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RESUMO 

O arroz é o segundo cereal mais produzido no mundo e Portugal é o maior consumidor e quinto 

maior produtor da Europa. A produção de arroz gera quantidades significativas de resíduos como 

a casca de arroz (CA), a palha de arroz (PA) e o polietileno (PE), o qual é resultante de plásticos 

agrícolas. Atualmente, os destinos destes resíduos não são os mais adequados do ponto de vista 

ambiental, sendo necessário encontrar-se novas vias de valorização para estes resíduos. Uma 

vez que estes materiais têm poderes caloríficos inferiores (P.C.I.) interessantes, é possível 

valorizá-los através de processos termoquímicos, como a pirólise e a gasificação. Estes 

processos geram diferentes produtos com valor energético (na gasificação gera-se 

maioritariamente um gás de síntese e na pirólise um biocombustível líquido, embora alguns 

gases também sejam gerados). No entanto, uma fração sólida (carbonizados - chars) também é 

produzida em ambos os processos termoquímicos, a qual pode ser valorizada como material 

adsorvente. 

Diversas indústrias contribuíram para o aumento da contaminação de águas residuais com 

metais, que são, direta ou indiretamente, enviados para o ambiente, especialmente em países 

subdesenvolvidos e em desenvolvimento. Assim, é necessário tratar estas águas residuais 

contaminadas antes da sua libertação para o ambiente. O crómio (Cr) e o tungsténio (W) são 

dois elementos metálicos que podem ser encontrados em várias águas residuais industriais. 

Simultaneamente, a União Europeia (UE) publicou, em 2014, uma lista de 20 substâncias cuja 

recuperação é uma prioridade para a Europa; ambos os elementos estavam nessa lista, devido 

à sua importância económica para o setor industrial. 

Neste contexto, o principal objetivo deste trabalho foi o de se avaliar a viabilidade de se utilizar 

carbonizados de pirólise e gasificação de CA, PA e PE, na remoção de Cr (na forma de Cr(III)) e 

W (na forma de WO4
2-) de meios líquidos. Em alguns casos, foi necessário otimizar-se os 

carbonizados, com o intuito de se melhorar as suas propriedades e eficiência em processos de 

adsorção/remoção. Para fins de comparação, foi também utilizado um carvão ativado comercial 

(CAC). 

Dos diversos carbonizados estudados, apenas dois de gasificação (G4C e G5C) e um de pirólise 

(P1C) foram selecionados para serem utilizados nos ensaios de remoção de Cr(III), em fluxo 

descontínuo (batch). Apesar da área superficial dos carbonizados ser muito baixa, não foi 

necessária nenhuma ativação dos carbonizados de gasificação, pois o seu elevado conteúdo 

mineral permitiu remover Cr(III) através de trocas iónicas. No entanto, o carbonizado de pirólise 

necessitou de ser otimizado para melhorar a sua capacidade de adsorção. Assim, diferentes 

ativações (físicas e químicas) foram realizadas ao carbonizado P1C. 

De entre os carbonizados de gasificação utilizados, o G4C foi o que apresentou os melhores 

resultados, apresentando capacidades de adsorção de 8.19 mg g-1 na solução sintética (o CAC 

obteve 3.93 mg g-1) e de 14,9 mg g-1 na água residual industrial de curtumes (o CAC obteve 16,1 

mg g-1). 
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O carbonizado P1C ativado fisicamente (P1C+PA) apresentou as maiores capacidades de 

adsorção de entre os carvões ativados provenientes de pirólise, obtendo valores de 9.23 mg g-1 

na solução sintética (o CAC obteve 9,80 mg g-1) e 12,4 mg g-1 na água residual industrial (o CAC 

obteve 16,1 mg g-1). 

O carbonizado G4C foi selecionado para ser utilizado nos ensaios de coluna, em condições 

dinâmicas, mas o desempenho dos carvões G4C e CAC foi inferior aos obtidos nos ensaios em 

batch, registando capacidades de adsorção de 1,60 e 2,14 mg g-1, na solução sintética, e 3,25 e 

7,83 mg g-1, na água residual industrial. 

Estes resultados sugerem que, em condições batch, o carbonizado G4C e o carvão ativado 

P1C+PA mostram ter propriedades para serem adsorventes alternativos na remoção de Cr(III) 

de efluentes líquidos, uma vez que o seu desempenho pode ser considerado comparável ao 

carvão comercial. 

Para os ensaios de adsorção de WO4
2-, foram produzidos seis carvões ativados provenientes de 

pirólise. A ativação química com KOH originou o carvão ativado de pirólise (P4C+KOH) com os 

melhores resultados na adsorção de WO4
2-. As maiores capacidades de adsorção encontradas 

para o carvão ativado P4C+KOH foram de 854 mg g-1, na solução sintética, e de 1561 mg g-1, na 

água residual de uma indústria de mineração, enquanto que os valores do CAC foram 

significativamente mais baixos (113 e 572 mg g-1, respetivamente). O carvão ativado P4C+KOH 

mostrou claramente melhores propriedades do que o CAC na adsorção de WO4
2-, obtendo 

capacidades de adsorção quase 8 vezes superiores na solução sintética e quase 3 vezes 

superiores na água residual de mineração. 

Estes resultados sugerem que o carvão ativado P4C+KOH parece ser uma alternativa muito mais 

eficiente que o CAC na adsorção de WO4
2- a partir de efluentes líquidos de mineração. 

O principal objetivo do trabalho foi alcançado, pois tanto para a remoção de Cr como de W foi 

possível produzir-se adsorventes alternativos ao carvão ativado comercial comum. Nos ensaios 

de Cr, os adsorventes produzidos obtiveram resultados semelhantes ao CAC, enquanto que nos 

ensaios de W as expectativas foram amplamente superadas, uma vez que os adsorventes 

produzidos superaram largamente os resultados do CAC.  
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ABSTRACT 

Rice is the second most produced cereal in the world and Portugal is the major consumer and 

fifth larger producer in Europe. Its production generates significant amounts of wastes, namely 

rice husk (RH), rice straw (RS) and polyethylene (PE) from agricultural plastics. Currently, the 

destinations of these wastes are not the most environmental adequate, so different routes of 

valorisation are required. Having these materials interesting lower heating values (LHV), their 

valorisation in thermochemical processes, such as pyrolysis and gasification, became a 

possibility. These processes generate different products with energetic value (gasification 

generates mainly synthesis gas and pyrolysis mainly products are liquids, though some gases 

are also obtained). However, a solid fraction (char) is also produced in both thermochemical 

processes, which can be valorised as adsorbent materials. 

Several industries have led to an increase in metal-contaminated wastewaters, which are directly 

or indirectly discharged into the environment, especially in underdevelopment and developing 

countries. Therefore, it is necessary to treat metal-contaminated wastewaters prior to their 

discharge into the environment. Chromium (Cr) and Tungsten (W) are two metallic elements that 

can be found in several industrial wastewaters. Additionally, the European Union (EU) published, 

in 2014, a list of 20 substances whose recovery is a priority for Europe. Chromium (Cr) and 

tungsten (W) were in this list due to their economic importance to the industry sector. 

In this context, the main objective of this work was to evaluate the feasibility of using chars from 

the pyrolysis and gasification of RH, RS and PE, in the removal of Cr (as Cr(III)) and W (as WO4
2-) 

from aqueous solutions. In some situations, optimisation processes were necessary in order to 

improve the chars’ properties and efficiency in the adsorption/removal processes. For comparison 

purposes, a commercial activated carbon (CAC) was also used. 

Regarding the several chars used on Cr(III) removal only two gasification chars (G4C and G5C) 

and one pyrolysis char (P1C) were selected to be used in the removal assays under batch 

conditions. Despite of the very low surface area of the chars, the gasification chars were used 

without any activation, due to their high mineral content, allowing removal by ion exchange. 

However, the pyrolysis char required further optimization to improve its adsorptive capacity. 

Different activations (physical and chemical) were applied to P1C char. 

G4C char presented the best result among the gasification chars, achieving uptake capacities of 

8.19 mg g-1 in the synthetic solution (3.93 mg g-1 for CAC) and 14.9 mg g-1 in the tannery industry 

wastewater (16.1 mg g-1 for CAC). 

P1C physically activated (P1C+PA) presented the highest uptake capacities of all pyrolysis-

derived activated carbons obtaining values of 9.23 mg g-1 in the synthetic solution (9.80 mg g-1 

for CAC) and 12.4 mg g-1 in the industrial wastewater (16.1 mg g-1 for CAC). 

G4C char was selected to be used in the column assays under dynamic conditions, but the 

performance of both G4C and CAC was lower than in the batch assays, obtaining uptake 
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capacities of 1.60 and 2.14 mg g-1 in the synthetic solution and 3.25 and 7.83 mg g-1 in the 

industrial wastewater, respectively.  

These results suggest that under batch conditions G4C and P1C+PA showed good properties to 

be alternative adsorbents in the removal of Cr(III) from liquid effluents, since their performance 

can be considered comparable to the commercial sample. 

For the WO4
2 adsorption assays, six pyrolysis-derived activated carbons were produced. 

The chemical activation with KOH originated the pyrolysis-derived activated carbon (P4C+KOH) 

with the best results on WO4
2 adsorption. The highest uptake capacities found for P4C+KOH were 

854 mg g-1 in the synthetic solution, and 1561 mg g-1 in the industrial wastewater from a mining 

industry, while CAC’s values were significantly lower (113 and 572 mg g-1, respectively). 

P4C+KOH activated carbon clearly showed better properties than CAC on WO4
2- adsorption, 

obtaining uptake capacities almost 8 times higher in the synthetic solution and almost 3 times 

higher in the mining wastewater. 

These results suggest that P4C+KOH seems to be a much more efficient alternative to CAC in 

the adsorption of WO4
2- from liquid effluents. 

The main objective of the work was achieved as for both Cr and W removal it was possible to 

produce alternative adsorbents to the typical commercial activated carbon. Concerning Cr, the 

adsorbents produced obtained similar results to CAC, while for W the expectations were widely 

exceeded, as the produced adsorbents largely overcame CAC’s results. 
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1.1 Background and motivation 

Over the last few decades, the fast development of certain industrial sectors such as metal plating, 

mining, fertilizer industries, tanneries, production of batteries, pulp and paper, pesticide industries, 

among others, has led to an increase in the generation of metal-contaminated wastewaters, being 

directly or indirectly discharged into the environment, especially in developing countries1,2. 

Because of the high lipo-solubility of some of these metals, they can be absorbed by aquatic 

organisms and bioaccumulate in their tissues. Once they enter the food chain, large 

concentrations of these metals may accumulate in the human body through contaminated food 

consumption. If the metals are ingested beyond the permitted concentrations, they can cause 

serious health disorders3. Therefore, it is mandatory to treat metal-contaminated wastewaters 

prior to their discharge into the environment. 

Chromium (Cr) and Tungsten (W) are two metallic elements that can be found in several industrial 

wastewaters. Cr is used in metal finishing, wood preservation, textile production, leather tanning, 

among other applications, while W is applied for lighting and electronic uses, catalysts, mining 

and construction tools, hard jewellery, etc. Additionally, Cr and W are two of the most 

economically important raw materials for the European Union (EU), which makes their recovery 

a priority from liquid and solid wastes4. 

Metal removal from liquid effluents can be achieved by conventional treatment processes such 

as chemical precipitation, solvent extraction, ion exchange, electrochemical removal, among 

others. Some of these processes have significant disadvantages, namely incomplete removal, 

high-energy requirements and production of toxic sludge2. 

Recently, numerous approaches have been studied for the development of cheaper and more 

effective technologies to improve the quality of treated effluents. Adsorption has become a 

relevant alternative process, which has led to an increase in the demand for low-cost adsorbents 

that have metal-binding capacities. Over the last years, chars resulting from pyrolysis and 

gasification have been studied as possible adsorbent materials5–8. The textural properties of these 

chars may be poorer than the ones of activated carbons, which are the conventional adsorbent 

materials used in the adsorption of pollutants from wastewater9. However, the surface of chars 

may be enriched with functional groups and mineral components that  improve their adsorptive 

capacity. Lastly, if necessary, these chars may even be activated in order to increase their 

adsorptive capacities10. 

Gasification and pyrolysis are thermochemical processes that convert the feedstocks into energy 

and materials. Many feedstocks have been tested in gasification and pyrolysis assays, but lately, 

biomass and solid wastes of high calorific value are being the most used feedstocks as they bring 

environmental and economic benefits to these thermal technologies11–14. 

Rice is an important staple food for approximately half of the world population15. Its production 

generates several wastes (mainly rice straw, rice husk and plastic bags from fertilizer and seed 

transportation) with interesting lower heating values (LHV), which has given way to the 
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appearance of several studies regarding the valorisation of these wastes into energy through 

gasification and pyrolysis16–19. Despite the increasing level of interest and research on this issue, 

there are still limited studies on the adsorption of metals from aqueous media by chars produced 

from the pyrolysis of rice wastes20–23 and no studies regarding pyrolysis or gasification chars from 

rice waste blends, aside from the studies performed by the team in which the PhD candidate 

developed his work24. This presents a clear opportunity to indulge in this investigation gap. 

In order to attempt all these issues, a National Project named “Ricevalor” was assembled. The 

aim of the project was to study thermal valorisation routes for RH, RS and PE through co-

gasification and co-pyrolysis thermal processes. The main objective of the project was to test 

several wastes’ blends and thermal conversion conditions (such as temperature, pressure, and 

reaction time) in order to maximize the energetic fraction of the process. Secondary objectives 

were also established, namely the valorisation of the resulting chars from the co-pyrolysis and co-

gasification processes into the removal of valuable pollutants from aqueous solutions. This PhD 

was developed in the framework of this secondary objectives. 

The global aim of this work is to characterize the chars resulting from the co-gasification and co-

pyrolysis of rice waste streams and use them in the removal of Cr(III) and WO4
2- from aqueous 

solutions. The results obtained are compared with a commercial activated carbon, in order to 

access the feasibility of chars into metal removal. 

 

1.2 Research objectives 

The main objective of this doctoral thesis is to access the feasibility of using chars from the 

pyrolysis and gasification of rice waste (rice straw, rice husk and polyethylene) blends in the 

removal/adsorption of trivalent chromium and tungstate from aqueous solutions. 

To achieve this main objective, the following specific tasks were defined: 

1. Characterisation of different rice waste streams; 

2. Gasification and pyrolysis assays; 

3. Characterisation of chars; 

4. Optimization of chars selected for the adsorption assays; 

5. Adsorption assays under batch conditions; 

6. Adsorption assays in fixed columns under dynamic conditions using the chars that 

performed better in the batch tests. 

 

1.3 Literature review 

In order to access the scientific relevance and innovation of the present work, a literature review 

was previously performed. This review focused on the following topics: 

1. Rice wastes; 
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2. Pyrolysis and gasification; 

3. Chars as removal agents of metal ions from aqueous solutions; 

4. Activated carbons: activation processes and adsorption mechanisms; 

5. Significance of chromium and tungsten recovery; 

6. Adsorption in fixed-bed column systems. 

 

1.3.1 Rice wastes 

Rice (Oryza sativa L.) is the second most produced cereal worldwide25. The most recent statistics 

refer that, in 2017, the rice world production was between 759.6 Mt25 and 769.7 Mt26. In Europe, 

4.1 Mt of paddy rice were produced, and Portugal was the fifth European producer with 0.180 Mt, 

after Italy (1.59 Mt), Russia (0.987 Mt), Spain (0.835 Mt) and Greece (0.185 Mt)26. 

During cultivation, collection, and processing of rice, different wastes are produced. Due to high 

amounts generated, the most significant wastes are rice straw (RS), rice husk (RH), and plastic 

bags, mainly composed of polyethylene (PE), being used in the transportation of seeds and 

fertilizers.  

About 23% of the total paddy rice mass is composed by RH27 and each kilogram of the harvested 

grain produces 1.0-1.5 kg of RS28, which means that a very high amount of these wastes is 

generated during rice production. In Portugal, RS is either burnt in open-air at the rice fields or 

directly incorporated in soils; RH is either used as bed material in poultry farms or as feedstock 

for animal feeding; plastics are mechanically treated to be exported and recycled in Asian 

countries. 

As some of these destinations are not environmentally sound, several studies have been 

performed intending to recover/recycle some of these wastes. The valorisation of rice bio-wastes 

(RH and RS) can be done by biochemical processes, such as co-composting29, anaerobic 

digestion and co-digestion30,31, bio-fermentation for bioethanol production32,33, or dark-

fermentation for bio-hydrogen production34,35. However, these processes need a previous pre-

treatment step to make the sugars contained in the polymeric fraction of cellulose and 

hemicelluloses bioavailable, increasing the cost of final products. 

Rice crop wastes also have interesting lower heating values (LHV) allowing to be used in thermal 

processes: 12.4 MJ kg-1 for RS36, 12.9 MJ kg-1 for RH18, and 44.0 MJ kg-1 for PE37. Thermal 

processes seem to be interesting technologies to valorise these wastes, whether by direct 

combustion38–40, liquefaction41,42, gasification16,18,43, or pyrolysis44–46. 

According to the European Waste Directive 2008/98/EC47, pyrolysis and gasification are also 

considered recovery operations. Incineration is only considered as such whenever both energy 

recovery and electricity production are performed. Gasification and pyrolysis can also be included 

in the category of recycling technologies, as organic wastes can be reprocessed into new 

products for several applications. 
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1.3.2 Pyrolysis and gasification  

Through gasification and pyrolysis, the wastes are thermally treated with the primary goal of 

obtaining high added-value products, such as syngas (in the case of gasification), bio-oils (in the 

case of pyrolysis), and chars (in both thermal processes). From these final products, energy can 

be generated. In addition, these products can be used in chemical industry for the production of 

new materials48, based on the Circular Economy concept. 

Gasification occurs in a partial oxidation environment. Different oxidation agents may be use, 

such as air, steam, carbon dioxide, oxygen or a combination of these49. Syngas is the main energy 

product, being composed of CO, H2, CH4, and a mixture of other minor gases50. Also, a 

carbonaceous solid by-product with a relatively high ash content is produced51. Temperature is 

one of the most important parameters in gasification. Lower gasification temperatures increase 

the char yield and reduce CO2 and H2 concentrations in syngas. Higher gasification temperatures 

(over 1000 °C) can lead to ash fusion and secondary char reactions, decreasing the char yield. 

Also, a special design gasification reactor is needed for higher temperatures. The optimal 

temperature range is between 750 °C to 900 °C52. Different chemical reactions are involved in the 

gasification process. Equation 1.1 shows the overall reaction in an air and/or steam gasifier49. 

However, there are other reactions that can occur during gasification, being the major represented 

by equations 1.2-1.849. 

 

CxHyOz (biomass components) + O2 (air) + 
H2O (steam) 

→ 
CH4 + CO + CO2 + H2 + H2O + 
C (char) + tar 

(1.1) 

    

Partial oxidation reaction 2C + O2 → 2CO (1.2) 

Complete oxidation reaction  C + O2 → CO2 (1.3) 

Hydrogasification reaction C + 2H2 → CH4 (1.4) 

Water gas shift reaction CO + H2O → CO2 + H2 (1.5) 

Steam reforming reaction CH4 + H2O → CO + 3H2 (1.6) 

Water gas reaction C + H2O → CO + H2 (1.7) 

Boudouard reaction C + CO2 → 2CO (1.8) 
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Pyrolysis is the thermal decomposition process performed under moderate pressure, at relatively 

high temperatures (400-800 °C), in the absence of oxygen supply. The final products are in the 

form of gases, bio-oils, and chars15,53. The proportion of products depends on the operating 

conditions15: temperatures up to 600 °C maximize the production of bio-oil, and temperatures 

above 700 °C maximize the production of gas, minimizing the formation of char54; lower pressures 

promote the production of char, while higher pressures favour the production of gases55. Among 

the thermal conversion processes of biomass, pyrolysis process is recognized as the most 

versatile, since it can be used either as an independent process for the production of liquid fuels 

and other valuable chemical, or as an initial step in the gasification or combustion56. Several 

reactions of dehydration, decarboxylation, decarbonylation, aromatization, ketonization, 

hydrodeoxygenation, repolymerization, etc., occur in biomass pyrolysis associated to very 

complex mechanisms57,58. Also, much of the reaction present in the gasification process are 

common to pyrolysis. The simplified chemical reaction that occurs in pyrolysis can be seen in 

equation 1.957,59. 

 

CxHyOz (biomass components)    →  condensable volatile tar + light gases + char (1.9) 

 

Although there are already some studies on the gasification and pyrolysis of RH15,60, RS15,60,  and 

PE61,62 as raw materials, pyrolysis and gasification using blends of these wastes are poorly 

studied and can be an important topic to be explored. 

 

1.3.3 Chars as removal agents of metal ions from aqueous solutions 

Among the products of pyrolysis and gasification, char can be seen as an interesting by-product 

material, since it has numerous applications48, such as (i) combustion for energy recovery63, (ii) 

reducing agent in metallurgical applications64,65, (iii) catalyst66, (iv) soil amendment material67, and 

(v) precursor of activated carbons68,69. 

Furthermore, there has been increasing interest in using chars in water treatment70–72. The 

specific properties of chars that make possible their use as adsorbent of pollutants from aqueous 

solutions include relatively porous structure, enriched surface with functional groups and/or 

mineral clusters. As adsorbents, chars resemble some properties to activated carbons which are 

the most commonly employed and efficient adsorbents for the removal of diverse pollutants from 

water9. According to the width size, pores may be divided in micropores (< 2 nm), mesopores (2 

> 50 nm) and macropores (> 50 nm)73. Different pollutants have different molecular sizes, so the 

size of the pores is a significant factor to take into consideration when selecting a char or activated 

char for removing pollutants. 

Compared to the commercial activated carbons, chars appear to be new potential low-cost and 

effective adsorbents, as their production is cheaper with lower energy requirements74. The 
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feedstocks for char production are abundant and of low-cost, being mainly obtained from agro-

forestry biomass and solid bio-wastes75. In some cases, these carbonaceous materials show 

even higher adsorption affinity and capacity for removing pollutants than the commercial activated 

carbons76–78. Being a renewable resource and due to its economic and environmental benefits 

(Figure 1), chars are therefore promising resources for environmental technology used for 

wastewater treatments. 

 

 

Figure 1. Possibilities of using chars as effective adsorbents of different pollutants in 

wastewater treatment70 (reproduction under the kind written permission of Elsevier). 

 

Water pollutants can be divided into two types: organic and inorganic compounds.  Organic 

compounds include dyes, phenolics, pesticides, polynuclear aromatic compounds, anti-

inflammatory compounds, hormones, antibiotics, among others. Although inorganic compounds 

can be of different types,  in wastewaters they can be divided mainly in two groups: cations and 

anions71. Regarding inorganic pollutants which are the focus of the present work, there are 3 main 

mechanisms to remove metals from aqueous media by using chars: 

(1) Pore filling – Ions are retained in the chars’ pores through physical (electrostatic) sorption 

between the positively charged ions and the delocalised cloud of electrons associated with 

aromatic groups on the surface of the carbonaceous chars, creating cation-π interactions with the 

CC aromatic bonds. This merely affects the pollutant concentration in the aqueous solution; 
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(2) Precipitation – If the pH of the char is too alkaline or too acidic, the pH of the medium may 

change. By altering the pH of the medium, the metal speciation can be changed into insoluble 

forms and precipitation occurs; 

(3) Adsorption – The chars’ surface interacts with ions in aqueous solutions. According to Li et 

al.79, ion adsorption can occur by five different ways (Figure 2): 

(i) Surface precipitation – The chars’ surface may contain some ions, such as phosphate 

and carbonate, which will interact with the ion in the aqueous solution and form insoluble 

compounds that will precipitate in the chars’ surface; 

(ii) Cation exchange – Gasification and pyrolysis chars may have high ash content,  

depending on the feedstock used6. These ashes are typically composed by Ca, Na, K, and 

Mg minerals if biomass is used as feedstock79,80. These cations can be replaced by the 

cation pollutants. 

(iii) Complexation – If the chars’ surface contains atoms with empty electron orbitals (for 

instance, oxygen-containing functional groups), the metal ions will be attracted to the chars’ 

surface forming metallic complexes with functional groups. 

(iv) Electrostatic attraction – If the chars’ surface and metal ion are charged with opposing 

charges the metal will be attracted to the chars’ surface by electrostatic forces. When the 

pH of the medium is lower than the pHpzc of the char, char’s surface will have positive 

charges, so anions will be attracted to char’s surface. When the opposite occurs, i.e., the 

pH of the medium is higher than the pHpzc of the char, char’s surface will have negative 

charges, so cations will be attracted to char’s surface. 

(v) Reduction – Metal species are reduced by gaining electrons from oxygen surface 

functional groups or π-π electrons from the carbon aromatic structure of the char. The 

reduced metal species is then adsorbed. 

Adsorption is an effective and economic method for wastewater treatment contaminated with 

metals. The adsorption process offers flexibility in design and operation, and in many cases will 

produce high-quality treated effluents. In addition, because adsorption is sometimes reversible, 

adsorbents may be regenerated by suitable desorption process. 

Pyrolysis chars/activated chars from several feedstocks (Table 1) and specifically from rice 

wastes (Table 2), have been studied in the adsorption of several metal ions from aqueous 

solutions. However, no studies were found concerning the adsorption of metal ions by chars 

produced from the pyrolysis of rice waste blends. 
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Figure 2. Adsorption mechanisms of metal ions by chars (adapted from Li et al.79). 

 

Table 1. Bibliographic references on adsorption capacity of chars/activated chars from different 

feedstocks for the removal of metal ions from aqueous solutions. 

Metal 
ion 

Thermal 
process 

Temperature 
(°C) 

Feedstock 
Activation/ 
Treatment 

Adsorption 
capacity 
(mg g-1) 

Reference 

As(III) 

Pyrolysis 400 + 450 

Pine wood 

No 

1.20 

Mohan et 
al.81 

Oak wood 5.85 

Pine bark 12.15 

Oak bark 7.40 

   

Cd(II) 

Oak wood 0.37 

Pine bark 0.34 

Oak bark 5.40 

 



11 
 

Table 1. (continuation) 

Metal 
ion 

Thermal 
process 

Temperature 
(°C) 

Feedstock 
Activation/ 
Treatment 

Adsorption 
capacity 
(mg g-1) 

Reference 

Cu(II) Pyrolysis 700 Pinewood No 4.46 Liu et al.82 

Cu(II) 

Pyrolysis 

450 Hard wood 
No 

6.79 

Chen et 
al.83 

600 Corn straw 12.52 

     

Zn(II) 
450 Hard wood 

No 
4.54 

600 Corn straw 11.00 

Cu(II) Pyrolysis 400 

Peanut 
straw 

No 

0.05 – 0.09 

Tong et 
al.84 

Soybean 
straw 

0.03 – 0.05 

Canola 
straw 

0.03 – 0.04 

Cu(II) Pyrolysis 300 and 600 

Orange 
waste 

Chemically 
treated 
with HCl 

4.921 and 
0.422 

Pellera et 
al.23 

Compost 
7.937 and 
3.384 

Dried olive 
pomace 

5.118 and 
0.660 

Pb(II) Pyrolysis 420 
Pine, 
plastics and 
used tires 

No 1.18 – 1.87 
Bernardo 
et al.85 

Co(II) 
Pyrolysis 650 

Almond 
shells 

No 

26.95 – 
28.09 Kılıç et 

al.86 
Ni(II) 

20.00 – 
22.22 

Cu(II) 

Gasification 1000 
Pine and 
spruce 
chips 

No 10.3 

Runtti et 
al.68 

Chemically 
activated 
with ZnCl2 

23.1 

   

Fe(II) 

No 24.1 

Chemically 
activated 
with ZnCl2 

20.5 

   

Ni(II) 

No 5.6 

Chemically 
activated 
with ZnCl2 

18.2 
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Table 2. Bibliographic references on adsorption capacity of chars/activated chars from pyrolysis 

of rice wastes for the removal of metal ions from aqueous solutions. 

Metal 
ion 

Temperature 
(°C) 

Feedstock 
Activation/ 
Treatment 

Adsorption 
capacity (mg g-1) 

Reference 

Al(III) 
350, 500 and 
700 

Rice straw 

No 
9.58, 8.77 and 
9.31 

Qian and 
Chen87 

Oxidation with 
HNO3 and H2SO4 

5.94 – 12.8, 
2.70 – 3.10 and 
2.02 – 3.37 

Cd(II) 

700 

Rice bran 

No 

16.18 

Jing and 
Yangsheng88 

Rice straw 60.61 

   

Pb(II) 
Rice bran 33.00 

Rice straw 126.58 

Cd(II) 

350 Rice husk No 

7.81 

Xu et al.89 
Cu(II) 4.16 

Pb(II) 29.0 

Zn(II) 6.60 

Na+ 

400, 600 and 
800 

Rice husk 

No 
35.2, 60.8 and 
53.9 

Rostamian et 
al.90  

400 and 600 
Physical 
activation with 
steam 

63.4 and 73.5 

600 
Chemical 
activation with 
KOH 

104.8 – 158.0 

600 

Chemical 
activation with 
KOH followed by 
physical activation 
with steam 

96.3 – 102.1 

Ni 550 and 700 Rice husk No 6.87 and 10.2 Shen et al.91 

Sr(II) 550 Rice straw 
Washed with 
distilled water 

198 
Yakout and 
Elsherif92 

Zn(II) 300 and 700 Rice straw No 21.1 and 44.7 Dai et al.93 

 

Regarding gasification chars/activated chars from different feedstocks, other than rice wastes, for 

metal removal, the number of studies available decreases significantly (Table 1). Author found 

no studies concerning the adsorption of metal ions by chars produced from the gasification of rice 

wastes or rice waste blends. 
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1.3.4 Activated carbons: activation processes and adsorption mechanisms 

In order to improve its adsorption properties, activation processes can be performed over the 

gasification and pyrolysis chars. Two types of activations can be done: physical and/or chemical 

activations94. Physical activation involves the reaction between the char and an oxidizing gas at 

high temperatures. Chemical activation involves the impregnation of the char with chemical 

agents (dehydrating agents and/or oxidants) followed by heating under inert atmosphere. Also, 

physical and chemical activations can be used simultaneously (Figure 3). 

