events on one trial, in particular the outcome 

(rewarded vs. non-rewarded) and the transition probability from first-step action to 

second step state (common vs. rare; see Fig. 13B), on the subsequent first-step choice 

are quantified (see methods for details). In the original two-step task, since transition 

probabilities are fixed and also explained and demonstrated to participants before the 

task starts, it is typically assumed that estimates of these transition probabilities are 

not updated online in response to the experienced state transitions181. In the current 

task, this is somewhat modified, since participants have no prior information about 

transition probabilities and must learn them online from experienced state transitions. 

Model-based RL is classically associated with an interaction between transition and 

outcome, because a model-based agent understands that outcomes following rare 

transitions should primarily influence the value of the alternate first-step choice, 

commonly leading to the state where that outcome was received181,238. Furthermore, 

we have previously shown that, in simulations of the behavior of a model-based agent, 

when transition probability estimates are updated based on experienced state 

transitions, a multivariate analysis of stay probability demonstrates loading on a 

transition parameter (i.e. common transitions promote repetition of the same choice) 

in addition to the transition-outcome interaction parameter238.  
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Figure 13. Reduced two-step task structure. 

The task was performed on a computer interface with 4 circles visible on a grey screen: 2 

central circles (upper and lower) and two side circles (right and left). Each circle was colored 

yellow when available for selection, and black when unavailable, and could be selected by 

pressing the corresponding arrow key (up, down, left or right) on the computer keyboard. A) 

Trial events: Each trial started with the central circles turning yellow, prompting the choice 

between either upper or lower circle (a1). This choice caused one of the side circles (left or 

right) to become yellow (a2), with differing probabilities (see b). The subject should then select 

the yellow side circle resulting in probabilistic monetary reward.  A reward was indicated by 

the side circle changing to the image of a coin (a3) while no reward was indicated by the circle 

changing back to black colour (see C). B) Transition probabilities: At each trial, choosing one 

circle (e.g., upper) commonly [p=0.8] lit up one side circle and rarely [p=0.2] the other side 

circle, with inverse probabilities for choosing the alternate circle (e.g., lower). The transition 

probabilities were fixed (either A or B, counterbalanced across subjects) in the Fixed version 

of the task, or underwent reversals from A to B in the Changing version (see methods for 

details). C) Reward probability blocks: The reward probabilities (p) upon selection of the side 

circles changed in blocks that were either neutral  [p=0.4 for both left and right sides], or higher 

on one of the sides (p=0.8 vs p=0.2, i.e., non-neutral blocks), Non-neutral blocks ended when 

subjects consistently chose the first-step option (upper or lower) that most frequently lead to 

the high reward probability side. Neutral blocks ended probabilistically, independent of 

subjects’ behavior (see methods for details). To maximize reward rate subjects must choose 

the first step action which commonly leads to the second-step state with higher reward 

probability, tracking the best option across reward-probability reversals. 

 

 

We first assessed learning effects in the task with fixed transition probabilities 

(Fixed task) by comparing behavior between the first and third sessions (Fig. 14).  

Overall task performance, as assessed by reward probability reversal analysis, while 

indicative of appropriate performance, did not improve significantly between sessions 

1 and 3, regarding both the pre-reversal fraction of correct choices (session 1: 0.74, 

session 3: 0.72, P=0.63) and the exponential fit time constant of the post-reversal first-

step choice change (session 1: 24.8, session 3: 15.8, P=0.16; Fig. 14A).  However, 
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stay probability analysis revealed change between sessions 1 and 3 (Fig. 14B), with 

an increased influence of both transition (common vs rare; P=0.004) and transition-

outcome interaction (P=0.002), but only a trend towards evidence of a change in the 

influence of outcome (rewarded vs. non-rewarded; P=0.06) (Fig. 14 C). These 

changes are consistent with increased influence of model-based RL on decision-

making, from sessions 1 to 3. Importantly, we also found a significant correlation 

between use of model-based RL, as assessed by loading on the transition–outcome 

interaction parameter across sessions 1 to 3, and the number of rewards obtained in 

the same sessions (rho=0.7, P<0.001; Fig. 14D). 

Fitting of reinforcement learning (RL) models to observed behavior across 

sessions 1 to 3 was then performed, Model-comparison indicated that a mixture model 

including model-free and model-based components fit the data better than a purely 

model-free or purely model-based model, as reflected by lower Bayesian Information 

Criteria (BIC) scores (Fig. 14E, left panel). Furthermore, models which included a 

“bias” parameter, capturing bias towards the upper or lower first-step choice, and a 

“perseveration” parameter, capturing a tendency to repeat the previous choice, fit the 

data better than a model not including these parameters (Fig. 14E, right panel).  We 

also compared parameter values of the fitted models for sessions 1 and 3 (Fig. 14F).  

The value learning rate increased significantly between session 1 and 3 (P=0.04), but 

no other parameters changed significantly. The discrepancy with increased influence 

of model-based RL across time as assessed by stay-probability analysis likely reflects 

lower statistical power to detect strategy changes in the strongly non-linear and higher 

parameter count RL models.  Heterogeneity of behavior across subjects, as is evident 

in the very wide range of value learning rates exhibited across subjects, likely also 

reduces the ability of the RL model to capture changes due to learning. 
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Figure 14. Learning effects in the fixed (transition probabilities) version of the reduced 

two-step task. 

A) First-step choice trajectories around reversals. In this and other panels, blue indicates 

session 1 while red indicates session 3. Solid lines show cross-subject mean trajectory, while 

dashed lines show exponential fits to the average trajectories.  Confidence regions (mean ± 

across subject standard error) are represented by shaded areas.  B) Stay probability analysis 

showing the probability of repeating the first step choice on the next trial as a function of trial 

outcome (rewarded or not rewarded) and state transition (common or rare). Error bars indicate 

across subject standard error (SEM). The left panel shows data from session 1, the right panel 

from session 3.  C) Logistic regression analysis of how the outcome (rewarded or not), 

transition (common or rare) and their interaction, predict the probability of repeating the same 

choice on the subsequent trial. Positive loading on the ‘outcome’ predictor indicates a 

tendency to repeat rewarded choices, while the ‘transition’ predictor reflects a tendency to 

repeat choices followed by common transitions, and the ‘transition x outcome’ interaction 

predictor indicates a tendency to repeat choices that were rewarded following a common 

transition, or that were not rewarded following a rare transition. Dots indicate maximum a 

posteriori parameter values for individual subjects, while bars indicate the population mean 

and 95% confidence interval of the mean. Statistical significance of differences in factor 

loadings for each predictor between session 1 (blue) and 3 (red) was assessed using 
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permutation tests.  D) Scatter plot showing the relationship between model-based RL across 

sessions 1, 2 and 3, as captured by mean loading in the “transition x outcome” predictor, and 

the mean number of rewards per trial in the same sessions. Correlations were assessed using 

Spearman’s rank correlation coefficient.  E) Bayesian Information Criteria (BIC) model 

comparison for sessions 1-3.  Left panel, comparison of model-based (MB), model-free (MF) 

and MB-MF mixture (Mix) models.  Right panel, comparison of mixture model with bias 

parameter, perseveration parameter, and bias + perseveration parameters.   F) Comparison 

of mixture model fits between session 1 and session 3.  Dots and bars are represented as in 

panel C. RL model parameters: MF: Model-free strength, MB: Model-based strength, αQ: 

Value learning rate, λ: Eligibility trace, αT: Transition prob. learning rate, bias: Choice bias, 

pers.: Choice perseveration. In all figures significant differences are indicated as: * P<0.05, ** 

P<0.01, *** P<0.001. 

 

In the version of the task where the transition probabilities underwent reversals 

(Changing task, Fig. 15), behavior also revealed appropriate overall task performance 

that did not improve between sessions 1 and 3, regarding both the pre-reversal fraction 

of correct choices (session 1: 0.77, session 3: 0.76, P=0.98) and the exponential fit 

time constant of the post-reversal first-step choice change (session 1: 22.8, session 

3: 14.0, P=0.3; Fig. 15A). However, stay-probability analysis did not show increased 

influence of transition and transition-outcome interaction as observed in the Fixed task 

(P=0.2 for both), but rather an increased influence of trial outcome (P=0.01), previously 

associated with a model-free direct reinforcement strategy181,238(Fig. 15B,C). In 

accordance with results in the Fixed task, there was a significant correlation between 

loading on the transition–outcome interaction parameter and the number of rewards 

obtained (rho=0.4, P<0.01; Fig. 15D). Model comparison indicated that the mixture 

and model-free RL models fitted the data much better than the model-based-only 

model, and that the difference in BIC scores between the mixture model and model-

free-only model was negligible (ΔiBIC = 3; Fig. 15E left panel). Similarly to the Fixed 

task, the model including both “bias” and “perseveration” parameters fit the data better 

than a model lacking these parameters (Fig. 15E, right panel).  For consistency with 

analyses of the Fixed task, we used the mixture model to look for differences in 

behavior between sessions 1 and 3, but found no significant change in model 

parameters (Fig. 15F). 
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Figure 15. Learning effects in the changing (transition probabilities) version of the 

reduced two-step task. 

A) Mean first-step choice trajectories around reversals.  In this and all panels, blue indicates 

session 1 while red indicates session 3. Dashed lines show exponential curves fitted to the 

average trajectories to obtain estimates of the time-course of learning following reversals.  

Confidence regions (mean ± cross subject standard error) are represented by shaded areas.  

B) Stay probability analysis showing the probability of repeating the first step choice on the 

next trial as a function of trial outcome (rewarded or not rewarded) and state transition 

(common or rare). Error bars indicate the cross subject standard error (SEM). The left panel 

shows data from the first session, the right panel shows data from session 3.  C) Logistic 

regression analysis of how the outcome (rewarded or not), transition (common or rare) and 

their interaction, predict the probability of repeating the same choice on the subsequent trial. 

Positive loading on the ‘outcome’ predictor indicates a tendency to repeat rewarded choices. 

Positive loading on the ‘transition’ predictor reflects a tendency to repeat choices followed by 

common transitions. Positive loading on the ‘transition x outcome’ interaction predictor 

indicates a tendency to repeat choices that were rewarded following a common transition, or 

that were not rewarded following a rare transition. Dots indicate maximum a posteriori loadings 

for individual subjects, bars indicate the population mean and 95% confidence interval on the 

mean. Statistical significance of differences in factor loadings for each predictor between 



Chapter 3. Application of a new sequential decision task in healthy and clinical populations 

76 
 

session 1 (blue) and 3 (red) were evaluated using permutation tests.  D) Scatter plot showing 

the relationship between model-based RL (captured by mean loading in the “transition x 

outcome” predictor across sessions 1, 2 and 3) and the mean number of rewards per trial (in 

the same sessions). Correlations were assessed using Spearman’s rank correlation 

coefficient.  E) Bayesian Information Criteria (BIC) model comparison for sessions 1-3.  Left 

panel, comparison of model-based (MB), model-free (MF) and mixture (MF+MB) models.  

Right panel, comparison of mixture model with bias parameter, perseveration parameter, and 

bias + perseveration parameters.   F) Comparison of mixture model fits between session 1 

and session 3. RL model parameters:  αQ: Value learning rate, λ: Eligibility trace, αT: 

Transition prob. learning rate, MF: Model-free strength, MB: Model-based strength, bias: 

Choice bias, pers.: Choice perseveration.   

 

 

3.4.2. Explicit knowledge affects both model-based and model-free control. 

 

We next assessed how providing explicit information about the task’s structure 

changed subjects’ behavior, by comparing behavior in sessions 3 and 4 both in a group 

that did and a group that did not receive debriefing about task structure after session 

3.  To avoid ceiling effects in subjects who already understood the task well, these 

analyses only included subjects for whom a likelihood ratio test indicated model-based 

RL was not being used significantly in session 3 (57 of 67 subjects for the Fixed task; 

Fig. 16A, F).  

In the Fixed task, debriefing dramatically increased the number of subjects 

identified by a likelihood-ratio test as using model-based RL in session 4 (21/41 

subjects in debriefing group, 1/16 subjects in no-debriefing group; z = 3.13, P=0.002, 

z-test for difference in proportions; Fig. 16A, F).  Subjects in the debriefing group 

adapted faster to reversals following debriefing (P<0.001, Fig. 16B), an effect that was 

not found in the no-debriefing group (P=0.4, Fig. 16G), even though the session by 

group interaction did not reach significance (P=0.4). Debriefing also strongly affected 

how events on one trial influenced the subsequent choice (Fig. 16C, D, H, I), with 

increased influence of state transition (P<0.001; session by group interaction P=0.03) 

and transition-outcome interaction (P<0.001; session by group interaction P=0.01) on 

stay probability, consistent with increased use of model-based RL following the 

debriefing. RL mixture model fits of the pre and post debriefing data (Fig. 16E, J) 

indicated that, consistent with regression analysis, the influence of model-based action 

values on choice was increased by debriefing (P<0.001; session by group interaction 

P=0.01).  Importantly, even though the session by group interaction was not significant 

for this parameter (P=0.7) debriefing also reduced model-free action values (P = 

0.008). The RL model further indicated that other aspects of behavior were affected 

by the debriefing. Specifically, the eligibility trace parameter was decreased (P=0.004, 

session by group interaction P=0.03), such that updates of model-free first step action 

values depended less on the trial outcome (rewarded or not) and more on the value 

of the second-step state that was reached, while the perseveration parameter, 

assessing repetition of the previous choice, was increased (P<0.001, session by group 
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interaction P=0.001).  Post debriefing, value learning rates were also higher (P<0.001), 

but the session by group interaction was not significant (P=0.6). As all participants in 

the no debriefing group were recruited in Lisbon, as opposed to the debriefing group, 

which included both subjects recruited in Lisbon and subjects recruited in New York, 

we also ran the same analyses including only participants recruited in Lisbon and the 

results were maintained (data not shown). As expected, no significant differences were 

found for any of the comparisons between sessions 3 and 4 in the no debriefing group 

(Fig. 16G-J). We also ran the same analyses without excluding subjects who were 

model-based at sessions 3 and the results were similar, with the exception of the intra-

individual debriefing effects in the model-free action values and in the value learning 

rate, which were not significant when all subjects were included (data not shown). 

These findings indicate that providing explicit knowledge of task structure not only 

promoted use of model-based RL but also affected value updates in the model-free 

system and value-independent choice preservation. 

In the Changing version of the task, debriefing did not increase the use of 

model-based RL. The fraction of subjects identified as using a model-based strategy 

at session 4 was the same in the debriefing and no-debriefing groups (debriefing group 

2/12, no-debriefing group 4/24; z = 0, P=1, z-test for difference of proportions; Fig. 

17A, F).  Subjects in the debriefing group adapted faster to reversals in session 4 than 

session 3 (P=0.03, Fig. 17B), and the logistic regression analysis showed an increased 

influence of the trial outcome on subsequent choice in session 4 compared to 3 in the 

debriefing group (P=0.02, Fig. 17D), but the session by group interaction did not reach 

significance in both cases (P= 0.2 and 0.06 respectively).  The influence of the 

transition and transition-outcome interaction parameters on subsequent choice were 

unaffected by debriefing (P = 0.99 and 0.3 respectively, Fig. 17D) and no parameters 

of the RL model differed significantly pre and post-debriefing (P > 0.19, Fig. 17E). As 

expected, no significant differences were observed in any analyses between sessions 

3 and 4 in the no-debriefing group (Fig. 17G-J).  These results indicate that in the this 

more complex Changing task subjects either did not to understand the debriefing or 

decided the effort of trying to use information about the task structure was not 

worthwhile. 

 

 

 

 

 

 

 

 

 

 



Chapter 3. Application of a new sequential decision task in healthy and clinical populations 

78 
 

 

 
Figure 16. Effects of explicit knowledge in the fixed (transition probabilities) version of 

the reduced two-step task.   

(A, F) Per-subject likelihood ratio test for use of model-based strategy on session 3 (left panel) 

and session 4 (right panel). Data was analyzed separately for groups with (A) and without (F) 
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debriefing. Y-axis shows difference in log likelihood between mixture (model-free + model-

based) RL model and model-free only RL model. Blue bars indicate subjects for which 

likelihood ratio test favors model-free only model, green bars indicate subjects for which test 

favors mixture model, using a p<0.05 threshold for rejecting the simpler model. In these and 

other panels we compared sessions 3 and 4 only in the subjects for whom a likelihood ratio 

test indicated that model-based RL was not used in session 3. (B, G) Mean first-step choice 

trajectories around reversals. In these and remaining panels, red indicates session 3 (before 

instruction in the debriefing group) while yellow indicates session 4 (after instruction in the no-

debriefing group).  Solid lines show cross-subject mean trajectory. Dashed lines show 

exponential curves fitted to the average trajectories to obtain estimates of the adaptation time-

course of learning following reversals.  Confidence regions (mean ± across subject standard 

error) are represented by shaded areas. (C, H) Stay probability analysis showing the 

probability of repeating the first step choice on the next trial as a function of trial outcome 

(rewarded or not rewarded) and state transition (common or rare). Error bars indicated the 

cross subject standard error of the mean (SEM).  (D, I) Logistic regression analysis of how the 

outcome (rewarded or not), transition (common or rare) and their interaction, predict the 

probability of repeating the same choice on the subsequent trial.  Dots indicate maximum a 

posteriori parameter values for individual subjects, while bars indicate the population mean 

and 95% confidence interval on the mean. (E, J) Comparison of mixture model fits. Dots and 

bars are represented as in panels D and I. RL model parameters:   MF: Model-free strength, 

MB: Model-based strength, αQ: Value learning rate, λ: Eligibility trace, αT: Transition prob. 

learning rate, bias: Choice bias, pers.: Choice perseveration. 
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Figure 17. Effects of explicit knowledge in the changing (transition probabilities) 

version of the reduced two-step task.  