 

 

Figure 3. Schematic illustration of chars’ activation processes. 

 

1.3.4.1 Physical activation 

The physical activation is used to increase the porosity of the char by removing some compounds 

that can be blocking the pores, for instance, some volatile matter that remained after the pyrolysis 

processes or tarry products (Figure 4), and at the same time the width of pores created during 

the pyrolysis process is enlarged. It involves a reaction between the char and an oxidizing gas, 

such as CO2, steam, air or mixtures of both these gases95. 

Physical activation is a partial gasification of the char with the oxidizing agent, being carried out 

at temperatures usually above 800 °C. CO2 has been used in many research works, because it 

is a clean gas, relatively easy to handle and the activation process is easily controlled at 

temperatures around 800 °C due to the low oxidation rate. In addition, when compared to other 

oxidizing agents, CO2 activation provides greater uniformity of surface pores76,96,97. 

In order to add oxygenated groups (e.g. carboxyl groups, lactones, phenols, ketones, quinones, 

alcohols and esters) to the activated carbon’s surface, chemical treatments by oxidation can be 

applied to the physically activated carbon. This type of treatments makes the material more 
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hydrophilic and acidic, lowering its pHpzc and increasing its density of negative charges on the 

surface. Several reagents have been used as oxidants: HNO3, HSO4, NaClO, KMnO4, Cr2O7
2–, 

H2O2, transition metals and oxidizing gas mixtures. Oxidation with HNO3 allows the introduction 

of a small amount of functional groups with nitrogen, although most studies focus on the 

introduction of oxygen-containing functional groups, mainly carboxyl groups, lactones and 

phenols97–100. 

 

 

Figure 4. Adsorption mechanisms of metal cations on raw biochar and on physically and 

chemically activated biochar101 (reproduction under the kind written permission of Elsevier). 
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1.3.4.2 Chemical activation 

The chemical activation is used to increase the porosity and surface area of the char, and to 

increase the functional groups present on the char’s surface (Figure 4). Several functional groups 

(e.g. carboxyl, hydroxyl, phenol, etc.) can bind chemically with the metal ions present on the 

solution and remove them101. Chemical activation has the advantage of producing activated 

carbons with high surface area, at lower temperatures than physical activation (400-800 °C)95, 

but the washing step to remove the residual reactants and inorganic matter (ash) is a 

disadvantage102. 

Impregnation of chars with metallic chlorides, such as ZnCl2, allow obtaining activated carbons 

with a well-developed meso and microstructures. Alkaline treatments are commonly performed 

by metal hydroxides, such as KOH or NaOH, which increase the hydroxyl functional groups 

present on the char’s surface and provide activated carbons with a narrow pore size distribution 

and well-developed porosity. On the other hand, acidic treatments provide more carboxylic 

groups. Among the acidic activators currently used (H3PO4, H2SO4, HNO3), H3PO4 is one of the 

most widely tested, because in addition to introducing a relatively high amount of stable 

phosphoric complexes, which contribute to a higher oxidation resistance and high acidity added 

to the char’s surface, it also provides very high surface areas at relatively low temperatures (400-

500 °C)76,96,97. The main problem is that H3PO4 is produced from phosphoric rocks which are 

critical raw materials for agriculture sector due to the world limited resources. 

 

1.3.5 Significance of chromium and tungsten recovery 

In 2013, the European Commission (EC) analysed 44 non-energetic and non-agricultural raw 

materials, in order to select the most critical raw materials (CRM) regarding their economic 

importance and supply risk to Europe. In 2014, the EC published a list of 20 CRM for Europe 

according to those two factors (Figure 5)103. 

According to this list, chromium (Cr) and tungsten (W) were two of the raw materials in the first 

four initial positions with the highest economic importance (Figure 5). In addition, the global 

supply of Cr and W coming from the EU was less than 3%103. Although Cr was removed from the 

revised CRM list in 20174, since its supply risk decreased slightly below the threshold, it is still 

one of the raw materials with the highest economic importance. In this context, the recovery of Cr 

from secondary raw materials and wastewaters is extremely important. 

From all the listed raw materials, chromium is the most problematic in what concerns 

environmental issues104. Chromium occurs in aqueous environments mainly in the trivalent, 

Cr(III), and hexavalent, Cr(VI), oxidation states. Cr(III) is widely used in metal finishing, wood 

preservation, textile production and leather tanning, and therefore is present in industrial effluents 

produced in developed and developing countries105. 
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Figure 5. Overall results of the 2013 assessment for the critical raw materials to Europe103. 

 

On the other hand, it is known that tungsten is a metal widely used in various applications (halogen 

lamps, armaments, hard materials, jewellery, etc.). Lately, due to its favourable properties, 

tungsten has been a first choice for several high-tech structural applications106. However, the EU 

supplying-dependence from third countries, namely China, is enormous (91%)103. Therefore, 

tungsten recovery from secondary raw materials and wastewaters is also mandatory. 

Based on this list of CRM, EC has reinforced the need to find new alternative methods and 

technologies to recover CRM from secondary raw materials and wastewaters in which they can 

be found in high concentrations. These alternative methods and technologies must be 

economically and environmentally sustainable. 

In this framework, the use of chars from co-pyrolysis and co-gasification of rice waste streams to 

adsorb and recover Cr and W from wastewaters is an important research area to be explored. 

This strategy adds an economic high value to by-products (chars) of thermal processes, 

contributing for their valorisation. Simultaneously, it contributes to the EC objective of recovering 

critical raw materials to Europe. 

Concerning the scientific data on Cr(III) removal, there are already some studies on the adsorption 

of this metal onto chars/activated chars from pyrolysis of biomass (Table 3); however, the number 

of papers decreases dramatically when rice wastes are used as feedstocks to produce the 

chars/activated chars (Table 4). Regarding the adsorption of Cr(III) by chars from biomass 

gasification, or from pyrolysis and gasification of rice waste blends, the only study available was 

performed by the team in which this PhD thesis was performed24. 
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Table 3. Bibliographic references on the adsorption capacities of chars/activated chars from 

pyrolysis of different feedstocks for Cr(III) removal from aqueous solutions. 

Temperature 
(°C) 

Feedstock Activation/Treatment 
Adsorption 
capacity (mg g-1) 

Reference 

800 
Eucalyptus 
grandis wood 
sawdust 

Physically activated 
with direct CO2 and 
oxidized with HNO3 

17.5 

Milich et 
al.107 

Physically activated 
with partial CO2 and 
oxidized with HNO3 

25.5 

Physically activated 
with partial air and 
oxidized with HNO3 

29.0 

400 

Peanut straw 

No 

25.0 

Pan et al.22 Soybean straw 17.2 

Canola straw 14.6 

500 Sugarcane pulp No 15.9 Yang et al.108 

300 

Organic fraction 
of municipal solid 
wastes No 

42.4 Agrafioti et 
al.109 

Sewage sludge 30.1 

900 
Municipal 
sewage sludge 

No 20 – 30 Chen et al.110 

 

Table 4. Bibliographic references on the adsorption capacities of chars/activated chars from 

pyrolysis of rice wastes for Cr(III) removal from aqueous solutions. 

Temperature 
(°C) 

Feedstock Activation/Treatment 
Adsorption 
capacity (mg g-1) 

Reference 

400 Rice straw No 14.0 Pan et al.22 

250 – 700 Rice husk No 4.61 – 10.6 Vassileva et al.111 

300 Rice husk No 15.1 Agrafioti et al.109 

100 – 700 Rice straw 
Washed with distilled 
water and sonicated 

2.4 – 6.5 Qian et al.112 

 

Regarding tungsten (W), some adsorption studies of W(VI) (usually in the form of tungstate – 

WO4
2-) from aqueous solutions have been performed, mainly by using mineral adsorbents (Table 

5). Concerning carbon-based materials there is only one work dealing with carbon cloth113. This 

C-cloth was obtained by pyrolyzing a phenolic C-film polymer between 800 and 900 °C in N2. Two 
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different treatments were made to the adsorbent: i) a distilled water washing to avoid leaching 

from the adsorbent, and ii) an acidic treatment with H2SO4 for the modification of surface 

functional groups and porous structures. The water treated C-cloth and the acid treated C-cloth 

obtained adsorption capacities of 154 and 208 mg g-1, respectively. 

 

Table 5. Bibliographic references on the adsorption capacities of different adsorbents for 

tungstate from aqueous solutions. 

Adsorbent Activation/Treatment 
Adsorption capacity 
(mg g-1) 

Reference 

Fly ash 
No 4.72 – 7.62 

Ogata et al.114 
Hydrothermal treatment 21.72 – 74.12 

Fly ash 
No 11.25 

Ogata et al.115 
Hydrothermal treatment 43.45 – 62.34 

Fly ash 
No 6.76 

Ogata et al.116 
Hydrothermal treatment 36.54 

Fe-Mg type 
hydrotalcite 

No 

14.4 – 86.2 

Ogata et al.117 
Al-Mg type 
hydrotalcite 

22.0 – 35.7 

Kaolinite No 6.53 Ruiping et al.118 

Sepiolite 
Treated with H2SO4 followed 
by heat treatment 

5.3 – 48.3 Wang et al.119 

Montmorillonite 
clay 

No 2.11 – 5.54 
Gecol et al.120 

Coated with chitosan 11.4 – 23.9 

Montmorillonite 
clay 

Coated with chitosan 62.11 Gecol et al.121 

Pyrite 
Washed with deoxygenated 
water and deoxygenated HCl 

4.65 – 13.20 
Cui and 
Johannesson122 

Goethite No 9.16 – 18.55 

Montmorillonite 
clay 

Organically modified with 
quaternary ammonium salts 

29.4 – 68.0 Muir et al.123 

Ferrihydride No 0.607 – 37.0 Sun and Bostick124 

Silica gel 

Coated with 1,8-
diaminonaphthalene 
formaldehyde resin and 
treated with HCl 

55.32 – 63.27 Dinker et al.125 

Silica 
polyamine 
composites 

Functionalized with 
phosphorus acid and Zr(IV) 
immobilization 

67 – 89 
Kailasam and 
Rosenberg126 

Polymer based 
adsorbents 

No 82 – 95 
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1.3.6. Adsorption in fixed-bed column systems 

Most studies regarding adsorption of different elements are processed using batch assays, as 

this type of system is cheap and easy to operate127,128. However, since in industrial processes, 

continuous systems are preferred in purification processes including adsorption129,130, the data 

obtained under batch conditions are hardly applied to continuous treatment processes operating 

through column systems131. Fixed-bed column systems allow continuous flow processes by 

means of adsorption/regeneration cycles. After column saturation, the adsorbent may be 

regenerated using suitable solutions132, which in the case of metallic contaminants acids such as 

HCl, HNO3, H2SO4, chelating agents, among other, are usually used133–136. This allows cyclic 

sorption/desorption processes, as it makes the best use of concentration, osmotic pressure and 

pH as the driving forces for sorption/desorption and allows more efficient utilization of the sorbent 

capacity137. 

Another advantage of the fixed-bed column systems is the relatively easy scaling up from a 

laboratory scale system. The stages in sorption/desorption protocol can also be automated, and 

high degrees of purification can often be achieved in a single step process. A large volume of 

wastewater can be continuously treated, using a defined mass of adsorbent in the column137. 

Still, there are some disadvantages in column systems, namely adsorbent attrition, feed 

channelling, and mass transfer limitations128. 

The performance of a fixed-bed column is studied by the effluent concentration along time. This 

relation is represented by breakthrough curves 128,138, as represented in Figure 6. 

The surface of a fixed-bed column, where the adsorption occurs is the so called “mass transfer 

zone”. When the effluent reaches the column, the mass transfer zone goes from 0 to 100% of the 

initial adsorbate concentration, i.e., from total removal to total saturation. The breakthrough 

curves are usually expressed as the ratio between the adsorbate concentrations in the outflow 

and inflow (Ci/C0) of the column, as a function of time or volume of the effluent, for a fixed bed 

height 128,138. 

The breakthrough time, tr, is obtained when the adsorbate concentration in the effluent reaches a 

certain value, generally related to the permitted limit value for the studied adsorbate in a 

wastewater. tr makes possible to determine the volume of the effluent that can be treated up to 

the permitted limit value. On the other hand, when the concentration in the effluent is higher than 

95% of the initial adsorbate concentration the saturation time, ts, is reached128,138. 

Studies conducted in fixed-bed columns under continuous flow indicated that the adsorption 

process is influenced by several parameters, such as the initial adsorbate concentration, flow of 

the effluent, and mass of adsorbent in the column, temperature and pH 129,138. 

As seen in Table 6 some biomasses have already been used by different authors into Cr(III) 

removal in column assays. However, very few studies have been performed using biochars and 

no studies were found on chars produced from rice wastes into Cr(III) removal in column assays. 
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Figure 6. Representation of a typical breakthrough curve8 (reproduction under the kind written 

permission of Elsevier). 

 

Table 6. Bibliographic references on the adsorption capacities of different adsorbents for Cr(III) 

removal  

Material 
Temperature 
(°C) 

Adsorption 
capacity (mg g-1) 

Reference 

Wood biochar 
800 - 900 

45.5 – 67.7 
Zhang et al.139 

Caltrop shell biochar 62.3 – 78.5 

Brown seaweed Sargassum sp. n.a. 60.3 - 68.1 Cossich et al.132 

Modified pin bark n.a. 30.96 Arim et al.135 

Brewer’s spent grain n.a. 11.14 - 15.58 Ferraz et al.140 

Orange waste n.a. 12.5 Pérez Marín et al.130 

Improved hemp fibres n.a. 6.894 - 10.781 Tofan et al.141 

Wheat straw n.a. 5.58 – 9.98 Farooq et al.131 

Palm flower n.a. 5.878 Elangovan et al.142 

Olive stone n.a. 0.331 - 0.806 Calero et al.138  

n.a.: not applicable.
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 ORIGIN AND PROPERTIES OF CHARS 

USED IN THE Cr(III) REMOVAL ASSAYS  
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2.1 Introduction 

In this chapter, the chars used in the Cr(III) removal assays resulting from the gasification and 

pyrolysis of rice wastes were characterised. The rice waste streams (RS, RH and PE) that were 

used as feedstocks in the gasification and pyrolysis assays were also fully characterised. 

 

2.2 Materials and methods 

2.2.1 Origin and characterisation of feedstocks 

RS samples were collected from the rice fields of Orivárzea Company, located in Ribatejo region, 

after the field drainage and rice harvesting by cutting straw of an area of about 10 000 m2. RH 

samples were collected from the silos of dried rice husk in Orivárzea rice processing mill. PE bags 

were supplied by farmers after rice sowing. 

These feedstocks were submitted to the following characterisation assays: 

a) Proximate analysis – It comprised the quantification of moisture content (M) (105 °C, for 2 h, 

in open vessels - EN 14774-1), volatile matter (VM) (900 °C, for 7 min, in closed vessels - EN 

15148), and ashes (Ash) (550 °C, for 120 min, in open vessels - EN 14775) that were determined 

by gravimetric method in a CEM microwave furnace MAS 7000; fixed carbon (FC) was determined 

as follows: Fixed-C = 100% – (M + VM + Ash). 

b) Elemental analysis – It comprised the quantification of CHNS (ASTM D 5373 for C, H, N, and 

ASTM D4239 for S) in a LECO CHN 2000 analyser and in an Elemental Thermo Finnigan 

analyser. 

c) Thermogravimetric analysis (TGA) – It was determined as the sample mass loss in argon 

atmosphere (20 cm3 min-1), from 30 °C to 850 °C, with a heating rate of 10 °C min-1 in a Setaram 

Labsys EVO thermogravimetric analyser. 

d) Mineral content – An acidic digestion based on the EN 15290 standard was performed in a 

Milestone ETHOS 1600 microwave heating system by digesting 0.5 g of sample with 3 mL H2O2 

(30% v/v), 8 mL HNO3 (65% v/v) and 2 mL HF (40% v/v) at 190 °C for 20 min. Then, HF was 

neutralised by adding 20 mL H3BO3 (4% w/v) to the solution and digested it again at 150 °C for 

15 min. The solution was then filtered through Whatman® 41 ashless filter papers (20-25 µm) and 

20 metals and metalloids were quantified in the acidic eluates by atomic absorption spectrometry 

(AAS) in a Solaar S series AA spectrometer (Thermo Scientific) or a Zeenit 700  spectrometer, or 

by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) in a Horiba Jobin-Yvon 

Ultima, equipped with a 40.68 MHz RF generator, Czerny-Turner monochromator with 1.00 m 

(sequential), and an autosampler AS500. The metals and metalloids quantified were the following: 

aluminium (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), chromium (Cr), copper 

(Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), molybdenum (Mo), sodium (Na), 

nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), silicon (Si), titanium (Ti) and zinc (Zn). 
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e) Mobility of chemical species – These assays were performed by submitting the samples to a 

leaching test for 24 h with deionized water under a liquid/solid ratio (L/S) of 10 L kg-1 (EN 12457-

2). The aqueous eluates were filtered through Whatman® ME 25/21 ST membrane filters (0.45 

µm) and characterised for pH (Hanna Instruments edge® HI 2002 pH meter), conductivity (Thermo 

Scientific Orion Star A215 conductivity meter) and the same 20 metals and metalloids referred in 

d). Before the quantification of metals and metalloids by AAS or by ICP-AES (same equipment 

referred in d)), the eluates were acidified with HNO3 (65%) down to pH < 2.00. The relative mobility 

(%) of chemical elements was determined by equation 2.1: 

 

Relative mobility =
Concentration in aqueous eluates

Concentration in acidic eluates
× 100 (2.1) 

 

d) Ecotoxic level – The aqueous eluates produced in e) were also characterised for the 

bioluminescence inhibition of the bacterium Vibrio fischeri (Microtox assay) (ISO 11348-3). The 

ecotoxic results were expressed as the effective concentration (% v/v) of the eluate that promotes 

50% decrease in the bioluminescence of V. fischeri, after 30 minutes of exposure (EC50–30 min). 

 

2.2.2 Gasification and pyrolysis assays 

Before the gasification and pyrolysis assays, different blends of RH, RS and PE were chosen. 

These blends were defined according to the criteria of maximizing the production of the liquid 

(pyrolysis assays) and gas (gasification assays) fractions, as the main objective of Ricevalor 

project was to maximize the most energetically interesting fractions. Afterwards, some chars were 

selected, considering the gasification and pyrolysis assays that were carried out under 

experimental conditions that allow obtaining high char production yield. The conditions of the 

gasification and pyrolysis assays of the selected chars are shown in Table 7 and Table 8, 

respectively. 

 

Table 7. Conditions of the gasification assays. 

Gasification 
assay code 

Fuel blends (% w/w) Fuel flow 
(g daf min-1) 

T 
(°C) 

Gasification 
agent 

ER 
Steam 
flow 
(g min-1) RH RS PE 

G1 100 0 0 

5 850 

Air 

0.2 5 

G2 80 0 20 Air 

G3 100 0 0 O2 

G4 80 0 20 O2 

G5 50 50 0 O2 

RH: rice husk; RS: rice straw; PE: polyethylene; daf: dry ash-free basis; ER: equivalence ratio 
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Table 8. Conditions of the pyrolysis assays. 

Pyrolysis 
assay code 

Fuel blends (% w/w)  Reaction conditions 

RH RS PE  P (MPa) T (°C) t (min) 

P1 50 0 50  0.6 390  35 

P2 20 0 80  0.6 390  35 

P3 0 20 80  0.2 430 10 

RH: rice husk; RS: rice straw; PE: polyethylene; P: pressure; T: temperature; t: reaction time at 
temperature T 

 

A bubbling fluidized bed gasifier (Figure 7a) with 0.08 m internal diameter and 1.5 m height was 

used in the gasification assays143. Previously washed fine sand was used as bed material. The 

syngas produced was passed through a cyclone, a gas condensation system and filters before 

being collected for further characterisation. Each gasification experiment lasted between 90 and 

120 min. The study of syngas composition was the main objective of other works from LNEG16,144. 

The mixed bed material – a mixture of sand and chars – was collected at the bottom of the gasifier 

and sieved to separate the chars from sand. The chars were then stored in air-tight reservoirs. 

 

(a) (b) 

 

 

Figure 7. (a) Bench-scale gasifier and (b) bench-scale pyrolysis reactor. 

 

The pyrolysis assays were performed in a 1 L batch reactor (Figure 7b) made of Hastelloy C276 

(Parr Instruments)44. At the end of the pyrolysis experiments, the chars were separated from the 

liquid fraction through settling and extraction with hexane (hexane/char ratio: 17 mL g-1) in a 

Soxhlet extractor, during 3 h. The chars were also stored in air-tight vessels up to their 

characterisation. 

After the gasification and pyrolysis assays, all chars were milled and sieved to <100 μm. 
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2.2.3 Characterisation of chars 

After the gasification and pyrolysis assays, all chars were characterised for the following assays: 

a) Proximate analysis – The parameters were the same as described in section 2.2.1, but the 

temperatures were as defined in ASTM D1762 for moisture content (105 °C), volatile matter (950 

°C), and ashes (750 °C). Fixed-C was calculated as described above for feedstocks; 

b) Elemental analysis – The same as described in section 2.2.1; 

c) Mineral content – The same as described in section 2.2.1; 

d) Textural analysis – Surface area and pore volume were determined through the adsorption-

desorption isotherms of N2, at 77 K, after sample degasification overnight under vacuum 

conditions, at 150 °C. An Accelerated Surface Area and Porosimetry system (ASAP) 2010 

Micromeritics apparatus was used for this characterisation. The following parameters were 

calculated: (i) apparent surface area (SBET) through the Brunauer, Emmett and Tellers’ (BET) 

equation; (ii) total pore volume (Vtotal) by the amount of nitrogen adsorbed at the relative pressure 

p/p0 = 0.99; (iii) micropore volume (Vmicro) by the t-plot method; (iv) mesopore volume (Vmeso) by 

the difference between Vtotal and Vmicro. 

The experimental data obtained in these characterisations were used for the selection of a char 

from gasification and a char from pyrolysis that presented the best potential properties to be used 

as an adsorbent material in Cr(III) removal assays. 

 

2.2.4 Additional characterisation of chars selected for the Cr(III) removal 

assays 

The chars selected to be used in the Cr(III) removal assays were further tested for the following  

characterisations: 

a) Mobility assessment of chemical species and ecotoxic level – The same as described in section 

2.2.1; 

b) pH at the point of zero charge, pHpzc – 0.1 M NaCl solutions with pH values between 2 and 12 

were prepared. The pH was adjusted with 0.1 M NaOH and 0.1 M HCl solutions. The pH values 

were measured in a Hanna Instruments edge® HI 2002 pH meter. 0.1 g of char was added to 20 

mL of each 0.1 M NaCl solution. The assays were performed in an Infors AG AK 82 roller-table 

agitator, under constant mixing of 150 rpm, for 24 h. The pHpzc value corresponds to the plateau 

of the curve pHfinal vs pHinitial. 
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2.3 Results and discussion 

2.3.1 Properties of feedstocks 

2.3.1.1 Proximate and elemental analyses 

Volatile matter was the main fraction in all feedstocks (Table 9), being significantly higher for the 

synthetic polymer (PE), which is directly linked to the higher heating value of this feedstock. RH 

and RS also showed significant contents of both moisture and ashes, which are typical values for 

these types of biomasses15,19,145. 

 

Table 9. Proximate and elemental analyses of feedstocks. 

Parameter 
Feedstocks 

RH RS PE 

Proximate analysis (% w/w ar)    

Moisture content 12.28 22.88 0.66 

Volatile matter 64.88 50.53 98.65 

Ashes 14.34 21.98 0.60 

Fixed carbon 8.50 4.61 0.04 

    
Elemental analysis (% w/w ar)    

C 49.20 53.30 85.10 

H 2.20 7.30 14.30 

N 0.40 1.30 < 0.20 

S 0.06 0.10 < 0.03 

ar: as-received basis 

 

2.3.1.2 TGA 

The thermal degradation of RH and RS (Figure 8) can be divided into three steps: 1) the weight 

loss between 50 °C and 100 °C (10-15% w/w), which was mainly due to water evaporation, 2) the 

significant weight loss (about 40% w/w) from 250 °C to 380 °C, which was due to thermal 

degradation of hemicellulose and cellulose, and 3) the weight loss (approximately 30% w/w) 

between 400 °C and 850 °C, which  was related to the degradation of cellulose and lignin146. At 

850 °C, the carbonaceous residue – char – at the end of TGA was approximately 19% w/w for 

RH and 12% w/w for RS.  

The highest carbonaceous residue yield obtained with RH must be related to the highest lignin 

fraction present in this material147. Lignin is the main source of carbonaceous residue, as its 

individual decomposition is responsible for approximately 40-50% w/w of this residue yield. 

Hemicellulose decomposition contributes to approximately 20-30% w/w of the carbonaceous 

residue yield, while cellulose decomposition only yields for about 10% w/w146,148. 
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Figure 8. TGA of rice husk (RH), rice straw (RS) and polyethylene (PE). 

 

TGA of PE indicated that its thermal degradation begins at approximately 400 °C and is almost 

completed (> 98% w/w) at approximately 480 °C. The carbonaceous residue at 480 °C is less 

than 2% w/w of the initial mass, which is in agreement with the percentages of ash and fixed-C 

determined for this material (Table 9). 

 

2.3.1.3 Mineral content 

The mineral content of the three feedstocks is showed in Table 10. 

Si was the common major element present in the rice-derived materials. It is commonly known 

the high content of this element in RH and RS15,145. 

Although with significantly lower concentrations than Si, alkaline and alkaline-earth metals 

(AAEMs), as well as aluminium were also present with significant amounts in the feedstocks, 

particularly in RH and RS. In general, the mineral content of RS was higher than for RH, which 

agrees with the higher ash content of RS (Table 9). PE presented the lowest mineral content, 

although a remark must be done to the high concentration of Ti, due to the current use of titanium 

dioxide in this polymer as a pigment149. 

These results are in line with those reported in the literature. For RH, Tavlieva et al.150 reported 

similar concentrations for Si (103778 mg kg-1 db) and Tarley and Arruda151 reported similar 

concentrations of K (2572 ± 67 mg kg-1 db) and Ca (1434 ± 286 mg kg-1 db), but a lower 

concentration of Na (961 ± 106 mg kg-1 db). For RS, Liu et al.152 found similar concentrations of 

K (8200 mg kg-1), Ca (2128 mg kg-1) and Mg (2072 mg kg-1), but also a lower concentration of Na 

(2072 mg kg-1). 
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Table 10. Mineral content of feedstocks (mg kg-1 db; 𝑋 ± σ). 

Chemical element RH RS PE 

Si 129 137 ± 9637 232 459 ± 22 331 1 349 ± 114 

Na 7 898 ± 762 10 352 ± 896 3 962 ± 340 

K 3 345 ± 308 9 991 ± 102 497 ± 43 

Al 5 588 ± 515 9 148 ± 877 3 963 ± 33 

Ca 875 ± 2 3 943 ± 377 538 ± 14 

Mg 889 ± 88 1 614 ± 147 69.4 ± 1.5 

Ti < 336 492 ± 44 8 405 ± 505 

Fe 257 ± 19 1 778 ± 122 75.2 ± 6.7 

Ba 113 ± 11 154 ± 15 < 94.3 

Zn 52.6 ± 5.1 53.8 ± 5.0 < 11.2 

Pb < 50.3 < 50.3 < 50.3 

Mo < 49.3 < 49.3 < 49.3 

Cr < 29.5 37.4 ± 1.4 < 29.5 

Ni < 20.9 < 20.9 < 20.9 

Cd < 16.1 < 16.1 < 16.1 

Cu < 13.6 < 13.6 < 13.6 

Sb 13.6 ± 1.3 11.8 ± 1.0 0.373 ± 0.047 

Hg 2.53 ± 0.20 1.53 ± 0.15 < 0.707 

Se < 0.458 < 0.458 < 0.458 

As < 0.276 < 0.276 0.863 ± 0.084 

db: dry basis; 𝑋 ± σ: average ± standard deviation. 

 

2.3.1.4 Mobility test 

Many of the elements present in the feedstocks, especially AAEMs, are involved in reactions 

leading to ash slagging and fouling in thermal systems, which negatively affect their 

performance152. Moreover, they can be retained in the chars produced during gasification and 

pyrolysis, affecting their chemical properties and conditioning the valorisation routes; for example, 

the retention of some elements (Ca, Mg, Na, K, etc) can play an important role in ion exchange 

capacity of a char used in adsorption processes. 

To assess the mobility of these elements from the feedstocks, a water leaching test was 

performed, and the eluates were analysed for several chemical parameters. Table 11 shows the 

chemical characterisation of the feedstock eluates. The mobility of chemical species was 

calculated relatively to the mineral content obtained in microwave-assisted digestion. 

In general, the mobility of minerals was low. K was the exception, with concentrations of 1580 mg 

kg-1 db for RH and 3907 mg kg-1 db for RS, which corresponds to a solubility of 47.2% and 39.1%, 

respectively. Ca, Si, Na and Mg were also found in the eluates of RH and RS, but in much lower 

concentrations.
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Table 11. Chemical characterisation of aqueous eluates of feedstocks and mobility of chemical elements relatively to the mineral content (relative mobility) (all 

eluate concentrations are expressed as 𝑋 ± σ in mg kg-1 db, except for conductivity that is expressed in µS cm-1 and for pH that is expressed in Sørensen scale). 