(A, F) Per-subject likelihood ratio test for use of model-based strategy on session 3 (left panel) 

and session 4 (right panel). Data was analyzed separately for groups with (A) and without (F) 
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debriefing. Y-axis shows difference in log likelihood between mixture (model-free + model-

based) RL model and model-free only RL model. Blue bars indicate subjects for which 

likelihood ratio test favors model-free only model, green bars indicate subjects for which test 

favors mixture model, using a p<0.05 threshold for rejecting the simpler model. We compared 

sessions 3 and 4 only in the subjects for whom a likelihood ratio test indicated that model-

based RL was not used in session 3.  (B, G) Mean first-step choice trajectories around 

reversals. In these and all remaining panels, red indicates session 3 (before instruction) while 

gold indicates session 4 (after instruction). Dashed lines show exponential curves fitted to the 

average trajectories to obtain estimates of the adaptation time-course of learning following 

reversals.  Confidence regions (mean ± across subject standard error) are represented by 

shaded areas.  (C, H) Stay probability analysis showing the probability of repeating the first 

step choice on the next trial as a function of trial outcome (rewarded or not rewarded) and 

state transition (common or rare). Error bars indicated the cross subject standard error of the 

mean (SEM). In each group data was analyzed separately for session 3 (red graph) and 

session 4 (gold graph).  (D, I) Logistic regression analysis of how the outcome (rewarded or 

not), transition (common or rare) and their interaction, predict the probability of repeating the 

same choice on the subsequent trial. (E, J) Comparison of mixture model fits between session 

3 (red) and session 4 (gold) in the group without instruction (left panels) and the group with 

instruction (right panels). RL model parameters:  αQ: Value learning rate, λ: Eligibility trace, 

αT: Transition prob. learning rate, MF: Model-free strength, MB: Model-based strength, bias: 

Choice bias, pers.: Choice perseveration. 
 

3.4.3. Effects of experience and of knowledge in patients with OCD 

 

Forty-six patients with OCD and 50 control patients with other mood and anxiety 

disorders completed the fixed version of the task, with debriefing between session 3 

and session 4. Sociodemographic and psychometric data results from these samples 

are shown in Table 1. In the OCD group, the speed of adapting to reversals did not 

change between sessions 1 and 3 (P=0.6) but there was a trend towards an increased 

fraction of correct choices at the end of blocks (P=0.06, Fig. 18A).  A session-by-group 

interaction test for changes in overall performance over learning between OCD 

subjects and healthy controls further indicated a trend towards significance for block 

end fraction correct choices (P=0.07), but no differences in the reversal time constant 

(P=0.5). In the analysis of stay probabilities, the OCD group did not show an increase 

in the influence of transition or transition-outcome interaction with learning that was 

seen in the controls (P=0.08 and P=0.71 respectively, Fig. 18B, C), but the influence 

of trial outcome increased over learning (P=0.001), which was not seen in the controls.  

However, the session by group interactions were significant only for the transition-

outcome interaction parameter (P=0.01), but not for the transition (P = 0.6) or outcome 

parameters (P=0.2). Consistently, RL mixture model fits to sessions 1 and 3 (Fig. 18D) 

showed an increase in the influence of model-free action values on choice over 

learning (P=0.008) that was not seen in controls, with the session-by-group interaction 

revealing a trend towards significance (P=0.07).  Furthermore, OCD patients did not 

show the increase in the value learning rate over learning seen in healthy volunteers 

(P=0.1; session-by-group interaction, P = 0.98). In the mood and anxiety subjects, we 
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did not see any significant change in overall performance between session 1 and 3 as 

assessed by the reversal analysis (Fig. 18E).  The logistic regression analysis of stay 

probabilities (Fig. 18F,G) showed an increased influence between session 1 and 3 of 

trial outcome (P<0.001) and transition (P = 0.01) on repeating choice, but not the 

transition-outcome interaction predictor (P=0.66).  RL model fits showed only an 

increased learning rate for values (P=0.01).  No session-by-group interactions reached 

significance for differences in learning effects from the control group.  Overall, these 

data suggest a different pattern of learning from experience in patients with OCD, with 

a failure to learn the task-transition structure and exhibit model-based RL, but an 

increased influence of model-free action values, and hence trial outcome’s direct 

influence on choice. 
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Figure 18.  Learning effects in clinical samples  

(A, E) Mean first-step choice trajectories around reversals.  In all panels, blue indicates the 

first session while red indicates session 3.  Solid lines show cross-subject mean trajectory. 
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Dashed lines show exponential curves fitted to the average trajectories to obtain estimates of 

the adaptation time-course of learning following reversals.  Confidence regions (mean ± cross 

subject standard error) are represented by shaded areas.  (B, F) Stay probability analysis 

showing the probability of repeating the first step choice on the next trial as a function of trial 

outcome (rewarded or not rewarded) and state transition (common or rare). Error bars 

indicated the cross subject standard error of the mean (SEM). The left (blue) panel shows data 

from the first session, the right (red) panel shows data from session 3.  (C, G) Logistic 

regression analysis of how the outcome (rewarded or not), transition (common or rare) and 

their interaction, predict the probability of repeating the same choice on the subsequent trial. 

Dots indicate maximum a posteriori loading for individual subjects, bars indicate the population 

mean and 95% confidence interval on the mean. (D, H) Comparison of mixture model fits. 

Dots and bars are represented as in panels C and G. RL model parameters:   MF: Model-free 

strength, MB: Model-based strength, αQ: Value learning rate, λ: Eligibility trace, αT: Transition 

prob. learning rate, bias: Choice bias, pers.: Choice perseveration. 

 

After debriefing, patients with OCD adapted faster to reversals (P=0.007, Fig. 

19B).  This improvement in performance was accompanied by an increase in both the 

transition (P=0.002) and transition-outcome interaction (P<0.001) parameters, as was 

found for healthy volunteers and consistently with increased use of model-based RL 

(Fig. 19C, D).  This was confirmed by RL model fitting (Fig. 19E), which showed an 

increase in the influence of model-based action values on choice (P<0.001), while 

replicating the effects seen in healthy volunteers of reductions in the eligibility trace 

(P=0.01) and perseveration (P=0.02) parameters. However, contrary to what was 

found in healthy volunteers, debriefing did not reduce model-free action values, there 

was only a trend towards a reduction from sessions 3 to 4 (P=0.06). Significant 

session-by-group interaction was found only for increases in perseveration, that was 

larger in healthy volunteers (P=0.04). The effects of debriefing in patients in the mood 

and anxiety disorder group was similar. There were significant increases in the speed 

of adaption to reversals (P<0.001, Fig. 19G) as well as the influence of transition 

(P=0.002) and transition-outcome interaction (P<0.001) parameters on stay probability 

(Fig. 19H, I). Consistently, the RL model fit showed that debriefing increased the 

influence of model-based action values on choice (P<0.001).  This group also 

replicated the debriefing effect on model-free action values (P=0.02), eligibility trace 

(P=0.04) and value learning rate (P=0.014) parameters observed in healthy volunteers 

(Fig. 19J) but, contrary to controls, there was no effect of debriefing on perseveration 

(P=0.4) and there was a significantly decreased learning rate for transitions (P=0.047).  

Significant session-by-group interaction was found only for the lack of effect on 

perseveration in the mood and anxiety patients (P=0.001 We also ran the session-by-

group interaction analysis in the clinical vs. healthy group comparisons without 

excluding subjects who used model-based control at session 3, and the results were 

similar, except for the loss of significant interaction for the perseveration parameter in 

the OCD vs. healthy controls, which nevertheless remained at trend level (P=0.06). 
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Figure 19.  Debriefing effects in clinical samples.   

(A, F) Per-subject likelihood ratio test for use of model-based strategy on session 3 

(left panel) and session 4 (right panel). Y-axis shows difference in log likelihood 
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between mixture (model-free + model-based) RL model and model-free only RL 

model. Purple bars indicate subjects for which likelihood ratio test favors model-free 

only model, green bars indicate subjects for which test favors mixture model, using a 

p<0.05 threshold for rejecting the simpler model. We analyzed the effects of debriefing 

using only those subjects a likelihood ratio test indicated did not use model-based RL 

in session 3. (B, G) Mean first-step choice trajectories around reversals. In this and all 

panels, red indicates session 3 (before instruction) while yellow indicates session 4 

(after instruction). Solid lines show cross-subject mean trajectory. Dashed lines show 

exponential curves fitted to the average trajectories to obtain estimates of the 

adaptation time-course of learning following reversals.  Confidence regions (mean ± 

cross subject standard error) are represented by shaded areas.  (C, H) Stay probability 

analysis showing the probability of repeating the first step choice on the next trial as a 

function of trial outcome (rewarded or not rewarded) and state transition (common or 

rare). Error bars indicated the cross subject standard error of the mean (SEM). Data 

was analyzed separately for groups with (left panel) and without (right panel) 

instruction. (D, I) Logistic regression analysis of how the outcome (rewarded or not), 

transition (common or rare) and their interaction, predict the probability of repeating 

the same choice on the subsequent trial. Dots indicate maximum a posteriori loading 

for individual subjects, bars indicate the population mean and 95% confidence interval 

on the mean. (E, J) Comparison of mixture model fits. Dots and bars are represented 

as in panels C and G. RL model parameters:   MF: Model-free strength, MB: Model-

based strength, αQ: Value learning rate, λ: Eligibility trace, αT: Transition prob. 

learning rate, bias: Choice bias, pers.: Choice perseveration. 

 

3.5. Discussion 

 

We developed a novel two-step decision task in which participants received 

minimal pre-task instruction to examine how model-based and model-free RL 

contribute to behavior when task structure must be learned directly from experience, 

and how behavior is modified when information about task structure is subsequently 

provided.  We found that, in an unfamiliar domain, participants were, overall, 

surprisingly poor at learning to use even simple forward models for action selection, 

but that delivery of instructions strongly increased the use of model-based control, 

among other diverse effects on behavior, such as changing how model-free value 

propagated through the task’s state space, and modifying sampling strategies.  

Importantly, while OCD patients exhibited a deficit in model-based control when 

learning directly from experience, such deficits were no longer observed after delivery 

of explicit information on task structure, which is contrary to what has been described 

for other, more complex, two-step tasks184, and raises questions about the nature of 

these deficits. Furthermore, equivalent deficits were found in patients with other mood 

and anxiety disorders, arguing against specificity for OCD. A pattern of enhanced 
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model-free control, particularly during learning from experience, seemed however, 

much more specific for OCD. 

Although model-free RL was the dominant strategy prior to instructions, the 

influence of model-based RL increased over learning. This contrasts with habit 

formation in instrumental conditioning, where actions are initially goal-directed, but 

become habitual with extended experience152, which is thought to parallel a transition 

from model-based to model-free control158 . This transition, and arbitration between 

model-based and model-free control more generally, is thought to occur through meta-

cognitive mechanisms which assess whether the benefits of improved prediction 

accuracy are worth the costs of model-based evaluation158,183,228. The different 

trajectory of arbitration between model-based vs model-free arbitration in the current 

task likely reflects its dynamic nature, where ongoing changes in reward probability 

prevent the model-free system from converging to accurate value estimates, and 

hence dominating behavior late in learning.  The more complex state space compared 

with more typical instrumental conditioning makes model learning more demanding, 

possibly due to uncertainty in early learning. In fact, it has been recently suggested 

that performance during initial stages of action selection tasks may be primarily based 

on trial-and-error exploration, with progression towards model-based RL occurring in 

intermediate stages, as subjects acquire a model of the environment239. In any case, 

it is noteworthy that only a minority of subjects showed evidence of using model-based 

RL in session 3, despite extensive experience, a relatively small state space, and fixed 

transition probabilities. This further suggests that, in domains where subjects do not 

have strong prior expectations about causal relationships, model-learning is slow and 

model-free RL dominates adaptive behavior. 

Giving subjects explicit information about task structure strongly boosted the 

influence of model-based RL, as assessed by regression analysis, as well as RL 

model fitting.  This is consistent with meta-cognitive cost-benefit decision making, 

since giving subjects an accurate model of the task structure will boost the estimated 

accuracy of model-based predictions and hence the expected payoffs from model-

based control.  Information about task structure also reduced the influence of, and, 

unexpectedly, affected model-free control, enhancing the influence on first-step action 

value updates of the second-step state value relative to the trial outcome, as indexed 

by the RL model eligibility trace parameter. There is no obvious normative reason why 

information about task structure should change the use of eligibility traces.  

Nonetheless, the effect of instruction on the eligibility trace parameter was robust, and 

was replicated in both clinical groups, as well as healthy volunteers. We suggest that 

this relationship was not be mediated by changes in a model-free eligibility trace, but 

rather by changes in representation of the task state-space. Typically, when RL is 

applied to decision neuroscience, the behavioral task is considered to have a fixed set 

of discrete states known to the subjects, who are explicitly told the task structure from 

the start. However, in tasks where subjects must learn task structure from experience, 

this entails simultaneous and online acquisition of the environments’ state-space and 

of the values of states and actions, from complex and often ambiguous information. 

The ‘model’ of the environment that is learned thus comprises not only the state-
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action-state transition model, used in model-based RL, but also beliefs about the set 

of states that exist and the current state of the environment, used both by model-based 

and model-free RL. According to this account, explicit information about reward 

probability depending on the second-step state will make these states more distinct or 

salient in internal task representation, such that they are more able to accrue value, 

which can then drive model-free learning at the first step. This hypothesis should be 

directly tested in future work. A second unexpected effect of instructions was an 

increased tendency to repeat choices, as indexed by the RL model perseveration 

parameter. This likely reflects a strategy of repeatedly sampling a single option to 

overcome stochasticity within the task. Such sampling may be increased by instruction 

because subjects have a discrete set of hypotheses that they are deciding between 

(left is good or right is good), potentially increasing the perceived value of repeated 

sampling.  

Our findings build on extensive literature examining how instruction and 

experience interact to determine human behavior.  Early work examining instruction 

effects on operant conditioning found that explicit information about the schedule of 

reinforcement strongly affects responding, such that responses match the 

contingencies explained to subjects (e.g. fixed interval, variable interval or fixed ratio), 

even when these differ substantially from the actual contingencies193–195.  In common 

with our study, these results emphasize how providing explicit information about task 

structure allows humans to act in a way that respects that structure, much more readily 

than via trial and error learning.  More recent work has focused on the effect of advice 

on reward guided decision making in probabilistic settings  – i.e. informing subjects 

that one option is particularly good or bad198,199.  A central finding from this work is that 

such advice impacts not only initial estimates of how good or bad different options are, 

but also modifies subsequent learning by up-weighting and down-weighting outcomes 

according to the advice given.  Whether such bias effects extend to learning about 

task structure, in addition to simple reward learning, is an open question for further 

work.  Functional neuroimaging has also started to provide mechanistic insight into 

instruction effects on reward and aversion learning, with findings that instructions 

change responses to outcomes in the striatum and the ventral prefrontal cortex 

(ventromedial prefrontal cortex and orbitofrontal cortex), potentially mediated by 

instructed knowledge represented in the dorsolateral prefrontal cortex197,200,240.  Our 

task provides a potential tool for extending such mechanistic investigation of 

instruction effects into the domain of task structure learning in model-based control. 

The results discussed above were those obtained with the Fixed version of the 

task. Both learning and instruction effects were different in the more complex 

Changing task, where the transition probabilities linking the first-step actions to 

second-step states occasionally reversed. In this version there was no increase of 

model-based control with experience, with model-comparison indicating that mixture 

and pure model-free models fit the data equally well.  The reduced importance of 

model-based RL in the Changing relative to the Fixed task likely reflects increased 

uncertainty in the model-based system regarding the transition structure. However, 

giving subjects explicit information about Changing task structure did not increase use 
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of model-based RL, as indexed by either the regression analysis or the RL model 

fitting.  This suggests that subjects either did not understand the task structure as it 

was explained to them, or decided that the payoff from model-based control was not 

worth the effort of tracking both reward and transition probabilities. In fact, loading on 

the regression analysis outcome predictor, associated with model-free RL, was higher 

following instruction, suggesting that the main effect from instructions may have been 

to signal that the environment was volatile. 

Unlike the original two-step task, where model-based and model-free RL 

achieved similar reward rates238,241, in both task variants used in the current study, use 

of model-based RL was positively correlated with reward rate. While such correlations 

between strategy and reward rate can depend on learning rates and choice 

stochasticity, as shown by Kool and colleagues241, our results confirm that, for 

normative human behavior, the relationship can be present. This is desirable in the 

assessment of this specific task, because it ensures that it reflects the trade-off 

between accuracy and demand that is an essential part of the balance between model-

based and model-free RL systems241. Furthermore, in the original  two-step task, 

working memory capacity is correlated with the use of a model-based strategy, which 

may be related to the capacity to store and retrieve information gathered before the 

task and not during the task per se187,191. We did not find any such correlation in either 

version of the current task (data not shown), possibly due to the fact that, in our study, 

no instructions were given initially regarding the structure of the task.  