Element/ 
Parameter 

RH  RS  PE 

Eluate Relative mobility (%)  Eluate Relative mobility (%)  Eluate Relative mobility (%) 

K 1 580 ± 69 47.2  3 907 ± 210 39.1  < 0.604 < 0.121 

Ca 172 ±17 19.7  676 ± 49 17.1  3.37 ± 0.26 0.625 

Si 352 ± 35 0.273  379 ± 30 0.163  < 50.3 < 3.73 

Na 231 ± 10 2.93  313 ± 28 3.03  < 0.654 < 0.017 

Mg 213 ± 20 23.9  196 ± 1 12.1  4.23 ± 0.37 6.09 

Ti < 37.1 n.a.  < 37.1 < 7.54  < 37.1 < 0.442 

Fe 8.78 ± 0.85 3.41  41.3 ± 0.5 2.32  < 3.02 < 4.02 

Al < 19.4 < 0.347  27.2 ± 0.6 0.297  < 19.4 < 0.490 

Ba < 10.4 < 9.26  < 10.4 < 6.78  < 10.4 n.a. 

Pb < 6.51 n.a.  < 6.51 n.a.  < 6.51 n.a. 

Mo < 6.38 n.a.  < 6.38 n.a.  < 6.38 n.a. 

Zn 4.65 ± 0.40 8.83  5.73 ± 0.57 10.6  < 0.654 n.a. 

Ni < 4.10 n.a.  < 4.10 n.a.  < 4.10 n.a. 

Cr < 3.26 n.a.  < 3.26 < 8.70  < 3.26 n.a. 

Cu < 2.67 n.a.  < 2.67 n.a.  < 2.67 n.a. 

Cd < 2.08 n.a.  < 2.08 n.a.  < 2.08 n.a. 

As (4.59 ± 0.37)×10-2 > 16.6  0.105 ± 0.010 > 37.9  < 1.6×10-2 < 1.87 

Hg < 6.85×10-2 < 2.70  0.227 ± 0.019 14.8  < 6.85×10-2 n.a. 

Se < 5.93×10-2 n.a.  < 5.93×10-2 n.a.  < 5.93×10-2 n.a. 

Sb < 1.71×10-2 < 0.126  (2.57 ± 0.24)×10-2 0.218  < 1.71×10-2 < 4.59 

pH 7.01 ± 0.06 n.a.  7.74 ± 0.03 n.a.  7.01 ± 0.48 n.a. 

Cond. 290 ± 14 n.a.  810 ± 1 n.a.  10 ± 1 n.a. 

𝑋 ± σ: average ± standard deviation; db: dry basis; n.a.: not applicable; Cond.: Conductivity.
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Overall, RS eluate presented higher concentrations of the quantified elements than RH, but not 

necessarily higher mobilities, meaning that the higher concentrations in RS eluate were due to 

the higher mineral content in this material (Table 10). 

Being a stable polymer, PE did not mobilise chemical species in the water leaching test. 

Liu et al.152 performed a leaching test on RS using deionised water with a L/S of 50 L kg-1, during 

2 h. Although the experimental conditions employed by these authors were different from those 

used in the present work, similar results were found (Na: 346 mg kg-1 db; K: 2094 mg kg-1 db; Ca: 

962 mg kg-1 db; Mg: 193 mg kg-1 db). Karnowo et al.153 have studied the mobility of alkali and 

alkali-earth metals from RH through leaching with deionized water at a L/S of 20 L kg-1, during 24 

h. The mobility percentages obtained (K: 70.9%; Mg: 45.5%; Ca: 36.5%; Na: 69.0%) were higher 

than those obtained in the present work. 

 

2.3.1.5 Ecotoxicity level 

The ecotoxicity levels of the eluates for Vibrio fischeri bacterium intended to give insight into their 

variation from the feedstocks to the chars. The EC50-30 min values for all the feedstock eluates 

were above 99.0% v/v, indicating that the feedstocks have not mobilised ecotoxic substances to 

the bacterium. 

 

2.3.2 Properties of chars 

2.3.2.1 Proximate and elemental analyses 

The proximate and elemental analyses of the gasification and pyrolysis chars are presented in 

Table 12. 

The proximate analysis indicated that GCs were mainly composed of ashes due to the high 

conversion of organic matter into syngas during the gasification assays and to the high oxidation 

rate. However, G4C presented a lower ash content (68.29% w/w ar) than all the other GCs. The 

volatile matter was low for all GC samples (5.02-8.52% w/w ar), and the fixed-C was even lower 

for almost all of them. The exception occurred again in GC4, which had a fixed-C of 20.41% w/w 

ar, due to the lower ash content. 

These gasification solid by-products are closer to carbonized ashes than to carbonaceous chars, 

because they are mainly composed of ashes with low C-content, being more correctly designated 

as black ashes51,154. Shen et al.155 studied rice husk gasification chars (RHC) and ashes (RHA); 

the ash contents of GCs shown in Table 12 are very similar to those obtained by these authors 

for RHA. 

The proximate analysis of PC showed that they were mainly composed of fixed-C, followed by 

ashes and volatile matter. The high fixed-C content was due to the relatively low pyrolysis 
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temperatures used (390-430 °C). These data are comparable to the results previously reported 

for pyrolysis chars of RH and RS obtained at around 400-500 °C156–158. 

 

Table 12. Proximate and elemental analyses of the gasification and pyrolysis chars. 

Parameter 
Gasification Chars (GC)  Pyrolysis Chars (PC) 

G1C G2C G3C G4C G5C  P1C P2C P3C 

Proximate analysis (% w/w ar)        

Moisture content 2.04 1.79 2.08 2.76 0.80  1.38 1.02 3.55 

Volatile matter 7.07 5.02 7.16 8.54 6.45  22.67 17.05 16.22 

Ashes 86.91 89.78 86.75 68.29 92.63  29.98 34.65 35.42 

Fixed-C 3.98 3.41 4.01 20.41 0.12  45.97 47.28 44.81 

          
Elemental analysis (% w/w ar)        

C 9.00 5.80 10.10 25.90 5.19  59.65 57.60 53.00 

H 0.50 0.30 0.60 2.88 < 0.01  4.46 2.60 2.70 

N < 0.20 < 0.20 < 0.20 < 0.20 < 0.20  0.51 0.50 0.60 

S 0.09 < 0.03 < 0.03 < 0.03 < 0.03  < 0.03 0.04 0.06 

ar: as-received 

 

2.3.2.2 Mineral content 

The mineral content of both gasification and pyrolysis chars is shown in Table 13. 

Si was the major element in almost all GCs due to the mineral composition of RS and RH. The 

exception occurred for G1C, where Fe concentration was even higher than Si. Cr, Ca and Ni were 

also quantified with high concentrations in G1C, but still in much lower concentrations than Si and 

Fe. In the other GC samples, Fe, Cr and Ca were also present, but in much lower concentrations 

than for G1C. Given the fact that these elements were in low amounts in RH, their high 

concentrations in G1C may be due to a concentration factor to which the feedstocks are submitted 

during the gasification assays, and eventually to an elutriation from the metallic alloy of the 

gasification reactor. 

Like in the feedstocks (Table 10), most of the other elements found in GC samples were AAEMs, 

but also Al (especially in G5C, related to the use of RS in this assay) and Ti (especially in G2C 

and G4C, related to the use of PE in these assays). 

G2C had a lowest mineral content than G1C, except for Ti, due to the presence of PE in its fuel 

blend, which promoted the dilution of the metallic content of the co-fuel. Comparing G1C-G3C 

and G2C-G4C, the use of O2 as a gasification agent decreased the concentration of minerals in 

the chars, probably due to a higher oxidation rate and volatilization to the syngas. G4C had the 

lowest mineral content of all GC samples once it had the lowest ash content of all GC (Table 12).
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Table 13. Mineral content (mg kg-1 db; 𝑋 ± σ) of gasification and pyrolysis chars. 

Chemical 
element 

Gasification Chars (GC)  Pyrolysis Chars (PC) 

G1C G2C G3C G4C G5C  P1C P2C P3C 

Si 162 455 ± 2 651 155 839 ± 12 828 134 040 ± 12 908 129 707 ± 8 110 124 466 ± 7 306  160 916 ± 2 950 159 525 ± 1 777 138 723 ± 3 064 

Fe 187 810 ± 17 011 9 349 ± 365 6 108 ± 588 1 486 ± 60 5 573 ± 408  388 ± 2 88.2 ± 8.4 1 541 ± 140 

K 3 636 ± 149 5 805 ± 580 10 023 ± 469 7 757 ± 25 20 217 ± 459  4 339 ± 208 4 139 ± 31 21 300 ± 324 

Ca 19 500 ± 1 914  4 685 ± 466 4 817 ± 67 5 763 ± 56 7 010 ± 289  2 434 ± 42 2 043 ± 23 6 684 ± 131 

Cr 48 581 ± 4 794 2 129 ± 207 1 263 ± 91 185 ± 10 213 ± 11  33.7 ± 0.5 < 25.6 < 25.6 

Ni 7 382 ± 704 825 ± 57 196 ± 17 124 ± 6 175 ± 0  21.9 ± 2.1 < 32.2 < 32.2 

Mg 2 038 ± 138 2 570 ± 254 2 787 ± 7 3 365 ± 196 4 287 ± 318  1 093 ± 4 1 195 ± 115 5 374 ± 93 

Al 2 525 ± 248 2 230 ± 143 2 648 ± 260 1 390 ± 7 12 086 ± 344  557 ± 5 658 ± 12 4 029 ± 394 

Ti 1 366 ± 136 4 277 ± 400 3 025 ± 290 5 028 ± 126 1 246 ± 4  12 211 ± 21 44 405 ± 1 198 63 447 ± 292 

Na 2 492 ± 249 721 ± 69 247 ± 25 553 ± 20 2 521 ± 57  366 ± 5 269 ± 24 572 ± 52 

Zn 2 770 ± 132 80.4 ± 7.8 86.1 ± 8.5 44.8 ± 0.3 86.9 ± 5.4  80.9 ± 0.7 27.2 ± 1.5 58.8 ± 4.9 

Cu 1 006 ± 97 28.1 ± 2.4 < 16.6 17.6 ±1.6 20.2 ± 1.8  27.1 ± 1.3 29.4 ± 2.9 36.4 ± 3.5 

Mo 389 ± 36 < 80.3 < 80.3 < 80.3 < 80.3  < 50.2 < 50.2 < 50.2 

Pb < 66.1 < 66.1 < 66.1 < 66.1 < 66.1  4.72 ± 0.41 111 ± 2 148 ± 15 

Ba 185 ± 18 < 131 < 131 < 131 < 131  < 81.9 < 81.9 < 81.9 

Cd < 26.2 < 26.2 < 26.2 < 26.2 < 26.2  < 16.4 < 16.4 < 16.4 

As 5.52 ± 0.47 < 0.212 0.763 ± 0.074 10.5 ± 0.5 13.0 ± 1.3  < 0.101 0.205 ± 0.007 2.33 ± 0.21 

Sb 3.67 ± 0.34 < 0.246 < 0.246 14.6 ± 0.0 20.7 ± 1.8  < 0.154 < 0.154 < 0.154 

W < 2.03 < 2.03 < 2.03 < 2.03 < 2.03  < 2.03 < 2.03 < 2.03 

Hg < 0.983 < 0.983 < 0.983 2.35 ± 0.21 4.61 ± 0.41  < 0.614 < 0.614 < 0.614 

Se < 0.746 < 0.746 < 0.746 7.04 ± 0.69 15.6 ± 1.4  < 0.466 < 0.466 < 0.466 

db: dry basis; 𝑋 ± σ: average ± standard deviation.
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Concerning PC samples, Si was also the predominant major element, with concentrations similar 

to GC samples. Ti was present in all chars with high concentrations, particularly in the P2C and 

P3C samples, as they resulted from a fuel blend containing 80% w/w PE, which was the main 

source of Ti (Table 10). P3C had also a high concentration of K since this char resulted from a 

fuel mixture with RS, which is the feedstock with a higher concentration of this metal (Table 10). 

Ca and Mg were also present in a high concentration in P3C, although in a lower level. P3C 

showed the highest mineral content of all PC samples (except for Si), because RH was used in 

P3 assay and this was the feedstock with the highest mineral content (Table 10). 

Globally, the mineral content in GC samples was higher than in PC samples, which agrees with 

their higher ash content (Table 12). 

Experimental data on the mineral content of chars resulting from gasification and pyrolysis of rice 

waste blends was not found in literature. However, Jeong et al.159 studied the mineral content of 

biochars produced from the pyrolysis of RH and RS used as separate fuels. These authors 

reported similar results to those presented in Table 13, except for Si (720 mg kg-1 db for RH and 

1230 mg kg-1 db for RS) and Al (1.4 mg kg-1 db for RH and 2.4 mg kg-1 db for RS), which were 

much lower. This can be attributed to the digestion method used by these authors, which did not 

include the use of HF. Prakongkep et al.157 reported a comparable Si content for RH pyrolysis 

chars produced at around 400 °C, even though no HF was used in acidic digestion of chars (10% 

HCl). These authors also found higher Na and K contents for the RH char. 

 

2.3.2.3 Textural characterisation 

The N2 adsorption-desorption isotherms of GC samples (Figure 9) can be considered as a mix 

of types I and IV isotherms of the International Union of Pure and Applied Chemistry (IUPAC) 

classification73, which corresponds to particles with both micro- and meso-porosity. The presence 

of hysteresis in the multilayer range of isotherms is usually associated with capillary condensation 

in mesopore structures. The hysteresis is of H3 type73,160 for G1C, G2C and G5C samples, which 

is commonly observed in non-rigid aggregates of plate-like particles giving rise to slit-shaped 

pores. Similarly, the H4 type loop observed for G3C and G4C samples is often associated with 

narrow slit-like pores. These N2 isotherms are similar to those obtained by Hu et al.161 and Fu et 

al.162,163 for chars obtained from rice straw and rice husk. 

For PCs, the amount of N2 adsorbed (Figure 10) was very small in the entire relative pressure 

(p/p0) range, which indicates that these chars are almost non-porous materials. Their isotherms 

are typical of non-porous or macroporous materials. However, again, the presence of hysteresis 

in the isotherms indicates the existence of some mesopores in their structures. 

The textural parameters obtained from the N2 adsorption-desorption isotherms are shown in 

Table 14. 
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Figure 9. N2 adsorption-desorption isotherms of the gasification chars (STP: standard 

temperature and pressure; p: pressure at moment t; p0: initial pressure). 

 

 

Figure 10. N2 adsorption-desorption isotherms of the pyrolysis chars (STP: standard 

temperature and pressure; p: pressure at moment t; p0: initial pressure). 
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Table 14. Textural properties of chars produced in the gasification and pyrolysis assays. 

Parameter 
Gasification chars (GC)  Pyrolysis chars (PC) 

G1C G2C G3C G4C G5C  P1C P2C P3C 

SBET (m2 g-1) 32.3 26.9 62.9 <5.0 25.0  <5.0 5.14 5.63 

Vtotal (cm3 g-1) 0.04 0.05 0.04 0.01 0.02  n.q. 0.01 0.02 

Vmicro (cm3 g-1) 0.01 0.01 0.02 n.q. 0.01  n.q. n.q. n.q. 

Vmeso (cm3 g-1) 0.03 0.04 0.02 0.01 0.01  n.q. 0.01 0.02 

n.q.: not quantifiable 

 

GC presented highest surface areas than PC, except for G4C which was characterised as a non-

porous material. G3C presented the highest surface area and pore volume of all GCs. The higher 

surface areas of gasification chars might be related with a higher content of porous silica, while 

pyrolysis chars are richer in a non-porous carbonaceous matrix. 

Globally, all GCs presented low surface areas, which agrees with the fact that they have resulted 

from thermochemical processes with no further activation step. In the case of PC, the high volatile 

matter content of these samples was blocking the incipient porosity of the chars. To improve their 

porosity and surface area, physical and chemical activations/treatments were performed (Chapter 

3). Regarding gasification chars, given their high ash content and low volatile matter, it can be 

difficult to increase their surface area. 

Shen et al.155 have studied the gasification chars (RHC) and ashes (RHA) of rice husk produced 

at 800 °C. RHA showed a surface area (65.4 m2 g-1) very similar to G3C, even if a higher 

temperature (850 °C) has been used in the gasification assay that originated G3C. 

The pyrolysis temperature seems to control the surface area of PC, as higher temperatures 

promote the release of volatile matter and consequently increase the surface area. Ye et al.164 

produced a char by submitting RH to pyrolytic conditions at 300 °C. This char has shown a lower 

surface area (<5 m2 g-1) than those obtained in the present work (Table 14), namely for P2C and 

P3C, which were produced at 390 °C and 430 °C, respectively. At 450 °C, Jeong et al.159 obtained 

a pyrolysis char from RS with a surface area of 22.9 m2 g-1 and an ash content of 34.3%, while at 

750 °C the surface area was 164.1 m2 g-1, but the ash content was much higher (43.0% w/w). 

 

2.3.2.4 Additional characterisation of chars selected for the Cr(III) removal assays 

Considering the results obtained in the previous sections, two gasification chars (G4C and G5C) 

and one pyrolysis char (P1C) were selected to be further characterised and used in the Cr(III) 

removal assays. Once all chars presented poor textural properties, different factors were taken 

into consideration for this selection. 

G5C was selected because it was the GC with the highest concentration of metal cations with 

exchangeable capacity (AAEMs) (which can play an important role in adsorption processes, 
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through ion exchange mechanism), while G4C was selected because it had 20% PE in its origin 

and as mentioned above, Ricevalor’s main objective was to valorise the energetic fraction of the 

assays, and the presence of 20% PE in the gasification assays significantly improves the quality 

of the syngas. Between G2C (the other GC with PE in its origin) and G4C, G4C was selected 

because it also had higher concentration of AAEMs. 

P1C was selected because it was the PC with the highest quantity of biomass in its origin. 

In this regard, additional characterisations were performed to these selected chars, as described 

hereafter. 

 

Mobility assessment of chemical species and ecotoxic level  

The chemical characterisation of the selected chars’ aqueous eluates and the mobility of the 

chemical elements are presented in Table 15. 

Overall, the mobility of minerals from the adsorbents was low. K was the exception, with 

concentrations of 1399 mg kg−1 db for G4C, 3356 mg kg−1 db for G5C and 1985 mg kg−1 db for 

P1C, which corresponded to mobility percentages of 18.0%, 16.6% and 45.7%, respectively. 

Other minerals, such as Si, Mg, Ca and Na were also present in the aqueous eluates, but in lower 

concentrations than K. The same elements were present in the aqueous eluates of the feedstocks 

(Table 11). The mobility of these metals plays an important role in ion exchange with Cr(III), as it 

will be discussed later in this thesis. 

Regarding the ecotoxicity of the eluates, as the bacterium V. fischeri is very sensitive to acidic 

and extremely alkaline pH conditions of the medium (optimal pH range is of 6.00-8.50165), the 

eluates of G4C and G5C appeared to be toxic to this bacterium, due to the alkaline conditions 

generated by chars (pH of the eluates of G4C and G5C was 10.4 and 9.74, respectively - Table 

15). For that reason, G4C eluate had an EC50-30 min of 20.5 ± 1.8% and G5C eluate showed a 

value of 58.5 ± 4.9%. The highest ecotoxic level of G2C eluate was due to its higher pH. For both 

chars’ eluates, no ecotoxicity was found after the pH correction for 8.00 with HCl 0.1 M, 

emphasising that the ecotoxicity was due to the pH of the medium. P1C eluate did not present 

ecotoxicity (EC50-30 min > 99%), as its pH (7.05 - Table 15) was in the optimal range for V. 

fischeri. 

 

pHpzc 

G4C and G5C were characterised as alkaline materials as they presented a pHpzc of 9.58 ± 0.02 

and 9.34 ± 0.03, respectively, while P1C presented a neutral to slightly acidic pHpzc (6.35 ± 0.02). 

The highest pHpzc of the gasification chars may be related with their higher ash and mineral 

contents. 
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Table 15. Chemical characterisation of aqueous eluates of selected chars and mobility of chemical elements relatively to the mineral content (relative mobility) 

(all eluate concentrations expressed as 𝑋  ± σ in mg kg-1 db, except for conductivity that is expressed in µS cm-1 and for pH that is expressed in Sørensen scale). 

Element/ 
Parameter 

G4C  G5C  P1C 

Eluate Mobility (%)  Eluate Mobility (%)  Eluate Mobility (%) 

K 1 399 ± 20 18.0  3 356 ± 48 16.6  1 985 ± 25 45.7 

Si 678 ± 6 0.523  361 ± 4 0.290  81.3 ± 0.8 5.05×10-2 

Ca 46.9 ± 3.4 0.762  87.9 ± 2.8 1.25  592 ± 2 24.3 

Mg 52.7 ± 0.4 1.57  140 ± 7 3.27  142 ± 11 13.0 

Na 65.7 ± 1.7 11.9  40.2 ± 0.7 1.60  140 ± 13 38.3 

Mo 0.402 ± 0.015 7.24  3.05 ± 0.16 21.5  0.140 ± 0.014 5.05 

Ni 2.49 ± 0.13 2.01  < 4.85×10-2 < 2.76×10-2  2.17 ± 0.10 9.91 

Cr < 0.792 < 0.428  1.50 ± 0.01 0.706  < 6.69×10-2 < 0.199 

Al 0.850 ± 0.080 6.11×10-2  0.382 ± 0.023 3.16×10-3  0.290 ± 0.023 5.21×10-2 

Se 0.381 ± 0.029 5.41  < 6.06×10-3 < 3.89×10-2  < 0.145 n.a. 

As 0.340 ± 0.015 3.24  0.376 ± 0.012 2.89  < 0.213 n.a. 

Cu 0.294 ± 0.022 1.67  < 4.60×10-2  < 0.228  < 0.116 < 0.428 

Pb 0.247 ± 0.015 0.893  < 5.04×10-3 < 2.32×10-2  < 0.193 < 4.09 

Sb 0.242 ± 0.022 1.66  < 6.06×10-3 < 2.93×10-2  < 5.15×10-3 n.a. 

Fe < 8.24×10-3 < 5.55×10-4  0.237 ± 0.003 4.26×10-3  < 8.12×10-3 < 2.09×10-3 

Ti 0.103 ± 0.000 2.05×10-3  < 6.06×10-2 < 4.86×10-3  < 5.07×10-2 4.15×10-4 

W < 0.101 n.a.  < 0.101 n.a.  < 0.101 n.a. 

Ba (3.61 ± 0.29)×10-2 0.153  < 1.01×10-3 < 8.24×10-2  0.194 ± 0.019 3.96 

Zn < 4.85×10-3 < 1.08×10-2  < 4.85×10-3 < 5.58×10-3  2.67 ± 0.24 3.30 

Hg (5.15 ± 0.44)×10-2 2.19  < 3.63×10-4 < 7.88×10-3  < 3.59×10-2 n.a. 

Cd < 4.85×10-3 n.a.  < 4.85×10-3 n.a.  < 4.06×10-3 n.a. 

pH 10.4 ± 0.0 n.a.  9.74 ± 0.01 n.a.  7.05 ± 0.09 n.a. 

Cond. 552 ± 5 n.a.  1854 ± 59 n.a.  1092 ± 51 n.a. 

𝑋 ± σ: average ± standard deviation; db: dry basis; n.a.: not applicable; Cond.: Conductivity.
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2.4 Conclusions 

The properties of the chars were greatly influenced by the composition of the rice waste streams 

used as feedstocks and the conditions used in the gasification and pyrolysis assays. Due to the 

high conversion of organic matter into syngas, the characteristics of gasification solid residues 

were mainly of carbonized ashes rather than carbonaceous chars. On the contrary, pyrolysis 

chars were mainly composed by carbon, due to the relatively low pyrolysis temperatures used.  

Due to the high concentrations of Si in the feedstocks, the gasification and pyrolysis chars were 

mainly composed by this chemical element followed by AAEMs. In the pyrolysis chars, Ti was 

also a major element, as the feedstock blends contained high fractions of PE which was the main 

source of Ti. 

Globally, all chars presented low surface areas (up to 62.9 m2 g-1 in the gasification chars and up 

to 5.63 m2 g-1 in the pyrolysis chars). However, due to the presence of several minerals in the 

gasification chars (that may be used for ion exchange in the adsorption assays), these materials 

may present adequate properties to be valorised as adsorption agents. On the other hand, the 

pyrolysis chars require further physical and/or chemical activations before such valorisation to 

remove the volatile matter that is blocking the char’s pores (increasing the porosity of the char, ) 

and concentrate the ash content (allowing adsorption by ion exchange). 

Considering the results obtained, two gasification chars (G4C and G5C) and one pyrolysis char 

(P1C) were selected to be used in the Cr(III) removal assays. Prior to that, P1C was optimized 

through physical and chemical activations/treatments as presented in Chapter 3. 
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 ORIGIN AND PROPERTIES OF ACTIVATED 

CARBONS USED IN THE CR(III) REMOVAL 

ASSAYS  
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3.1 Introduction 

In order to improve the adsorptive properties of chars selected for Cr(III) removal assays, different 

optimizations were tested. These optimizations were defined considering the results obtained in 

section 2.3.2. The high ash content of the gasification chars precluded any possible activation. 

On the other hand, the higher volatile matter of the pyrolysis chars created an opportunity for 

different optimizations. These optimizations could (i) remove the volatile matter that was blocking 

the char’s pores and consequently increase the porosity of the char, (ii) add functional groups to 

the char’s surface and (ii) concentrate the ash content of the char, increasing the ions available 

(Ca, K, Na, etc) for ion exchange. 

 

3.2 Materials and methods 

3.2.1 Optimization of chars selected for the Cr(III) removal assays 

The pyrolysis char selected (P1C) was submitted to 4 different activations: (i) physical activation 

followed by washing, (ii) physical activation without washing, (iii) physical activation followed by 

chemical acidic treatment and (iv) chemical activation. 

All activations were performed in a quartz reactor placed in a custom-made electric vertical tube 

furnace with a PID (Proportional-integral-derivative) programmable temperature controller (RKC, 

REX-P96) (Figure 11). The temperature inside the furnace was measured by a thermocouple 

connected to the PID controller. In the end of the activations, all activated carbons were milled, 

sieved to <100 μm. 

 

 

Figure 11. P1C activation setup: 1 - N2 flowmeter; 2 - CO2 flowmeter; 3 - Vertical quartz reactor; 

4 - Electric vertical furnace; 5 - PID controller; 6 - Thermocouple; 7 - Gas washing flasks. 



44 
 

3.2.1.1 Physical activation followed by washing 

The aim of the physical activation followed by washing was to remove the high volatile matter and 

mineral content that could be blocking the char’s pores. CO2 was used as activation agent once 

this gas increases the microporosity of the adsorbent. Four experimental conditions were tested 

(Table 16). The activations were performed with a heating rate of 5 °C min-1, under a CO2 flow of 

150 cm3 min-1. Heating and cooling processes were carried out under a N2 flow of 150 cm3 min-1. 

In the end, the samples were washed in a Soxhlet extractor with deionized water, until stable pH, 

and dried at 100 °C overnight. The code P1C+PA+W was attributed to the activated carbons 

(ACs) resulting from the physical activation (PA) of P1C followed by washing (W). 

 

Table 16. Experimental conditions of the physical activations of P1C followed by washing. 

Activation assay Code Time (h) Temperature (°C) 

1 P1C+PA+W1 2 800 

2 P1C+PA+W2 2 850 

3 P1C+PA+W3 4 800 

4 P1C+PA+W4 4 850 

 

In order to select the experimental conditions (temperature and time) to be used in all the other 

physical activations (physical activation without washing and physical activation followed by 

chemical acidic treatment), a preliminary characterisation was performed to all P1C+PA+W 

samples. The preliminary characterisation consisted on analysing the textural properties and solid 

yields of P1C+PA+W samples. The experimental conditions (temperature and time) that 

generated the P1C+PA+W with the best textural properties were selected for the other physical 

activations. 

The textural characterisation was performed as described in section 2.2.3 and solid yields, Ŷ (%), 

were calculated through equation 3.1. 

 

Ŷ =
𝑚𝑓

𝑚0
× 100 (3.1) 

 

where 𝑚0 is the initial P1C mass (g) and 𝑚𝑓 is the P1C+PA+W mass (g) (mass of activated 

carbon obtained after the physical activation of P1C). 
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3.2.1.2 Physical activation without washing 

The aim of the physical activation was to remove the volatile matter and increase the 

microporosity but keeping the mineral components that could improve the ionic exchanges. The 

procedure was the same as described in section 3.2.1.1, but without the washing step. The code 

P1C+PA was attributed to the AC resulting from the physical activation (PA) of P1C. 

 

3.2.1.3 Physical activation followed by chemical acidic treatment 

The aim of the physical activation followed by chemical acidic treatment was to unblock the char’s 

pores, increase the microporosity and add functional groups to the char’s surface. The physical 

activation was the same as described in item 3.2.1.1. The chemical treatment was performed with 

HNO3 solution (13 M) under L/S of 20 mL g-1, and placed in a silicone bath, at 90 °C, for 6 h. The 

char was then washed in a Soxhlet extractor with deionized water, until stable pH, and dried at 

100 °C overnight. The code P1C+PA+CT was attributed to the activated carbon (AC) resulting 

from the physical activation (PA) of P1C followed by chemical acidic (CT) treatment. 