Previous evidence collected with the original two-step task indicated that 

patients with OCD have a deficit in model-based learning184,242. However, in our task, 

although such patients, either medicated or unmedicated, had a deficit in acquiring a 

model-based strategy directly from task experience, the observed increase in model-

based control following debriefing was not different from that found in healthy 

volunteers. This suggests that patients with OCD do not have a fundamental deficit in 

the acquisition of model-based control, but rather that they may be unable to 

understand the instructions for the original two-step task or, with greater likelihood, 

that in those circumstances OCD patients may have been unable to access and use 

such information for model-based planning. It also suggests that previous experience 

in a task environment may facilitate the use of explicit knowledge about task structure. 

Finally, it is also possible that OCD symptoms do not allow patients to learn a model 

in some circumstances, but allow them to learn a model in others. Nevertheless, it is 

important to note that we did find a deficit in model-based learning prior to the delivery 

of instructions, among patients with OCD. However, this deficit was also present 

among patients with other mood and anxiety disorders, demonstrating that it is 

unspecific, possibly related to common mood and anxiety symptoms, or their 

underlying mechanisms.  Our results do suggest, however, a potentially more specific 

deficit for patients with OCD, that demonstrate a tendency to increase their use of 

model-free control when learning exclusively from experience, that was not found in 

healthy volunteers or patients with other psychiatric diagnoses. Further support for 

enhanced model-free learning in patients with OCD results from the fact that debriefing 

resulted in a non-significant trend towards a decrease in the model-free parameter, 
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while both healthy volunteers and patients with other mood and anxiety disorders had 

a clear and significant decrease However, between-group comparisons, while trending 

towards significance, did not reach significance, suggesting that better powered 

studies, or studies with adapted task designs, may be necessary to better explore the 

possibility that increased use of model-free RL, particularly during uninstructed action 

learning, may be a specific finding in OCD. 

In summary, we have developed a new multi-step decision task which allows 

the effects of learning and explicit information on RL strategy to be dissociated, to our 

knowledge for the first time. We provide evidence that in this task, use of model-based 

RL emerges with learning in a subset of individuals, but model-free RL maintains a 

strong influence on behavior throughout. Information provided to subjects about the 

task structure increased the use of model-based RL, and reduced the use of model-

free RL, but also shaped model-free value updates and exploration/sampling 

strategies. Finally, we demonstrated the possibility of using this task in clinical 

populations, and collected data clarifying the RL profile for patients with OCD, with 

unspecific findings of deficient model-based learning, and more specific findings of 

enhanced model-free learning, in both cases prior to information about task structure. 

We suggest that the relationship between use of model-based RL and model-free 

value updating, observed both in the effect of explicit information and in cross-subject, 

and possibly cross-disorder, variability in learned behavior, reflects differences in how 

subjects represent the tasks state-space, specifically whether they treat the two 

second-step states as real or distinct for the purpose of value learning. The new task’s 

ability to dissociate effects of implicit and explicit information on RL strategy may offer 

further insight into the content of learning, and provide translational insight on the 

importance of RL in neuropsychiatric disorders.  

 

3.6. Methods 
 

3.6.1. Participants and testing procedures 

 

The research protocol was conducted in accordance with the declaration of 

Helsinki for human studies of the World Medical Association and approved by the 

Ethics Committees of the Champalimaud Centre for the Unknown, NOVA Medical 

School, Centro Hospitalar Psiquiátrico de Lisboa (CHPL) and New York State 

Psychiatric Institute. Written informed consent was obtained from all participants. 

Clinical samples were recruited at the Champalimaud Clinical Centre (CCC), CHPL 

and the New York State Psychiatric Institute (NYSPI). In each of these centers, 

patients with OCD were recruited sequentially from clinical or research databases. A 

mood and anxiety disorders control group was recruited randomly (CCC and CHPL) 

or sequentially (NYSPI) among patients with the following diagnoses: major 

depressive episode or disorder, dysthymia, bipolar disorder, generalized anxiety 

disorder, post-traumatic stress disorder, panic disorder or social anxiety disorder. 
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Healthy controls were recruited sequentially as a convenience sample of community-

dwelling participants, and tested at the same locations 

 

Following consent, each participant was screened for the presence of exclusion 

criteria, specifically: acute medical illness; active neurological illness; clinically 

significant focal structural lesion of the central nervous system; history of chronic 

psychosis, dementia, developmental disorders with low intelligence quotient or any 

other form of cognitive impairment and illiteracy. Active psychiatric illness, including 

substance abuse or dependence, was also an exclusion criterion, with the exception 

of the diagnoses defining inclusion in the OCD and the mood and anxiety groups. In 

the absence of exclusion criteria, each participant then performed the reduced two-

step task (see below). Participants then performed a battery of structured interviews, 

scales and self-report inventories, including the MINI Neuropsychiatric Interview213, 

the Structured Clinical Interview for the DSM-IV211, the Yale-Brown Obsessive-

Compulsive Scale-II (Y-BOCS-II)243  and the State-Trait Anxiety Inventory (STAI)217. 

In the groups recruited in Lisbon, the Beck Depression Inventory-II (BDI-II) 215,216 was 

also applied to assess depressive symptoms and the Corsi block-tapping task was 

used to assess working memory244, while in  New York, the Depression Anxiety Stress 

Scales (DASS)245 was applied to assess symptoms of depression, anxiety and stress. 

 

3.6.2. Reduced two-step task 

 

The reduced two-step task was implemented in MATLAB R2014b with 

Psychtoolbox (Mathworks, Inc., Natick, Massachusetts, USA). The task consisted of a 

self-paced computer interface with 4 circles always visible on the screen: 2 central 

circles (upper and lower) flanked by two side circles (left and right) (Fig. 13). Each 

circle was colored yellow when available for selection, and black when unavailable, 

and could be selected by pressing the corresponding arrow key (up, down, left or right) 

on the computer keyboard. Each trial started with both of the central (upper and lower) 

circles turning yellow, prompting a choice between the two (Fig. 13A). This first step 

choice then activated one of the side circles in a probabilistic fashion, according to a 

structure of transition probabilities described below (Fig. 13B). The active side circle 

could be selected with the corresponding arrow key, resulting either in reward 

(indicated by the circle changing to the image of a coin) or no reward (indicated by the 

circle changing to black). The reward probabilities on the right and left side changed 

in blocks that were either neutral (p=0.4 on each side) or non-neutral (p=0.8 on one 

side and p=0.2 on the other; Fig. 13C). Changes from non-neutral blocks were 

triggered based on each subject’s behavior, occurring 20 trials after an exponential 

moving average (tau = 8 trials) crossed a 75% correct threshold. In half of the cases 

this led to the other non-neutral block (reward probability reversals), and the other half 

to a neutral block. Changes from neutral blocks occurred with 10% probability on each 

trial after the 40th of that block, and always led to the non-neutral block that did not 

precede that neutral block. All participants performed 1200 trials on the same day, 

divided in 4 sessions of 300 trials each. 
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We ran two variants of the task which differed with respect to whether the 

transition probabilities linking the first-step actions to the second step states were fixed 

or underwent reversals. In both cases these probabilities were defined such that 

choosing one of the central circles (e.g. high) would cause one of the side circles (e.g. 

left) to turn yellow with high probability (p=0.8 – common transition), while causing the 

other side circle to turn yellow only in a minority of trials, i.e., with low probability (p=0.2  

rare transition). Choosing the other central circle would lead to common and rare 

transitions to the opposite sides. In the Fixed task, the transition probabilities were 

fixed for each individual throughout the entire task (e.g., common transitions for high-

left and low-right, and rare transitions for high-right and low-left). In the Changing task, 

the transition probabilities underwent reversals on 50% of reward probability block 

changes after non-neutral blocks, such that the common transition became rare and 

vice versa (Fig. 13B). In an initial group of healthy volunteers recruited in Lisbon, 

subjects were randomized between the two versions of the task. In all clinical samples 

as well as healthy volunteers from New York, however, only the Fixed task was used. 

 

Prior to starting the task, subjects were given minimal information about task 

structure. They were only told that arrow keys could be used to interact with the screen, 

and that the image of a coin signaled accrual of a monetary reward.  To test how 

providing explicit information about the task structure affected behavior, debriefing was 

provided between the 3rd and the 4th sessions in some participants, with the 4th 

session of the task performed immediately after debriefing. Among healthy volunteers 

recruited in Lisbon and randomized between the two versions of the task, debriefing 

was performed in 17 participants performing the Fixed version and in 16 participants 

performing the Changing version of the task. In all other samples, debriefing was 

performed for everyone. Please see supplementary material for the specific 

information provided to subjects prior to the task and during debriefing. 

 

3.6.3. Data analysis 

 

Data analysis was performed using Python (Python Software Foundation, 

http://python.org) and SPSS (Version 21.0, SPSS Inc., Chicago, IL, USA), and was 

centered on three main analyses of behavior on the task: reversal analysis, logistic 

regression analyses of stay probability, and RL model comparison and fitting. The 

reversal analysis assessed overall task performance according to the average first 

step choice trajectory around reward probability reversals between non-neutral blocks, 

from which we extracted two measures. One was the fraction of correct choices at the 

end of the block before the reversal, with correct defined as the first step choice with 

a common transition to the side (i.e., state), with highest reward probability. The 

second measure was the time constant of adaptation to the reversal, estimated by a 

least squares exponential fit to the cross subject mean choice trajectory following the 

reversal. For the Changing version of the task, reversal analysis was performed 

according to the average trajectory for reversals in both transition and reward 

http://python.org/
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probabilities. Importantly, while reversal analyses provide information about how well 

subjects are able to track which option is correct, they do not differentiate between use 

of model-free and model-based strategies. 

 

The first analysis used to assess model-free vs. model-based behavioral 

strategies was an analysis of ‘stay-probability’181,187,188,190–192,229–234, defined as the 

probability of repeating the first-step choice on any given trial as a function of the 

outcome (rewarded or not) and transition (common or rare) on the previous trial. In 

addition to plotting raw stay probabilities, we analyzed the effect of trial events on the 

subsequent choice using a logistic regression model with several binary predictors.  

The Outcome, Transition and Transition-outcome interaction predictors modeled the 

influence of the previous trial’s outcome, transition and their interaction on the 

probability of repeating the previous first step choice.  We additionally included a Bias 

predictor capturing bias towards the upper or lower circle, and a Correct predictor, 

which modeled the influence of whether the previous trials choice was correct (i.e. high 

reward probability) on the probability of repeating that choice. The latter prevents 

spurious loading on the Transition-outcome interaction predictor, which has been 

described in two-step tasks with high contrast between good and bad options, due to 

correlation between action values at the start of the trial and subsequent trial events238.  

 

Additional analyses of behavioral strategy were obtained by fitting 

reinforcement learning models to observed behavior.  We first detail the model used 

for the main analyses then a set of alternative models that were rejected by model-

comparison. The model followed those typically used in analysis of the original two-

step task181 in combining a model-based and a model-free RL component, both with 

value estimates contributing to behavior. The model-free component maintained 

estimates of the values of the first-step (𝑄𝑚𝑓(𝑠1, 𝑎1)) and second step actions 

(𝑄𝑚𝑓(𝑠2, 𝑎2)).  These action values were updated as 𝑄𝑡+1
𝑚𝑓 (𝑠1, 𝑎1) = (1 −

𝛼𝑄)𝑄𝑡
𝑚𝑓(𝑠1, 𝑎1) + 𝛼𝑄((1 − 𝜆)𝑄𝑡+1

𝑚𝑓 (𝑠1, 𝑎1) + 𝜆𝑅), and 𝑄𝑡+1
𝑚𝑓 (𝑠1, 𝑎2) =  (1 −

𝛼𝑄)𝑄𝑡+1
𝑚𝑓 (𝑠1, 𝑎2) +  𝛼𝑄𝑅, where 𝑅 is the reward obtained on trial t (1 or 0), 𝛼𝑄is the value 

leaning rate and 𝜆 is the eligibility trace parameter. The model-based component 

maintained estimates of the transition probabilities linking the first step actions to the 

second step states (𝑃(𝑠2|𝑎1)), updated as 𝑃𝑡+1(𝑠2|𝑎1) = (1 − 𝛼𝑇)𝑃𝑡(𝑠2|𝑎1) + 𝛼𝑇 and 

𝑃𝑡+1(𝑠2
′ |𝑎1) = (1 − 𝛼𝑇)𝑃𝑡(𝑠2|𝑎1), where 𝛼𝑇 is a learning rate for transition probabilities, 

𝑠2 is the second step state reached and 𝑠2
′  the second step state not reached on trial 

t. At the start of each trial, model-based action values were calculated as 𝑄𝑡
𝑚𝑏(𝑠1, 𝑎𝑖) =

∑ 𝑃(𝑠𝑗|𝑎𝑖)𝑄𝑚𝑓(𝑠𝑗, 𝑎2)𝑗 . Model-free and model-based action values were combined with 

perseveration and bias to given net action values, calculated as 𝑄𝑡
𝑛𝑒𝑡(𝑠1, 𝑎𝑖) =

 𝐺𝑚𝑓𝑄𝑡
𝑚𝑓(𝑠1, 𝑎𝑖) + 𝐺𝑚𝑏𝑄𝑡

𝑚𝑏(𝑠1, 𝑎𝑖) + 𝑏𝐵𝑖 + 𝑝𝑃𝑖, where 𝐺𝑚𝑓 and 𝐺𝑚𝑏 are parameters 

controlling, respectively, the strength of influence of model-free and model-based 

action values on choice, b is a parameter controlling the strength of choice bias, 𝐵𝑖 is 

a variable which takes a value of 1 for the high action and zero for the low action, p is 



Chapter 3. Application of a new sequential decision task in healthy and clinical populations 

94 
 

a parameter controlling the strength of choice perseveration, 𝑃𝑖 is a variable which 

takes a value of 1 if action 𝑎𝑖 was chosen on the previous trial and 0 if it was not. The 

model’s probability of choosing action 𝑎𝑖 was given by 𝑃(𝑠1, 𝑎𝑖) =  
𝑒𝑄𝑛𝑒𝑡(𝑠1,𝑎𝑖)

∑ 𝑒
𝑄𝑛𝑒𝑡(𝑠1,𝑎𝑗)

𝑗

. 

 

For model comparisons several variants were considered. For the Model-free 

only variant the model-based component was removed such that the net action values 

were 𝑄𝑡
𝑛𝑒𝑡(𝑠1, 𝑎𝑖) =  𝐺𝑚𝑓𝑄𝑡

𝑚𝑓(𝑠1, 𝑎𝑖) + 𝑏𝐵𝑖 + 𝑝𝑃𝑖. For the Model-based only variant the 

model-free component was removed such that the net action values 

were 𝑄𝑡
𝑛𝑒𝑡(𝑠1, 𝑎𝑖) =  𝐺𝑚𝑏𝑄𝑡

𝑚𝑏(𝑠1, 𝑎𝑖) + 𝑏𝐵𝑖 + 𝑝𝑃𝑖. For the No bias variant the bias 

strength variable 𝑏 was set to zero. For the No perseveration variant the perseveration 

strength variable 𝑝 was set to zero. 

 

Fits of both the logistic regression models and the reinforcement learning 

models to data from populations of subjects used a Bayesian hierarchical modelling 

framework246, in which parameter vectors 𝒉𝑖 for individual sessions were assumed to 

be drawn from Gaussian distributions at the population level with means and variance 

𝜽 = {𝝁, 𝜮}.  The population level prior distributions were fit to their maximum likelihood 

estimate 𝜽𝑀𝐿 =  𝑎𝑟𝑔𝑚𝑎𝑥𝜽{𝑝(𝐷|𝜽) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽{∏ ∫ 𝑑 𝒉𝑖 𝑝(𝐷𝑖|𝒉𝑖)𝑝(𝒉𝑖|𝜽)𝑁
𝑖 }. 

Optimization was performed using the Expectation-Maximization algorithm with a 

Laplace approximation for the E-step at the k-th iteration given by 𝑝(𝒉𝑖
𝑘|𝐷𝑖) =

𝑁(𝒎𝑖
𝑘, 𝑽𝑖

𝑘) and 𝒎𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒉{𝑝(𝐷𝑖|𝒉)𝑝(𝒉|𝜽𝑘−1)}, where 𝑁(𝒎𝑖

𝑘, 𝑽𝑖
𝑘) is a normal 

distribution with mean 𝒎𝑖
𝑘 given by the maximum a posteriori value of the session 

parameter vector 𝒉𝑖, considering the population level means and variance 𝜽𝑘−1, and 

with covariance 𝑽𝑖
𝑘 given by the inverse Hessian of the likelihood around 𝒎𝑖

𝑘.  For 

simplicity we assumed that the population level covariance 𝜮 had zero off-diagonal 

terms.  For the k-th M-step of the EM algorithm the population level prior distribution 

parameters 𝜽 = {𝝁, 𝜮} are updated as 𝝁𝑘 =  
1

𝑁
∑ 𝒎𝑖

𝑘𝑁
𝑖=1  and 𝜮 =

1

𝑁
∑ [(𝒎𝑖

𝑘)
𝟐

+ 𝑽𝑖
𝑘]𝑁

𝑖=1 −

(𝝁𝑘)2. Parameters were transformed before inference to enforce constraints 0 <

 { 𝐺𝑚𝑓 , 𝐺𝑚𝑏} and 0 < {𝛼𝑄 , 𝛼𝑇 , 𝜆} < 1. 95% confidence intervals on population means 𝝁 

were calculated as  𝑐𝑖 = ±1.96√−1/𝐻𝑖 where 𝑐𝑖 is the confidence interval for 

parameter 𝑖 and 𝐻𝑖 is the 𝑖-th diagonal element of the Hessian at 𝜽𝑀𝐿 with respect to 

𝝁. 