 

3.2.1.4 Chemical activation 

The chemical activation also had the objective of unblock the char’s pores, increase both micro 

and mesoporosity, and add functional groups to the char’s surface. Unlike the physical activations, 

in this case, an earlier chemical impregnation was performed to the char, and only then the 

activation was performed. The char was impregnated with H3PO4 under a mass ratio of 1:1. The 

mixture was placed in a 100 mL volumetric flask and filled with deionized water. The solution was 

heated-up to 50 °C, kept for 5 h under constant agitation, and dried at 130 °C. Finally, the char 

was activated at 500 °C (heating rate of 5 °C min-1), for 2 h, under a N2 flow of 150 cm3 min-1. The 

heating and cooling processes were carried out under N2 flow. The samples were then washed 

in a Soxhlet extractor with deionized water, until stable pH, and dried at 100 °C overnight. The 

code P1C+CA was attributed to the AC resulting from the chemical activation (CA) of P1C. 

 

3.2.1.5 Commercial activated carbon (CAC) 

For comparison purposes a commercial activated carbon (CAC) (Norit GAC 1240) was used in 

this study. Being an AC, the only optimization done to this adsorbent was the chemical treatment 

as described in section 3.2.1.3. The code CAC+CT was attributed to the AC resulting from the 

chemical treatment with HNO3 of CAC. 
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3.2.2 Characterisation of activated carbons used in Cr(III) removal assays 

All activated carbons were characterised for the following assays: 

a) Proximate analysis – The same as described in section 2.2.3; 

b) Elemental analysis – The same as described in section 2.2.1; 

c) Textural analysis – The same as described in section 2.2.3; 

d) pHpzc – The same as described in section 2.2.4. 

Aside from these parameters, some additional characterisations were performed on CAC, 

namely: 

a) Mineral content – The same as described in section 2.2.1; 

b) Mobility assessment of chemical species and ecotoxic level – The same as described in section 

2.2.1. 

 

3.3. Results and discussion 

3.3.1 Preliminary characterisation of activated carbons from physical 

activation of P1C followed by washing 

The solid yields of the physical activations of P1C followed by washing and textural properties of 

the resulting activated carbons (P1C+PA+Wx) are presented in Table 17. 

 

Table 17. Solid yields of the physical activations of P1C followed by washing and textural 

properties of the resulting activated carbons. 

Activated carbons Ŷ (%) 
Textural properties 

SBET (m2 g-1) Vtotal (cm3 g-1) Vmicro (cm3 g-1) Vmeso (cm3 g-1) 

P1C+PA+W1 79.1 190 0.11 0.06 0.05 

P1C+PA+W2 70.0 223 0.12 0.07 0.05 

P1C+PA+W3 66.1 341 0.20 0.12 0.08 

P1C+PA+W4 32.6 n.q. n.q. n.q. n.q. 

n.q.: not quantifiable 

 

P1C+PA+W4 presented the lowest solid yield of all activated carbons and its textural analysis 

indicated that the activation conditions were very aggressive, promoting the collapse of porous 

structure. For the other samples, all surface areas and pore volumes increased when compared 

to P1C (Table 14), indicating successful activations. P1C+PA+W3 had the second lowest solid 

yield (66.1%), meaning that more volatile matter was removed during this activation, providing 
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more available pores, and consequently originating the AC with the highest surface area (341 m2 

g-1) and total pore volume (0.20 cm3 g-1). 

Considering these results, P1C+PA+W3 was the AC obtained from the physical activation 

followed by washing of P1C selected to be further characterised and used in Cr(III) removal 

assays. On the other hand, the experimental conditions that originated P1C+PA+W3 (800 °C and 

4h) were selected to be used on the other physical activations. 

In order to simplify the reading of the results, from this point on, P1C+PA+W3 will be referred only 

as P1C+PA+W. 

 

3.3.2 Properties of activated carbons used in the Cr(III) removal assays  

3.3.2.1 Proximate and elemental analyses 

The proximate and elemental analyses of the activated carbons which was used in Cr(III) removal 

assays are presented in Table 18. 

 

Table 18. Proximate and elemental analyses of the activated carbons used in the Cr(III) removal 

assays and P1C (for comparison purposes). 

Parameter P1C 
Activated carbons 

P1C+PA P1C+PA+W P1C+PA+CT P1C+CA CAC CAC+CT 

     
Proximate analysis (% w/w ar)     

Moisture content 1.38 4.36 4.49 9.58 11.22 13.09 21.60 

Volatile matter 22.67 4.25 8.15 13.75 10.26 7.04 15.66 

Ashes 29.98 40.39 30.55 36.94 22.68 5.70 4.10 

Fixed carbon 45.97 51.00 56.81 39.73 55.84 74.17 58.64 

        
Elemental analysis (% w/w ar)     

C 59.65 50.22 58.65 43.72 58.19 86.28 61.21 

H 4.46 0.26 0.49 0.94 2.12 0.47 1.82 

N 0.51 0.47 0.44 0.68 0.54 < 0.20 0.65 

S < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 0.57 0.27 

ar: as-received basis; P1C+PA: P1C physically activated; P1C+PA+W: P1C physically activated 
and washed; P1C+PA+CT: P1C physically activated and chemically treated; P1C+CA: P1C 
chemically activated; CAC+CT: CAC chemically treated. 

 

Comparing these results with P1C, after the physical activation (P1C+PA), most of the volatile 

matter was removed, concentrating the other elements on the adsorbent. Washing the AC 

(P1C+PA+W) decreased the percentage of ashes. The chemical treatment on the AC 

(P1C+PA+CT) increased the amount of volatile matter, decreasing the percentage of other 



48 
 

elements. The chemical activation on the initial char (P1C+CA) also decreased the volatile matter 

similarly to the physical activation, although in this case, the ash-content also decreased, 

concentrating the fixed-C. CAC was mainly composed by fixed-C, as expected, but after being 

chemically treated (CAC+CT), the volatile matter increased, decreasing the fixed-C content.  

 

3.3.2.2 Textural analysis and pHpzc 

According to the IUPAC classification73, the adsorption-desorption isotherms of P1C-derived ACs 

(Figure 12a) and commercial ACs (Figure 12b) were a mix of type I (in the beginning of the 

isotherm) and type IV (at the end of the isotherm) with H4 hysteresis, indicating narrow slit-shaped 

micropores and mesopores. 

Table 19 presents the textural properties and pHpzc of the produced activated carbons. 

 

Table 19. Textural properties and pHpzc of the activated carbons used in the Cr(III) removal assays 

and P1C (for comparison purposes). 

Parameter P1C 
Activated carbons 

P1C+PA P1C+PA+W P1C+PA+CT P1C+CA CAC CAC+CT 

SBET (m2 g-1) <5.0 325 341 164 415 1030 893 

Vtotal (cm3 g-1) n.q. 0.18 0.20 0.10 0.22 0.56 0.49 

Vmicro (cm3 g-1) n.q. 0.10 0.12 0.05 0.15 0.30 0.25 

Vmeso (cm3 g-1) n.q. 0.08 0.08 0.05 0.07 0.26 0.24 

pHpzc 6.35 9.89 6.87 2.04 2.01 9.13 2.27 

P1C+PA: P1C physically activated; P1C+PA+W: P1C physically activated and washed; 
P1C+PA+CT: P1C physically activated and chemically treated; P1C+CA: P1C chemically 
activated; CAC+CT: CAC chemically treated. 

 

The physical activation increased significantly the surface area and pore volume of the AC 

(P1C+PA) when compared to the P1C results, since the volatile matter that was blocking the 

pores was removed (Table 18) and the partial gasification of the char induced by CO2 occurred. 

After washing (P1C+PA+W), the surface area and pore volume also increased slightly, due to 

ash removal (Table 18). The chemical treatment of AC P1C+PA+CT decreased significantly the 

surface area and pore volume, probably because (i) the acidic treatment was too aggressive and 

some pores were broken, and/or (ii) some functional groups are positioned in the entrance of the 

pores. Also, this probably occurred for CAC+CT. The chemical activation on the initial char 

(P1C+CA) originated the material with the highest surface area and pore volume of all P1C-

derived ACs. Still, the values were significantly lower than for CAC and CAC+CT. 
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Figure 12. N2 adsorption-desorption isotherms and textural properties of the (a) P1C-derived 

activated carbons and (b) CAC. 
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Similar results were found in literature for ACs from pyrolysis of rice husk (Table 20). 

 

Table 20. Textural properties of ACs from pyrolysis of rice husk available in literature. 

Type of 
activation 

Activation 
agent  

Activation conditions  Textural properties 
Reference 

Temperature 
(°C) 

Time 
(h) 

 
SBET 

(m2 g-1) 
Vtotal 

(cm3 g-1) 

Physical 
activation 
without washing 

CO2 
850 1  334 207 

Kumagai 
et al.166 

875 1  324 212 

Physical 
activation with 
washing 

CO2 
750 n.a.  240.9 n.d. 

Li et al.167 
850 n.a.  350.1 n.d. 

Chemical 
activation 

H3PO4 500 1  508 0.278 
Liou et 
al.168 

n.a.: not available; n.d.: not determined 

 

As mentioned before in section 2.3.2.4, P1C presented a neutral to slightly acidic pHpzc, but after 

the physical activation, the removal of volatile matter and subsequent concentration of ashes 

(Table 18) increased the pHpzc of P1C+PA to an alkaline value, very similar to CAC (Table 19). 

The washing removed some of the ash content, decreasing the pHpzc of P1C+PA+W. Finally, 

P1C+PA+CT, P1C+CA and CAC+CT, being materials activated/treated with acids, presented 

very acidic pHpzc values. 

 

3.3.2.3 Additional characterisations of CAC 

Table 21 shows the mineral content, the chemical characterization of eluates and the mineral 

mobility of CAC. 

Si was also the major element in CAC, followed by Al, Fe, Ca and K, although in lower 

concentrations. Considering that the ash content of CAC was much lower than the ash content of 

the gasification and pyrolysis chars (Table 12), the mineral content of CAC was also much lower 

than the mineral content of those chars (Table 13). 

The mineral mobility of CAC was very low, only Ca (51.7 ± 48 mg kg-1 db) and Si (24.7 ± 0.5 mg 

kg-1 db) were slightly mobilized by water, with mobility percentages of 3.15% and 0.169%, 

respectively. These results suggested that Cr(III) removal by CAC would not be governed by ion 

exchange, but instead by other removal mechanisms. 

CAC eluate did not present ecotoxicity (EC50-30 min > 99%), as its pH was in the optimal range 

for V. fischeri (optimal pH range is of 6.00 to 8.50165). 
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Table 21. Mineral content, chemical characterization of eluates and mineral mobility of CAC (𝑋 ± 

σ; n = 2; all parameters in mg kg-1 db, except the mobility which is expressed in %, pH in Sørensen 

scale and conductivity in µS cm-1). 

Element / 
Parameter 

CAC 

Acidic eluate Aqueous eluate Mobility 

Si 14 629 ± 681 24.7 ± 0.5 0.169 

Al 8 780 ± 23 5.10 ± 0.38 0.0581 

Fe 3 182 ± 228 0.170 ± 0.004 5.34×10-3 

Ca 1 642 ± 41 51.7 ± 4.6 3.15 

K 1 032 ± 3 5.67 ± 0.12 0.549 

Ti 626 ± 14 < 6.06x10-2 < 9.68×10-3 

Mg 444 ± 20 4.76 ± 0.15 1.07 

Cr 265 ± 16 < 0.792 < 7.77×10-3 

Ba 112 ± 6 (7.27± 0.34)×10-2 6.49×10-2 

Na 53.4 ± 0.7 0.848 ± 0.031 1.59 

Cu 26.7 ± 2.1 < 4.60×10-2 < 0.172 

Ni 22.6 ± 1.0 < 4.85x10-2 < 0.215 

Sb 9.21 ± 0.38 < 6.06×10-3 < 6.58×10-2 

As 6.68 ± 0.54 < 6.06×10-3 < 9.07×10-2 

Zn 3.91 ± 0.06 < 4.85x10-3 < 0.124 

Se < 1.51 < 6.06×10-3 n.a. 

Mo < 0.138 < 7.27×10-3 n.a. 

Pb < 0.115 (6.06 ± 0.23)×10-3 > 5.27 

Cd <9.21×10-2 < 4.85×10-3 n.a. 

Hg < 6.91×10-3 < 3.63×10-4 n.a. 

pH n.d. 7.50 ± 0.18 n.a. 

Cond. n.d. 281 ± 25 n.a. 

db: dry basis; 𝑋 ± σ: average ± standard deviation; n.d.: not determined; n.a.: not applicable; 
Cond.: Conductivity 

 

3.4 Conclusions 

The most favourable conditions for physical activation of P1C were 800 ºC for 4h. 

All activations removed most volatile matter that was present in the original char (P1C), leading 

to higher surface areas and pore volumes than P1C. The chemical activation generated the 

pyrolysis-derived AC (P1C+CA) with the highest surface area (415 m2 g-1) and pore volume (0.22 

cm3 g-1) because some ashes were also removed besides the volatile matter. Still, these results 

were significantly lower than the ones obtained for CAC and CAC+CT. 

P1C+PA and CAC presented alkaline pHpzc values, while the ACs activated/treated with acids, 

presented very acidic pHpzc values.  
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 Cr(III) REMOVAL ASSAYS BY GASIFICATION 

CHARS UNDER BATCH CONDITIONS
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The results presented in this chapter were published, partially or completely, in the following 

scientific publications: 

 

Paper: 

D. Dias, N. Lapa, M. Bernardo, W. Ribeiro, I. Matos, I. Fonseca, F. Pinto, Cr(III) removal from 

synthetic and industrial wastewaters by using co-gasification chars of rice waste streams, 

Bioresource Technology, 266 (2018) 139-150. 

(doi: 10.1016/j.biortech.2018.06.054) 

 

Oral Presentation: 

D. Dias, W. Ribeiro, N. Lapa, M. Bernardo, I. Matos, I. Fonseca, F. Pinto, Chars from co-

gasification of rice wastes as Cr(III) removal agents, 4th International Conference “WASTES: 

Solutions, Treatments and Opportunities”, 25-26 September 2017, Porto, Portugal. 

 

Poster: 

D. Dias, M. Bernardo, F. Pinto, N. Lapa, Recovery of high-value metals through adsorption onto 

chars produced from waste streams of rice production: the case-study of Cr3+, 1st Scientific 

Meeting of the Doctoral Programme in Sustainable Chemistry (PDQS), 26 September 2016, 

Aveiro, Portugal.
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4.1 Introduction 

In this chapter, the gasification chars that were selected in Chapter 2 (G4C and G5C) were used 

in removal assays of Cr(III) from a synthetic solution and from an industrial wastewater. 

For comparison purposes, CAC (section 3.2.1.5) was also used in the Cr(III) removal assays. 

 

4.2 Materials and methods 

4.2.1 Cr(III) synthetic solution 

The Cr(III) synthetic solution was prepared with CrN3O9.9H2O (99%). The solution had an initial 

concentration of 80 ± 5 mg Cr(III) L-1. 

 

4.2.2 Industrial wastewater – origin and characterisation 

The industrial wastewater was collected in SIRECRO-AUSTRA – a chromium recovery plant from 

leather tanning wastewaters (Alcanena, Portugal). The sample was collected at the plant inflow, 

after the screening operation unit, where the concentration of Cr(III) in solution is around 2000 

mg L-1. This high concentration remains dissolved, as the pH is very low (< 4.00); this assumption 

is supported by the Cr(III) speciation diagram (Figure 13). 

 

 

Figure 13. Cr(III) speciation diagram169 (reproduction under the kind written permission of 

Elsevier). 
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The industrial wastewater was characterised for: 

(a) pH (Hanna Instruments edge® HI 2002 pH meter) and conductivity (Thermo Scientific Orion 

Star A215 conductivity meter), by electrometric methods 4500 and 2510 A, respectively, of 

APHA/AWWA/WEF170; 

(b) Total solids (TS) (method 2540 B170), fixed solids (FS) (method 2540 E170), total suspended 

solids (TSS) (method 2540 D170) and volatile solids (VS) (method 2540 E170); 

(c) Total Chemical Oxygen Demand (tCOD) and soluble Chemical Oxygen Demand (sCOD) in 

an open-reflux system (method 5220 B 170); 

(d) Mineral content of the filtered wastewater after being filtered thought Whatman® ME 25/21 ST 

membrane filters (0.45 µm) and acidified with HNO3 to pH < 2.00. 11 metals and metalloids (Al, 

Ca, Cd, Cr, Cu, Fe, K, Mg, Na, Si, and Zn) were quantified in the filtered and acidified wastewater 

by ICP-AES, as described in section 2.2.1; 

(e) Mineral content after acidic digestion (US EPA 3015 A) performed in a Milestone ETHOS 1600 

microwave heating system by digesting an aliquot of 45 mL with 4 mL HNO3 (65% v/v) and 1 mL 

HCl (37% v/v), at 170 °C, for 10 min after a 10 min ramp. The solution was then filtered through 

Whatman® 41 ashless filter papers (20-25 µm) and the same 11 metals and metalloids mentioned 

in item (d) were quantified in the acidic eluates by ICP-AES (described in section 2.2.1). 

(f) Solubility of the species in the wastewater by equation 4.1. 

 

Solubility (%) =
Concentration in filtered eluates

Concentration in acidic eluates
× 100 (4.1) 

 

4.2.3 Cr(III) removal assays from synthetic solution 

Cr(III) removal assays were performed under batch conditions, in an Infors AG AK 82 roller-table 

agitator, at a constant mixing of 150 rpm, and room temperature of 25 ± 1 ºC. The samples were 

then filtered through 0.45 μm cellulose nitrate membranes (Whatman® ME 25/21 ST) and the pH 

of filtrates was measured (Hanna Instruments edge® HI 2002 pH meter). The filtrates were then 

acidified with HNO3 for a pH < 2, before Cr quantification by ICP-AES (described in section 2.2.1). 

 

4.2.3.1 Effects of adsorbent loading (solid/liquid ratio, S/L) and initial pH value 

All adsorbents were submitted to a preliminary study, in which the effects of adsorbent loading 

(solid/liquid ratio, S/L) and initial pH were tested. Two initial pH values were used (3.50 and 4.50) 

and three S/L values were tested (2.5, 5.0 and 10 g L-1). To simplify the data reading, codes were 

attributed to each assay: the name of the adsorbent was followed by the S/L used; for instance, 

the assay with the adsorbent G5C at a S/L of 5 g L-1 was named as G5C-5. The contact time for 
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all these removal assays was of 24 h, which was verified to be more than enough to reach the 

equilibrium phase. 

Cr(III) removal efficiency, 𝜂 (%), and experimental adsorbent removal capacity, 𝑞𝑒𝑥𝑝 (mg g-1), 

were calculated by equations 4.2 and 4.3, respectively: 

 

𝜂 =
𝐶0 − 𝐶𝑓

𝐶0
× 100 (4.2) 

  

𝑞𝑒𝑥𝑝 =
𝐶0 − 𝐶𝑓

𝑚
× 𝑉 (4.3) 

 

where 𝐶0 and 𝐶𝑓  are Cr(III) concentrations (mg L-1) before and after the removal assays, 

respectively,  𝑚 is the adsorbent mass (g), and 𝑉 is the solution volume (L). 

The conditions (adsorbent, pH and S/L) under which Cr(III) removal performed better were 

selected for kinetic and isotherm adsorption studies.  

 

4.2.3.2 Kinetic study 

Contact times between 0.25 and 72 h were tested. The results were adjusted to pseudo-first order 

and pseudo-second order kinetic models, through the equations 4.4 and 4.5171, respectively: 

 

𝑞𝑡 = 𝑞𝑒 × [1 − 𝑒𝑘𝑓×𝑡] (4.4) 

  

 𝑞𝑡 =
𝑘𝑠 × 𝑞𝑒

2 × 𝑡

1 + 𝑞𝑒 × 𝑘𝑠 × 𝑡
 (4.5) 

 

where 𝑞𝑡 is the Cr(III) uptake capacity in time 𝑡 (mg g−1), 𝑞𝑒 is the Cr(III) uptake capacity in 

equilibrium (mg g−1), 𝑘𝑓  is the pseudo-first order kinetic constant (h−1), 𝑘𝑠 is the pseudo-second 

order kinetic constant (g mg−1 h−1), and 𝑡 is the contact time (h). These empirical kinetic models 

assume that the uptake rate is first- or second-order with respect to the available surface coverage 

and, although they not allow to determine the specific rate-controlling mechanism of adsorption, 

their widespread acceptance allow to compare the obtained modelling results with kinetic data 

already published in the literature. These lumped kinetic models assume that the process is 

controlled by the irreversible adsorption reaction at the liquid/solid interface in the adsorbent, 

neglecting the effects of film and pore diffusion94,172. 
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Through the kinetic study it was possible to perceive at which contact time the adsorbent reached 

its maximum removal capacity; this contact time was used for the adsorption isotherm study. 

 

4.2.3.3 Adsorption isotherm study 

Cr(III) concentrations between 10 and 80 ± 5 mg L-1 were tested. The results were adjusted to 

Langmuir’s non-linear model (equation 4.6) and Freundlich’s non-linear model (equation 4.7)173: 

 

𝑞𝑒 =
𝑞𝑚𝑎𝑥 × 𝑏 × 𝐶𝑒

1 + 𝑏 × 𝐶𝑒
 (4.6) 

  

𝑞𝑒 = 𝐾𝐹 × 𝐶𝑒

1
𝑛 (4.7) 

 

where 𝑞𝑒 is the Cr(III) uptake capacity in the equilibrium (mg g−1), 𝑞𝑚𝑎𝑥 is the maximum uptake 

capacity (mg g−1), 𝑏 is the Langmuir’s constant (L mg−1), 𝐶𝑒  is the concentration of Cr(III) in the 

equilibrium (mg L−1), 𝐾𝐹 is the Freundlich’s constant (mg g-1 mg-n Ln) and 𝑛 is the Freundlich 

intensity parameter (dimensionless), which indicates the magnitude of the adsorption driving force 

or the surface heterogeneity. 

The Langmuir model assumes that the active sites on the adsorbent’s surface are energetically 

homogeneous and only one atom/molecule can be positioned in each site until a monolayer is 

formed. Moreover, the adsorption is localized and the energy needed for the process does not 

depend on the coverage degree173,174. 

Freundlich isotherm was the first empiric equation developed for equilibrium data modelling 

describing the non-ideal and reversible adsorption, not restricted to the formation of 

monolayer173,174. This model can be applied to multilayer adsorption, with non-uniform distribution 

of adsorption heat and affinities over the heterogeneous surface. The adsorption process occurs  

first in the sites with stronger binding forces, then as the adsorption energy exponentially 

decreases all other sites with weakest binding forces are also filled173. 

 

4.2.3.4. Model adjustment 

SOLVER function of MS EXCEL 2016 was used to adjust the kinetic and isotherm adsorption 

models through the minimum of the least-square method (equation 4.8): 

 

𝑀𝑖𝑛 [∑ 𝐿𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠] = 𝑀𝑖𝑛 [∑(𝑞𝑒𝑥𝑝 − 𝑞𝑡ℎ)
2

] (4.8) 
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where 𝑞𝑒𝑥𝑝 is the experimental Cr(III) uptake capacity (mgCr(III) g−1
adsorbent) and 𝑞𝑡ℎ is the modelled 

Cr(III) uptake capacity (mgCr(III) g−1
adsorbent). The models with the highest determination coefficient 

(R2) were considered as the best-fitting models. 

 

4.2.4. Cr(III) removal assays from industrial wastewater 

Cr(III) removal assays from the industrial wastewater were done with the adsorbent and 

conditions (S/L and contact time) that performed better for synthetic solution. Three initial 

concentrations were tested (50, 100 and 200 mg Cr(III) L-1), which were obtained through the 

dilution of industrial wastewater with ultrapure water (Milli-Q Academic); the initial pH was not 

corrected. 

The procedure for the Cr(III) removal assays was the same as described in section 4.2.3. 

 

4.2.5. Cr(III) removal mechanisms 

The adsorbents may remove Cr(III) from aqueous solutions through different mechanisms: 

physical adsorption which will be here defined as pore filling (electrostatic sorption between 

positively charged ions in water and the delocalised cloud of electrons associated with aromatic 

groups on the surface of the carbonaceous adsorbents, creating cation-π interactions with the 

CC aromatic bonds), chemical adsorption (ion exchange, electrostatic interactions, among others) 

and precipitation. To evaluate the Cr(III) removal mechanisms, a study was performed on the 

removal assay that provided the highest Cr(III) removal from the industrial wastewater, in which 

no precipitation had occurred and adsorption mechanisms ruled Cr(III) removal. 

To evaluate if ion exchange mechanism had an important role in Cr(III) removal, the elements Al, 

Ca, Fe, K, Mg, Na and Si were quantified in the industrial wastewater before and after the removal 

assays. These elements were selected because they were present in both the industrial 

wastewater and adsorbent, and they may play a role in Cr(III) removal. Concentration variation, 

𝐶𝑉 (mg L-1), and percentage variation, 𝑃𝑉 (%), were calculated by equations 4.9 and 4.10, 

respectively: 

 

𝐶𝑉 =  𝐶𝑓 − 𝐶0 (4.9) 

  

𝑃𝑉 =  (
𝐶𝑓

𝐶0
× 100) − 100 (4.10) 

 

where 𝐶0 and 𝐶𝑓  are Cr(III) concentrations before and after the removal assay, respectively. 
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The procedure for the removal assays was the same as described in section 4.2.3, but instead of 

just Cr, all elements mentioned above were quantified by ICP-AES. 

 

4.3 Results and discussion 

4.3.1 Industrial wastewater characterisation 

The industrial wastewater showed acidic properties (pH = 3.91), due to the use of inorganic acids 

and Cr(III) in the leather tanning processes. The relatively high conductivity (68.2 mS cm-1) 

indicates a high content of ionic salts (Table 22). As expected, Cr was quantified in the acidic 

eluate in a high concentration (1810 mg L-1). Similarly, Mg (1923 mg L-1) and Na (1387 mg L-1) 

were also detected in very high concentrations. In the wastewater filtrate, the results were very 

similar, with almost all these chemical elements presenting a solubility percentage close to 100%. 

Only Mg (41.1%) showed a lower concentration in the filtrate. The data obtained for solids and 

COD (Table 22) indicate that only 0.1% of the total solids were constituted by suspended solids 

and consequently 99.9% were dissolved solids; 77.7% tCOD (6327 mg O2 L-1) were in soluble 

form. These data mean that almost all salts, solids and COD were in soluble form. 

 

Table 22. Industrial wastewater characterisation (𝑋 ± σ; n=2; pH in Sørensen scale; conductivity 

in mS cm−1; TS, FS, VS, TSS, and metals or metalloids in mg L−1; tCOD and sCOD in mg O2 L−1; 

Solubility in %). 

Parameters Industrial wastewater  Metal or 
metalloid 

Industrial wastewater 

Acidic eluate Filtrate Solubility 

pH 3.91 ± 0.06  Mg 1 923 ± 26 790 ± 0 41.1 

Cond. 68.2 ± 0.0  Cr 1 810 ± 172 1 799 ± 33 99.4 

TS 76 837 ± 1 166  Na 1 387 ± 134 1 330 ± 120 95.9 

FS 62 622 ± 1 960  Ca 564 ± 53 534 ± 52 94.5 

VS 14 215 ± 794  K 126 ± 3 123 ± 2 97.4 

TSS 102 ± 7  Si 28.2 ± 0.2 24.3 ± 0.0 86.0 

tCOD 6 327 ± 228  Fe 10.7 ± 0.3 8.34 ± 0.21 78.0 

sCOD 4 914 ± 78  Al 2.79 ± 0.25 2.50 ± 0.19 89.4 

   Zn 1.18 ± 0.09 0.556 ± 0.040 47.2 

   Ti < 0.404 < 0.404 n.a. 

   Cu < 4.10x10-2 < 4.10x10-2 n.a. 

   Cd < 3.20x10-2 < 3.20x10-2 n.a. 

n.a.: not applicable; Cond.: Conductivity; TS: Total Solids; FS: Fixed Solids; VS: Volatile Solids; 
TSS: Total Suspended Solids; tCOD: total Chemical Oxygen Demand; sCOD: soluble Chemical 
Oxygen Demand. 
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The studies identified in literature (Table 23) point out for the same acidic nature of leather tanning 

effluents with pH values between 3.63 and 4.07. Mella et al.175 reported values of conductivity 

similar to the average value found in the industrial wastewater analysed in the present study, 

while Ramírez-Estrada et al.176 showed TS and VS concentrations similar to those reported in the 

present work. Concerning COD, the values of tCOD and sCOD referred in literature are also 

similar to those determined in the industrial wastewater177,178. Finally, Mella et al.175 and Ramírez-

Estrada et al.176 presented very similar concentrations of Cr and Ca to those quantified in the 

leather tanning wastewater. 

 

Table 23. Comparison of the industrial wastewater composition with literature (pH in Sørensen 

scale; conductivity in mS cm-1; TS, VS, TSS, Cr, Ca and Na in mg L-1; tCOD and sCOD in mg O2 

L-1). 

Parameters 
Reference 

pH Cond. TS VS TSS tCOD sCOD Cr Ca Na 

4.07 71.9 n.d. n.d. 456 387 n.d. 2 000 n.d. n.d. Mella et al.175 

4.0 n.d. 97 704 20 460 1 067 5 843 n.d. 2 775 803 22 320 
Ramírez-
Estrada et al.176 

3.65 n.d. n.d. n.d. 8 430 19 400 n.d. 552 n.d. n.d. George et al.177 

3.63 n.d. n.d. n.d. 4 863 8 058 5 600 5 363 n.d. n.d. Guo et al.178 

3.91 68.2 76 837 14 215 102 6 327 4 914 1 810 564 1 387 Present work 

n.d.: not determined 

 

4.3.2 Cr(III) removal assays from synthetic solution 

4.3.2.1 Influence of S/L and initial pH 

For an initial pH of 3.50, the preliminary studies (Figure 14) showed that almost all Cr(III) present 

in the synthetic solution (98.4%) was removed in G5C-10 assay (Figure 14a). Consequently, 

G5C-10 showed the highest Cr(III) uptake capacity (qexp) (6.91 mg g-1) of all the assays (Figure 

14b). The final pH of this assay was 6.66, indicating that Cr(III) might be removed through 

precipitation, as at a pH higher than 5.00 Cr(III) changes for insoluble chemical species169. The 

same mechanism occurred in G4C-10 assay; in this case, the final pH (5.51) was lower than for 

G5C-10, which may promote a slightly lower Cr(III) precipitation and consequently a lower 

removal level (74.7%). Therefore, qexp of G4C-10 (5.25 mg g-1) was lower than for G5C-10 (6.91 

mg g-1). In CAC-10 assay, less Cr(III) was removed (30.6%) than for chars submitted to the same 

S/L; however, the final pH of this assay was 4.63, which is much lower than for both assays with 

chars and critical pH value for precipitation (5.00); consequently, no significant precipitation might 

have occurred with CAC. 
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Figure 14. Effect of S/L on the Cr(III) (a) removal efficiency and (b) uptake capacity in the 

synthetic solution, for an initial pH 3.50. Final pH represented by dark dots; values of 2.5, 5 and 

10 in x-axis represent the S/L in g L-1. 

 

0

10

20

30

40

50

60

70

80

90

100

2.5
G4C

5 10 2.5
G5C

5 10 2.5
CAC

5 10

0

1

2

3

4

5

6

7

8

C
r(

II
I)

 r
e
m

o
v
a
l e

ff
ic

ie
n
c
y
 (
%

)

F
in

a
l 
p
H

(a)

Adsorption Precipitation Final pH

0

1

2

3

4

5

6

7

8

2.5
G4C

5 10 2.5
G5C

5 10 2.5
CAC

5 10

0

1

2

3

4

5

6

7

8

q
e

x
p

(m
g

C
r(

II
I)

g
-1

a
d

s
o
rb

e
n

t)

F
in

a
l 
p
H

(b)

Adsorption Precipitation Final pH



63 
 

The final pH values of all the assays at S/L 2.5 and 5.0 g L-1 were below 5.00. Since Cr could not 

precipitate out under these low pH conditions, adsorption should be the main removal mechanism. 

In these assays, Cr(III) removal was very low (bellow 13.2%). The exception occurred for G5C-5, 

in which a removal percentage of 43.1% was achieved; its qexp of 6.06 mg g-1 was the second 

highest one, surpassing G4C-10 in which precipitation had occurred. 

Globally, both chars removed more Cr(III) from the synthetic solution than CAC for an initial pH 

of 3.50. G5C presented the best Cr(III) removal properties, whether the removal process was by 

precipitation (G5C-10) or by adsorption (G5C-5). 

For an initial pH of 4.50 (Figure 15), all adsorbents at a S/L of 10 g L-1 and G5C at a S/L of 5 g  

L-1 (G5C-5) removed almost all Cr(III) present in the synthetic solution (71.7 – 98.4%) (Figure 

15a), again because the final pH of these assays were above 5.00 (5.39 – 7.52), leading to Cr 

precipitation. G5C-5 obtained the highest qexp (11.2 mg g-1) (Figure 15b). 

All the other assays had a final pH bellow 5.00; hence, no precipitation occurred, or, at least, this 

removal mechanism was not very significant. Cr(III) removal was low for G4C-2.5 and CAC-2.5 

(3.28% and 6.84%, respectively), but G5C-2.5 achieved a removal of 28.1%, obtaining the second 

highest qexp (8.51 mg g-1) of all the assays. Finally, G4C-5 showed a Cr(III) removal percentage 

of 42.3%, more than the double of CAC-5 (19.7%); this was the highest Cr(III) removal percentage 

by adsorption of all the assays, with a qexp of 6.20 mg g-1. 

In all assays, as the adsorbent loading increased, the final pH of the assays also increased, due 

to the alkaline properties of the adsorbents, as pointed out by pHpzc (section 2.3.2.4 for 

gasification-derived chars and section 3.3.2.2 for CAC). 

Pan et al.22 studied the pH effect on Cr(III) adsorption by using pyrolytic chars of RS (produced 

at 400 ºC). These authors also found that by increasing the pH, higher Cr(III) uptake capacities 

were registered. With similar experimental conditions (S/L of 4 g L-1 and initial Cr(III) concentration 

of 78 mg L-1), for initial pH values of 4, 4.5 and 5, those authors obtained uptake capacities of 

9.88, 11.4 and 12.5 mg g-1, respectively. However, the authors kept the pH correction procedure 

during the adsorption assays until stable pH was reached, which may explain the slightly higher 

uptake capacities. 

To select the adsorbent and experimental conditions to be used on the kinetic and adsorption 

isotherm studies, several factors were considered. The assays in which precipitation occurred 

were discarded, because this mechanism was not the core of the work. The assays in which 

adsorption prevailed and highest Cr(III) uptake capacities were registered comprised G5C-2.5 

and G4C-5, both for an initial pH of 4.50. From these two assays, G4C-5 was selected because 

although G5C-2.5 assay showed a higher qexp, G4C-5 assay presented a significantly higher 

Cr(III) removal, which is the main objective of this work. Also, G4C had 20% PE in its origin and 

as mentioned above, Ricevalor’s main objective was to valorise the energetic fraction of the 

assays, and the presence of 20% PE in the gasification assays significantly improves the quality 

of the syngas. 



64 
 

 

 

Figure 15. Effect of S/L on the (a) Cr(III) removal efficiency and (b) Cr(III) uptake capacity in the 

synthetic solution, for an initial pH 4.50. Final pH represented by dark dots; values of 2.5, 5 and 

10 in x-axis represent the S/L in g L-1. 
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4.3.2.2 Kinetic study 

The kinetic study was performed with the same experimental conditions used in G4C-5 and CAC-

5 assays with an initial pH of 4.50. 

In the kinetic study, the Cr(III) removal efficiency was always higher for G4C-5 than for CAC-5 

(Figure 16). The final pH of the assays was always below 5.00, meaning that adsorption 

mechanism mainly ruled Cr(III) removal. G4C-5 and CAC-5 reached the equilibrium at 30 and 20 

h, respectively; removal efficiencies of 43.8% and 15.4% were achieved, respectively for G4C-5 

and CAC-5. 

 

 

Figure 16. Cr(III) removal efficiency for G4C-5 and CAC-5 along time in the synthetic solution. 

Final pH represented by dark dots. 

 

The experimental data of Cr(III) uptake capacity for both assays adjusted well to both pseudo-

first and pseudo-second order kinetic models (Figure 17); however, they adjusted better to the 

latter kinetic model, reaching uptake capacities of 7.45 mg g-1 and 2.70 mg g-1 for G4C-5 and 

CAC-5, respectively (Table 24). The results showed that G4C-5 uptake capacity was almost three 

times higher than for CAC-5, emphasising that Cr(III) removal was mostly driven by ion exchange 

(G4C) rather than by pore filling (CAC). In this context, the high mineral mobility of G4C (Table 

15) was more significant in Cr(III) removal than the better textural properties of CAC (Table 19). 
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Figure 17. Cr(III) uptake capacity of G4C-5 and CAC-5 in the synthetic solution and adjustment 

of experimental data to pseudo-first order and pseudo-second order kinetic models (th: 

theoretical data). 

 

Table 24. Parameters of pseudo-first order and pseudo-second order kinetic models adjusted to 

the experimental data of G4C-5 and CAC-5 in the synthetic solution. 

Kinetic model Parameter 
Adsorbent 

G4C-5 CAC-5 

Pseudo-first order 

qe (mg g-1) 6.92 2.55 

kf (h-1) 0.360 0.646 

R2 0.977 0.993 

    

Pseudo-second order 

qe (mg g-1) 7.45 2.70 

ks (g mg-1 h-1) 0.063 0.353 

R2 0.982 0.985 

 

4.3.2.3 Adsorption isotherms 

The study on the adsorption isotherms was performed with the same experimental conditions 

used in the assays with G4C-5 and CAC-5, with an initial pH of 4.50 and a contact time of 30 h. 

The data of the adsorption isotherms study (Figure 18) showed that in the assays with initial 

concentrations < 50 mgCr(III) L-1 chromium precipitation occurred, reaching Cr(III) removal 

percentages closer to 100% (Figure 18a). On the other hand, for the assays with initial 
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concentrations ≥ 50 mgCr(III) L-1 no precipitation was registered. This was due to the dissociation 

of water molecule by Cr(III), releasing H+ and promoting the solution acidification. Increases in 

Cr(III) concentration will favour this phenomenon24. At an initial concentration of 30 mgCr(III) L-1, 

CAC-5 presented a lower efficiency for Cr(III) removal (74.8%), because the final pH was of 5.06, 

meaning that only a part of Cr(III) might be precipitated (Figure 18a). 

 

 

Figure 18. (a) Cr(III) removal efficiency and (b) Cr(III) uptake capacity for G4C-5 and CAC-5 in 

the synthetic solution for different initial Cr(III) concentrations. Final pH represented by dark 

dots; values of 10 to 80 in x-axis represent the initial Cr(III) concentrations in mg L-1. 
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In Cr(III) removal assays with a final pH below 5.00, i.e. ruled by adsorption (assays with initial 

Cr(III) concentrations of 50 and 80 mg L-1), G4C-5 consistently presented better results than CAC-

5. The best result was achieved for an initial concentration of 50 mgCr(III) L-1, presenting a Cr(III) 

removal percentage of 88.1% (Figure 18a) and an uptake capacity of 8.19 mg g-1 (Figure 18b). 

The experimental data were adjusted to Langmuir’s and Freundlich’s non-linear adsorption 

models (Figure 19). The results showed that the adjustment to both models was not very good 

with R2 values ≤ 0.880 (Table 25). Still, the adjustment to Langmuir’s model was the best for both 

adsorbents which suggests that the adsorption occurred through a monolayer process. The 

maximum uptake capacity for G4C-5 was of 6.95 mg L-1, while for CAC-5 was of 3.45 mg L-1, 

demonstrating once again the better results obtained by G4C-5. 

 

 

Figure 19. Langmuir’s and Freundlich’s non-linear adsorption models adjusted to the 

experimental data of G2C-5 and CAC-5 in the synthetic solution (th: theoretical data). 

 

Pan et al.22 also studied Cr(III) adsorption by using RS biochars. Similarly to the present work, 

their experimental data adjusted better to Langmuir’s adsorption model (R2 = 0.99). However, 

these authors obtained a higher qmax (14.0 mg g-1), probably due to the constant pH correction 

(until stable pH) performed by them during the adsorption assays. 
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Table 25. Parameters of Langmuir’s and Freundlich’s non-linear adsorption models adjusted to 

the experimental data of G4C-5 and CAC-5 in the synthetic solution. 

Isotherm model Parameter 
Adsorbent 

G4C-5 CAC-5 

Langmuir's non-linear 

𝑞𝑚𝑎𝑥 (mg g-1) 6.95 3.45 

𝑏 (L mg-1) 29.6 787 

R2 0.880 0.908 

    

Freundlich’s non-linear 
  

𝐾𝐹 (mg g-1 mg-n Ln) 5.09 2.96 

𝑛 (dimensionless) 7.98 21.5 

R2 0.864 0.793 

 

4.3.3 Cr(III) removal assays from industrial wastewater 

Precipitation occurred in the Cr(III) removal assays from the industrial wastewater, with initial 

concentrations of 50 and 100 mgCr(III) L-1, once the final pH of all these samples was above 5.00 

(Figure 20). The assays with an initial concentration of 50 mgCr(III) L-1 presented the highest final 

pH values (7.22, for G4C-5, and 6.07, for CAC-5) and, consequently, the highest Cr(III) removal 

efficiencies (94.0%, for G4C-5, and 89.7%, for CAC-5) (Figure 20a). However, despite the lower 

Cr(III) removal efficiencies (69.6%, for G4C-5, and 65.4%, for CAC-5) (Figure 20a), the assays 

with an initial concentration of 100 mgCr(III) L-1 showed the highest uptake capacities (14.9 mg g-1, 

for G4C-5, and 14.0 mg g-1, for CAC-5) (Figure 20b). These results suggest that G4C-5 was more 

efficient on Cr(III) removal by precipitation than CAC-5. 

For an initial concentration of 200 mgCr(III) L-1, the final pH of all these samples was slightly below 

5.00, meaning that a mixture of removal mechanisms (adsorption and precipitation) might be 

involved in Cr(III) removal. G4C-5 removed 28.8% of Cr(III), obtaining a qexp of 11.5 mg g-1. 

However, unlike the results in which precipitation occurred, the highest Cr(III) removal efficiency 

(Figure 20a) and uptake capacity (Figure 20b) were found for CAC-5, namely 40.4% and 16.1 

mg g-1, respectively. This was probably due to other chemical species present in the wastewater 

that could compete on Cr(III) removal by G4C. 

Comparing the removal assays from the synthetic solution with the removal assays from the 

industrial wastewater, it was concluded that although Cr(III) removal efficiencies were higher in 

the synthetic solution, the uptake capacities of the adsorbents were much higher in the industrial 

wastewaters due to the higher concentration of Cr(III). 
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Figure 20. (a) Cr(III) removal efficiency and (b) Cr(III) uptake capacity for G4C-5 and CAC-5 on 

the removal assays from the industrial wastewater. Final pH represented by dark dots; values of 

50, 100 and 200 in x-axis represent the initial Cr(III) concentrations in mg L-1. 
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4.3.4 Cr(III) removal mechanisms 

Due to the weak porous structure of G4C-5 (Table 14), ion exchange was probably the most 

important mechanism in Cr(III) removal by this adsorbent, under the conditions in which the 

precipitation is limited. The results on the concentration and percentage variation of cations 

(Figure 21) support this conclusion. G4C-5 added 71.9 mg L-1 of other chemical elements to the 

industrial wastewater, mainly Ca (26.8 mg L-1), K (24.6 mg L-1) and Mg (18.8 mg L-1), and removed 

61.6 mg L-1 of chemical elements from the industrial wastewater, mainly Cr (57.4 mg L-1). These 

results suggest that Cr(III) removal from the industrial wastewater by G4C-5 was due to ion 

exchange with Ca, K and Mg. Similar results were obtained in a previous study24. 

 

 

Figure 21. Concentration and percentage variations of cations on the Cr(III) removal assays 

with G4C-5 and CAC-5 in the industrial wastewater, for an initial concentration of 200 mgCr(III) L-1. 

 

CAC-5 presented different results, once this adsorbent only added 7.69 mg L-1 of other chemical 

elements to the industrial wastewater, mainly Ca (5.80 mg L-1), and removed 87.74 mg L-1 of 

chemical elements present in the industrial wastewater, mainly Cr (80.5 mg L-1). The results 

suggest that Cr(III) removal from the industrial wastewater by CAC-5 was mainly due to pore 

filling. 

These results suggest that the lowest Cr(III) removal efficiency and uptake capacity of G4C-5 

compared to CAC-5 could be related to the presence of other chemical species in the industrial 
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wastewater, besides the metals and metalloids studied in this work, which can compete by the 

adsorption of Cr(III) onto G4C. 

 

4.4 Conclusions 

For the removal assays performed in the synthetic solution, both chars presented higher removal 

efficiencies and uptake capacities than CAC, either by precipitation or adsorption. At a S/L of 5 g 

L-1, G4C was the char selected to be used in the kinetic studies and adsorption isotherms. This 

char obtained a highest uptake capacity of 8.19 mg g-1 (at an initial concentration of 50 mgCr(III) L-

1) and an uptake capacity in equilibrium (qe) of 7.45 mg g-1, while CAC-5 only obtained values of 

3.93 and 2.70 mg g-1, respectively, emphasizing the best results for the gasification char. 

For the removal assays done in the industrial wastewater (performed at a S/L of 5 g L-1), the char 

G4C presented better results than CAC when precipitation occurred, obtaining uptake capacities 

of 14.9 mg g-1 and 14.0 mg g-1, respectively, at an initial concentration of 100 mgCr(III) L-1. However, 

when adsorption ruled (at an initial concentration of 200 mgCr(III) L-1), CAC obtained better results 

than G4C (qexp of 11.5 mg g-1 and 16.1 mg g-1, respectively). 

In general, Cr(III) removal efficiencies were higher in the synthetic solution, but the uptake 

capacities of the adsorbents were much higher in the industrial wastewaters. 

Apart from precipitation, the adsorption mechanisms involved in Cr(III) removal by G4C and CAC 

were ion exchange and pore filling, respectively. The high mineral content of chars played an 

important role in Cr(III) removal. 

 

 



73 
 

 CR(III) REMOVAL ASSAYS BY PYROLYSIS 

ACTIVATED CARBONS UNDER BATCH 

CONDITIONS  



74 
 

The results presented in this chapter were published, partially or completely, in the following 

scientific publications: 

 

Papers: 

D. Dias, M. Bernardo, N. Lapa, F. Pinto, I. Matos and I. Fonseca, Activated Carbons from the Co-

pyrolysis of Rice Wastes for Cr(III) Removal, Chemical Engineering Transactions, 65 (2018) 601-

606. 

(doi: 10.3303/CET1865101) 

D. Dias, M. Bernardo, I. Matos, I. Fonseca, F. Pinto, N. Lapa, Activation of co-pyrolysis chars from 

rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters, Journal 

of Cleaner Production, 267 (2020) 121993. 

 

Oral Presentations: 

D. Dias, M. Miguel, M. Bernardo, N. Lapa, I. Matos, I. Fonseca, F. Pinto. Removal of Cr(III) by 

using activated carbons produced from rice waste chars, DCE17 - 2nd Doctoral Congress of 

Engineering, 8-9 June 2017, Porto, Portugal 

D. Dias, M. Miguel, N. Lapa, M. Bernardo, I. Matos, I. Fonseca and F. Pinto, Efficient activated 

carbons from chars of the co-pyrolysis of rice wastes, 4th International Conference “WASTES: 

Solutions, Treatments and Opportunities”, 25-26 September 2017, Porto, Portugal. 

D. Dias, M. Bernardo, N. Lapa, F. Pinto, I. Matos and I. Fonseca, Activated Carbons from the Co-

pyrolysis of Rice Wastes for Cr(III) Removal, International Conference on Biomass (IconBM), 17-

20 June 2018, Bologna, Italy. 

D. Dias, M. Bernardo, N. Lapa, F. Pinto, I. Matos, I. Fonseca, Cr(III) Removal from Aqueous 

Solution by Activated Carbons obtained through the Co-pyrolysis of Wastes from Rice Production, 

13th International Chemical and Biological Engineering Conference (CHEMPOR 2018),  2-4 

October  2018, Aveiro, Portugal. 



75 
 

5.1 Introduction 

In this chapter the pyrolysis-derived activated carbons characterised in Chapter 3 were used in 

removal assays of Cr(III) from a synthetic solution and from an industrial wastewater. To recall, 

the activated carbons are P1C+PA (P1C physically activated), P1C+PA+W (P1C physically 

activated and washed), P1C+PA+CT (P1C physically activated and chemically treated) and 

P1C+CA (P1C chemically activated). 

For comparison purposes, P1C (the pyrolysis char that was in the origin of the pyrolysis-derived 

activated carbons), CAC and CAC+CT (CAC chemically treated) (section 3.2.1.5) were also used 

in the Cr(III) removal assays. 

 

5.2 Materials and methods 

5.2.1 Cr(III) removal from a synthetic solution 

A Cr(III) solution with an initial concentration of 70 ± 5 mgCr(III) L-1 was prepared by diluting a 

standard Cr(NO3)3 solution of 1000 mgCr(III) L-1 in HNO3  0.5 M (Merck) with ultrapure water (Milli-

Q Academic). The initial pH of Cr(III) solution was corrected to 4.5, once Cr(III) starts to precipitate 

at a pH above 5.0 179. All Cr(III) removal assays were performed as described in section 4.2.3. 

 

5.2.1.1 Influence of solid/liquid ratio (S/L) 

To study the influence of S/L two ratios were tested: 5.0 and 10 g L-1. To simplify the data reading, 

some codes were created for each assay: the name of the adsorbent was followed by the S/L 

used (same as described in section 4.2.3.1). The contact time for these assays was 24 h. 

Cr(III) removal efficiency, 𝜂 (%), and experimental adsorbent removal capacity, 𝑞𝑒𝑥𝑝 (mg g-1), were 

calculated by equations 4.2 and 4.3 (section 4.2.3.1), respectively. 

The sample that performed better was selected for the kinetic and adsorption isotherm studies.  

 

5.2.1.2 Kinetic study 

Contact times between 0.25 and 96 h were tested. The results were adjusted to pseudo-first order 

and pseudo-second order kinetic models171, through the equations 4.4 and 4.5 (section 4.2.3.2), 

respectively. 

 

5.2.1.3 Adsorption isotherm study 

Cr(III) concentrations between 10 and 80 ± 5 mg L-1 were tested. The results were adjusted to 

Langmuir’s (equation 4.6 - section 4.2.3.3) and Freundlich’s non-linear models (equation 4.7 - 

section 4.2.3.3)173. 
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5.2.1.4. Modelling 

The same as described in section 4.2.3.4. 

 

5.2.2 Cr(III) removal from industrial wastewater 

The origin and characterisation of the industrial wastewater were already described (sections 

4.2.2 and 4.3.1, respectively). 

The adsorbent and conditions (S/L and contact time) that performed better on the synthetic 

solution were selected for the Cr(III) removal assays in the industrial wastewater. By diluting the 

industrial wastewater with ultrapure water (Milli-Q Academic), two initial concentrations of Cr(III) 

were tested: 50 and 200 mg L-1. The initial pH of the media was not corrected. 

The procedure for the Cr(III) removal assays was the same as described in section 4.2.3. 

 

5.2.3. Cr(III) removal mechanisms 

Cr(III) removal from aqueous solutions may occur through different mechanisms, namely pore 

filling or physical adsorption, chemical adsorption and precipitation. To evaluate if ion exchange 

mechanism had an important role in Cr(III) removal, Al, Ca, Fe, K, Mg, Na and Si were quantified 

on the assay that provided the highest Cr(III) removal from the industrial wastewater. These 

elements were selected because they were present either in the industrial wastewater or in the 

adsorbent. Concentration variation, 𝐶𝑉 (mg L-1), and percentage variation, 𝑃𝑉 (%), were 

calculated by equations 4.9 and 4.10 (section 4.2.5), respectively. 

The procedure for the removal assays was the same as described in section 4.2.3, but instead of 

just Cr, all elements mentioned above were quantified by ICP-AES. 

 

5.3 Results and discussion 

5.3.1 Cr(III) removal from synthetic solution 

5.3.1.1 Influence of S/L 

P1C, being a non-porous material (Table 14), barely removed Cr(III) (≤ 3.66%) from the synthetic 

solution (Figure 22a). However, the optimizations of P1C increased the Cr(III) removal efficiency 

of the material. 

P1C+PA showed the highest Cr(III) removal efficiencies (Figure 22a) and uptake capacities 

(Figure 22b) of all pyrolysis-derived ACs. P1C+PA-10 removed almost all Cr(III) from the 

synthetic solution (99.9%); however the final pH of the assay was 6.65, and above pH 5 Cr(III) 

precipitates179, therefore this removal was mainly by precipitation. 
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Figure 22. Effect of S/L on the (a) Cr(III) removal efficiency and (b) Cr(III) uptake capacity in the 

synthetic solution. Final pH is represented by dark dots. 
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P1C+PA-5 presented a final pH of 4.75, therefore precipitation was limited and Cr(III) removal 

(58.8%) was likely ruled by adsorption (through ion exchange with the cations provided by the 

adsorbent - Table 15) and pore filling (due to the interesting porous properties of this adsorbent 

- Table 19). P1C+PA-5 presented a higher uptake capacity than P1C+PA-10 (7.92 and 6.53 mg 

g-1, respectively), so, under these conditions, precipitation was not the most efficient removal 

mechanism. 

The final pH of all the other assays with pyrolysis-derived ACs was below 5, so Cr(III) removal 

was likely ruled by chemical adsorption and/or pore filling. 

P1C+PA+W presented much lower removal efficiencies (10.6% for S/L = 5 and 34.2% for S/L = 

10) and uptake capacities (1.33 mg g-1 for S/L = 5 and 2.15 mg g-1 for S/L = 10) than P1C+PA, 

despite its better textural properties (Table 19). This probably occurred because the washing step 

removed minerals (Table 18) that could have been used for ion exchange, which highlighted the 

importance of ion exchange in the Cr(III) removal. 

P1C+PA+CT also presented lower removal efficiencies (24.5% for S/L = 5 and 47.0% for S/L = 

10) and uptake capacities (2.94 mg g-1 for S/L = 5 and 2.95 mg g-1 for S/L = 10) than P1C+PA. 

This probably occurred because P1C+PA+CT presented the lowest surface area and pore 

volume of all ACs tested (Table 19), and the acidic treatment and washing removed minerals 

(Table 18) that could have been used for ion exchange. Still, P1C+PA+CT presented slightly 

higher removal efficiencies and uptake capacities than P1C+PA+W, despite its much lower 

surface area and pore volume, suggesting that the chemical treatment successfully incorporated 

some functional groups in the adsorbent’s surface. 

Finally, P1C+CA presented similar results to P1C+PA+CT, both in the Cr(III) removal efficiencies 

(22.5% for S/L = 5 and 37.5% for S/L = 10) and uptake capacities (2.90 mg g-1 for S/L = 5 and 

2.42 mg g-1 for S/L = 10), meaning that under these conditions to chemically treat P1C+PA or 

chemically activate P1C presented no significant differences, even though P1C+CA obtained the 

highest surface area and pore volume of all adsorbents (Table 19). These results suggest that (i) 

P1C+PA+CT had more functional groups able to form complexes with Cr ions at the surface than 

P1C+CA, which would compensate the lower surface area and pore volume, and/or (ii) pore filling 

did not play a significant role and ion exchange seemed to be the main Cr(III) removal mechanism. 

Regarding CAC, it presented very similar results to P1C+PA; CAC-10 removed 98.1% of Cr(III) 

due to precipitation (final pH = 5.92) and CAC-5 removed 62.5% due to pore filling (final pH = 

4.69). The highest uptake capacity was also found at the S/L 5 instead of S/L 10 (8.71 and 6.09 

mg g-1, respectively), meaning that, again, precipitation was not the most efficient removal 

mechanism. 

CAC+CT presented lower removal efficiencies (50.3% for S/L = 5 and 72.4% for S/L = 10) and 

uptake capacities (6.46 mg g-1 for S/L = 5 and 4.68 mg g-1 for S/L = 10) than CAC, indicating that 

(i) CAC+CT did not had enough functional groups at the surface to compensate the lower surface 
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area and pore volume (CAC+CT presented a lower surface area and pore volume than CAC - 

Table 19) and/or (ii) pore availability was more important than the presence of functional groups 

in the adsorbent’s surface. 

Based on the results of the influence of S/L in Cr(III) removal, P1C+PA-5 and CAC-5 samples 

were selected to be used in the following studies. 

 

5.3.1.2 Kinetic study 

The kinetic study showed that equilibrium was reached at 32h for P1C+PA-5 and 48h for CAC-5, 

reaching maximum Cr(III) removal efficiencies (Figure 23) of 60.4% for P1C+PA and 71.1% for 

CAC-5. The final pH was always below 5, meaning that precipitation was limited. 

 

 

Figure 23. Cr(III) removal efficiency for P1C+PA-5 and CAC-5 along time in the synthetic 

solution. Final pH represented by dark dots. 

 

Cr(III) uptake capacities of P1C+PA-5 and CAC-5 (Figure 24) adjusted better to the pseudo-

second order kinetic model (R2 of 0.957 and 0.903, respectively), obtaining a qe of 8.05 and 9.25 

mg g-1, respectively  (Table 26). 
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Figure 24. Cr(III) uptake capacity of P1C+PA-5 and CAC-5 in the synthetic solution and 

adjustment of experimental data to pseudo-first order and pseudo-second order kinetic models 

(th: theoretical data). 

 

Table 26. Parameters of pseudo-first order and pseudo-second order kinetic models adjusted to 

the experimental data of P1C+PA-5 and CAC-5 in the synthetic solution. 

Kinetic model Parameter 
Adsorbent 

P1C+PA-5 CAC-5 

Pseudo-first order kinetic 

qe (mg g-1) 7.73 8.79 

kf (h-1) 2.27 1.19 

R2 0.893 0.811 

    

Pseudo-second order kinetic 

qe (mg g-1) 8.05 9.25 

ks (g mg-1 h-1) 0.420 0.184 

R2 0.957 0.903 

 

5.3.1.3 Adsorption isotherms 

For the study on the adsorption isotherms, 48 h assays were performed for both P1C+PA-5 and 

CAC-5. 

The assays with initial concentrations ≤ 30 mgCr(III) L-1 showed Cr(III) removals of almost 100%, 

for both adsorbents, due to precipitation (Figure 25a). For the assays with initial concentrations 
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≥ 50 mgCr(III) L-1, Cr(III) removal was limited (pH < 5). Nevertheless, for an initial concentration of 

50 mgCr(III) L-1, almost full removals were obtained (91.8% for P1C+PA-5 and 83.0% for CAC-5). 

Opposing the previous results (influence of S/L and kinetic studies), P1C+PA-5 obtained a higher 

Cr(III) removal than CAC-5 for this initial concentration. The assays with initial concentrations > 

50 mgCr(III) L-1 obtained lower removal efficiencies for both adsorbents. 

 

 

Figure 25. (a) Cr(III) removal efficiency and (b) Cr(III) uptake capacity for P1C+PA-5 and CAC-

5 in the synthetic solution for different initial Cr(III) concentrations. Final pH represented by dark 

dots; values of 15 to 100 in x-axis represent the initial Cr(III) concentrations in mg L-1. 
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Regarding the Cr(III) uptake capacity (Figure 25b), the highest values were found for the initial 

concentrations of 50 mgCr(III) L-1 for P1C+PA-5 (9.23 mg g-1) and 70 mgCr(III) L-1 for CAC-5 (9.80 

mg g-1). As seen in the previous studies, the highest Cr(III) uptake capacities were found for the 

assays in which the precipitation was limited, emphasizing that the main Cr(III) removal 

mechanisms were ion exchange and pore filling for P1C+PA-5 and pore filling for CAC-5. 