 

To compare the goodness of fit for hierarchical models with different numbers 

of parameters we used the integrated Bayes Information Criterion (iBIC) score. The 

iBIC score is related to the model log likelihood 𝑝(𝐷|𝑀) as log 𝑝(𝐷|𝑀) =

∫ 𝑑𝜽  𝑝(𝐷|𝜽)𝑝(𝜽|𝑀) ≈ −
1

2
𝑖𝐵𝐼𝐶 = log 𝑝(𝐷| 𝜽𝑀𝐿) −

1

2
|𝑀|log |D|, where |M| is the number 

of fitted parameters of the prior, |D| is the number of data points (total choices made 
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by all subjects) and iBIC is the integrated BIC score. The log data likelihood given 

maximum likelihood parameters for the prior log 𝑝(𝐷| 𝜽𝑀𝐿) is calculated by integrating 

out the individual session parameters as log 𝑝(𝐷| 𝜽𝑀𝐿) =

∑ 𝑙𝑜𝑔 ∫ 𝑑𝒉  𝑝(𝐷𝑖|𝒉)𝑝(𝒉|𝑁
𝑖 𝜽𝑀𝐿)  ≈ ∑ 𝑙𝑜𝑔

1

𝐾
∑ 𝑝(𝐷𝑖|𝒉𝑗)𝐾

𝑗=1
𝑁
𝑖 , where the integral is 

approximated as the average over K samples drawn from the prior 𝑝(𝒉|𝜽𝑀𝐿).   

 

Permutation testing was used to assess the effects of learning (sessions 1 vs. 

3) and of instruction (sessions 3 vs. 4) on reversal analyses, logistic regression 

parameters and RL model parameters. To compare a particular parameter (eg, 𝑥) 

between sessions, we calculated the mean value for each session and calculated the 

difference in means (∆x𝑡𝑟𝑢𝑒).  We then constructed an ensemble of 5000 permuted 

datasets in which the assignments of datapoints to each session was randomized. 

Randomization was performed within subject, to avoid that one subject be represented 

multiple times within a single session. For each permuted dataset we repeated the 

analysis, to calculate ∆x𝑝𝑒𝑟𝑚. In the limit of many permutations, the distribution of 

∆x𝑝𝑒𝑟𝑚 is the distribution of ∆x under the null hypothesis that there is no difference 

between the conditions. The two tailed P value for the observed difference is given by 

𝑃 = 2 min (
M

𝑁
, 1 − 

M

𝑁
) , where N is the total number of permutations and M is the 

number of permutations for which ∆x𝑝𝑒𝑟𝑚 > ∆x𝑡𝑟𝑢𝑒. Permutation tests were also used 

to compare learning and debriefing effects between different groups (e.g., debriefing 

vs. no-debriefing groups, clinical groups vs. healthy controls), specifically by tests of 

interaction between session number and group.  We tested the interactions excluding 

subjects who were identified as model-based in session 3 and then confirmed if the 

results were maintained when all subjects were included. To assess the significance 

of the interaction we calculated ∆g𝑡𝑟𝑢𝑒 = ∆x𝑖,𝑗
𝐴 − ∆x𝑖,𝑗

𝐵 , where ∆x𝑖,𝑗
𝐴  is the difference in 

parameter 𝑥 between sessions i and j in group A, and ∆x𝑖,𝑗
𝐵  is the equivalent measure 

for group B.  We then constructed an ensemble of 5000 permuted datasets, as 

described above, and calculated ∆g𝑝𝑒𝑟𝑚 = ∆x𝑖,𝑗
𝐴 − ∆x𝑖,𝑗

𝐵  for each permuted dataset, and 

compared ∆g𝑡𝑟𝑢𝑒.  
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Chapter 4. Development of a protocol to collect fMRI data 

during performance of a new sequential decision task 

4.1. Abstract 

 

The use of computational approaches on fMRI studies of action learning has 

helped to identify brain areas which can be performing RL-like computations in healthy 

humans. However, some studies suggest that model-based and model-free processes 

are implemented in the same circuits while other studies suggest that they are 

implemented in different circuits. Importantly, it has never been tested how the brain 

represents state space in sequential decision tasks. Also, to our knowledge, although 

patients with OCD consistently present evidence of dysfunction in corticostriatal 

circuits, which are relevant for action learning, no study has ever analyzed brain 

activity in OCD patients while performing an RL-inspired task. In this chapter, we 

describe the development of an event-based functional magnetic resonance imaging 

protocol, allowing the capture, to our knowledge for the first time, of brain activity 

during uninstructed and instructed sequential action choice using the RL framework. 

This is desirable because, according to the results presented in the previous chapter, 

uninstructed behavior in the reduced two-step task is predominantly model-free while 

instructed behavior is predominantly model-based. Data collected to date suggests 

that our protocol allows to separate neuronal activity associated with each of the three 

main events of interest in the reduced two-step task. Specifically, choice events are 

associated with increased BOLD activity in the left precentral gyrus, which 

corresponds to the primary motor cortex. Reward delivery, on the other hand, is 

associated with increased BOLD activity in the nucleus accumbens (ventral striatum). 

We also found that receipt of explicit information about the task contingencies modifies 

brain activity in prefrontal areas, specifically, increasing BOLD signal in a cluster 

extending from the paracingulate gyrus into the frontopolar cortex. We also collected 

data from one OCD patient, but results from event-based GLM analysis did not survive 

thresholding for multiple comparisons. Data collection for this experiment is ongoing, 

with future directions including use of multivariate approaches to tackle limitations 

imposed by the GLM in analyzing ensembles of voxels, and further extending data 

collection to clinical populations. 

 

4.2. Introduction 
 

Instrumental conditioning experiments have provided clear evidence that 

separate goal-directed and habitual action controllers exist in the brain and are 

supported by distinct neural circuits (Fig. 20)129,132. Goal-directed behavior can be 

impaired by lesions in several regions such as the orbitofrontal cortex247,248, the 

prelimbic cortex152,153,156, the dorsomedial striatum150 and the mediodorsal 

thalamus249. On the other hand, habitual behavior can be impaired by lesions in the 
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dorsolateral striatum155,250 and in the infralimbic cortex251. The only study in humans 

with focal lesions in these circuits in which an instrumental conditioning task was used, 

showed that lesions in the ventromedial prefrontal cortex are associated with 

impairments in goal-directed behavior252. In addition to lesion studies, other methods 

have rendered support to the idea of separate brain circuits for goal-directed and for 

habitual behavior. Gremel & Costa recorded neural activity in mice performing an 

instrumental conditioning task which allowed the animals to shift between goal-

directed and habitual actions. The authors found that goal-directed actions increase 

activity in the DMS and in the OFC while habitual actions increase activity in the 

DLS253. In humans, BOLD activity during outcome devaluation is increased in the 

vmPFC162 and BOLD activity during contingency degradation is increased in the 

vmPFC and in the caudate (the human equivalent of the rodent DMS)163. On the other 

hand, extensive training in an instrumental conditioning paradigm has been shown to 

be associated with increased activity in the putamen (equivalent to the rodent DLS)164. 

However, as mentioned previously, in the Introduction of this dissertation, the capacity 

of instrumental conditioning adaptations to induce habits in humans has been 

increasingly questioned, in terms of both its validity and reliability165. 

 

 

Figure 20. Instrumental conditioning experiments performed in rodents allowed to 

identify two separate neuroanatomical circuits involved in action selection.  

The goal-directed system involves communication between the prelimbic cortex, the 

dorsomedial striatum, the substancia nigra pars reticulata (SNr) and mediodorsal thalamus, 

as well as the VTA and the ventral striatum. The habitual system recruits the infralimbic cortex, 



4.2. Introduction 

99 
 

the sensorimotor cortex, the dorsolateral striatum, the SNr/GPi and the posterior thalamus. 

From Lingawi et al, 2015133. 

 

The computational approach provided by RL could offer a solution to that 

problem. One of the advantages of computational models for functional neuroimaging 

is that they can be used to define signals of interest254. Studies of visual perception, 

for example, have long benefited from algorithms, such as those derived from signal 

detection theory, which have helped to make significant advances in experimental 

design254. Although those algorithms have originated in the engineering field, they 

were used to specify key steps in perception and to search for those computations in 

the brain. Studies of action control, decision-making and value-based learning took 

longer to benefit from algorithms which formalize their fundamental steps and specify 

which quantities to measure and to look for in the brain254. Reinforcement learning 

provides mathematical models of how action control can be implemented. Those 

models (e. g. model-free control) can be used to generate time series for hidden 

variables (e. g. reward prediction error) which can be used as regressors (e. g. in a 

general linear model) to search for voxels which BOLD activity changes accordingly 

to those regressors180–183. The use of computational approaches on fMRI studies of 

action learning has thus helped to identify brain areas which can be performing RL-

like computations180–183.  

However, studies using tasks that allow to differentiate model-based from 

model-free RL control have shown conflicting results about the neural basis of this 

systems (Table 6). In the first fMRI application of a decision task based on the RL 

framework, Gläscher and colleagues found signals associated with a model-free 

reward prediction error (RPE) in the striatum and signals associated with a model-

based state prediction error (SPE) in the lateral prefrontal cortex (and in the 

intraparietal sulcus)180. In contrast, in the first paper using the two-step task, Daw et 

al. observed signals associated both with model-free and model-based computations 

in the ventral striatum. In the same participants, BOLD signals associated with both 

model-free and model-based computations were also found in the prefrontal cortex. 

Afterwards, Wunderlich and colleagues found signals associated with forward 

planning – a model-based computation – in the anterior caudate and signals 

associated with extensive training in the putamen182. In contrast, Wimmer et al. 

observed both model-free and model-based RL correlates in the striatum255. These 

contradictory findings are problematic and are perhaps derived from the fact that these 

tasks are either good at isolating model-based (e.g. the Glascher task) or model-free 

(e. g. the Wunderlich task) processes, but are not ideal in having the same subject 

performing exactly the same task with the same contingencies using model-free or 

model-based control depending on what he knows about the environment. Our 

simplified task, which includes a debriefing manipulation, may be able to achieve that 

because, according to the results presented in the previous chapter, uninstructed 
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behavior in the reduced two-step task is predominantly model-free while instructed 

behavior is predominantly model-based. 

 

Table 6. Findings from fMRI studies using sequential decision tasks. 

 

MF = model-free BOLD activity. Model-based BOLD activity. PFC = prefrontal cortex. vmPFC 

= ventromedial prefrontal cortex. mOFC = medial orbitofrontal cortex. ACC = anterior cingulate 

cortex. Pre-SMA = pre-supplementary motor area. 

 

Also, the impact of instructions on how subjects represent sequential decision 

tasks in the brain is not known. It has been shown, using a probabilistic learning task, 

that instructed knowledge of cue-reward probabilities improves performance and 

decreases BOLD responses in the ventral striatum, ventromedial PFC and 

hippocampus200. The decrease in activity in these regions is correlated with activity in 

the dorsolateral PFC, leading authors to suggest that humans use the DLPFC to 

dynamically adjust outcome responses in valuation regions depending on the 

usefulness of the action-outcome information. The impact of instructions on aversive 

learning has also been studied using fMRI197. Atlas and colleagues have found that 

telling participants about reversals in the contingencies between image presentations 

and mild electric shocks caused changes in the activity of the striatum and the 

prefrontal cortex197. However, we are not aware of fMRI studies which use sequential 

decision tasks to explore the impact of explicit knowledge on RL action control 

systems. In fact, one of our unexpected findings with the behavioral version of reduced 

two-step task also raises an important question which could be answered using 

neuroimaging: the debriefing led to a consistent decrease in the eligibility trace 

parameter across all groups, suggesting that explicit information about task structure 

was not only used by the model-based system but also by another system in the brain 

which should be representing the state space of the environment. Also, no study has 

ever used fMRI during performance of an RL-inspired sequential decision task in OCD 

patients. The study which applied the original two-step task in OCD patients did not 

collect imaging data in the OCD group235. Nevertheless, structural MRI data was 

collected in healthy volunteers and a positive correlation between use of model-based 

control and left OFC volume was found235. This is particularly interesting because, as 

reviewed in the Introduction of this thesis, the OFC is the brain area which has most 
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consistently been shown to be dysfunctional in OCD, with several studies and meta-

analysis showing hyperactivity at rest and reduced structural volume61. 

However, brain circuitry dysfunction in OCD is far more complex than 

orbitofrontal cortex (OFC) hyperactivity. First of all, because the OFC is not 

homogenous in the healthy brain, neither anatomically nor functionally, with medial 

and lateral sectors with different projections and functions256–259. Second, because the 

lateral OFC shows increased activity during classical symptom provocation studies260 

but reduced activity during reversal learning tasks261, in which OCD patients have 

shown deficits. Third, because it has been demonstrated that the connectivity between 

the prefrontal and striatal areas is altered at rest, with a pattern of increased functional 

connectivity between the OFC and the nucleus accumbens (ventral striatum) and 

reduced functional connectivity between lateral PFC and the caudate (dorsomedial 

striatum) identified using resting-state fMRI262. Fourth, and extremely relevant for the 

context of this dissertation, because a recent symptom-provocation fMRI study 

inspired by the habit hypothesis of OCD showed an interesting pattern of activity in the 

OFC and in striatum during the moment when OCD patients performed an action in 

order to stop OC-inducing stimuli263. Banca and colleagues measured, on a trial by 

trial basis, patient’s responses to the visualization or contact with stimuli that elicited 

OC symptoms. Crucially, in a very elegant behavioral manipulation, participants could 

choose to terminate the presentation of the symptom-provoking stimuli by performing 

an action – pressing a button. According to the authors, this action could be seen as 

an analogous to a compulsion (which reduces the anxiety caused by an obsession) 

and should be associated with activity in dorsolateral striatal (putamen) areas. Their 

results show that symptom-provoking conditions evoked a dichotomous pattern of 

deactivation/activation in OCD patients, which was not observed neither in control 

conditions nor in healthy subjects: a deactivation of caudate-medial OFC circuits 

(associated to goal-directed actions) accompanied by hyperactivation of subthalamic 

nucleus/putaminal regions (associated to habitual actions)263. Importantly, the 

putaminal hyperactivity during patients’ symptom provocation preceded subsequent 

deactivation during the act of responding to end the symptom-provoking condition. 

Although these results are extremely interesting, participants were not facing a 

sequential decision problem. Thus, it was not possible to further analyze this data, 

through a computational perspective, which could allow to search for BOLD signals 

that changed according to the predictions of a RL algorithm. 
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4.3. Objectives 

 

4.3.1. Develop a protocol to collect fMRI data during performance of the reduced 

two-step task 

 

4.3.2. Investigate if, in the fMRI version of the reduced two-step task, pre-

debriefing performance reflects a higher reliance on model-free control and 

post-debriefing performance reflects a higher reliance on model-based control 

 

4.3.3. Explore differences between brain activity when learning exclusively from 

experience and brain activity during instructed performance of the same task in 

the same subject 

 

4.4. Methods 

4.4.1. fMRI data collection  

 

Imaging data was acquired on a 3 T SIEMENS MAGNETOM Prisma scanner. 

Functional data was acquired using a T2*-weighted echo planar imaging sequence 

[repetition time (TR) = 2 s, echo time (TE) = 30 ms, flip angle (FA) = 75°, field of view 

(FOV) = 212 mm]. Seventy-two oblique axial slices were acquired with a 2 mm in-

plane resolution positioned along the anterior commissure-posterior commissure line. 

Slices were acquired in an interleaved fashion. Each run consisted of 25 trials of the 

reduced two-step task. In addition to functional data, a single three-dimensional high-

resolution (1 mm isotropic) T1-weighted full-brain image was acquired using a MP 

RAGE pulse sequence for brain masking and image registration. 

 

4.4.2. Reduced two-step task adaptation for fMRI 

 

The structure of the reduced two-step task was modified to implement a task 

design with intra-trial and inter-trial intervals adapted to event-based fMRI data 

collection. The most important modifications were made in order to resolve BOLD 

signals at three specific time points in each trial: 1) during first-step choice (“choice” 

event), 2) when the second step is revealed (“transition” event), 3) when the outcome 

is revealed (“outcome” event). To increase our ability to detect signals associated with 

these three events of interest, we added intermediate events between them (Fig. 21). 

After the first-step choice was made, the circle which the participant chose was 

highlighted with a white circular border around it. After the second-step action was 

made, the corresponding circle was similarly highlighted. In order to sample the 
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hemodynamic response function at different timepoints in each trial, the duration of 

these intermediate events was jittered, rather than constant, varying between 2 and 8 

seconds, and with a mean duration of 3 seconds. To further increase the accuracy of 

the estimation of the hemodynamic response curve, we also implemented jittered 

inter-trial intervals (mean=3s, min.=2s, max=8s). Importantly, even though the 

duration of the intermediate events was independent of the participants’ actions, the 

fMRI version of the task is self-paced at both the first- and second-steps. 

 

 

Figure 21. fMRI adaptation of the reduced two-step task – trial events.  

The main task structure is maintained (see Fig. 14 – Reduced two-step task structure). In 

order to resolve BOLD activity in each event of interest (first-step choice; transition; reward 

delivery), intermediate events were added between those events. After the participant has 

chosen between the upper circle and the lower circle at the first-step, his choice is highlighted 

with a white circle around it. After the participant has pressed the button corresponding to the 

second-step state reached (left or right), the corresponding circle is highlighted with a white 

circle around it. The duration of these intermediate events follows a jittered timing with a mean 

of 3 seconds (minimum 2 seconds, maximum 8 seconds). The duration of the intertrial 

intervals also followed a jittered timing. 