The data adjustment to Langmuir’s and Freundlich’s isotherms (Figure 26 and Table 27) showed 

that the experimental data were better adjusted to Langmuir’s non-linear adsorption models for 

both adsorbents, suggesting that the adsorption occurred through a monolayer process. P1C+PA-

5 and CAC-5 obtained a qmax of 7.94 and 9.03 mg g-1, respectively. 

 

 

Figure 26. Langmuir’s and Freundlich’s non-linear adsorption models adjusted to the 

experimental data of P1C+PA-5 and CAC-5 in the synthetic solution (th: theoretical data). 

 

No bibliography was found on Cr(III) removal by ACs obtained from rice husk pyrolysis, thus the 

results were compared to rice waste chars and other chars/ACs obtained from pyrolysis of 

different wastes (Table 28). Vassileva et al.111 used RH chars on Cr(III) removal and obtained 

similar results to the present work, while Qian et al.112 used RS chars washed with distilled water 

and obtained lower uptake capacities that the ones found in this work. Other authors that used 

different feedstocks to produce chars/ACs obtained slightly higher uptake capacities than the 

ones reported in this paper22,107,108. The different feedstocks and experimental conditions may 

explain this factor. 
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Table 27. Parameters of the Langmuir’s and Freundlich’s non-linear adsorption models adjusted 

to the experimental data of P1C+PA-5 and CAC-5 in the synthetic solution. 

Isotherm model Parameter 
Adsorbent 

P1C+PA-5 CAC-5 

Langmuir's non-linear 

𝑞𝑚𝑎𝑥 (mg g-1) 7.94 9.03 

𝑏 (L mg-1) 23.1 29.9 

R2 0.909 0.985 

   

Freundlich’s non-linear 

𝐾𝐹  (mg g-1 mg-n Ln) 6.05 6.41 

𝑛 (dimensionless) 14.1 9.12 

R2 0.745 0.941 

 

Table 28. Adsorption capacities of chars/ACs from pyrolysis of different wastes for Cr(III) removal 

from aqueous solutions found in literature. 

Temperature 
(°C) 

Feedstocks Activation/Treatment 
Adsorption 
capacity (mg g-1) 

Reference 

250 – 700 Rice husk No 4.61 – 10.6 
Vassileva 
et al.111 

300 Rice husk No 15.1 
Agrafioti 
et al.109 

400 

Rice straw 

No 

14.0 

Pan et 
al.22 

Peanut straw 25.0 

Soybean straw 17.2 

Canola straw 14.6 

100 – 700 Rice straw 
Washed with distilled 
water and sonicated 

2.4 – 6.5 
Qian et 
al.112 

800 
Eucalyptus 
grandis wood 
sawdust 

Physically activated 
with direct CO2 and 
oxidized with HNO3 

17.5 

Milich et 
al.107 

Physically activated 
with partial CO2 and 
oxidized with HNO3 

25.5 

Physically activated 
with partial air and 
oxidized with HNO3 

29.0 

500 Sugarcane pulp No 15.9 
Yang et 
al.108 
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5.3.2 Cr(III) removal from industrial wastewater 

P1C+PA-5 and CAC-5 presented higher Cr(III) removals on the assays with an initial 

concentration of 50 mgCr(III) L-1 (86.0% and 89.7%, respectively) than on the assays with an initial 

concentration of 200 mgCr(III) L-1 (31.9% and 40.2%, respectively) (Figure 27a). However, in the 

first case, precipitation occurred (final pH > 5), while in the second case precipitation was limited 

(final pH < 5). 

 

 

Figure 27. (a) Cr(III) removal efficiency and (b) Cr(III) uptake capacity for P1C+PA-5 and CAC-

5 in the industrial wastewater (values of 50 and 200 in x-axis represent the initial Cr(III) 

concentrations in mg L-1). 
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The highest Cr(III) uptake capacities (Figure 27b) were found for the assays with an initial 

concentration of 200 mgCr(III) L-1 (12.4 mg g-1 for P1C+PA-5 and 16.1 mg g-1 for CAC-5). This 

means that both adsorbents performed better on the industrial wastewater than on the synthetic 

solution, in which the highest uptake capacity obtained for both adsorbents was much lower (8.05 

mg g-1 for P1C+PA-5 and 9.25 mg g-1 for CAC-5 -Table 26). Alike the removal assays on the 

synthetic solution, the highest Cr(III) uptake capacity was found in the assays in which adsorption 

ruled the removal mechanisms. 

 

5.3.3 Cr(III) removal mechanisms 

Ion exchange was presumably a very important removal mechanism for P1C+PA-5, once 36.1 

mg L-1 of cations were added to the industrial wastewater by this adsorbent, mainly  K (24.7 mg 

L-1) (Figure 28). On the contrary, 72.7 mg L-1 of cations were removed from the wastewater, 

predominantly Cr (63.8 mg L-1). This indicates that half of the removed cations, mainly Cr, may 

have been removed through ion exchange, mainly through K exchange; in this sense, pore filling 

also had an important role as a removal mechanism, being probably responsible for the other half 

removal of Cr(III). 

 

 

Figure 28. Concentration and percentage variations of cations on the Cr(III) removal assays 

with P1C+PA-5 and CAC-5 in the industrial wastewater, for an initial concentration of 200 

mgCr(III) L-1. 
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In contrast, CAC-5 only added 8.86 mg L-1 of cations to the wastewater, mainly Ca (5.80 mg L-1), 

while 87.7 mg L-1 of cations were removed from the wastewater, mainly Cr (80.5 mg L-1). These 

results suggest that ion exchange did not play an important role as removal mechanism by CAC-

5 in the industrial wastewater. Instead, as verified for the synthetic solution, pore filling was 

probably the major removal mechanism. 

 

5.4 Conclusions 

The physically activated P1C sample (P1C+PA) presented the best properties of all pyrolysis-

derived ACs for Cr(III) removal, due to its high mineral content (allowing removal by ion exchange) 

and interesting textural properties (allowing removal by pore filling). In the synthetic solution, at a 

S/L 5 g L-1 and an initial Cr(III) of 50 mg L-1, P1C+PA obtained a highest uptake capacity of 9.23, 

a similar result to the one obtained by CAC (9.80 mg g-1) at a S/L 5 g L-1 and an initial Cr(III) of 

70 mg L-1. In the equilibrium (qe) these values decreased to 8.05 and 9.25 mg g-1, respectively. 

In the industrial wastewater the uptake capacities of both adsorbents increased, but in this case, 

CAC (16.1 mg g-1) obtained better results than P1C+PA, (12.4 mg g-1) respectively. 

The mechanisms involved on Cr(III) removal by P1C+PA were a mix of ion exchange and pore 

filling, while Cr(III) removal by CAC was ruled by pore filling. 

Although P1C+PA presented slightly lower uptake capacities than CAC in the industrial 

wastewater, the environmental benefits associated with waste valorisation for the production of 

adsorbents suggest that P1C+PA may be an alternative to CAC in the removal of Cr(III) from 

liquid effluents.  
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 Cr(III) REMOVAL ASSAYS UNDER 

CONTINUOUS FLOW  
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The results presented in this chapter were published, partially or completely, in the following 

scientific publications: 

 

Papers: 

D. Dias, M. Bernardo, F. Pinto, I. Fonseca, N. Lapa, Cr(III) dynamic removal in a fixed-bed column 

by using a co-gasification char, Environmental Science and Pollution Research, submitted. 
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6.1 Introduction 

In order to understand the removal mechanisms under continuous/dynamic conditions, Cr(III) 

removal assays were carried out in fixed bed columns, with continuous flow, using the 

char/activated carbon that presented the best performance in the batch assays. 

 

6.2 Materials and methods 

6.2.1 Selection of adsorbents 

For the column assays, it was decided to select only the adsorbent that performed better in the 

batch assays. G4C and P1C+PA (at an S/L of 5 g L-1) had similar results in the synthetic effluent 

(uptake capacities of 7.45 mg g-1 (Table 24) and 8.05 mg g-1 (Table 26), respectively) and in the 

industrial wastewater (uptake capacities of 11.5 mg g-1 (Figure 20) and 12.4 mg g-1 (Figure 27), 

respectively), when adsorption ruled Cr(III) removal. But when precipitation ruled, G4C obtained 

the highest uptake capacity of all rice-derived adsorbents (14.9 mg g-1 in the industrial wastewater 

- Figure 20). To truly simulate the real conditions, the pH of the medium was not altered for the 

column assays. So, due to the alkaline properties of the adsorbents, precipitation would naturally 

take place during the column assays (to recall, at pH > 5 Cr(III) precipitation occurs). For that 

reason, this factor was taken into consideration in the selection of the adsorbent to be used in the 

column assays; therefore, G4C was the adsorbent selected. Another reason is the fact that G4C 

did not require an activation process, like P1C+PA did, so, naturally, G4C has more environmental 

and economic benefits. Before the assay, G4C was sieved to a particle size of 50-100 µm. 

For comparison purposes, a commercial activated carbon (Norit GAC 1240) was used also with 

a particle size of 50-100 µm. 

 

6.2.2 Column assays setup 

Figure 29 presents the setup of the column assays. 

The initial Cr(III) solution (1), which was previously prepared with known concentrations, was 

guided to the fixed-bed column (diameter = 0.5 cm; height = 10.0 cm) (4), through a hose (2) by 

using a Gilson Minipuls 3 peristaltic pump (3) that controlled the flow rate of the Cr(III) solution. 

The adsorbent (4a) was fixed in the column by placing Whatman® 42 filter papers (4b) on both 

top and bottom of the column. At the end of the column, a new hose (5) led the solution (post-

removal assay) to a collector flask (6). 

In order to control the temperature of the assays, a Velp Scientifica open-circulating bath (7) was 

used. This bath was filled with water (8) and set to a known temperature. The water was 

recirculated inside the adsorption column, from bottom to top, through circulating hoses (9). 

 



90 
 

 

Figure 29. Column assays setup: 1 - initial Cr(III) solution; 2 - column inflow hose; 3 - peristaltic 

pump;  4 - fixed-bed column (a - adsorbent ; b - filter paper); 5 - column outflow hose; 6 - 

sample collector flask; 7 - open circulating bath; 8 - water tank; 9 - recirculating hoses. 

 

6.2.3 Cr(III) removal assays from synthetic solution 

The synthetic solution was prepared with CrN3O9.9H2O (99% v/v). 

All Cr(III) removal assays were performed with a flow rate of 3 mL min-1. Several samples were 

collected over the testing time, throughout each adsorption test, in order to draw the Cr(III) 

breakthrough curves for each assay. The pH of each sample was measured by using a Hanna 

Instruments edge® HI 2002 pH meter. Finally, the samples were acidified with HNO3 for pH < 2, 

before Cr quantification by ICP-AES (described in section 2.2.1). 

With the objective to maximise the removal potential of the adsorbent, different conditions were 

tested in the column assays, namely, different inflow concentrations of Cr(III) , different adsorbent 

masses and different temperatures. 

At the end of each assay, several parameters were analysed: 

a) Breakthrough time (𝑡𝑏) – Time at which Cr(III) concentration in the outflow is 5% of the inflow 

concentration (𝐶𝑡/𝐶0 = 0.05) (min). 
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b) Saturation time (𝑡𝑠) – Time at which Cr(III) concentration in the outflow is 95% of the inflow 

concentration (𝐶𝑡/𝐶0 = 0.95) (min). 

c) pH 𝑡𝑏 – pH value at breakthrough time (Sørensen scale). 

d) pH 𝑡𝑠 – pH value at saturation time (Sørensen scale). 

e) Cr(III) mass retained (𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠) – Total mass of Cr(III) retained until saturation time (mg), 

which was calculated through the equation 6.1129: 

 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠 =
𝑄 × 𝐶0

1000
× ∫ (1 −

𝐶𝑡

𝐶0
)

𝑡𝑠

0

𝑑𝑡 (6.1) 

 

where, 𝑄 is the flow rate of the solution passing through the column (mL min-1), 𝐶0 is the Cr(III) 

concentration in the inflow (mg L-1) and 𝐶𝑡 is the Cr(III) concentration in the outflow on time 𝑡 (mg 

L-1). 

f) Cr(III) removal efficiency (𝜂) – Ratio between the total mass of Cr(III) retained by the column 

and total mass of Cr(III) that was passed through the column (%) (equation 6.2)137: 

 

𝜂 =
𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑡𝑜𝑡𝑎𝑙
× 100 (6.2) 

 

where, 𝑚Cr(III)_total is the total mass of Cr(III) that passed through the column (equation 6.3)137: 

 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑡𝑜𝑡𝑎𝑙 =
𝑄 × 𝐶0 × 𝑡𝑠

1000
 (6.3) 

 

g) Total uptake capacity (𝑞total) – Removal capacity of the column in the saturation time (𝑡𝑠) or 

total uptake capacity of the column (mgCr(III) g-1
adsorbent) (equation 6.4)129: 

 

𝑞total =
𝑚Cr(III)_ads

𝑚𝑎𝑑𝑠
 (6.4) 

 

where, 𝑚𝑎𝑑𝑠 is the mass of adsorbent in the column (g). 
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6.2.3.1 Effect of inflow Cr(III) concentration 

Five inflow concentrations (𝐶0) were tested: 2.5, 5, 10, 25 and 50 mg L-1. These assays were 

performed under the following conditions: 𝑚𝑎𝑑𝑠 = 0.2 g (column height = 1.1 cm); 𝑄 = 3 mL min-1; 

𝑇 = 25 °C; 𝑡 = up to 70 min (until the saturation was reached). 

The inflow Cr(III) concentration that originated the assay with the highest uptake capacity was 

selected for the next assays.  

 

6.2.3.2 Effect of adsorbent mass 

To test the influence of the adsorbent mass (𝑚𝑎𝑑𝑠) in the removal process, three masses were 

tested: 0.2, 0.4 and 0.8 g (column height = 1.1, 2.1 and 4.2 cm, respectively). These assays were 

performed under the following conditions: 𝑄 = 3 mL min-1; 𝑇 = 25 °C; 𝑡 = up to 150 min (until the 

saturation was reached); 𝐶0 = concentration that originated the assay with the highest uptake 

capacity in section 6.2.3.1. 

The adsorbent mass that originated the assay with the highest uptake capacity was selected for 

the next assays.  

 

6.2.3.3 Effect of temperature 

To test the influence of the temperature (𝑇) in the removal process, three temperatures were 

tested: 25, 40 and 50 °C. These assays were performed under the following conditions: 𝑄 = 3 mL 

min-1; 𝑡 = up to 210 min (until the saturation was reached); 𝐶0 = concentration that originated the 

assay with the highest uptake capacity in section 6.2.3.1; 𝑚𝑎𝑑𝑠 = mass that originated the assay 

with the highest uptake capacity in section 6.2.3.2.  

The temperature that originated the assay with the highest uptake capacity was selected for the 

next assays. 

 

6.2.3.4 Comparison with a commercial activated carbon (CAC) 

For comparison purposes, CAC (section 3.2.1.5) was used in the column assays. The conditions 

used in CAC’s assays were the following: 𝑄 = 3 mL min-1; 𝑡 = 270 min (until the saturation was 

reached); 𝐶0 = concentration that originated the assay with the highest uptake capacity in section 

6.2.3.1; 𝑚𝑎𝑑𝑠  = mass that originated the assay with the highest uptake capacity in section 6.2.3.2; 

𝑇 = temperature that originated the assay with the highest uptake capacity in section 6.2.3.3.  
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6.2.3.5 Cr(III) recovery and column regeneration 

In order to understand the regeneration capacity of the column, adsorption and desorption cycles 

were performed. The conditions of these assays were the same as in section 6.2.3.4, and 

comprised the following steps: 

(i) adsorption assay until saturation was reached; 

(ii) desorption assay with acetic acid (0.2 M) until Cr(III) concentration in the column outflow < 0.2 

mg L-1. The acetic acid was chosen for being a greener solution that the typical acids used in 

column desorption processes, such as HCl133,134. The concentration 0.2M was chosen because 

at that concentration the acetic acid had a pH of 3 which was the goal. 

(iii) desorption assay with ultrapure water (Milli-Q Academic) until Cr(III) concentration in the 

column outflow < 0.02 mg L-1, in order to remove the excess acid in the column and stabilize the 

column pH; 

(iv) repetition of steps (i) (ii) and (iii) until the maximum regeneration capacity was reached. 

For comparison purposes, the same test was performed on CAC. 

 

6.2.4 Cr(III) removal assays from industrial wastewater 

In order to replicate real conditions, column assays were also performed with an industrial 

wastewater rich in Cr. The origin and characterisation of the industrial wastewater were already 

shown (sections 4.2.2 and 4.3.1, respectively). 

As in the removal assays from the synthetic solution, several samples were collected throughout 

each test in order to draw the breakthrough curves for each assay and the pH of each sample 

was measured (Hanna Instruments edge® HI 2002 pH meter). The samples collected at the 

outflow were acidified with HNO3 for pH < 2, before Cr quantification by ICP-AES (described in 

section 2.2.1). The parameters characterised in Cr(III) removal assays from synthetic solution 

(section 6.2.3) were also characterised for the removal assays with the industrial wastewater. The 

experimental conditions used on the column adsorption assays using industrial wastewater were 

the same used in section 6.2.3.4. 

Once again, CAC was used in these assays for comparison purposes. 

 

6.2.5 Kinetic modelling 

The experimental data were adjusted to Thomas’s non-linear model (equation 6.5)180. 

 

𝐶𝑡

𝐶0
(𝑡ℎ) =

1

1 + 𝑒
(𝑘𝑇ℎ∙𝑞0∙

𝑚𝑎𝑑𝑠
𝑄

)−(𝑘𝑡ℎ∙𝐶0 ∙𝑡)
 (6.5) 
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where,  𝐶𝑡 (mg L-1) is the Cr(III) concentration in the outflow on time 𝑡 (min), 𝐶0 is the Cr(III) 

concentration in the inflow (mg L-1), 𝑘𝑡ℎ is the Thomas rate constant (mL min-1 mg-1), 𝑞0 is the 

maximum adsorption capacity of the column (mgCr(III) g-1
adsorbent), 𝑚𝑎𝑑𝑠 is the mass of adsorbent 

in the column (g) and 𝑄 is the flow rate of the solution passing through the column (mL min-1). 

Thomas model has been the most common model used in column studies. It assumes that in 

conditions where the external and internal diffusion resistances are very low, the experimental 

data follow Langmuir adsorption isotherm without axial dispersion, considering that the rate 

driving force obeys second-order reversible reaction kinetic128,181. 

The model adjustment was done in the same way as described in section 4.2.3.4. 

 

6.3 Results and discussion 

6.3.1 Cr(III) removal assays from synthetic solution 

6.3.1.1 Effect of the inflow Cr(III) concentration 

The results of the column assays for Cr(III) removal from synthetic solution using G4C at different 

inflow concentrations are shown in Figure 30 and Table 29. 

The assays with Cr(III) inflow concentrations (𝐶0) of 50 and 25 mg L-1 presented very similar 

results, reaching the adsorbent saturation very fast (≤ 2.72 min). Naturally, it was not possible to 

quantify the breakthrough time (𝑡𝑏) for these assays. Although the assay with 𝐶0 of 10 mg L-1 

presented a slightly higher saturation time (𝑡𝑠) (9.55 min), 𝑡𝑏 was still not quantifiable. Only in the 

assays with 𝐶0 of 5 and 2.5 mg L-1 was possible to quantify 𝑡𝑏 (0.546 and 3.19 min, respectively). 

Regarding 𝑡𝑠, the values increased to 25.8 and 47.0 min, respectively. The pH 𝑡𝑠 was very close 

in all the assays, varying between 5.65 and 6.05 indicating that precipitation was ruling Cr(III) 

removal. 

Although the Cr(III) removal efficiency (𝜂) increased by decreasing 𝐶0 from 5.0 to 2.5 mg L-1, the 

highest uptake capacities for both the experimental data (𝑞𝑡𝑜𝑡𝑎𝑙) as the Thomas model (𝑞0) were 

found in the assay with a 𝐶0 of 5.0 mg L-1 (0.995 and 0.923 mg g-1, respectively). 

Taking into consideration these results, the 𝐶0 of 5.0 mg L-1 was selected for the next assays. 
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Figure 30. Column assays for Cr(III) removal from synthetic solution using G4C at different 

inflow concentrations – (a) Breakthrough curves and (b) pH values. The black symbols 

represent the breakthrough and saturation times, and the lines represent the Thomas’s model 

adjustment. 
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Table 29. Column assays for Cr(III) removal from synthetic solution using G4C at different inflow 

concentrations – Experimental data and Thomas’s model parameters. 

  Experimental data parameters  Thomas model parameters 

𝐶0 
(mg 
L-1) 

 
𝑡𝑏  

(min) 
pH 𝑡𝑏 

𝑡𝑠  

(min) 
pH 𝑡𝑠 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠  

(mg) 

𝜂 
(%) 

𝑞𝑡𝑜𝑡𝑎𝑙  

(mg 
g-1) 

 
𝑘𝑡ℎ  

(mL min-1 

mg-1) 

𝑞0 

(mg g-1) 
R2 

2.5  3.19 9.28 47.0 6.05 0.182 54.0 0.912  59.7 0.900 0.995 

5.0  0.546 9.44 25.8 5.88 0.200 49.2 0.995  40.8 0.923 0.995 

10.0  n.q. n.q. 9.55 5.75 0.137 46.8 0.683  57.6 0.674 0.991 

25.0  n.q. n.q. 2.67 5.65 7.59×10-2 35.5 0.379  55.8 0.226 0.992 

50.0  n.q. n.q. 2.72 5.87 9.91×10-2 25.3 0.495  22.0 n.q. 0.977 

n.q. – not quantifiable. 

 

6.3.1.2 Effect of the adsorbent mass 

The results of the column assays for Cr(III) removal from synthetic solution using G4C with 

different mass of adsorbent are shown in Figure 31 and Table 30. 

Increasing the mass of adsorbent (𝑚𝑎𝑑𝑠) also increased all experimental data parameters (except 

pH). If, for one side, 𝑡𝑠 increased proportionally with the mass, on the other side, 𝑡𝑏 increasing 

was more significant, obtaining values of 6.98 and 33.4 min for 𝑚𝑎𝑑𝑠 of 0.4 and 0.8 g, 

respectively, in contrast with the 𝑡𝑏 of 0.546 min found for a 𝑚𝑎𝑑𝑠 of 0.2 g. 

These differences were reflected on the removal efficiency (𝜂), but specially on the uptake 

capacities (𝑞𝑡𝑜𝑡𝑎𝑙 and 𝑞0). The assay with a 𝑚𝑎𝑑𝑠 of 0.4 g obtained a 𝜂 of 56.8%, a 𝑞𝑡𝑜𝑡𝑎𝑙 of 1.02 

mg g-1 and a 𝑞0 of 1.03 mg g-1, while in the assay with a 𝑚𝑎𝑑𝑠 of 0.8 g those values increased to 

58.4%, 1.26 mg g-1 and 1.24 mg g-1, respectively. If the differences between the uptake capacities 

of the assays with masses of 0.2 and 0.4 g were not very significant, in the assay with a 𝑚𝑎𝑑𝑠 of 

0.8 those discrepancies were more relevant, with an increase of 26.6% on 𝑞𝑡𝑜𝑡𝑎𝑙 and of 34.4% 

on 𝑞0, when compared to the initial assay (𝑚𝑎𝑑𝑠 = 0.2 g). Still, these uptake capacities were, in 

general, low. 

Regarding pH, while the pH 𝑡𝑏 decreased with the increase of mass, the pH 𝑡𝑠 was again in the 

same range of the previous assays (between 5.73 and 5.94), meaning that, again, precipitation  

played a significant role in Cr(III) removal. 
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Figure 31. Column assays for Cr(III) removal from synthetic solution using G4C with different 

mass of adsorbent – (a) Breakthrough curves and (b) pH values. The black symbols represent 

the breakthrough and saturation times, and the lines represent the Thomas’s model adjustment. 
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Table 30. Column assays for Cr(III) removal from synthetic solution using G4C with different mass 

of adsorbent – Experimental data and Thomas model parameters. 

  Experimental data parameters  Thomas model parameters 

𝑚𝑎𝑑𝑠 
(g) 

 
𝑡𝑏  

(min) 
pH 𝑡𝑏 

𝑡𝑠  

(min) 
pH 𝑡𝑠 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠  

(mg) 

𝜂 
(%) 

𝑞𝑡𝑜𝑡𝑎𝑙  

(mg 
g-1) 

 
𝑘𝑡ℎ  

(mL min-1 

mg-1) 

𝑞0 

(mg g-1) 
R2 

0.2  0.546 9.44 25.8 5.88 0.200 49.2 0.995  40.8 0.923 0.995 

0.4  6.98 8.20 46.9 5.94 0.409 56.8 1.02  28.1 1.03 0.998 

0.8  33.4 7.67 113 5.73 1.00 58.4 1.26  15.6 1.24 0.998 

 

In can be concluded that increasing the mass from 0.2 g to 0.4 g wouldn’t give a relevant 

advantage to the process, while increasing the mass to 0.8 g would significantly increase the 

overall efficiency of the process. For that reason, 0.8 g was the adsorbent mass selected to be 

used in the next assays. 

 

6.3.1.3 Effect of temperature 

The results of the column assays for Cr(III) removal from synthetic solution using G4C at different 

temperatures are shown in Figure 32 and Table 31. 

Differing from the previous results, the breakthrough curves of these assays were similar (Figure 

32). Although 𝑡𝑏 and 𝑡𝑠 increased with the temperature, the differences between the assays with 

temperatures of 25 and 50 °C were not marked. The same happened in the efficiency of Cr(III) 

removal with values between 54.2% (𝑇 = 50 °C) and 58.4% (𝑇 = 25 °C). Only in the uptake 

capacities some differences were found, with values of 𝑞𝑡𝑜𝑡𝑎𝑙 varying between 1.19 (𝑇 = 40 °C) 

and 1.42 mg g-1 (𝑇 = 50 °C) and values of 𝑞0 varying between 1.15 (𝑇 = 40 °C) and 1.38 mg g-1 

(𝑇 = 50 °C). 

The pH values followed the tendency of similarity between assays. pH 𝑡𝑏 ranged between 7.48 

and 7.82 while pH 𝑡𝑠 presented similar values as in the previous assays (between 5.49 and 5.73), 

showing again the importance of precipitation in Cr(III) removal. 

The assay with a temperature of 50 °C showed the highest uptake capacities of all assays and, 

for that reason, this temperature was selected to be used in the following assays. 
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Figure 32. Column assays for Cr(III) removal from synthetic solution using G4C at different 

temperatures – (a) Breakthrough curves and (b) pH values. The black symbols represent the 

breakthrough and saturation times, and the lines represent the Thomas’s model adjustment. 
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Table 31. Column assays for Cr(III) removal from synthetic solution using G4C at different 

temperatures – Experimental data and Thomas model parameters. 

  Experimental data parameters  Thomas model parameters 

𝑇 
(°C) 

 
𝑡𝑏  

(min) 
pH 𝑡𝑏 

𝑡𝑠  

(min) 
pH 𝑡𝑠 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠  

(mg) 

𝜂 
(%) 

𝑞𝑡𝑜𝑡𝑎𝑙  

(mg 
g-1) 

 
𝑘𝑡ℎ  

(mL min-1 

mg-1) 

𝑞0 

(mg g-1) 
R2 

25  33.4 7.67 113 5.73 1.00 58.4 1.26  15.6 1.24 0.998 

40  46.2 7.87 123 5.70 0.954 57.8 1.19  24.7 1.15 0.995 

50  51.2 7.48 145 5.49 1.14 54.2 1.42  17.3 1.38 0.992 

 

6.3.1.4 Comparison with a commercial activated carbon (CAC) 

As specified before (section 6.2.3.2), G4C presented a column height of 4.2 cm for a mass of 0.8 

g. However, once CAC is a different material with a different apparent density, the column height 

was of 6.0 cm for this same mass of adsorbent. 

The results of the column assays for Cr(III) removal from synthetic solution using G4C and CAC 

are shown in Figure 33 and Table 32. 

In general, CAC presented higher parameters than G4C. The 𝑡𝑏 of CAC was slightly longer than 

G4C (59.3 and 51.2 min, respectively) but the difference of 𝑡𝑠 was more significant (208 and 145 

min, respectively). Although the Cr(III) removal efficiency of CAC was slightly lower than for G4C, 

the uptake capacities were higher in CAC with values of 2.14 mg g-1 for 𝑞𝑡𝑜𝑡𝑎𝑙 and of 2.05 mg g-

1 for 𝑞0. Due to the slightly lower pHpzc of CAC (9.13 - section 3.3.2.2) when compared to G4C 

(9.58 - section 2.3.2.4), the pH values of CAC along the assay were, in general, lower than G4C, 

especially in the beginning of the assay. CAC presented a pH 𝑡𝑠 of 5.10, meaning that although 

there was still some precipitation on the removal of Cr(III), the influence was not as relevant as in 

G4C. 

Very few studies were found in bibliography using chars into Cr(III) removal in column assays and 

no studies were found on chars produced from rice wastes. For that reason, the results were 

mainly compared with different biomass/waste-derived adsorbents (Table 6). In general, the 

adsorption capacity of the adsorbents was higher than the adsorption capacity of G4C. The 

exception occurred for Calero et al.138, which used olive stone as adsorbent, obtaining adsorption 

capacities from 0.331 to 0.806 mg g-1. 
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Figure 33. Column assays for Cr(III) removal from synthetic solution using G4C and CAC – (a) 

Breakthrough curves and (b) pH values. The black symbols represent the breakthrough and 

saturation times, and the lines represent the Thomas’s model adjustment. 
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Table 32. Column assays for Cr(III) removal from synthetic solution using G4C and CAC – 

Experimental data and Thomas’s model parameters. 