 

The task modifications implemented to deal with the fMRI constraints increased 

the duration of each trial, and thus the duration of the task, during which participants 

should remain within the scanner. We thus decided to decrease the number of trials 

to 200 before and 100 trials after the debriefing. Pilot tests of versions with a higher 

number of trials resulted in a very long duration of each experiment, with over 2 hours 

inside the scanner. In all cases, we preserved the balance between pre-debriefing and 
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post-debriefing trials that we used in the behavioral version described in Chapter 3. 

The experiment was divided in runs/sessions with a duration of 6.7 minutes on 

average (Fig. 22), and within each run/session, the participant performed 25 trials. 

Between runs, participants could rest and relax, and the experimenter can 

communicate with the participant. No image is collected between runs. One additional 

modification for the fMRI experiment was to use a fixed pattern of block transitions (i.e. 

make them independent of the subjects behavior and consistent across subjects), to 

reduce this source of variability and to ensure that there was good coverage of the 

different block types over the limited number of trials (Fig. 23). 

 

 

 

Figure 22. fMRI adaptation of the reduced two-step task – experimental design. 

Participants performed 12 runs/sessions of the task consisting of 25 trials in each run/session. 

Between the eighth and the ninth run, subjects were given explicit information about the task 

structure (transition probabilities, reward probabilities) in a debriefing presented while inside 

the scanner. 
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Figure 23. fMRI adaptation of the reduced two-step task – block structure.  

We modified the block structure of reward probabilities (which was dependent on performance 

in the behavioral version presented on Chapter 3 – see section 3.4 Methods) in order to 

guarantee that all participants experienced one modification of reward probabilities per 

run/session. 
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4.4.3. Data analysis 

 

We analyzed behavior using a model-agnostic stay-probability analysis and 

logistic regression similar to the ones described in section 3.4. To explore the effects 

of experience in the task, we compared the early runs/sessions (1 to 4) with late 

runs/sessions (5 to 8) using permutation tests. To explore the effects of explicit 

knowledge, we compared the late runs/sessions (5 to 8) with the post-debriefing 

runs/sessions (9 to 12) using permutation tests. 

Functional MRI data processing was carried out using FEAT (FMRI Expert 

Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl). Registration of the functional data to the high resolution 

structural image was carried out using boundary based registration algorithm264. 

Registration of the high resolution structural to standard space images was carried out 

using FLIRT265,266. The following pre-statistics processing was applied; motion 

correction using MCFLIRT266; non-brain removal using BET267; spatial smoothing 

using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalization of the 

entire 4D dataset by a single multiplicative factor; high-pass temporal filtering 

(Gaussian-weighted least-squares straight line fitting, with sigma=50.0s). Time-series 

statistical analysis was carried out using FILM with local autocorrelation correction268. 

The time series model included three general linear model (GLM) regressors based 

on trial events in the task: 1) choice; 2) transition and 3) reward. The “choice” regressor 

(parameter 1) was defined as the time, in each trial, at which the participant chose 

between the upper circle or the lower circle at the first-step step of the task and its 

duration was defined by how long this choice was highlighted (this timing was jittered 

with a mean=3s; min=2s; max=8s). The “transition” regressor (parameter 2) was 

defined as the time, in each trial, at which the transition which occurred (common vs. 

rare) was revealed and its duration was defined by how long the second-step choice 

was highlighted (this timing was jittered with a mean=3s; min=2s; max=8s). The  

“reward” regressor (parameter 3) was defined as the time, in each trial, at which the 

reward delivery (or non-delivery) occurred (at the end of the second step); its duration 

was defined by how long the reward (coin) was shown on the screen (fixed 1.5s) and 

a parametric modulation was used by mean-centering the number of rewards obtained 

across the 25 trials. All regressors were entered at the first level of analysis and all 

were convolved with a canonical double-gamma hemodynamic response function. 

The temporal derivative of each regressor as included in the model. The models were 

estimated separately for each participant and each run. Second-level analysis, 

combining runs/sessions within subject, was carried out using a fixed effects model, 

by forcing the random effects variance to zero in FLAME (FMRIB's Local Analysis of 

Mixed Effects)269–271. Correction for multiple comparisons was performed using 

cluster-based thresholding. 
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4.5. Results 

 

Recruitment for this experiment is currently ongoing. The results described here 

are preliminary, and essentially a proof-of-principle regarding the possibility of 

collecting event-related BOLD-signal in the MRI scanner, during performance of the 

reduced two-step task. Currently, I have collected fMRI data from 9 healthy subjects, 

3 of whom are men, with a mean age of 24 years and a mean education of 17 years 

(Table 7). 

 

Table 7. Sociodemographic data for participants who performed the fMRI version of 

the reduced two-step task. 

 

 

Comparing early pre-debriefing sessions with late pre-debriefing sessions, we 

observed no significant increases in the ‘outcome’, ‘transition’ or ‘transition x outcome’ 

logistic regression predictors (Fig. 24). There was a significant increase in the ‘choice’ 

predictor from early to late sessions, reflecting a higher tendency to repeat the same 

first-step choice, independently of the trial events. Comparing late pre-debriefing 

sessions with post-debriefing sessions, we observed a decrease in the ‘outcome’ 

logistic regression predictor and an increase in the ‘transition x outcome’ predictor (Fig. 

25). 
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Figure 24. Effects of experience in the fMRI version of the reduced two-step task in 

healthy subjects  

A) Stay probability analysis showing the probability of repeating the first step choice on the 

next trial as a function of trial outcome (rewarded or not rewarded) and state transition 

(common or rare). Error bars indicate the cross subject standard error (SEM). The top left 

panel shows data combining early pre-debriefing sessions (session 1 to session 4), the top 

right panel shows data combining late pre-debriefing sessions (session 5 to session 8).  B) 

Logistic regression analysis of how the outcome (rewarded or not), transition (common or rare) 

and their interaction, predict the probability of repeating the same choice on the subsequent 

trial. Positive loading on the ‘outcome’ predictor indicates a tendency to repeat rewarded 

choices. Positive loading on the ‘transition’ predictor reflects a tendency to repeat choices 

followed by common transitions. Positive loading on the ‘transition x outcome’ interaction 

predictor indicates a tendency to repeat choices that were rewarded following a common 

transition, or that were not rewarded following a rare transition. Additional predictors include 

‘bias’, indicating a tendency to choose the upper circle, ‘correct’, which models the influence 

of whether the previous trials choice was correct (i.e. high reward probability) on the probability 

of repeating that choice, and ‘choice’, indicating a tendency to repeat the previous first-step 

choice independently from the previous trial events. Dots indicate maximum a posteriori 

parameter values for individual subjects, bars indicate the population mean and 95% 

confidence interval on the mean. Statistical significance of differences in factor loadings for 

each predictor between early sessions (blue) and late sessions (red) were evaluated using 

permutation tests.   
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Figure 25. Comparison of late pre-debriefing sessions with post-debriefing sessions in 

the fMRI version of the reduced two-step task in healthy subjects  

A) Stay probability analysis showing the probability of repeating the first step choice on the 

next trial as a function of trial outcome (rewarded or not rewarded) and state transition 

(common or rare). Error bars indicate the cross subject standard error (SEM). The top left 

panel shows data combining late pre-debriefing sessions (session 5 to session 8), the top right 

panel shows data combining late pre-debriefing sessions (session 8 to session 12).  B) Logistic 

regression analysis of how the outcome (rewarded or not), transition (common or rare) and 

their interaction, predict the probability of repeating the same choice on the subsequent trial. 

Positive loading on the ‘outcome’ predictor indicates a tendency to repeat rewarded choices. 

Positive loading on the ‘transition’ predictor reflects a tendency to repeat choices followed by 

common transitions. Positive loading on the ‘transition x outcome’ interaction predictor 

indicates a tendency to repeat choices that were rewarded following a common transition, or 

that were not rewarded following a rare transition. Additional predictors include ‘bias’, 

indicating a tendency to choose the upper circle, ‘correct’, which models the influence of 

whether the previous trials choice was correct (i.e. high reward probability) on the probability 

of repeating that choice, and ‘choice’, indicating a tendency to repeat the previous first-step 

choice independently from the previous trial events. Dots indicate maximum a posteriori 

parameter values for individual subjects, bars indicate the population mean and 95% 

confidence interval on the mean. Statistical significance of differences in factor loadings for 

each predictor between late pre-debriefing sessions (red) and post-debriefing sessions (gold) 

were evaluated using permutation tests.   
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Regarding the fMRI data, after running the first-level GLM (producing parameter 

estimates for each of our three events of interest in each session), we combined all 12 

runs in a higher-level GLM. Then, to test for the BOLD effects of uninstructed 

experience in the task, we compared early pre-debriefing sessions (sessions 1 to 4) 

with late pre-debriefing sessions (sessions 5 to 8). To explore the effects of explicit 

knowledge on BOLD activity, we compared pre-debriefing runs (run 5 to run 8) with 

post-debriefing runs (run 9 to run 12). 

The preliminary analyses of imaging data show that, across all 12 runs, choice 

events were associated with increased BOLD activity in the left precentral gyrus (Fig. 

26, Table 8), while reward events were associated with increased BOLD activity in the 

left ventral striatum (nucleus accumbens; Fig. 27). Reward events are also associated 

with increased activity bilaterally in the fusiform cortex, predominantly on the right side 

(Table 9). However, no area survived multiple comparisons regarding focal activity 

associated with transition events (data not shown). 

 

 

2 3.8 

Figure 26. Statistical map showing activation in the left precentral gyrus cortex for 

choice events in healthy subjects.   

Heatmap color bars range from z-stat = 2 to 3.8. Correction for multiple comparisons 

performed using cluster-based thresholding with clusters determined by z>2.0 and a corrected 

cluster significance threshold of p<0.05. The maximum intensity voxel in the largest cluster of 

activation corresponds to the left precentral gyrus (Harvard-Oxford Cortical Structure Atlas). 

 

Table 8. Activation table for map in figure 26. 

 

Cluster Index: a unique number for each cluster from 1 to N. Voxels: the number of voxels in 

the cluster. P: P-value for each cluster. Z-MAX: the value of the maximum "intensity" within 

the cluster (the maximum z-statistic). Z-MAX X/Y/Z (mm): the location of the maximum 

intensity voxel, given as X/Y/Z coordinate values in standard space coordinates. 
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2 3.7 

Figure 27. Statistical map showing activation in the left ventral striatum (nucleus 

accumbens) for reward events in healthy subjects.  

 Heatmap color bars range from z-stat = 2 to 3.7. Correction for multiple comparisons 

performed using cluster-based thresholding with clusters determined by z>2.0 and a corrected 

cluster significance threshold of p<0.05. The maximum intensity voxel in the largest cluster of 

activation corresponds to the left ventral striatum (nucleus accumbens) (Harvard-Oxford 

Cortical Structure Atlas). 

 

Table 9. Activation table for map in figure 27. 

 

Cluster Index: a unique number for each cluster from 1 to N. Voxels: the number of voxels in 

the cluster. P: P-value for each cluster. Z-MAX: the value of the maximum "intensity" within 

the cluster (the maximum z-statistic). Z-MAX X/Y/Z (mm): the location of the maximum 

intensity voxel, given as X/Y/Z coordinate values in standard space coordinates. The largest 

cluster (5052 voxels) has its maximum intensity in the ventral striatum (nucleus accumbens). 

The other two clusters (1788 voxels and 1235 voxels) correspond, respectively, to the right 

and left fusiform gyrus. 

 

Comparing early pre-debriefing sessions (1 to 4) with late pre-debriefing 

sessions (5 to 8) we found no clusters of activity which survived the multiple 

comparisons correction (data not shown). Comparing pre- with post-debriefing 

sessions, we found increased BOLD activity for transition events in a cluster extending 

from the right paracingulate cortex into the right frontopolar cortex (Fig. 28, Table 10). 
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1.5 2.4 

Figure 28. Statistical map showing debriefing effects on transition events in healthy 

subjects.   

Heatmap color bars range from z-stat = 1.5 to 2.4. Correction for multiple comparisons 

performed using cluster-based thresholding with clusters determined by z>1.5 and a corrected 

cluster significance threshold of p<0.05. The maximum intensity voxel in the largest cluster of 

activation corresponds to the right paracingulate cortex (Harvard-Oxford Cortical Structure 

Atlas). 

 

Table 10. Activation table for map in figure 28. 

 

Cluster Index: a unique number for each cluster from 1 to N. Voxels: the number of voxels in 

the cluster. P: P-value for each cluster. Z-MAX: the value of the maximum "intensity" within 

the cluster (the maximum z-statistic). Z-MAX X/Y/Z (mm): the location of the maximum 

intensity voxel, given as X/Y/Z coordinate values in standard space coordinates. 

 

4.6. Discussion 

 

Our preliminary results suggest the modifications we implemented in the 

reduced two-step task were successful in maintaining a behavioral performance which 

was similar to the version of the task we presented in Chapter 3. The most important 

effect was the dramatic change in the ‘transition x outcome’ and in the ‘outcome’ 

predictors of the logistic regression, which suggest that explicit knowledge led to an 

increase in model-based control and to a decrease in model-free control. Although we 

found no differences in the main logistic regression predictors when comparing early 

pre-debriefing sessions with late pre-debriefing sessions, we must keep in mind that 

we’re only comparing the first 100 trials with the following 100 trials – less than the 
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300 trials that subjects performed only in the first session of the behavioral version of 

the reduced two-step task (Chapter 3). 

We also demonstrate that the fMRI protocol we developed allows to separate 

the three main events of interest in our sequential decision task: the first-step choice; 

the transition from the first- to the second-step and the reward delivery. Moreover, our 

results regarding modulation of activity during these events is consistent with previous 

literature. The finding of increased BOLD activity in the left precentral gyrus during 

choice events is consistent with the well-established role of this area in controlling 

motor output272,273. This finding is reassuring regarding our chosen methods, since 

“choice” was the only time series which was aligned with an action, and it was 

associated with increased BOLD activity in the contralateral motor cortex. The 

increase in ventral striatal (nucleus accumbens) activity during reward delivery is also 

in agreement with our predictions, given previous literature demonstrating 

associations between nucleus accumbens activity and reward delivery. Specifically, it 

has been previously shown that the nucleus accumbens increases its activity in 

anticipation of reward274 and, in the original two-step task, Daw and colleagues found 

BOLD signals in the ventral striatum correlated both with a model-free reward 

prediction error and a model-based state prediction error181. 

An unexpected finding was the increased neuronal activity in the fusiform 

cortex, bilaterally, associated with reward events. The fusiform cortex is known for its 

role in face and body recognition275–277. Our interpretation is that reward events 

increased BOLD activity in the fusiform area because the reward symbol shown was 

a United States dollar coin, which features an image of the Statue of Liberty (including 

its face). In support of this hypothesis, the right cluster of activation is larger and more 

significant than that on the left, just as the fusiform face area is larger on the right than 

on the left275–277. 

The preliminary data collected until now also suggests that the debriefing may 

modify brain activity while performing the same task. When comparing pre- with post-

debriefing runs, the only significant cluster of activation extended from the 

paracingulate cortex (part of the medial prefrontal cortex) into the frontal pole. 

Interestingly, both the medial prefrontal cortex and the frontopolar cortex have been 

associated with the arbitration process between model-based and model-free RL 

using sequential decision tasks182,183. We will further explore the computations 

underlying this arbitration process and how debriefing may modify them in Chapter 5. 

Due to low number of subjects until the present moment, behavioral data has 

not yet been incorporated in the GLM analysis. We plan to use a GLM analysis with 

RL-driven predictors in order to identify brain areas associated with model-based and 

model-free computations. Our experimental design has advantages compared to 

others, namely because it should separate runs/sessions in which behavior should be 

under model-free control (pre-debriefing) from sessions in which behavior should 

reflect a hybrid of model-based and model-free control (post-debriefing). However, the 

GLM is a massive univariate approach, posing some limitations. Specifically, it only 
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allows to examine individual voxels or regions at a centimeter scale (the “region of 

interest” approach). As a result, it is unclear which voxel(s) corresponds to which 

unit(s) of the computational model, since a one-to-one mapping cannot be assumed 

because one voxel corresponds to a large number of neurons.  

Multivariate approaches, such as multivoxel pattern analysis (MVPA), try to 

solve the spatial correspondence problem mentioned above by considering spatial 

patterns of activity over ensembles of voxels to analyze what information they 

represent collectively278.  Here I plan to use a specific class of MVPA which focuses 

on the similarity of voxel patterns, typically called “similarity-based MVPA”279. These 

approaches are not limited to showing that a brain region is involved in some function, 

but rather uses representational models that specify how different perceptions, 

cognitions or actions are encoded in brain-activity patterns280. Representation-

similarity analysis (RSA) is probably the most versatile version of similarity-based 

MVPA. It extends beyond analyzing information in regional response patterns and 

allows testing of conceptual and computational models in ensembles of voxels. RSA 

characterizes the representation in each brain region by a representational 

dissimilarity matrix, i.e., a square symmetric matrix with each entry referring to the 

dissimilarity between the activity patterns associated with two stimuli or experimental 

conditions, as measured by the Euclidean distance, Pearson’s correlation distance, or 

other method. Representational models are then assessed by comparing the predicted 

to the observed dissimilarities. We plan to use RSA to analyze how the brain 

represents task space, contingencies and reward information. Importantly, we plan to 

test if debriefing changes the pattern of activity in ensembles of voxels located in 

prefrontal and/or in the striatal areas. 