  Experimental data parameters  
Thomas model 
parameters 

Adsorbent  
𝑡𝑏  

(min) 

pH 

𝑡𝑏 
𝑡𝑠  

(min) 

pH 

𝑡𝑠 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠  

(mg) 

𝜂 
(%) 

𝑞𝑡𝑜𝑡𝑎𝑙  

(mg 
g-1) 

 
𝑘𝑡ℎ  

(mL min-1 

mg-1) 

𝑞0 

(mg 
g-1) 

R2 

G4C  51.2 7.48 145 5.49 1.14 54.2 1.42  17.3 1.38 0.992 

CAC  59.3 6.39 208 5.10 1.72 52.2 2.14  9.09 2.05 0.991 

 

6.3.1.5 Cr(III) recovery and column regeneration 

Figure 34 presents the four stages of Cr(III) recovery and column regeneration process using 

G4C and CAC. Figure 35 presents the pH values of those four stages and Table 33 presents the 

experimental data and Thomas model parameters of the adsorption cycles. 

As expected, the first adsorption cycle showed similar results to the ones seen in section 6.2.3.4, 

both for the breakthrough curves (Figure 34a) and pH values (Figure 35a). However, the 

differences between G4C and CAC were slightly lower. If in the case of 𝑡𝑏 and 𝑡𝑠 the results were 

very similar (except 𝑡𝑠 for CAC), in other parameters the differences were slightly higher. For G4C 

there was a slightly increase in the Cr(III) removal efficiency (56.9%) and uptake capacities (𝑞total 

= 1.60 mg g-1 and 𝑞0 = 1.55 mg g-1). On the other hand, CAC obtained a similar efficiency but 

slightly lower uptake capacities (𝑞total = 1.86 mg g-1 and 𝑞0 = 1.76 mg g-1). In this assay, although 

CAC still presented slightly better results than G4C, the differences between both adsorbents 

were much lower. 

The differences between the assays in section 6.2.3.4 and the assays on this section may be 

related to two factors: (i) the assays in section 6.2.3.4 were performed over saturation time (210 

min in G4C and 270 min in CAC), while in this section the assay was stopped at saturation time  

(150 min in G4C and 210 min in CAC); (ii) the heterogeneity of the samples, especially G4C. 

The desorption step with acetic acid (Figure 34b) showed discrepancies between both 

adsorbents. For G4C, the desorption was very fast, starting with higher concentrations of Cr(III) 

desorbed, which quickly decreased. At time 0 (i.e., the first drops of solution after passing the acid 

through the column), the concentration of Cr(III) (𝐶𝑡) was 9.78 mg L-1, but only 3 min later 𝐶𝑡 was 

already at 1.67 mg L-1, showing that the highest recovery of Cr(III) was done in the first minutes. 

At 30 min, 𝐶𝑡 was already below 0.2 mg L-1 and at 60 min the assay stopped with a 𝐶𝑡 around 0.1 

mg L-1. 
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Figure 34. Cr(III) recovery and column regeneration using G4C and CAC – (a) Breakthrough curves of the 1st Cr(III) adsorption cycle from synthetic solution; 

(b) Desorption of Cr(III) using acetic acid; (c) Desorption of Cr(III) using ultrapure water; (d) Breakthrough curves of the 2nd Cr(III) adsorption cycle from 

synthetic solution. The black symbols represent the breakthrough and saturation times, and the lines represent the Thomas’s model adjustment. 
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Figure 35. Cr(III) recovery and column regeneration using G4C and CAC – (a) pH values of the 1st Cr(III) adsorption cycle from synthetic solution; (b) pH 

values of the desorption of Cr(III) using acetic acid; (c) pH values of the desorption of Cr(III) using ultrapure water; (d) pH values of the 2nd Cr(III) adsorption 

cycle from synthetic solution. The black symbols represent the breakthrough and saturation times. 
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Table 33. Cr(III) column adsorption cycles from synthetic solution using G4C and CAC – Experimental data and Thomas’s model parameters. 

   Experimental data parameters  Thomas model parameters 

Adsorbent 
Adsorption 
Cycle 

 
𝑡𝑏  

(min) 
pH 𝑡𝑏 

𝑡𝑠  

(min) 
pH 𝑡𝑠 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠  

(mg) 

𝜂 
(%) 

𝑞𝑡𝑜𝑡𝑎𝑙  

(mg g-1) 
 

𝑘𝑡ℎ  

(mL min-1 mg-1) 
𝑞0 

(mg g-1) 
R2 

G4C 

1st  54.1 7.51 150 5.77 1.28 56.9 1.60  14.8 1.55 0.990 

2nd   n.q. n.q. 6.42 5.05 2.08×10-2 21.4 2.59×10-2  116 7.50×10-3 0.986 

CAC 

1st  60.7 6.46 181 5.13 1.49 53.8 1.86  14.6 1.76 0.991 

2nd   0.17 4.92 127 5.30 0.349 18.6 0.436  37.0 0.125 0.878 

n.q. – not quantifiable. 
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On the other hand, in CAC column, in the beginning of the process there was an increase on the 

concentration of Cr(III) desorbed and only then a slowly decrease of the desorption process. At 

time 0, 𝐶𝑡 was of 1.50 mg L-1, increasing to the highest value of 3.52 mg L-1 at 2 min. Then, 𝐶t 

start to slowly decrease and the assay was stopped at 150 min, when 𝐶t reached a value slightly 

lower than 0.2 mg L-1. 

The 3rd stage of the process (Figure 34c) was mainly to wash the column out of the acetic acid. 

However, in the beginning of the processes there was still some desorption of Cr(III), especially 

in CAC where 𝐶𝑡 was of 1.76 mg L-1 at time 0. The washing allowed the pH to increase from 3.28 

to 4.55 in G4C and from 2.87 to 4.56 in CAC (Figure 35c). 

The 4th and last stage of the process – second adsorption cycle (Figure 34a), showed that the 

use of G4C in more than one adsorption cycle was not advantageous, once 𝑡𝑠 was reached at 

6.42 min and 𝑡𝑏 was not even quantifiable. For that reason, the Cr(III) removal efficiency (21.4%) 

and especially the uptake capacities (𝑞𝑡𝑜𝑡𝑎𝑙 = 2.59×10-2 mg g-1 and 𝑞0 = 7.50×10-3 mg g-1) were 

very low. 

Regarding CAC, although a second adsorption cycle was performed, the performance was much 

lower than in the first cycle, so a second cycle is also not viable. 

Opposing to all the other assays, the pH of CAC in this assay (Figure 35d) increased in the 

beginning, reached an equilibrium from about 30 min to 103 min and slowly started to decreased 

has expected until pH 4.4 at 210 min. This may suggest that the releasing of minerals from CAC 

was much slower and gradual once in G4C the releasing of minerals occurred much faster. Other 

possibility is that there was still some acid in the column which made the initial pH of the assay 

be lower than the expected. 

No more desorption and adsorption cycles were performed once both adsorbents showed poor 

properties to be used in more than one adsorption cycle. 

 

6.3.2 Cr(III) removal assays from the industrial wastewater 

The results of the column assays for Cr(III) removal from industrial wastewater using G4C and 

CAC are shown in Figure 36 and Table 34. 

In the industrial wastewater both adsorbents performed better than in the synthetic solution, just 

like it had occurred in the batch assays (Chapter 4). In both cases, 𝑡𝑏 was lower (in the case of 

G4C, 2.25 min), but 𝑡𝑠 was much higher (538 and 1100 min for G4C and CAC, respectively), 

indicating that the removal occurred for a much longer period of time (more 3.7 times for G4C and 

more 5.27 times for CAC). Although Cr(III) removal efficiencies decreased slightly (31.6% for G4C 

and 34.8% for CAC), the uptake capacities increased significantly: G4C obtained a 𝑞𝑡𝑜𝑡𝑎𝑙 of 3.25 

mg g-1 and 𝑞0 of 3.00 mg g-1, while in CAC these values increased to 7.83 ad 6.66  mg g-1, 
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respectively. This means that the uptake capacities increased 2.35 times for G4C and 3.65 times 

for CAC, which highlights the better results in the industrial wastewater. 

 

 

 

Figure 36. Column assays for Cr(III) removal from industrial wastewater using G4C and CAC – 

(a) Breakthrough curves and (b) pH values. The black symbols represent the breakthrough and 

saturation times, and the lines represent the Thomas’s model adjustment. 
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Table 34. Column assays for Cr(III) removal from industrial wastewater using G4C and CAC – 

Experimental data and Thomas’s model parameters. 

  Experimental data parameters  
Thomas model 
parameters 

Adsorbent  
𝑡𝑏  

(min) 

pH 

𝑡𝑏 
𝑡𝑠  

(min) 

pH 

𝑡𝑠 

𝑚𝐶𝑟(𝐼𝐼𝐼)_𝑎𝑑𝑠  

(mg) 

𝜂 
(%) 

𝑞𝑡𝑜𝑡𝑎𝑙  

(mg 
g-1) 

 
𝑘𝑡ℎ  

(mL min-1 

mg-1) 

𝑞0 

(mg 
g-1) 

R2 

G4C  2.25 10.0 538 5.15 2.68 31.6 3.35  3.25 3.00 0.980 

CAC  44.2 6.77 1 100 4.75 6.26 34.8 7.83  1.46 6.66 0.977 

 

Alike the results in the synthetic solution, CAC performed better than G4C in the Cr(III) removal 

assays from the industrial wastewater. For GC, at saturation time (538 min) the pH was 5.15, 

suggesting that the Cr(III) removal by this adsorbent was ruled by precipitation and the ion 

exchange observed in the batch assays was not a reality in the column assays. At that same time, 

the pH for CAC was similar (5.24). However, at about 660 min, the pH of CAC was already below 

5, indicating that from this point on adsorption started ruling the removal process, and the higher 

porosity of CAC (section 3.3.2.2) was used for the adsorption of Cr(III) through pore filling. The 𝑡𝑠 

for CAC was 1100 min with a pH of 4.75, meaning that almost half the assay was ruled by 

adsorption. So, for Cr(III) removal, opposing the results verified in the batch assays, in the fixed-

bed column assays the higher porosity of CAC was more determinant than the highest mineral 

content of G4C. Still, the uptake capacities obtained in the batch assays were much higher than 

the ones verified in the column assays. 

 

6.4 Conclusion 

The experimental conditions that promoted the best Cr(III) removal results from the synthetic 

solution were the following: 𝑄 = 3 mL min-1; 𝑡 = 210 min for G4C and 270 min for CAC; 𝐶0 = 5 mg 

L-1; 𝑚𝑎𝑑𝑠  = 0.8 g; 𝑇 = 50 °C. Under these conditions, the highest uptake capacities were found 

at a 𝑡𝑠 of 150 min for G4C and 208 min for CAC, with a 𝑞total of 1.60 and 2.14 mg g-1, respectively. 

Both G4C and CAC showed no capacity to be used in more than one adsorption cycle. 

Both adsorbents performed better in the industrial wastewater with a 𝑡𝑠 of 538 min for G4C and 

1100 min for CAC, obtaining a 𝑞total of 3.25 and 7.83 mg g-1, respectively. 

While in the batch assays G4C presented better results than CAC, in the column assays CAC 

presented better results than G4C for both the synthetic solution and industrial wastewater. This 
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was probably because Cr(III) removal by G4C only occurred due to precipitation, while CAC 

removed Cr(III) by precipitation and pore filling increasing the amount of Cr(III) removed. 

For both adsorbents, Cr(III) removal was much more effective in the batch assays than in the 

column assays. 
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Lyubchyk, N. Lapa,  Highly efficient porous carbons for the removal of W(VI) oxyanion from 
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Oral Presentations: 

D. Dias, D. Don, J. Jandosov, M. Bernardo, I. Fonseca, F. Pinto, N. Lapa, Tungstate adsorption 

onto porous carbons obtained from rice wastes, 5th International Conference “WASTES: 

Solutions, Treatments and Opportunities”, 4-6 September 2019, Caparica, Portugal. 

 



113 
 

7.1 Introduction 

Tungstate (WO4
2-) is an anion, so ion exchange with the cations present in the gasification and 

pyrolysis chars (Table 13) is not a possibility. Furthermore, both gasification and pyrolysis chars 

presented low surface areas and pore volumes (Table 14). Therefore, no chars were tested for 

WO4
2- removal. On the other hand, the activations performed to P1C for the Cr(III) removal assays 

(Chapter 3) may not be the most adequate for WO4
2- removal, once the removal mechanisms 

applied on these elements may be quiet different, once Cr(III) is a cation and WO4
2- an anion that 

frequently assumes polyoxometalates speciation. For that reason, new activated carbons (ACs) 

were produced. ACs’ production followed the criteria of maximising (i) the textural properties of 

ACs and (ii) the number of functional groups present on the ACs’ surface. 

This chapter describes how the ACs used in the tungstate (WO4
2-) adsorption assays were 

prepared and characterised. 

This chapter was performed in collaboration with the team of Dr. Jakpar Jandosov from the 

Institute of Combustion Problems, Kazakhstan. 

 

7.2 Materials and methods 

7.2.1 Origin of activated carbons used in the WO4
2- adsorption assays 

In order to maximise the surface area and pore volume of the ACs and the presence of functional 

groups on the ACs’ surface, only chemical activations were performed. Six ACs were used: three 

originated from P1C (section 2.2.2), 2 originated from a new pyrolysis-derived char only 

composed by rice husk (P4C) and one originated from a direct activation of rice husk with H3PO4 

(RH+H3PO4). The preparation of P4C-derived activated carbons and RH+H3PO4 were performed 

by the team of Dr. Jakpar Jandosov from the Institute of Combustion Problems, Kazakhstan and 

the details were previously published182–184. 

For comparison purposes, the commercial activated carbon (CAC) used in the Cr(III) removal 

assays was also used in the WO4
2- adsorption assays. The characterisation of CAC was 

performed in Chapter 3. 

 

7.2.1.1 Preparation of P1C-derived activated carbons 

P1C activations were performed in a quartz reactor placed in a custom-made electric vertical tube 

furnace (Figure 11) already described in section 3.2.1. 

Pyrolysis-derived char P1C (please, see pyrolysis conditions in section 2.2.2 and char’s 

properties in section 2.3.2) was chemically activated with three different chemical agents: (i) KOH, 

(ii) K2CO3 and (iii) H3PO4. In the end of the activation processes all activated carbons were milled 

and sieved to <100 μm. 
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(i) Chemical activation of P1C with KOH – P1C was impregnated with KOH (wet impregnation) 

under a mass ratio of 1:3. The mixture was placed in a 250 mL beaker and filled with ultrapure 

water (Milli-Q Academic). The solution was heated-up to 50 °C, kept for 5 h under constant 

agitation, and dried at 130 °C. The char was then activated at 800 °C, for 2 h, under a N2 flow of 

150 cm3 min-1. The heating process was carried out under 5 °C min-1. After cooling, the sample 

was then washed with hot deionized water until a stable pH close to 5.5 (deionized water) was 

reached. The sample was dried at 100 °C overnight. The code P1C+KOH was attributed to the 

activated carbon (AC) resulting from the chemical activation of P1C with KOH. 

(ii) Chemical activation of P1C with K2CO3 – P1C was mixed with K2CO3 (dry impregnation) under 

a mass ratio of 1:4. The mixture was placed in the quartz reactor and activated at 800 °C, for 1 h, 

under a N2 flow of 150 cm3 min-1. The heating process was carried out under 5 °C min-1. After 

cooling, the sample was then washed and dried as described in item (i). The code P1C+K2CO3 

was attributed to the AC resulting from the chemical activation of P1C with K2CO3. 

(iii) Chemical activation of P1C with H3PO4 – P1C was impregnated with H3PO4 (wet 

impregnation) under a mass ratio of 1:3. The mixture was placed in a 100 mL volumetric flask 

with ultrapure water (Milli-Q Academic). The solution was agitated for 5 h, at 50 °C, and dried at 

150 °C. The char was then activated at 500 °C, for 2 h, under a N2 flow of 150 cm3 min-1. The 

heating process was carried out under 5 °C min-1. After the activation stage, the sample was 

submitted to a post-treatment which consisted in boiling the sample with a solution of  NaOH (1M), 

for 30 min, to promote the removal of silicates and other impurities. Finally, the sample was 

washed and dried as described in item (i). The code P1C+H3PO4 was attributed to the AC 

resulting from the chemical activation of P1C with H3PO4. 

 

7.2.1.2 Preparation of P4C-derived activated carbons 

P4C was a pyrolysis-derived char produced with only rice husk (RH) as feedstock. The pyrolysis 

was performed at 475 °C, for 30 min, in a spherical rotary steel reactor (Figure 37). In order to 

remove some minerals from the char, a demineralization was performed: P4C was boiled with a 

HCl (1.5 M), for 15 minutes. Finally, the char was washed three times with boiling deionized water 

and dried at 105 °C, for 12 hours. 

P4C was chemically activated with two different solutions: (i) KOH and (ii) K2CO3. Both activations 

were performed in a cylindrical steel reactor placed inside a vertical electric furnace (Figure 38). 

In the end, all activated carbons were milled and sieved to <100 μm. 

The activation of P4C was performed as follows: 

(i) Chemical activation of P4C with KOH – P4C was impregnated with KOH (dry impregnation) 

under a mass ratio of 1:4 and activated at 850 °C, for 2 h, in self-generated atmosphere. The 

sample was then washed with hot deionized water, until a pH 7-8 and dried until constant weight. 

The code P4C+KOH was attributed to the AC resulting from the chemical activation of P4C with 

KOH. 
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(ii) Chemical activation of P4C with K2CO3 – P4C was mixed with K2CO3 (dry impregnation) under 

a mass ratio of 1:4 for 24 h and activated at 950 °C, for 1 h, in inert atmosphere (Argon). The 

sample was then washed with KOH (12%) to remove the residual silica, followed by hot deionized 

water washing to remove potassium silicate until pH 7-8 and dried until constant weight. The code 

P4C+K2CO3 was attributed to the AC resulting from the chemical activation of P4C with K2CO3. 

 

 

Figure 37. Spherical rotary steel reactor that originated P4C. 

 

 

 

Figure 38. P4C activation setup: 1 - cylindrical electric furnace; 2 - reactor; 3 - thermocouple; 4 - 

argon (Ar) gas bottle; 5 - insulator; 6 - electric resistance heating. 
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7.2.1.3 Preparation of RH+H3PO4 activated carbon 

Rice husk (RH) was impregnated with H3PO4 under a mass ratio of 1:2. The mixture was placed 

in cylindrical quartz reactor, heated at 200 ºС overnight and activated (in the same reactor as 

described in section 7.2.1.1) at 500 °C, for 1 h, in self-generated atmosphere. After the activation 

stage, the sample was washed with hot deionized water to remove most H3PO4 and submitted to 

a post-treatment with  NaOH 1M (described in 7.2.1.1, item (iii)). Finally, the sample was washed 

with boiling deionized water until pH 7-8. Finally, it was dried at 105 °C, for 12 hours. In the end, 

the activated carbon was milled and sieved to <100 μm. The code RH+H3PO4 was attributed to 

the AC resulting from the direct chemical activation of RH with H3PO4. 

 

7.2.2 Characterisation of activated carbons used in the WO4
2- adsorption 

assays 

All activated carbons were characterised for the following assays: 

a) Proximate analysis – The same as described in section 2.2.3; 

b) Elemental analysis – The same as described in section 2.2.1; 

c) Mineral content – The same as described in section 2.2.1; 

d) Textural analysis – The same as described in section 2.2.3; 

e) pHpzc – The same as described in section 2.2.4. 

CAC was characterised in Chapter 3. 

 

7.3. Results and discussion 

7.3.1 Proximate and elemental analyses 

The proximate and elemental analyses of the activated carbons used in WO4
2- adsorption assays 

are shown in Table 35. 

All ACs were mainly composed by fixed-C followed by volatile matter. The low ash content 

revealed that the removal of minerals was successful. The higher moisture content of P1C+H3PO4 

and RH+H3PO4 indicated that H3PO4 as activating agent produced quite hydrophilic carbons.  

 

7.3.2 Mineral content 

The mineral content of the activated carbons used in WO4
2- adsorption assays are shown in Table 

36.
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Table 35. Proximate and elemental analyses of the activated carbons used in the WO4
2- adsorption assays. 

Parameter 
Activated carbons 

P1C+KOH P1C+K2CO3 P1C+H3PO4 P4C+KOH P4C+K2CO3 RH+H3PO4 

Proximate analysis (% w/w ar)     

Moisture content 4.50 5.68 12.06 8.27 5.63 10.83 

Volatile matter 29.83 37.16 25.03 40.56 35.84 23.71 

Ashes 1.56 4.54 9.30 2.14 6.58 3.35 

Fixed carbon 64.11 52.62 53.61 49.03 51.95 62.11 

       

Elemental analysis (% w/w ar)     

C 83.53 78.60 67.90 83.84 83.97 79.73 

H 0.33 0.48 2.12 0.06 0.04 0.55 

N 0.85 0.80 0.77 0.57 < 0.2 0.43 

S < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 

ar: as-received basis 
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Table 36. Mineral content (mg kg-1 db; 𝑋 ± σ) of the activated carbons used in the WO4
2- adsorption assays. 

Chemical 
element 

Activated carbons 

P1C+KOH P1C+K2CO3 P1C+H3PO4 P4C+KOH P4C+K2CO3 RH+H3PO4 

Si  10 030 ± 822  23 076 ± 1425  3 890 ± 273  920 ± 91  6 470 ± 127  431 ± 36 

Ca  1 833 ± 117  3 605 ± 311  3 877 ± 373  2 310 ± 92  4 577 ± 416  154 ± 10 

Na  736 ± 65  413 ± 33  2 013 ± 99  < 4.36×10-2  < 4.36×10-2  200 ± 5 

Mg  390 ± 27  1 147 ± 112  856 ± 62  848 ± 14  2 230 ± 53  101 ± 1 

Fe  682 ± 6  511 ± 45  212 ± 18  6 873 ± 171  7 810 ± 627  150 ± 5 

Al  578 ± 26  638 ± 45  91.5 ± 6.8  17.3 ± 1.0  138 ± 1  < 1.12 

K  188 ± 12  390 ± 20  232 ± 7  2 499 ± 35  24 960 ± 967  58.0 ± 4.3 

Zn  292 ± 17  97.8 ± 2.6  124 ± 10  20.3 ± 0.7  16.6 ± 0.2  16.9 ± 0.3 

Ti  79.6 ± 4.9 80.8 ± 15.1  52.4 ± 1.1  < 1.12  < 1.12  < 1.12 

Ba  24.0 ± 1.5  35.8 ± 3.5  69.6 ± 5.6  11.9 ± 1.0  16.9 ± 1.4  4.32 ± 0.39 

Cr  51.7 ± 4.4  40.4 ± 3.9  20.3 ± 1.4  293 ± 14  217 ± 5  < 0.381 

Ni  42.6 ± 1.8  25.0 ± 1.2  < 3.03  82.8 ± 2.5 < 7.58  < 0.897 

Cu  15.2 ± 0.1  20.5 ± 1.0  15.3 ± 1.1  12.8 ± 0.1  46.5 ± 3.4  < 0.852 

W < 7.58 < 7.58 < 7.58 < 7.58 < 7.58 < 7.58 

Se < 3.79 < 3.79 < 3.79 < 3.79 < 3.79 < 3.79 

Mo < 0.455 < 0.455  < 0.455  < 0.455  < 0.455  < 0.455 

Pb < 0.379 < 0.379 < 0.379 < 0.379 < 0.379 < 0.379 

Sb < 0.379 < 0.379 < 0.379 < 0.379 < 0.379 < 0.379 

As < 0.379 < 0.379 < 0.379 < 0.379 < 0.379 < 0.379 

Cd < 0.303 < 0.303 < 0.303 < 0.303 < 0.303 < 0.303 

Hg < 2.27×10-2 < 2.27×10-2 < 2.27×10-2 < 2.27×10-2 < 2.27×10-2 < 2.27×10-2 

db: dry basis; 𝑋 ± σ: average ± standard deviation.
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Si was the major element in all P1C-derived ACs, due to the mineral composition of RH (Table 

10). 

P4C+K2CO3 was the AC with the highest mineral content of all ACs, mainly due to the high 

concentration of K in the AC. This occurred due to the presence of this element both in the raw 

material (RH), activation agent (K2CO3) and washing solution (KOH). 

RH+H3PO4 presented the lower mineral content of all ACs, which can be explained by the fact 

that the activation was performed directly to a feedstock instead of a char. Also, both ACs 

activated with H3PO4 presented the lower mineral content meaning that the activation with H3PO4 

and the post-treatment with NaOH (1M) properly removed most minerals present in the ACs. 

Overall, all ACs were rich in alkaline and alkaline-earth elements such as Ca, Na, Mg, K, but also 

Fe and Al were present in high concentrations. 

 

7.3.3 Textural analysis and pHpzc 

According to the IUPAC classification73, the N2 adsorption-desorption isotherms of P1C-derived 

ACs (Figure 39a), of P4C-derived ACs and of RH+H3PO4 (Figure 39b) were a mix of type I (in 

the beginning of the isotherm) and type IV (at the end of the isotherm) isotherms with H4 

hysteresis, indicating the presence of narrow slit-shaped micropores and the presence of 

mesopores. 

Table 37 presents the textural properties and pHpzc of the ACs used in the WO4
2- adsorption 

assays. 

Overall, the ACs derived from only RH (P4C-derived ACs and RH+H3PO4) presented higher 

surface areas and total pore volumes than the ACs derived from RH+PE (P1C-derived ACs). On 

the other hand, the ACs derived from only RH presented more mesopores than micropores, while 

the ACs derived from RH+PE presented more micropores than mesopores. P4C+KOH presented 

the highest surface area and pore volume of all ACs, while P1C+KOH presented the highest 

values of all P1C-derived ACs, meaning that KOH was the activating agent that promoted the 

ACs with the highest surface areas and pore volumes. 

Regarding pHpzc, P1C-derived ACs presented acidic pHpzc values, P4C+KOH and RH+H3PO4 

presented neutral to slightly acidic values and P4C+K2CO3 obtained alkaline values, probably due 

to the high K concentration in the AC (Table 36). 
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Figure 39. N2 adsorption-desorption isotherms and textural properties of (a) P1C-derived 

activated carbons and (b) P4C-derived activated carbons and RH+H3PO4. 
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Table 37. Textural properties and pHpzc of the activated carbons used in the WO4
2- adsorption 

assays. 

Parameter 
Activated carbons 

P1C+KOH P1C+K2CO3 P1C+H3PO4 P4C+KOH P4C+K2CO3 RH+H3PO4 

SBET (m2 g-1) 1 315 790 554 2 610 1 151 1 402 

Vtotal (cm3 g-1) 0.60 0.44 0.28 1.74 0.91 1.40 

Vmicro (cm3 g-1) 0.47 0.26 0.19 0.60 0.28 0.29 

Vmeso (cm3 g-1) 0.13 0.18 0.09 1.14 0.63 1.11 

pHpzc 3.94 4.00 2.38 6.92 9.56 6.14 

 

7.4 Conclusions 

All the ACs were mainly composed by fixed-C followed by volatile matter. 

P4C+K2CO3 was the AC with the highest mineral content of all ACs, mainly due to K, while 

RH+H3PO4 presented the lower mineral content of all ACs. Overall, all ACs were rich in Si and 

alkaline and alkaline-earth metals. 

P4C+KOH presented the highest surface area and pore volume of all ACs once KOH was the 

activating agent that promoted the ACs with the highest surface areas and pore volumes. 

P1C-derived ACs presented acidic pHpzc values, while P4C+K2CO3 obtained an alkaline value. 
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The results presented in this chapter were published, partially or completely, in the following 
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D. Dias, D. Don, J. Jandosov, M. Bernardo, F. Pinto, I. Fonseca, A. Sanches, P. S. Caeteno, S. 

Lyubchyk, N. Lapa,  Highly efficient porous carbons for the removal of W(VI) oxyanion from 

wastewaters, Journal of Hazardous Materials, under revision - major revisions. 

 

Oral Presentations: 

D. Dias, D. Don, J. Jandosov, M. Bernardo, I. Fonseca, F. Pinto, N. Lapa, Tungstate adsorption 

onto porous carbons obtained from rice wastes, 5th International Conference “WASTES: 

Solutions, Treatments and Opportunities”, 4-6 September 2019, Caparica, Portugal. 



125 
 

8.1. Introduction 

In this chapter, the activated carbons characterised in Chapter 7 (P1C+KOH, P1C+K2CO3, 

P1C+H3PO4, P4C+KOH, P4C+K2CO3 and RH+H3PO4) were used in adsorption assays of 

tungstate (WO4
2-) from a synthetic solution and from a mining wastewater. 

For comparison purposes, CAC (section 3.2.1.5) was also used in the WO4
2- adsorption assays. 

 

8.2 Materials and methods 

8.2.1 WO4
2- synthetic solution 

A WO4
2- synthetic solution with an initial WO4

2- concentration of 50 ± 5 mg L-1 was prepared by 

diluting a standard Ammonium Tungstate (NH4)2WO4 solution of 1000 mg L-1 (Scharlau) with 

ultrapure water (Milli-Q Academic). 

 

8.2.2 Mining wastewater – origin and characterisation 

The mining wastewater was collected in a Wolframite mine. Due to confidentiality request, 

additional information about the origin of the mining wastewater is unknown. 