In summary, we have designed an fMRI protocol with a sequential decision task 

that allows, to our knowledge for the first time, to capture differences in brain activity 

between sessions in which behavior is predominantly model-free (before instructions) 

and sessions in which behavior is predominantly model-based (after instructions), in 

the same subject, task structure and environment. Future directions include expanding 

the ongoing data collection, use multivariate analysis methods and recruit a sample of 

OCD patients and controls. 
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Chapter 5. Discussion and conclusions 
 

In this dissertation I have examined OCD through different complementary 

approaches. After reviewing the literature in the Introduction, I followed a classical 

psychometrics framework to establish the criterion validity of the gold-standard 

instrument for assessing OCD and OCD symptom severity. However, I also confirmed 

previously reported limitations of this instrument with respect to discriminant validity. I 

then reviewed the current state-of-the-art with respect to the use of reinforcement 

learning paradigms to study learning and decision processes in OCD patients, and 

used computational modeling of behavior to develop a new sequential decision task – 

the reduced two-step task – which tries to circumvent the main limitations of previously 

used paradigms. I demonstrated that OCD patients have trouble in increasing their 

use of model-based RL when learning exclusively from experience in the reduced two 

step task but are able to use model-based RL control when given explicit information 

about the structure of the environment. While this same pattern of model-based control 

deployment was also present in a group of patients with mood and anxiety disorders, 

an increase in model-free RL during uninstructed performance was only present in 

OCD patients, which were also the only group that did not decrease their use of model-

free RL after obtaining explicit knowledge about the structure of the task. Finally, I 

developed a protocol to collect functional MRI data during performance of the the 

reduced two-step task, and demonstrated that this protocol has advantages over other 

RL-inspired studies by allowing us to compare brain activity in uninstructed sequential 

action choice with brain activity in instructed sequential action choice. Importantly, I 

demonstrated that the effects of explicit knowledge on RL action control are also 

present in the modified version that I developed for use with fMRI. Regarding brain 

activity, I found that, across all sessions, choice events were associated with increased 

BOLD activity in the left precentral gyrus, while reward events were associated with 

increased BOLD activity in the left ventral striatum. Comparing pre- with post-

debriefing sessions, I found increased BOLD activity for transition events in a cluster 

extending from the paracingulate cortex into the frontal pole. I will now discuss each 

of these main findings, its limitations and several promising future directions. 

 

5.1 The Yale-Brown Obsessive-Compulsive Scale Second Edition has 

good criterion-validity but moderate divergent validity 

 

Adequate assessment of obsessive-compulsive symptoms is required to attain 

the main goal for OCD patients and treatment providers: optimal therapeutic 

outcome24,25. Access to the best treatment interventions is based on accurately 

establishing that a person has OCD. Also, sound psychometric tests are necessary to 

measure OCD symptom severity if we want to test the efficacy of therapeutic 

interventions with precision. Two types of psychometric instruments can be used to 
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assess OCD: clinician-rated or patient-report measures 24. Tests administered by a 

clinician have the advantage of providing detailed and useful information about the 

nature and severity of OC symptoms and guarantee that the patient can elaborate on 

his symptoms or clarify any items. However, as disadvantages, these types of 

measure need extensive training and take substantial time to implement in research 

and clinical practice24. Several self-administered measures of OC symptom severity 

are also available. While such measures may have the advantages of practicality, 

brevity and minimal patient burden, these are widely supplanted by various serious 

limitations: lack of independent verification of responses, potential for response bias, 

lack of translation into certain languages or applicability to those with low reading 

level24,25. Also, in patients who have few but very specific obsessions or compulsions, 

self-report measures may underestimate global severity25. In addition to the Y-

BOCS/Y-BOCS-II, the National Institute of Mental Health Global Obsessive 

Compulsive Scale (NIMH-GOCS)281 and Clinical Global Impressions (CGI)–Severity 

Scale282 have been used as clinician ratings of OCD symptom severity and overall 

illness severity. While advantages of each include the brevity, wide use, and moderate 

to good psychometric properties, each fails to provide detailed clinical information 

about the patient’s symptom severity24. 

Storch and colleagues found problems in convergent validity when developing 

the Y-BOCS-II38. Later, Wu and colleagues performed another study on the 

psychometric properties of the Y-BOCS-II and found problems in divergent validity 

with depressive symptoms. However, these two studies used different instruments to 

assess convergent and divergent validity. Storch and colleagues used the Obsessive-

Compulsive Inventory Revised to assess convergent validity, the Penn-State Worry 

Questionnaire to assess divergent validity with anxiety symptoms and the Inventory of 

Depressive Symptomatology Self-Report to assess divergent validity with depressive 

symptoms38. The study by Wu and colleagues used the NIMH-GOCS to assess 

convergent validity, the DASS-anxiety to assess divergent validity with anxiety 

symptoms, the DASS-depression to assess divergent validity with depressive 

symptoms and the Barret Impulsiveness Scale to assess divergent validity with 

impulsivity41. The use of a clinician-rated instrument (NIMH-GOCS) to assess OC 

symptom severity by Wu and colleagues may explain why they found better 

convergent validity. This problem with convergent and divergent validity is not easy to 

solve and is an inevitable consequence of the high rates of co-morbidity between these 

conditions. Nevertheless, I was able to confirm that the Y-BOCS-II is clearly a very 

reliable instrument, even when analyzing test-retest reliability at an inter-assessment 

interval that is substantially longer than has been used in previous reports38,39,41. 

In Chapter 2 I asked if the Y-BOCS-II checklist and interview, the gold-standard 

instrument used to assess the severity of OC symptoms, is a valid measure to 

diagnose OCD. I established, to our knowledge for the first time, the Y-BOCS-II cut-

off score (total score>13) which has the better performance (sensitivity=84.6%; 

specificity=97%) in distinguishing OCD patients from healthy subjects and from 

subjects with mood and anxiety disorders. Although the criterion-related validity was 
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very good, some of the problems in construct validity which were previously described 

in the literature were confirmed in our sample. Specifically, I found significant positive 

correlations with trait anxiety (Pearson’s r=0.68), state anxiety (Pearson’s r=0.43) and 

depressive symptoms (Pearson’s r=0.57), suggesting only moderate 

divergent/discriminant validity.  

It is also important to mention the main limitations of our Y-BOCS-II study. First, 

I did not assess inter-rater reliability. Also, although I established a cut-off with a high 

sensitivity and high specificity in identifying patients with OCD, a potential criticism that 

can be done is that using a psychometric instrument to identify a disorder defined by 

another psychometric instrument (in this case the Structured Clinical Interview for the 

DSM) is circular. Another major limitation was the small sample size in the clinical 

control group. In conclusion, I have successfully translated and validated the Y-BOCS-

II for the Portuguese adult population. I demonstrated that the Y-BOCS-II is an 

instrument with high reliability for assessing OC symptoms severity and can be used 

to identify OCD with high sensitivity and specificity. However, I also confirmed its 

previously described problems in construct validity. 

 

5.2 Model-free precedes model-based control in uninstructed sequential 

action choice in healthy subjects 

 

Trouble in linking symptoms with brain function is not an exclusive problem for 

OCD, it is transversal to all psychiatry 283–287. Several authors have voiced concerns 

that psychiatry research has even experienced a stagnation due to the lack of 

understanding of the neurobiological underpinnings of disorders which are defined 

phenomenologically 288. As application of computational methods to psychiatry 

research has shown great promise in establishing a link between phenomenological 

and pathophysiological aspects of mental disorders, I used a computational approach 

in the third chapter of this dissertation. 

Computational psychiatry has emerged as a new field in the 21st century289–292, 

bridging the gap between psychiatry, mathematical modeling, biophysical modeling 

and other fields such as neuropsychology or neuroimaging. It seeks normative 

computational accounts of neural, cognitive and behavioral data and function. These 

accounts come from the premise that the brain has evolved to solve computational 

problems. Alan Turing was one of the first to conceive mental function in exactly this 

fashion: the mind as specific patterns of information processing supported by a 

particular hardware which is the brain 293. Computational psychiatry includes two 

different approaches: data-driven and theory-driven 291. Data-driven approaches seek 

to identify disorder-specific features among high-dimensional big data (such as a high 

number of resting-state fMRI scans). Theory-driven approaches, like the one followed 

in Chapter 3, develop and test theoretical, often mechanistic, models which try to 

explain specific phenomena – in this case, learning by interacting with the 
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environment. The field of reinforcement learning is frequently emphasized as an 

archetype of the success of theory-driven approaches to cognitive science294. 

Computational processes designed by theoretical mathematicians have been 

imported to model how humans (or other animals) modify their behavior when 

experiencing rewarding (or aversive) outcomes. By developing and applying a new 

sequential decision task which, to our knowledge, is the first RL-inspired task with the 

capacity to differentiate instructed from uninstructed behavior, I have covered an 

algorithmic account of how the brain controls behavior in distinct circumstances and 

tested if this control is dysfunctional in patients with OCD.  

This computational approach allowed for a detailed exploration of uninstructed 

and instructed learning in healthy subjects. The results of the reduced two-step task 

in healthy volunteers results that the balance between model-free and model-based 

strategies in unknown environments is tipped towards higher use of model-free RL, 

even if the use of model-based RL is advantageous from the beginning. Though 

model-free RL was the dominant strategy prior to instruction, the influence of model-

based RL increased over learning, at least in a subset of individuals. This contrasts 

with habit formation in classical instrumental learning, where actions are initially goal-

directed but become habitual with extended experience 128,152, which most authors 

interpret as reflecting a transition from model-based to model-free control 158.  

Several theories have tried to explain how humans allocate control between 

these two action control systems 158,295,296. Following the general RL principle of 

reward maximization, a potential arbitrator would choose, at each choice point, the 

controller (model-free or model-based) that is predicted to yield the highest amount of 

future reward. To attain this objective, at least three different classes of hypotheses 

have been suggested. In the first of these classes, an arbitrator receives input from 

both the model-based and the model-free systems in order to decide the balance 

between their contributions to action 170,183. The inputs that this arbitrator receives 

contain information about the quality of the predictions of each system, which can be 

quantified as a measure of uncertainty. The arbitrator then chooses the system with 

less uncertainty. Within this class, both systems are engaged at choice point. This 

class of arbitration rules assumes that there are situations in which the predictions of 

a model-based system would be worse than the predictions of a model-free system – 

either due to memory constraints or noise accumulation during computation of model-

based action value. This theory captures the key role of uncertainty in the arbitration 

of goal-directed and habitual mechanisms of choice, and can reproduce the effects of 

habitization, or the gradual passage from goal-directed to habitual behavior after 

extensive experience in a stationary environment 152. This happens because the initial 

uncertainty of the habitual (model-free) controller,compared to the goal-directed 

(model-based) one, is higher (as it learns less efficiently from experience) but 

becomes lower after sufficient learning. This hypothesis assumes that the model-free 

and model-based controllers are actively engaged in every decision (although 

ultimately only one of them is selected) and therefore it cannot explain some 

experimental findings, such as the vanishment of hippocampal forward sweeps 
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(putatively associated with model-based computations) that occurs with habitization in 

rodent maze tasks 297. Also, and perhaps the most important drawback of this account, 

is that it does not consider that model-based computations may have costs, linked to 

the cognitive effort due to planning 228 and to the temporal discounting of rewards due 

to the time required for planning 298. 

The second class of arbitration rules that was proposed has into account that 

model-based computations have a high cost (due to its slowness in performing action 

value calculations or cognitive load) 295. Based on the assumptions that goal-directed 

behavior is flexible but slow and habitual behavior is fast but inflexible, and using the 

computational theory of RL, Keramati and colleagues proposed a normative model for 

arbitration between the two systems that tries to make an optimal balance between 

search-time and accuracy in decision making. According to this approach, the model-

based system has access to near-perfect information but the value of this information 

should outweigh its costs to justify using model-based control. Under this arbitration 

rule, the arbitrator only receives input from the model-free system and the model-

based system is only used if the arbitrator decides not to use the model-free system. 

Others have suggested the idea of a mixed instrumental controller (MIC) which 

produces patterns of behavior according to a flexible combination of model-based and 

model-free computations 296. According to this idea, at decision points, the MIC 

compares the advantages of model-based computations (in terms of reward) with its 

costs, performing a sort of cost-benefits analysis. Pezzulo and colleagues propose 

that this arbitrator calculates the value of information of mental simulation (on the basis 

of uncertainty) and of how much the alternative model-free (cached) values differ 

against each other, and then compares this value of information against the cost of 

using model-based RL (in terms of cost and time) 296. The consequence of this is that 

model-based control is activated only when necessary. 

These three hypothesis for arbitration have recently converged under the unifying 

account of computational rationality  228. It states that the intelligent brains make 

computations with algorithms, representations and architectures that are designed to 

make decisions that lead to the highest utility (immediate worth of states in terms of 

rewards) while taking into account the costs of computation and views the invocation 

of the model-based system as a meta-action in which value is estimated by the model-

free system (Fig. 29). This is in line with the experimental demonstrations that use of 

model-based control decreases when cognitive resources are less available 189 and 

that one of the areas of the cortex which have been associated with the arbitration 

mechanism (lateral PFC) is also involved in the registration of cognitive demand 183,228. 
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Figure 29. Computational trade-offs in sequential action learning applied to the reduced 

two-step task.  

(A) Reduced two-step task structure. (B) A fast but inflexible model-free system stores values 

for each state-action pair in a look-up table but can also invoke a slower but more flexible 

model-based system (C) which represents the structure of the environment and uses 

prospective planning (forward search) to construct an optimal sequence of actions. Having a 

stored value for invoking the model-based system (highlighted in green on the look-up table) 

is a form of metareasoning that weighs the expected value of model-based planning against 

time and effort costs. Adapted from Gershman et al., 2015 228 

 

Although our behavioral experiments do not allow us to identify which type of 

arbitration is occurring in the human brain, the task structure of the reduced two-step 

task (higher contrast between common and rare transitions and block-based reward 

probabilities) favors the use of a model-based system by allowing it to obtain more 

rewards – a speed/accuracy trade-off arbitrator should then increase the probability of 

using model-based control when it calculates that a model-free strategy is earning less 

rewards. The trajectory of arbitration between model-based vs model-free arbitration 

in the current task likely reflects the dynamic nature of the current task, where ongoing 

changes in reward probability prevent the model-free system from converging to 

accurate value estimates and hence dominating behavior late in learning (Fig. 29). 
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The more complex state space compared with typical instrumental conditioning 

experiments makes model learning more demanding and hence may increase 

uncertainty in the model-based system in early learning.  

In fact, it has been recently suggested that performance during initial stages of 

action selection tasks may be primarily based on model-free trial-and-error 

exploration, with progression towards model-based RL occurring in intermediate 

stages, as subjects acquire a model of the environment 239. According to this model, 

proposed by Bostan & Strick, a later third stage would consist of motor memory 

learning (Fig. 30). Here the motor memory, or motor learning, in RL terms, means 

selecting past successful state-action mappings. This three stage model for action 

learning (1st model-free trial-and-error, 2nd stage: model-based cognitive 

computations, 3rd stage: motor memory) was proposed after recent fMRI study in 

healthy humans suggested that distinct brain networks implement different learning 

strategies to improve performance on an action selection task 299. Fermin and 

colleagues in Japan used a “grid-sailing” task that required subjects to move a cursor 

from an initial point to a goal position in a 5x5 grid. Performance during initial stages 

of the task was primarily based on trial and error-type exploration (corresponding to 

model-free RL) and involved a limbic network, including the ventromedial prefrontal 

cortex (PFC), ventral striatum and posterior cerebellum. As learning progressed and 

subjects acquired a model of the environment (corresponding to model-based RL), the 

site of activation shifted to an associative (cognitive) network, including the 

dorsolateral PFC, dorsomedial striatum and lateral posterior cerebellum. Finally, with 

extensive experience, performance relied on motor memory, and the site of activation 

shifted to a motor network, including the supplementary motor area, putamen and 

anterior cerebellum. Our results of initial reliance on model-free RL and later 

appearance of model-based control in some subjects are in line with the findings of 

the Fermin study, although our task was not designed to capture the late stage of 

motor memory. However, a limitation of the Fermin study is that they did not use 

computational models to assure that different action selection strategies were indeed 

in use at the different states.  
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Figure 30. Three distinct action learning strategies with model-free RL preceding 

model-based RL.  

Functionally related brain areas within interconnected networks participate in progressive 

stages of action learning. Model-free learning through exploration (trial-and-error) involves a 

limbic network, including the vmPFC, ventral striatum (nucleus accumbens) and posterior 

cerebellum. Model-based learning occurs later and involves an associative (cognitive) 

network, including the dorsolateral PFC, dorsomedial striatum (caudate) and lateral posterior 

cerebellum. Performance based on motor memory involves a motor network, including the 

supplementary motor area, dorsolateral striatum (putamen) and anterior cerebellum. Imaging 

data 299 suggests that as learning progresses, the sites of activation shift in a topographically 

organized fashion from model-free into model-based areas, with motor memory stages 

appearing later. According to the model depicted in this figure, each stage of the learning 

progress involves a different set of interconnected basal ganglia, cerebellar and cerebral 

cortical regions. Adapted from Bostan & Strick, 2018 239. 
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Very recently, and relevant to this discussion about a third action learning system, 

an experiment using a computational analysis of the two-step task asked how humans 

could learn which components of the environment are important in order to obtain 

rewards300. In the original two-step task, reward probability depends on stimulus 

identity (images, such as fractals) but not on its spatial localization, making it is 

possible to ask if behavior shows evidence of assigning value to outcome-irrelevant 

spatial-motor aspects of the task. This is important because previous studies with the 

same task only considered outcome-relevant model-free representations and so it was 

not clear how and if a model-free system could learn which features of the task are 

relevant for reward prediction and which features are not. The authors found that 

healthy humans assigned value to spatial-motor representations which were irrelevant 

for the prediction of reward (e. g. the fractal appearing on the left or on the right side 

of the screen) and that these representations had effect on behavior300. Also, 

individuals who were more model-based were less prone to this “motor model-free” 

learning300. In our task, the spatial features of the environment (e.g. localization of the 

circle which lit up or which did not light up) are all relevant for reward prediction, making 

learning implemented by a typical “stimulus model-free” and potential learning by this 

newly described “motor model-free system” converge to the same behavior. 

In summary, I have shown that in domains where humans lack prior knowledge, 

model-based RL is slow to develop and behavior relies mosty in model-free control. 

Next, I explored the impact of explicit knowledge on RL strategies using the same task. 

 

5.3 Diverse effects of explicit knowledge on model-based and model-

free reinforcement learning 

 

The reduced two-step task revealed that instructions about task structure in a 

sequential decision paradigm led to a dramatic increase in the use of model-based RL 

in healthy subjects (Fig. 31). Several studies have previously explored the impact of 

explicit instructions in general human behavior using other types of tasks 193,194,301,302. 

Curiously, one of the first classical studies on this topic was performed in psychiatric 

inpatients 301. The authors found that a reinforcement procedure (e. g. getting candy if 

they picked up their cutlery after meals) was only effective if it was accompanied by 

verbal instructions. Their observations also suggested that instructions only had a 

lasting effect if they were followed by reinforcement. Kaufman and colleagues took a 

different approach in 1966, closer to modern studies, using students in a laboratory 

setting 193. Participants were exposed to a variable-interval (VI) schedule of 

reinforcement  (in which reinforcement was given to the response after an 

unpredictable amount of time had elapsed) to obtain small monetary rewards and one 

group was given the correct information that money would be given in a VI basis while 

two other groups were given incorrect information – one of the groups was told that 

their actions would be reinforced according to a fixed-interval (FI) schedule (in which 
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the first response was rewarded after a specific and fixed amount of time had elapsed) 

and the other group was told that their actions would be reinforced according to a 

variable-ratio (VR) schedule (in which responses are reinforced after an unpredicted 

amount of responses). Participants in the VR-instructed group responded at high 

rates, participants in the FI-instructed group responded at low rates and participants 

in the VI-instructed group responded at intermediate rates. These results led the 

authors to conclude that instructions – even if inaccurate – exerted powerful influences 

over rates of response and those influences outweighed the influences of the 

reinforcement contingencies which were present in the operant conditioning paradigm 

per se. The same group published another study afterwards, in which participants 

were trained with five different fixed-interval schedules of reinforcement 194. Giving 

subjects information about the contingencies made them respond appropriately to the 

reinforcement schedules and subjects not provided with information about the 

schedules responded at very high rates, independently of the schedule.  Others have 

used avoidance schedules to demonstrate that when instructions are incongruent with 

the reinforcement learning schedule, the type of behavior depends on whether 

subjects incur in a monetary loss – if subjects do not contact with monetary loss, their 

behavior follows the instructions; if subjects have contact with monetary loss, their 

behavior matches the reinforcement schedule 302. 

 

 

Figure 31. Summary of findings in healthy volunteers.  

The reduced two-step task allowed, for the first time, to isolate the effects of 

uninstructed experience and the effects of explicit knowledge in sequential action choice. 

 

More recently, Doll and colleagues have modified a well-known probabilistic 

decision task to give subjects incorrect information that one of the stimuli is best or 

worst 198.  Participants’ behavior depended on the instructions both initially and after 
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extensive training and the authors tested two possible models (first using neural 

networks, then using mathematical Q-learning models and then using a Bayesian 

approach) for the effect of instruction. A central finding from this work is that advice 

does not just change subjects’ initial estimates of how good or bad options are, but 

also modifies subsequent learning by up-weighting outcomes consistent with advice 

and down-weighting inconsistent outcomes.  Whether such confirmation bias effects 

extend to task structure learning in addition to simple reward learning is an open 

question for further work. Neuroimaging has also started to provide mechanistic 

insights into instruction effects on reward and aversive learning, finding that instruction 

changes responses to outcomes in striatum and VMPFC/OFC, potentially mediated 

by instructed knowledge represented in DLPFC 197,200,240.  Our task provides a 

potential tool for extending such mechanistic investigation of instruction effects into 

the domain of task structure learning in model-based control. 

Our findings are in line with the previous literature regarding the powerful effect 

that instructions have on human behavior. But I leveraged on previous studies by: 1) 

using a task that allows to study sequential action selection and 2) implementing a 

design which allows to analyze computational aspects of uninstructed and instructed 

behavior in separate. The boost in model-based RL (and the decrease in model-free 

RL) after the debriefing was in line with our predictions. According to an arbitration 

mechanism that takes into account the time and effort (i.e., the cost) needed for model-

based computations, the value for invoking the model-based system can be calculated 

based on: 

𝑉𝑚𝑏 =  
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑡𝑖𝑚𝑒

𝐶𝑜𝑠𝑡
  

Receiving information about the transition probabilities and the reward 

probabilities should decrease the time and the effort cost for model-based 

computations. That should increase the value for invoking the model-based system 

and, consequently, its use for control (Fig. 32). 
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Figure 32. Debriefing effects on the arbitration between model-free and model-based 

control. 

A) During uninstructed learning (pre-debriefing) a model-free system stores values for each 

state-action pair in a look-up table but can also invoke a slower but more flexible model-based 

system which represents the structure of the environment and uses prospective planning 

(forward search) to construct an optimal sequence of actions. (B) The explicit information 

provided in the debriefing about transition and reward probabilities should reduce the time and 

the effort cost for model-based computation, increasing the cached value for invoking the MB 

system (highlighted in green). 

 

However, our results also revealed two unexpected findings. The first one was 

that information about task structure also affected model-free action value updates, 

increasing the influence on first-step action value updates of the second-step state 

value relative to the trial outcome, as indexed by the RL model’s eligibility trace 

parameter. This is surprising, because there is no obvious normative reason why 

information about task structure should change the use of eligibility traces.  None the 

less, the effect of instruction on the eligibility trace parameter was robustly significant, 

and replicated in both clinical groups as well as the healthy controls. 
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 I suggest that this relationship was not in fact mediated by changes in a model-

free eligibility trace, but rather by changes in how subjects represented the tasks state-

space. The simplest computational treatments ignore a very important aspect that 

humans and other animals have to deal with when performing any task – how to 

represent the different states of the environment? Distinct state representations can 

make a task easy, hard, near-intractable or impossible to solve. A task can be easier 

to solve if it has a small number of Markov states that an animal is able to represent 

and accrue value to, especially if those states allow to build a smooth value function 
303. On the opposite spectrum, a task can become impossible to solve if the animal 

does not include the information that is fundamental for its performance in the state 

representation 303. Therefore, in a sequential decision task, subjects must not only 

maximize reward but also optimize task/state representations. 

Typically, when RL is applied to decision neuroscience, the behavioral task is 

considered to have a fixed set of discrete states known to the subject. While this is 

likely a reasonable assumption when subjects are explicitly told the tasks structure, in 

tasks where subjects must learn task structure from experience, the brain must jointly 

learn the state-space of the environment and the values of states and actions online 

from complex and often ambiguous sensory data. The ‘model’ of the environment 

learned by the brain therefore comprises not just the state-action-state transition 

model, used in model-based RL, but also beliefs about the set of states that exist and 

the current state of the environment, used by both model-based and ‘model-free’ RL.  

In this account, explicit information provided to subjects explaining that reward 

probability depended on the second-step state, made these states more distinct or 

salient in subjects internal task representation, such that they were better able to 

accrue value, which then drove model-free learning at the first step.  This hypothesis 

can be directly tested by ongoing work combining the task with neuroimaging. Another 

way of potentially confirming this hypothesis would be to run a version of the task 

where a fraction of trials would be left vs. right choices. Forcing subjects to make a left 

vs. right choice could increase their attention to whether left or right was best – if our 

hypothesis about the state space and use of model-based RL is correct, this 

manipulation would increase the use of model-based control on regular trials. This 

could be implemented by having the normal version of the task in 75% of the trials but 

on 25% of trials, the trial would start with the left and right circles lighting up, making 

the subject choose between them to gain access to a reward with a probability which 

would be drawn from the standard block probabilities for the left and right. This 

manipulation could increase the salience for the two possible second-step states in 

regular trials, boosting the contribution of model-based control if our hypothesis is 

correct. 

The other unexpected effect of instruction was to increase subjects’ tendency 

to repeat choices, as indexed by the RL models’ perseveration parameter. This likely 

reflects a strategy of repeatedly sampling a single option to overcome the tasks 

stochasticity. Such sampling may be increased by instruction because subjects have 
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a discrete set of hypotheses (left is good or right is good) that they are deciding 

between, potentially increasing the perceived value of repeated sampling. 

A final aspect of our behavioral results that needs an interpretation is the 

absence of correlation between use of model-based RL and working memory (data 

not shown). Previous work with the original two-step task has shown that use of model-

based RL had a significant positive correlation with performance on a visuospatial 

working memory task (very similar to the Corsi task used in Chapter 3) 191. Working 

memory is defined as a process that provides temporary storage and manipulation of 

information necessary for complex cognitive tasks as language, comprehension, 

learning, and reasoning 304. It enables fast and single-trial learning of any kind of 

information with two limitations: a capacity or resource limit and a time limit 305. 

Although RL and working memory systems are supported by different (although 

partially overlapping) circuits, the way that they interact is far from solved 306. It has 

been proposed that WM may be the same as model-based RL and also that successful 

WM use in simple environments may inhibit model-free RL 306,307. For the purpose of 

this dissertation, which is focused in OCD, having a task which is independent of 

working memory is an advantage, particularly because working memory deficits have 

been described in OCD, as mentioned in the Introduction 308,309. 

 

5.4 OCD patients have a bias towards increased model-free RL and use 

model-based RL after receiving explicit information about task structure 

 

The habit account of OCD – which conceptualizes compulsive actions as 

hyperactive habits – can provide an interesting explanation for the egodystonic nature 

of obsessive-compulsive symptoms310. If actions are more controlled by antecedent 

stimuli than by the current goals, patients should feel that their behavior doesn’t make 

sense or is excessive.  However, as reviewed in the Introduction, it is difficult to 

experimentally induce habits in humans 165. Failures in outcome devaluation 

paradigms in compulsive individuals may reflect dysfunction in goal-directed control, 

rather than overactive habit learning 165. A true tendency for enhanced habits has 

never been measured in OCD 129,165 – only inferred from deficits in goal-directed 

behavior in the slips-of-action test of the Fabulous Fruit Game 113 or shock avoidance 

paradigms 311, which are very liberal and questionable adaptations of instrumental 

conditioning paradigms used in rodents 129,165. The two-step task has provided the 

strongest evidence for an unbalance between action learning systems, with OCD 

patients favoring model-free over model-based learning 184. However, it is not known 

if this is due to a hyperactive model-free system, an underactive model-based system 

or both. Also, as the two-step task needs explicit instruction, the differences between 

OCD patients and healthy controls may be related to working memory deficits, which 

have been described in OCD. 
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Our task design allowed to separate uninstructed from instructed behavior in a 

sequential decision task. The computational analysis allowed to isolate the specific 

strength of model-based control and model-free control, instead of relying on a 

weighting parameter capturing the balance between them (and an inverse temperature 

parameter controlling stochasticity) as most studies have done181,184. Our results 

show, to our knowledge for the first time, that OCD patients have a tendency to 

increase use of model-free RL instead of model-based RL when learning exclusively 

by interaction with the environment (Fig. 33). Interestingly, I found that OCD patients 

have higher loading on the model-fitting parameter reflecting model-free RL strength 

when comparing later training (session 3) with early training (session 1). This early vs. 

late difference in the model-free parameter was not present in the healthy volunteers 

or in the group of patients with mood and anxiety disorders. Although the “session x 

group” interaction forthe model-free parameter in OCD vs. healthy controls did not 

reach significance, there was a trend in that direction. These results suggest that 

increased use of model-free RL may have some specificity for OCD. 

Our results also show that OCD patients have difficulty in learning a model of 

the dynamics of the environment exclusively by interacting with it.  While healthy 

subjects show an increase in their loading on the “transition x outcome” predictor from 

the first to the third session, OCD patients fail to show the same increase. 

Nevertheless, although there is a significant “session x group” interaction when 

comparing OCD with healthy controls, the difference in the absolute values of the 

predictor loadings at session 3 does not reach significance. Moreover, the mood and 

anxiety group also did not show a difference in use of model-based control between 

the first and the third session, just like OCD patients, although their variability in use 

of model-based RL at session 3 was much higher than in the OCD group. Integrating 

this finding with the evidence found in the literature that deficits in model-based RL are 

present in other disorders such as methamphetamine addiction, binge eating, alcohol 

dependence and schizophrenia, it should be concluded that the model-based deficit 

has a low sensitivity and particularly a low specificity for being used as a consistent 

marker for OCD 184–186. 

It is important to note that shifts from MB to MF across several psychiatric 

disorders have often been a result of reductions in the MB component, rather than 

more prominent MF components, both neurally  and behaviorally 235,312. This led a 

number of authors to raise the possibility that the MB to MF shift can be a result of 

nonspecific impairments in executive function 190,231 or stress 188 affecting resources 

for MB computations. In our task, although OCD patients showed problems in 

increasing their use of model-based RL from direct task experience, their use of 

model-based control after the debriefing was not different from that of healthy controls. 

This suggests that OCD patients retain the capacity to use model-based action control 

in domains where they had prior experience. 
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Figure 33. Summary of effects in clinical groups.  

Our task design and computational models allowed to isolate the contributions of 

model-free and model-based RL to uninstructed and to instructed sequential action choice in 

OCD patients and in patients with mood and anxiety disorders. MB = model-based control. 

MF = model-free control. 

 

The fact that OCD patients behave like the healthy controls after the instructions 

in our task may seem contradictory with previous reports describing  impaired model-

based performance in the original two-step task, where instructions are provided 

before behavior is analyzed 184. This may suggest that either OCD patients were 

unable to understand the instructions of the original two-step task or that they were 

unable to transfer the information they were given into model-based planning. Also, I 

propose that previous experience in a task environment may facilitate the use of 

explicit knowledge by OCD patients. Yet, I did find a deficit in model-based control 

prior to the debriefing in OCD patients. Still, this deficit was also present in the group 

of patients with mood and anxiety disorders, demonstrating that it is not specific of 

OCD, possibly related to common mood and anxiety symptoms, or their underlying 

mechanisms.   

On the other hand, our results suggest that a tendency to increase use of model-

free RL during uninstructed learning may be more specific of OCD patients, as this 

increase was not found in healthy volunteers or in the group of patients with mood and 

anxiety disorders. Also, the debriefing led to a non-significant difference between pre-

debriefing and post-debriefing model-free parameter (although there was a decrease 

at trend level) in OCD patients, while the other two groups had a very significant 

decrease in the same parameter. Unfortunately, between-group comparisons also 

remained at trend level, suggesting that a study with larger groups or with some task 

modifications may be needed. 

Our assessment of action control was transversal but, using the original two-step 

task 313 a group of our collaborators at the New York State Psychiatric Institute has 

recently made the first longitudinal assessment of model-based vs. model-free RL in 
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OCD. They were interested in testing if disruptions in model-based task performance 

could be state-dependent: an epiphenomenon, present only during, and perhaps 

resulting from, the presence of acute OCD symptoms 313,314. They found that OCD 

symptoms significantly improved following CBT but model-based performance was 

unaffected by treatment 313. This led the authors to suggest that deficits in model-

based/goal-directed behavior could be a trait or a risk factor for obsessive-compulsive 

symptoms. However, the limitations imposed by the two-step task and by the restricted 

computational analysis that was used did not allow to isolate uninstructed action 

learning nor specific changes in the model-free RL system. In our task, it would be 

interesting to test if pre- or post-debriefing behavioral measures are associated with 

better response to CBT. This can in fact be tested in the future since most of the OCD 

patients recruited in the New York center were treatment-naïve and some of them 

began CBT after performing our task. Using a behavioral measure (post-debriefing 

loading in the MB or MF parameters or difference between pre- and post-debriefing) 

as a predictor of treatment response or as a factor for treatment selection would be a 

huge step for OCD treatment.  

The relationship between obsessions and compulsions – and between them 

and action control – is also a matter of debate. Children diagnosed with OCD often 

deny that their compulsions are driven by obsessive thoughts or by anxiety 315,316. 

Gillan and colleagues have provided evidence for post-hoc rationalizations of 

compulsive-like behavior in OCD patients and it has been proposed that the primary 

phenomenon in OCD could be a tendency to perform compulsive actions, opposing 

the prevailing conceptual model which posits that obsessions drive compulsive rituals 
311,317. This has even lead to a suggestion for a renaming of OCD into COD 

(compulsive-obsessive disorder) 318 , but others have opposed this idea using three 

main arguments: first, that post-hoc rationalizations lack the severity and complexity 

of the irrational beliefs typically present in OCD; second, that the COD hypothesis does 

not explain why OCD patients have negative intrusive thoughts instead of neutral or 

positive intrusive thoughts; third, that intrusive thoughts are also present in other 

conditions such as social anxiety disorder or post-traumatic stress-disorder that lack 

compulsive behaviors  314. This discussion highlights the extraordinary complexity of 

integrating phenomenology with behavioral data, which we have reviewed 

elsewhere319. 

Several authors have proposed that the problem in OCD may be specifically 

related to avoidance habits 311,320. These authors argue that compulsions in OCD are 

avoidant, in the sense that they are made to avoid a negative outcome, instead of 

appetitive, in the sense of being made to obtain a positive outcome. Gillan et al used 

a shock avoidance paradigm in which participants could avoid a mild electric shock by 

pressing the correct foot pedal in response to a warning stimulus. After overtraining, 

the balance between goal-directed and habitual was tested via an instructed outcome 

devaluation procedure – one of the subjects’ wrists was disconnected from the electric 

stimulator (devalued) while the other remained connected (valued). I question if this 

type of outcome devaluation isn’t in fact a contingency degradation, although 
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ultimately this would be indifferent in terms of behavior. After the instructed 

devaluation, the number of (unnecessary) responses to the safe (devalued) stimulus 

was measured. Following overtraining, OCD patients showed greater avoidance of the 

stimulus which was no longer predictive of a shock, leading the authors to conclude 

that OCD patients have enhanced avoidance habits 311. Interestingly, patients that 

developed avoidance habits showed hyperactivity of the caudate nucleus – a region 

classically associated with goal-directed behavior 320. As a future direction, it would be 

interesting to test behavior of OCD patients in our uninstructed task if the outcome 

was an aversive stimulus instead of a monetary reward. 

A limitation of the habit account of OCD is that it fails to characterize one of its 

clinical aspects: the high levels of anxiety experienced by OCD patients 321.  A possible 

bridge between action and anxiety in OCD can be a dysregulation in pavlovian 

learning. Pavlovian learning is a mechanism by which an animal can learn to make 

predictions about when biologically significant events are likely to occur, and in 

particular to learn which stimuli tend to precede them 136. The contingency that controls 

Pavlovian learning is the contingency between the stimulus and the outcome instead 

of stimulus-response association (as in habits) or action-outcome contingency (as in 

goal-directed behavior) 134. Behaviors implemented through pavlovian mechanisms 

are more flexible than reflexes (the simplest type of behavior) in that the moment when 

behaviors are emitted is shaped by predictive learning, but they are also inflexible 

since the responses themselves are stereotyped and non-modifiable 134. Basic 

emotions such as fear are learned through pavlovian mechanisms. Two studies have 

found abnormal fear extinction in patients with OCD322,323. Another recent study looked 

at how OCD patients adjusted their behavior to reversals in pavlovian 

contingencies324. The authors found that OCD patients fail to flexibly update their fear 

responses (measured by skin conductance changes) despite normal initial fear 

conditioning. This inability to update their threat estimations was correlated with 

increased BOLD activity in the prefrontal cortex (specifically, in the vmPFC) during the 

initial stages of learning 324.  These three studies support the idea of aberrant pavlovian 

information processing in OCD 322–324. Another interesting future direction of our work 

would be to modify the reduced two-step task by showing OC-related stimuli instead 

of rewards. 

Reinforcement learning has also been used very recently to try to characterize 

avoidance in anxiety disorders 325. These authors operationalize avoidance as a 

prepotent bias towards withholding actions (inhibition, i.e. “no-go”) when facing 

potentially negative outcomes 325. This is a powerful prepotent bias which has been 

repeatedly observed in animals and in humans and that can have influence in 

instrumental behavior – a process known as pavlovian-to-instrumental transfer, or PIT 
132. The interaction between anxiety and model-based control in the two-step task has 

also been directly tested and the results are contradictory. In a 2015 study, the authors 

reported that experimentally-induced anxiety (via CO2 inhalation) was associated with 

reduced model-based learning 326. However, in a preprint already available (not peer-

reviewed yet), the same group reports that the same anxiety-inducing manipulation 
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had no effect in model-based RL 327. In the group of patients with mood and anxiety 

disorder, I found a relatively poor pre-debriefing model-based control (which did not 

increase with experience) and normal post-debriefing model-based control.   This is in 

line with a previously published paper in which patients with social anxiety disorder 

(SAD) had deficits in goal-directed behavior (measured in an instrumental conditioning 

task) 328. In this last study, the lack of outcome devaluation was associated with greater 

symptom severity and poorer response to therapy 328. A report of increased model-

based control in SAD has recently become available (as a preprint, not peer-reviewed 

yet)329, but studied  online participants only, not clinically diagnosed with SAD329. 

Both our clinical groups (OCD and mood and anxiety disorders) had higher 

levels of depressive symptoms, has assessed by the BDI-II. Major depressive disorder 

(MDD) has been proposed to be associated with impaired capacity for reward-based 

learning 330,331. Its has also been proposed that learning from negative feedback 

(punishment) may be impaired in MDD patients who are treated with SSRI’s332,333. 

Regarding computational RL, MDD has also been associated with a bias towards 

negative paths in the mental simulations which are used for model-based planning 334. 

In fact, it has been shown in a decision task which was able to highlight specific paths 

in model-based reasoning that healthy individuals typically disregard branches of a 

MB decision tree which predict negative outcomes and that this “pruning” was 

correlated with subclinical depressive symptoms 335. Our task involved a very small 

decision tree for this pruning mechanism to be important. Nevertheless, given that 

OCD has a high-comorbidity with depression – and that, as I have shown, the Y-

BOCS-II has only a moderate divergent validity when tested against the BDI – this 

bias could also be present in OCD patients, but was never tested with the adequate 

task. This could be related to the phenomenon of the typical content of obsessions 

being potential negative outcomes, something that has not been adequately explained 

or formalized.  

Our study was not free of limitations. Sequential decision tasks involve trade-

offs between the need for determinism, which makes it worth for participants to engage 

in the task, and stochasticity, which allows behavioral strategies to be discriminated. 

Our task included blocks with neutral reward probabilities (equal on the left and on the 

right) to make less obvious to subjects that there are just two possible configurations 

of the reward probabilities, to make it less likely they will learn some model-free 

strategies (latent state representations) which may mask as model-based control, as 

it has been described in simulations with the original two-step task238. However, after 

analyzing the complete behavioral results, in which model-free control dominates (at 

least during uninstructed experience), it could be advantageous to have a version 

without neutral blocks in order to facilitate learning. Our preliminary results in the fMRI 

version (described in Chapter 4 and in the next section), which did not include neutral 

blocks, suggest that this could be a reasonable strategy to facilitate use of model-

based control. Another potential limitation was the absence of application of the 

changing (transition probabilities) version in the clinical groups. It would be interesting 

to test the specificity of the model-free strength in a task with a more complex structure. 
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The problem with comorbidity between OCD and symptoms of another 

conditions such as anxiety or depression seems to pose a problem when trying to 

identify an instrument which discriminates between them. Coupling neuroimaging with 

sequential decision tasks may be an answer to this problem, and I will now discuss 

the preliminary results from the fMRI experiment. 

 

5.4 Instructions modify brain activity during a sequential decision task 

 

The fourth chapter of this thesis represents the first step of a project aiming at 

understanding brain dynamics underlying sequential action choice in healthy humans 

and in OCD patients. The dynamics of the circuits which seem to implement model-

based and model-free processes in the healthy brain are not perfectly clear yet, 

although a limited number of studies suggest that both RL systems are implemented 

in the same areas, with other studies suggesting distinct but overlapping circuitry (see 

Fig. 22). Importantly, to our knowledge, no published study has analyzed functional 

brain activity in OCD patients performing a sequential decision task.   

After running three pilot versions of a protocol designed to isolate the three main 

events of interest in the reduced two-step task (choice; transition; reward) I came to a 

final version in which participants performed 200 uninstructed trials, before a 

debriefing was presented inside the scanner, followed by 100 post-debriefing trials. 

The results extracted from our preliminary data are very promising. Importantly, I 

demonstrate that, with the version of the task that was adapted for use inside the fMRI 

scanner, I observe behavioral effects which are very similar to the effects which were 

present in the (laptop) version of the task and which formed the core of Chapter 3. The 

most clear and crucial effect is the increase in model-based RL and the decrease in 

model-free RL when pre-debriefing sessions are compared with post-debriefing 

sessions. I also show that choice, transition and reward events activate different brain 

areas. In healthy subjects, in agreement to what would be predicted, the action of 

pressing for the upper or lower circle activated the motor cortex and the reward 

delivery activated the ventral striatum, across all sessions. The activation of the motor 

cortex is not particularly relevant for the context of action learning as it simply reflects 

action implementation, however, it confirms that the timeseries I am using in the GLM 

is perfectly time-locked with the stimuli and the behavioral events.  

The ventral striatal activation for reward, on the other hand, is extremely 

relevant for the context of action learning, as this is the fundamental area for reward 

prediction and one of the main targets for dopaminergic projections from the 

VTA274,336. In fact, it was precisely in the dopaminergic VTA neurons which project to 

the ventral tegmental area that Schultz and colleagues observed signals which 

fluctuated in parallel with the reward prediction error, an index of surprise which is part 

of temporal-difference model-free RL algorithms 168,175. Interestingly, Daw and 

colleagues found that BOLD signals in the ventral striatum correlated not only with 
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model-free reward prediction errors but also with a state prediction error, which can 

only be used by a model-based system181. In the same study, the same correlation 

with both model-free and model-based predictors was also observed in the medial 

prefrontal cortex. These findings were unexpected at the time and have been hard to 

reconcile with the dual-system theory and the empirical evidence for separate action 

control systems that comes from animal studies132. An initial explanation for this 

findings was the suggestion that the model-based system could be training the model-

free system by simulating experiences offline132,181. Another possible way of 

interpreting Daw’s findings, which was advanced very recently by Matthew Botvinick 

and colleagues, regards the prefrontal cortex, the striatum and the thalamus as a 

recurrent neural network337. According to these authors, dopaminergic projections 

from the VTA could be conveying the reward prediction error into both the ventral 

striatum and the prefrontal cortex, with the projections into the prefrontal areas serving 

to drive learning by adjusting the synaptic weights in this area337. In our task, the 

transition from the first- into the second-step is a crucial element for learning the 

structure of the task and an area involved in model-based learning should be active 

during this transition event. Although I did not find a particular brain region to be more 

active across all runs/sessions, I found that the debriefing increased BOLD activity 

during transition events in a cluster extending from the paracingulate cortex into the 

frontal pole. These prefrontal areas, particularly the frontopolar cortex, have been 

previously associated with arbitration mechanism between model-based and model-

free RL183. The main limitation of the current fMRI experience is the sample size (n=9) 

and the duration of the task inside the scanner (~90 minutes), which may be 

problematic for OCD patients. I plan to expand data collection until 40 healthy subjects 

have been included, and I plan to integrate RL-driven predictors into the GLM. Other 

future directions include using multivariate approaches, such as representation-

similarity analysis, which have recently began to be used in fMRI studies to try to 

understand how different task aspects are represented in the brain279,280,338. 

 

5.5. Conclusions 

 

In conclusion, I tested, for the first time, criterion validity of the gold-standard 

instrument to assess the severity of OC symptoms and I found that the best cut-off for 

the diagnosis of OCD is a total score above 13 points. I also confirmed the problems 

in construct validity that the Y-BOCS-II presents. Next, inspired by the literature which 

suggests that deficits in model-based action control may be a marker of OCD, I 

developed a new sequential decision task – which tackles some of the limitations of 

the most popular paradigm and that allows to separate the effects of experience in the 

task from the effects of explicit knowledge. I applied the new task in healthy volunteers, 

as well as in OCD patients and controls with mood and anxiety disorders. Both clinical 

groups had trouble in increasing their use of model-based control with experience but 

were able to use it after being instructed. However, the OCD group was the only group 
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in which uninstructed experience increased their use of model-free RL and in which 

explicit information did not decrease use of model-free RL, suggesting that an 

hyperactive model-free system may be more specific of OCD than underactive model-

based control. I also found new and unexpected effects of debriefing on model-free 

action value updates in healthy and clinical groups. Finally, I designed a protocol which 

shows capacity to measure brain activity in a sequential decision task with 

uninstructed and with instructed sessions. We found that debriefing modified brain 

activity in an area extending from the paracingulate cortex into the frontal pole, 

suggesting that the changes in behavior after explicit information is provided may be 

driven by a modification in brain activity in medial prefrontal areas. Future directions 

include combining computational models with behavioral and neuroimaging data, in 

healthy and clinical populations, in order to attain the goal of finding the first consistent 

biological marker of OCD. 
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Supplementary information 
 

Information before task 

 

“You will now play a game in order to gain of as many rewards as possible. 

Rewards will be represented in the screen as coins. Every time you get a coin, it will 

show up in the screen and it will be added to your total number of rewards. The number 

of coins you get will determine the value of the gift-card that you will receive at the end 

of your participation. 

You will perform 1200 trials and in each trial you can get either one coin or no coin. At 

the end of those 1200 trials, 400 will be randomly chosen to count the final number of 

coins. 

The minimum amount of money in your gift card will be 10 euros. For each coin that 

you get above 150 coins, you will get an increase of 20 cents in your gift card. 

Therefore, if you get 175 coins the amount will be 15 euros, 200 coins correspond to 

20 euros and 225 coins correspond to the maximum amount that the gift-card can 

have, which is 25 euros. Amounts will be distributed rounded to the closer multiple of 

5 euros. 

At the top left corner of the screen, there will be a coin counter which shows how many 

coins you got in each session. That number may not have direct correspondence with 

the final amount, since that amount will be calculated using a random sample of trials. 

You will play the game using the arrow keys after stimuli show up in the screen. 

Each session of the game will last for approximately 15 minutes. Once the session is 

completed, a sentence thanking you for your participation will show up in the screen. 

When that screen shows up you should leave the room. 

 

 

 

 

 

 

 

 

 



Supplementary information 

138 
 

Debriefing – Fixed transition probabilities version 

 

We will now explain the structure of the game. 

First the two central circles (upper and lower) are yellow, indicating that you can 

choose one of them. 

 

If you press the upper arrow key, you will choose the upper circle. If you press the 

lower arrow key, you will choose the lower circle. 

After you choose the upper or the lower circle, one of the two side circles will light up, 

i. e., will turn yellow (left or right). After you press the arrow key that corresponds to 

the lateral circle that lit up (left or right), a coin may or may not appear. 

The probability according to which the central circles give access to either one of the 

lateral circles also follows some rules. 

If you choose the upper circle, one of two different things can happen. Most of the 

times (actually 80% of the times), the right side circle will light up. Rarely, the left side 

circle will light up. 

If you choose the lower circle, most of the times (actually 80% of the times) the left 

side circle will light up. On the remaining occasions, the right side circle will light up. 
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The left and right circles give access to the rewards, which are symbolized as coins. 

However, the probability of winning a coin is not the equal on the left or on the right: it 

is always higher on one of the sides. Sometimes it is higher on the left and sometimes 

it is higher on the right. The side in which that probability is higher changes after 20 or 

more trials. 

 

You will now play a last session, with the same rules. Good luck! 
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Debriefing – Changing transition probabilities version 

 

We will now explain the structure of the game. 

First the two central circles (upper and lower) are yellow, indicating that you can 

choose one of them. 

 

If you press the upper arrow key, you will choose the upper circle. If you press the 

lower arrow key, you will choose the lower circle. 

After you choose the upper or the lower circle, one of the two side circles will light up, 

i. e., will turn yellow (left or right). After you press the arrow key that corresponds to 

the lateral circle that lit up (left or right), a coin may or may not appear. 

 

The probability according to which the central circles give access to either one of the 

lateral circles also follows some rules. The game is divided in two types of blocks. 

In “A” blocks, choosing the upper circle leads more frequently (80% of the times) to 

the lighting up of the right side circle. On the other hand, in these blocks, choosing the 

lower circle, leads more frequently (80% of the times) to the lighting up of the left side 

circle. 

In “B” blocks, choosing the upper circle leads more frequently (80% of the times) to 

the lighting up of the left side circle. On the other hand, in these blocks, choosing the 

lower circle, leads more frequently (80% of the times) to the lighting up of the right side 

circle. 

 

Therefore, in “A” blocks, if you choose the upper circle, one of two things can happen. 

Most of the times (actually 80% of the times), the right side circle will light up. Rarely 

(20% of the time), the left side circle will light up. 
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In these same “A” blocks, if you choose the lower circle, one of two things can happen. 

Most of the times (actually 80% of the times), the left side circle will light up. Rarely 

(20% of the time), the right side circle will light up. 

Schematic representation of the structure of “A” blocks: 

 

 

In “B” blocks, if you choose the upper circle, one of two things can happen. Most of 

the times (actually 80% of the times), the left side circle will light up. Rarely (20% of 

the time), the right side circle will light up. 

In these same “B” blocks, if you choose the lower circle, one of two things can happen. 

Most of the times (actually 80% of the times), the right side circle will light up. Rarely 

(20% of the time), the left side circle will light up. 

Schematic representation of the structure of “B” blocks: 

 

 

“A” blocks and “B” blocks alternate between them after 20 or more trials. 

The left and right circles give access to the rewards, which are symbolized as coins. 

However, the probability of winning a coin is not the equal on the left or on the right: it 

is always higher on one of the sides. Sometimes it is higher on the left and sometimes 
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it is higher on the right. The side in which that probability is higher changes after 20 or 

more trials. 

You will now play a last session, with the same rules. Good luck! 
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