The mining wastewater was characterised for: 

(a) pH and conductivity – The same as described in section 4.2.2; 

(b) Total solids (TS), fixed solids (FS), total suspended solids (TSS) and volatile solids (VS) – The 

same as described in section 4.2.2; 

(d) Mineral content in filtered mining wastewater – The same as described in section 4.2.2, but 

the selected metals and metalloids were the following: Al, Ca, Cu, Fe, K, Mg, Na, Ni, Si, V, W and 

Zn; 

(e) Mineral content after acidic digestion – The same as described in section 4.2.2, but the 

selected metals and metalloids were the ones mentioned in item (d). 

(f) Solubility of the species in the wastewater by equation 4.1 (section 4.2.2). 

 

8.2.3 WO4
2- adsorption assays from synthetic solution 

All WO4
2- adsorption assays were performed as described in section 4.2.3. 

For comparison reasons, the commercial activated carbon (CAC) used in the Cr(III) removal 

assays (Norit GAC 1240) was also used in the WO4
2- adsorption assays. 
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8.2.3.1 Effect of initial pH and solid/liquid ratio (S/L) 

All adsorbents were submitted to a preliminary study, in which the effect of two parameters on the 

WO4
2- adsorption assays was tested: (i) the initial pH value of the solution and (ii) the adsorbent 

loading, defined as the solid/liquid ratio (S/L). All these assays were performed for 24 h. First, the 

S/L was fixed at 1 g L-1 and five initial pH were tested (2, 4, 6, 8 and 10). Then, the initial pH that 

originated the assay with the highest uptake capacities was fixed and three S/L ratios were tested 

(0.1, 0.25 and 1 g L-1). 

The adsorbent and conditions (S/L and initial pH) that originated the assay with the highest uptake 

capacities were selected to be used in the kinetic and adsorption isotherm studies. 

WO4
2- removal efficiency, 𝜂 (%), and experimental adsorbent removal capacity, 𝑞𝑒𝑥𝑝 (mg g-1), 

were calculated through the equations 4.2 and 4.3 (section 4.2.3.1), respectively. 

 

8.2.3.2 Kinetic study 

Contact times between 5 min and 48 h were tested. The results were adjusted to pseudo-first 

order and pseudo-second order kinetic models, through the equations 4.4 and 4.5171 (section 

4.2.3.2), respectively. 

 

8.2.3.3 Adsorption isotherm study 

WO4
2- concentrations between 10 and 200 ± 5 mg L-1 were tested. The contact time of the assays 

was selected according to the results of the kinetic study. 

The results were adjusted to 5 isotherm models: 

(i) Langmuir’s non-linear model - equation 4.6173 (section 4.2.3.3). 

(ii) Freundlich’s non-linear model - equation 4.7173 (section 4.2.3.3). 

(iii) Sips model - equation 8.1185: 

 

𝑞𝑒  =  
𝑞𝑚𝑎𝑥 × 𝑏 × 𝐶𝑒

1
𝑛

1 + 𝑏 × 𝐶𝑒

1
𝑛

 (8.1) 

 

where 𝑞𝑒 is the WO4
2- removal capacity in the equilibrium (mg g−1), 𝑞𝑚𝑎𝑥 is the maximum uptake 

capacity (mg g−1), 𝑏 is the Langmuir’s constant (L mg−1), 𝐶𝑒 is the concentration of WO4
2- in the 

equilibrium (mg L−1) and 𝑛 is a measure of the heterogeneity of the binding surface 

(dimensionless). Sips model is a combination of Langmuir and Freundlich models, whose origin 

is related to the heterogeneous adsorption systems and circumventing the limitation of the rising 
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adsorbate concentration associated with Freundlich isotherm model. At low adsorbate 

concentrations, the model tends to Freundlich isotherm, while at high concentrations, it tends to 

Langmuir isotherm136,173. 

(iv) Redlich-Peterson model - equation 8.2185: 

 

𝑞𝑒  =  
𝐾𝑅 × 𝐶𝑒

1 +  𝑎𝑅 × 𝐶𝑒
𝛽

 where β ≤ 1  (8.2) 

 

Where, 𝐶𝑒  is the concentration of WO4
2- in the equilibrium (mg L−1), 𝐾𝑅 (L g−1) and 𝑎𝑅 (L mg−1) 

are the Redlich-Peterson’s constants, and 𝛽 (dimensionless) is also an intensity parameter. 

Redlich-Peterson model also includes Langmuir and Freundlich isotherms. But in this case, the 

model has a linear dependence on concentration in the numerator and an exponential function in 

the denominator to represent adsorption equilibria over a wide concentration range. Due to its 

versatility it can be applied to both homogeneous and heterogeneous systems. At high 

concentration, when 𝛽 is closer to 0, the model tends to Freundlich isotherm, while at low 

concentrations, when 𝛽 is closer to 1, it tends to Langmuir isotherm173. 

 (v) Multi-step isotherm model - equation 8.3186: 

 

𝑞𝑒 =  ∑ {
𝑞𝑇𝑖 × 𝐾𝑖 × (𝑐 − 𝑏𝑖 + |𝑐 − 𝑏𝑖|)𝑛𝑖

2𝑛𝑖 + 𝐾𝑖 × (𝑐 − 𝑏𝑖 + |𝑐 − 𝑏𝑖|)𝑛𝑖
}

𝑠

𝑖=1

 (8.3) 

 

where, 𝑠 is the total number of steps, 𝑞𝑇𝑖 is the adsorption capacity (mg g-1) of the layer 𝑛𝑖, 𝐾𝑖  is 

the equilibrium constant [(L mg-1)n], 𝑐 is the concentration of WO4
2-  in the equilibrium (mg L-1), 𝑏𝑖 

describes the critical concentration limit (mg L-1) and 𝑛𝑖 indicates the solute’s average degree of 

association. The multi-step isotherm model was obtained from geometric series of modified 

Langmuir equation with the assumption that the surface sites can be covered by more than one 

molecule in the form of associated complexes. Layers of associated complexes of different 

composition are formed characterized by the solute’s average degree of association (n), starting 

with a single layer of the solute, continued with the layer of dimers (n=2), trimers (n=3), and so 

on186,187. 

 

8.2.3.4. Model adjustment 

The same as described in section 4.2.3.4. 
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8.2.4 WO4
2- adsorption assays from mining wastewater 

The adsorbent and conditions (S/L and contact time) that performed better on the synthetic 

solution were selected for the WO4
2- adsorption assays from the mining wastewater. The 

adsorption assays were performed with the filtered wastewater and because the concentration of 

soluble tungsten in the wastewater was below the detection limit (please, see section 8.3.3), the 

medium was spiked with Ammonium Tungstate solution used in the synthetic solution (section 

8.2.1). The wastewater was spiked with the same concentration of the assay that presented the 

highest uptake capacity in the adsorption isotherm study. Two initial pH values were tested: (i) 

pH of the wastewater as-received; and (ii) optimum pH for tungstate removal, selected according 

to the assays performed in the synthetic solution (section 8.2.3.1). 

Again, for comparison reasons, CAC was used in WO4
2- adsorption assays from the mining 

wastewater. 

 

8.2.5 Mineral interactions in the mining wastewater during WO4
2- adsorption 

assays  

In order to understand the importance of minerals in WO4
2- adsorption assays, several minerals 

were quantified before and after the WO4
2- adsorption assays in mining wastewater. This set of 

assays enabled to study (i) the possible competition mechanism with other ions, (ii) the salting-

out effect due to the presence of cationic species reducing the available solvent due to ionic 

hydration, and (iii) the release of other minerals to the wastewater by the adsorbent. 

The elements quantified in this study were Al, Ca, Fe, K, Mg and Si. These elements were 

selected because they were present either in the industrial wastewater or in the adsorbent. 

Concentration variation, 𝐶𝑉 (mg L-1), and percentage variation, 𝑃𝑉 (%), were calculated by 

equations 4.9 and 4.10 (section 4.2.5), respectively. 

The procedure for the removal assays was the same as described in section 4.2.3, but instead of 

Cr, the elements quantified by ICP-AES were the ones mentioned two paragraphs above. 

 

8.2.6 Ecotoxicity in the WO4
2- adsorption assays from mining wastewater 

An ecotoxicological evaluation was performed before and after the WO4
2- adsorption assays from 

mining wastewater by using Microtox® assay. Before the adsorption assays both wastewaters 

(original pH and optimal pH) were submitted to an ecotoxicological analysis. After the adsorption 

assays, the samples were filtered through Whatman® ME 25/21 ST membrane filters (0.45 µm), 

the pH was measured (Hanna Instruments edge® HI 2002 pH meter) and the filtered samples 

were also sent for the ecotoxicological analysis. The procedure was the same as described in 

section 2.2.1. 
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8.3 Results and discussion 

8.3.1 WO4
2- adsorption assays in synthetic solution 

8.3.1.1 Effect of initial pH and solid/liquid ratio (S/L) 

Figure 40 shows the results of WO4
2- adsorption assays by the ACs from synthetic solution, for 

different initial pH values. 

 

 

Figure 40. Effect of the initial pH on the WO4
2- (a) removal efficiency and (b) uptake capacity in 

the synthetic solution. 
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In general, the lower was the initial pH, the higher were the WO4
2- removal efficiency and uptake 

capacity. In fact, for the initial pH 2, four activated carbons (P4C+KOH, P4C+K2CO3, RH+H3PO4 

and CAC) presented removal efficiencies of around 100%. This can be explained by the difference 

between the pHpzc of ACs and the pH of the solution. When the pH of a medium is lower than the 

pHpzc of the AC, the AC’s surface will be positively charged due to the release of hydroxyl groups 

and/or acquisition of protons188,189. The highest this difference is, the more positively charged the 

AC surface will be.  

Being an oxyanion, positively charged surfaces increase tungstate adsorption, particularly 

because tungsten creates poly-oxometallates (POMs), which are very large ions formed by three 

or more oxyanions linked together by sharing oxygen atoms. POMs create wide and complex 3D 

structures and can have negative valences (up to -10)190 (Figure 41). Therefore, strong 

electrostatic interaction can be formed between the negatively charged tungstate species and the 

positively charged carbon surface. 

These results allowed understanding that, in addition to the chemical surface properties of the 

ACs, the textural properties also had a major role in the adsorption process, since the ACs with 

higher surface areas and pore volumes (P2C-KOH, P2C-K2CO3, RH-H3PO4 - Table 37) presented 

the highest WO4
2- removal efficiencies and uptake capacities. However, at pH 2, POMs are 

formed (Figure 41). Considering that POMS are nanosized cluster anions with sizes ranging from 

1-6 nm191, it can be assumed that, along with the surface area and pHpzc of the AC, the mesopore 

volume also played an important role on the adsorption process. 

Although CAC presented slightly poorer textural properties (surface area and mesopore volume 

- Table 19) when compared to the other ACs, its high alkaline character allowed it to still achieve 

some interesting results. 

Once P1-derived AC presented acidic pHpzc values, besides lower surface areas (Table 37), their 

removals were lower than for the other ACs. Between P1C-derived ACs, P1C presented the best 

results due to the highest surface area and pore volume (Table 37). 

Once P4C+KOH, P4C+K2CO3, RH+H3PO4 and CAC presented removal efficiencies of around 

100% at pH 2, lower S/L values were tested in order to maximize the uptake capacity of each AC 

(Figure 42). 

P4C+KOH was the AC that presented the best relation between the chemical surface properties 

(pHpzc) and textural properties (surface area/pore volume). It obtained removals of around 100% 

at S/L 0.25 and 1 g L-1, and 73.8% at S/L 0.1 g L-1, achieving the highest 𝑞𝑒 of 330 mg g-1 at that 

same S/L. On the other hand, CAC obtained a highest 𝑞𝑒 of 88.6 mg g-1 at S/L 0.25 g L-1. This 

means that P4C+KOH achieved a substantial higher uptake capacity than CAC. For that reason, 

P4C+KOH was the AC selected to be used in the following assays, along with CAC (for 

comparison purposes). 

 



131 
 

 

 

Figure 41. Influence of pH on tungsten speciation190 (reproduced under the kind permission of 

CSIRO Publishing). 
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Figure 42. Effect of S/L on the WO4
2- (a) removal efficiency and (b) uptake capacity in the 

synthetic solution at pH 2. 
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order kinetic models. All the results of this study are shown in Figure 43 and Table 38. 
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Figure 43. Kinetic study of P4C+KOH and CAC along time in the synthetic solution at an initial 

pH 2 and a S/L 0.1 g L-1: (a) WO4
2- removal efficiency and (b) WO4

2- uptake capacity and 

adjustment of experimental data to pseudo-first order and pseudo-second order kinetic models 

(th: theoretical data). 
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Table 38. Parameters of pseudo-first order and pseudo-second order kinetic models adjusted to 

the experimental data of P4C+KOH and CAC in the synthetic solution at an initial pH 2 and a S/L 

0.1 g L-1. 

Kinetic model Parameter 
Adsorbent 

P4C+KOH CAC 

Pseudo-first order  

𝑞𝑒 (mg g-1) 341 88.2 

𝑘𝑓 (h-1) 13.0 2.08 

R2 0.560 0.846 

    

Pseudo-second order 

𝑞𝑒 (mg g-1) 350 91.7 

𝑘𝑠 (g mg-1 h-1) 6.51×10-2 3.72×10-2 

R2 0.830 0.916 

 

The results showed that P4C+KOH obtained significantly better results than CAC, achieving 

equilibrium after 1 h with removal efficiencies of around 70% and uptake capacities of around 350 

mg g-1. The highest uptake capacity was found at 24 h with a 𝑞𝑡 of 361 mg g-1. In contrast, CAC 

reached equilibrium only after 15 h with removal efficiencies of less than 20% and uptake 

capacities of around 90 mg g-1. 

The experimental data were better adjusted to the pseudo-second order kinetic model for both 

carbons, obtaining a 𝑞𝑒 of 350 mg g-1 for P4+KOH and 91.7 mg g-1 for CAC, meaning that, at 

equilibrium, the uptake capacity of the pyrolysis-derived carbon was almost 4 times higher than 

the commercial activated carbon. 

 

8.3.1.3 Adsorption isotherm study 

The adsorption isotherm study assays were performed with P4C+KOH and CAC, at an initial pH 

2 and a S/L 0.1 g L-1 for 24 h.  

The results showed that, for all assays, P4C+KOH presented higher removal efficiencies (Figure 

44a) and uptake capacities (Figure 44b) than CAC. For initial WO4
2- concentrations ≤ 30 mg L-1, 

P4C+KOH achieved removal percentages of around 100%. However, the highest uptake capacity 

was found for an initial WO4
2- concentration of 150 mg L-1 with a 𝑞𝑡 of 854 mg g-1. In contrast, the 

highest 𝑞𝑡 of CAC was of 113 mg g-1 at an initial WO4
2- concentration of 100 mg L-1. P4C+KOH 

obtained a 𝑞𝑡 almost 8 times higher than CAC. These results clearly highlight the better properties 

of P4C+KOH on WO4
2- removal from synthetic solution when compared to CAC. 
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Figure 44. (a) WO4
2- removal efficiency and (b) WO4

2- uptake capacity for P4C+KOH and CAC 

in the synthetic solution for different initial WO4
2- concentrations. 
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in different moments. This consideration is strongly supported by the chemistry of the metal 

element. As mentioned above, tungsten can form POMs, so its adsorption is most likely 

composed by a first monolayer adsorption and a consequent solute-solute interaction, generating 

the second step in the experimental distribution. 

 

 

 

Figure 45. Isotherm models adjusted to the experimental data of (a) P4C+KOH and (b) CAC in 

the synthetic solution (th: theoretical data). 
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Table 39. Parameters of the isotherm models adjusted to the experimental data of P4C+KOH 

and CAC in the synthetic solution. 

Isotherm model Parameter 
Adsorbent 

P4C+KOH CAC 

    

Langmuir's non-linear model 

𝑞𝑚𝑎𝑥 (mg g-1) 870 98.6 

𝑏 (L mg-1) 7.26×10-2 3.04 

R2 0.865 0.898 

    

Freundlich’s non-linear model 

𝐾𝐹 (mg g-1 mg-n Ln) 262 83.8 

𝑛 (dimensionless) 4.31 28.1 

R2 0.868 0.880 

    

Sips model 

𝑞𝑚𝑎𝑥 (mg g-1) 947 105 

𝑏 (L mg-1) 0.600 2.82 

𝑛 (dimensionless) 1.85 0.940 

R2 0.831 0.898 

    

Redlich-Peterson model 

𝐾𝑅 (L g−1) 2 071 2 262 

𝑎𝑅 (L mg−1) 6.99 26.5 

𝛽 (dimensionless) 0.799 0.970 

R2 0.867 0.883 

    

Multi-step isotherm model 

𝑞𝑇1 (mg g-1) 366 93.3 

𝑞𝑇2 (mg g-1) 407 7.58 

𝐾1 [(L mg-1)n] 4.07 4.24 

𝐾2 [(L mg-1)n] 1.44×10-2 16.7 

𝑏 (mg L-1) 15.1 42.0 

R2 0.949 0.901 

 

No studies on tungstate adsorption performed by chars or ACs were found in literature. However, 

other adsorbents were already used in tungstate removal as already mentioned in Table 5. The 

highest uptake capacity found in the literature was from Afkhami et al.113. These authors used a 

carbon cloth obtained by pyrolyzing a phenolic C-film polymer between 800 and 900 °C in N2. 

Two different treatments were made to the adsorbent: i) a distilled water washing to avoid leaching 

from the adsorbent, and ii) an acidic treatment with H2SO4 for the modification of surface 

functional groups and porous structures. The highest uptake capacity was found for the acidic 

treatment, with a value of 208 mg g-1. To recall, the highest uptake capacity obtained for the 

carbon P4C+KOH was 854 mg g-1, a value more than 4 times higher than the one found by 

Afkhami et al., a result that emphasizes the extremely encouraging results achieved by the PCs 

developed in this work. 
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8.3.2 Characterisation of mining wastewater 

Table 40 presents the mining wastewater characterisation. 

 

Table 40. Mining wastewater characterisation (𝑋 ± σ; n=2; pH in Sørensen scale; conductivity in 

μS cm−1; TS, FS, VS, TSS, and chemical elements in mg L−1; Solubility in %). 

Parameters Mining wastewater  Chemical 
element 

Mining wastewater 

Acidic eluate Filtrate Solubility 

pH 8.11 ± 0.03  Fe 23 772 ± 1 484 (4.56 ± 0.22)×10-2 1.92×10-4 

Conductivity 2 512 ± 16  Al 9 782 ± 840 0.473 ± 0.034 4.84×10-3 

TS 250 438 ± 19 906  Zn 5 414 ± 519 (4.10 ± 0.39)×10-2 7.57×10-4 

FS 247 904 ± 19 725  K 4 096 ± 347 70.7 ± 1.8 1.73 

VS 2 560 ± 173  Mg 3 472 ± 317 69.4 ± 0.5 2.00 

TSS 44 753 ± 898   Ca 2 947 ± 279 572 ± 3 19.4 

   Cu 1 080 ± 99 < 3.80 x10-3 < 3.52×10-4 

   Si 801 ± 78 3.02 ± 0.01 0.377 

   W 299 ± 27 0.244 ± 0.006 8.16×10-2 

   V 18.4 ± 1.7 < 2.00×10-4 < 1.09×10-3 

   Ni 15.2 ± 1.0 < 4.00×10-3 < 2.63×10-2 

   Na 6.46 ± 0.03 1.88 ± 0.01 29.0 

TS: Total Solids; FS: Fixed Solids; VS: Volatile Solids; TSS: Total Suspended Solids. 

 

The mining wastewater was characterised as alkaline and with a high conductivity due to the high 

content of inorganic material, namely Fe but also Al, Zn, K, Mg and Ca. However, a very low 

solubility was found for almost all elements. Only Ca presented a significant concentration in the 

filtrate (572 mg L-1) with a solubility of 19.4%; Na presented the highest solubility of all the 

elements analysed (29.0%), but the filtrate concentration was still low (1.88 mg L-1). In summary, 

most elements were present in the solid fraction of the wastewater and presented low mobility. W 

was quantified with a low concentration both in the acidic eluate and filtrate, since it is the main 

resource recovered in the mining extraction process. No ecotoxicity was found for the bacterium 

V. fischeri as the EC50–30 min was >99% v/v. 

 

8.3.3 WO4
2- adsorption assays from mining wastewater 

The tungstate adsorption assays from mining wastewater were performed with the adsorbents 

and conditions that performed better on the synthetic solution (adsorbents: P4C+KOH and CAC; 

S/L: 0.1 g L-1; time: 24 h; initial WO4
2- concentration: 150 ± 30 mg L-1; initial pH: 8.11 – as-received 

and 2.00 ± 0.04 – optimum pH). 
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Figure 46 shows the results of tungstate adsorption assays from mining wastewater. 

 

 

 

Figure 46. (a) WO4
2- removal efficiency and (b) WO4

2- uptake capacity for P4C+KOH and CAC 

in the mining wastewater spiked with 150 mgWO4
2- L-1 for an initial pH of 8.11 (as-received) and 

an initial pH of 2.00 (optimum pH). 
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For all assays, P4C+KOH performed significantly better than CAC in WO4
2- adsorption and, as 

seen in the synthetic solution, the assays with an initial pH of 2.00 originated better results. For 

pH 8.11, 58.2% of tungstate was removed by P4C+KOH obtaining a 𝑞𝑒 of 1116 mg g-1, while for 

pH 2.00 those values increased to 89.0% and 1561 mg g-1, respectively. CAC only removed 

14.4% of tungstate on the assay with an initial pH of 8.11 and 30.3% on the assay with an initial 

pH of 2.00, obtaining uptake capacities of 271 and 561 mg g-1, respectively. In summary, 

P4C+KOH uptake capacity was more than 4 times higher than CAC’s in the assays with pH 8.11 

and almost 3 times higher in the assays with pH 2. 

When comparing the uptake capacities of both ACs in the synthetic solution and in the mining 

wastewater, the results of the latter were higher than the former of about 2 times for P4C+KOH 

and 5 times for CAC. This can be explained by the presence of other ions in the mining wastewater 

that promoted the salting-out effect. When there is a high concentration of dissolved salts in a 

medium (especially cations), their hydration due to the weak bonding between salt ions and water 

ions, effectively reduces the volume of available solvent for the other species diffusion192,193. As 

seen in Table 40, K, Mg and Ca were the main elements involved in this phenomenon. These 

cations present the highest hydration radius among single element ions – Mg2+ ( 0.395 nm) > Ca2+ 

(0.348 nm) > K+ (0.315 nm)194, meaning that adding the reduced available medium to the strongly 

positive surface of the ACs due to the low pH system, forced a higher quantity of tungstate anions 

onto the carbon. 

 

8.3.4 Mineral interactions in the WO4
2- adsorption assays from mining 

wastewater 

Figure 47 shows the concentration and percentage variations of cations in the WO4
2- adsorption 

assays performed in the mining wastewater. 

For the assays with an initial pH of 8.11 (Figure 47a), the concentration variation of minerals was 

very low; only 9.58 and 3.06 mg L-1 of minerals were added to the medium by P4C+KOH and 

CAC, respectively, especially Ca (8.08 and 2.93 mg L-1, respectively). On the other hand, apart 

from W, only 6.70 and 4.02 mg L-1 of minerals were removed from the medium by P4C+KOH and 

CAC, respectively, especially K (6.70 and 4.02 mg L-1, respectively). This means that, for an initial 

pH of 8.11, the influence of the minerals added/removed by the ACs was very low. 

For the assays with the optimum initial pH (2.00) (Figure 47b), the concentration variation of 

minerals was more significant once 37.2 and 23.6 mg L-1 of minerals were added to the medium 

by P4C+KOH and CAC, respectively; again, mainly Ca was added by P4C+KOH and CAC (30.3 

and 19.9 mg L-1, respectively). In contrast, excluding W, only 0.862 and 7.31 mg L-1 of minerals 

were removed from the solution by P4C+KOH and CAC, respectively, especially K (0.600 and 

6.81 mg L-1, respectively). Thus, in this case the elements present in the wastewater did not 

compete with W in the adsorption process, but instead a significant amount of Ca was released 

for the solution in both assays, due to the extreme acidic conditions of the medium that helped 
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the solubilisation. This led probably to an increase of available pores on the ACs’ surfaces, and 

to the increase of cations in the solution that promoted the salting out effect and, consequently, a 

higher removal of tungstate. 

 

 

 

Figure 47. Concentration and percentage variations of cations on the WO4
2- adsorption assays 

for P4C+KOH and CAC in the mining wastewater spiked with 150 mgWO4
2- L-1 for (a) an initial pH 

of 8.11 (as-received) or (b) an initial pH of 2.00 (optimum pH). 
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8.3.5 Ecotoxicity in the WO4
2- adsorption assays from mining wastewater 

The ecotoxicological evaluation of mining wastewater before and after the WO4
2- adsorption 

assays (Table 41) showed that at its original pH (8.11) (which is in the range of the optimal pH 

for V. fischeri) no ecotoxicity was found, neither before nor after the adsorption assays. For an 

initial pH of 2.00, high ecotoxicity was found once this bacterium is very sensitive to pH variations 

with an optimal range of 6.0 to 8.5165. However, after pH correction, no ecotoxicity was found. 

 

Table 41. Ecotoxicity assessment of the mining wastewater before and after WO4
2- adsorption 

assays. 

Initial pH 

 
EC50–30 min (% v/v) 

 
 

 
Before adsorption 
assays 

 After adsorption assays 

  P4C+KOH  CAC 

 Before pH 
correction 

After pH 
correction 

 
Before pH 
correction 

After pH 
correction 

 Before pH 
correction 

After pH 
correction 

8.11 
 

>99 n. a.  >99 n. a. 
 

>99 n. a. 

2.00 
 

1.61 >99  1.54 >99 
 

1.48 >99 

n.a. not applicable 

 

8.4 Conclusions 

The properties that most influenced the adsorption process were the pH of the solution, and the 

pHpzc, surface area and mesopore volume of the ACs. Solutions with lower pH and ACs with 

higher pHpzc, surface areas and mesopore volumes benefit WO4
2- adsorption. 

For the adsorption assays from the synthetic solution, P4C+KOH was the AC that presented the 

best properties for WO4
2- adsorption obtaining a 𝑞𝑒 of 330 mg g-1 at S/L of 0.1 g L-1, while CAC 

only obtained a 𝑞𝑒 of 88.6 mg g-1 at S/L 0.25 g L-1. 

P4C+KOH reached the equilibrium after 1 h with removal efficiencies of around 70% and uptake 

capacities of around 350 mg g-1, while CAC reached equilibrium only after 15 h with removal 

efficiencies of less than 20% and uptake capacities of around 90 mg g-1. 

The highest uptake capacity of P4C+KOH was found for an initial WO4
2- concentration of 150 mg 

L-1 with a 𝑞𝑡 of 854 mg g-1, while the highest 𝑞𝑡 of CAC was of 113 mg g-1 at an initial WO4
2- 

concentration of 100 mg L-1. 

The mining wastewater presented a pH of 8.11 with a high concentration of minerals, especially 

Fe. Most elements were present in the solid fraction of the wastewater and presented low mobility, 
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except for Ca which presented a solubility of 19.4% and a concentration of 572 mg L-1 in the 

filtrates.  

For the adsorption assays from the mining wastewater, the best results were found at pH 2.00, 

with P4C+KOH obtaining a ɳ of 89.0% and a 𝑞𝑒 of 1561 mg g-1, and CAC obtaining values of 

14.4% and 561 mg g-1, respectively. In the assays at pH 2.00, there was a significant release of 

Ca from the ACs to the solution that promoted tungstate removal, due to an increase of the 

available pores on the ACs’ surfaces and the increase of cations on the solution that promoted 

the salting out effect. 

P4C+KOH clearly showed better properties than CAC on WO4
2- adsorption, obtaining uptake 

capacities almost 8 times higher in the synthetic solution and almost 3 times higher in the mining 

wastewater. These results suggest that P4C+KOH seems to be a more efficient and alternative 

to CAC in the adsorption of WO4
2- from liquid effluents. 
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 GENERAL CONCLUSIONS  
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The main objective of this work was to characterise chars resulting from the co-gasification and 

co-pyrolysis of rice waste streams and use them in the removal of Cr and W from aqueous 

solutions. Activations were necessary in order to improve the chars’ properties for the 

adsorption/removal processes. 

Due to the different characteristics of the Cr and W ions used in this work, once one is a cation 

(Cr(III)) and the other an anion (WO4
2), different chars were prepared and used for the 

adsorption/removal of these ions. 

Regarding the chars used in Cr(III) removal, the gasification chars were mainly constituted by 

carbonized ashes composed of Si and AAEMs. In contrast, pyrolysis chars were mainly 

composed by carbon, but still with a significant amount of volatile matter. Although in lower 

amounts than in the gasification chars, high concentrations of Si were found in the pyrolysis chars 

followed by AAEMs and Ti due to the use of PE as feedstock. 

Globally, all chars presented low surface areas (up to 62.9 m2 g-1 in the gasification chars and up 

to 5.63 m2 g-1 in the pyrolysis chars). However, the high mineral content of the gasification chars 

(important for ion exchange mechanism) allowed their use in Cr(III) removal assays without any 

kind of activation process. On the other hand, the pyrolysis chars required further physical and/or 

chemical activations before such valorisation, aiming to remove the volatile matter that was 

blocking the char’s pores and concentrate the ash content. Some of the activations tested 

increased the porosity of the char and promoted the adsorption by ion exchange due to ash 

concentration. 

Two gasification chars (G4C and G5C) were selected to be used in Cr(III) removal assays under 

batch conditions. One pyrolysis char (P1C) was selected to be optimized through physical and 

chemical activations/treatments; then, the resulting activated carbons (ACs) were also used in 

the Cr(III) removal assays under batch conditions. 

Four physical activations were performed to P1C. The most favourable experimental conditions 

were 800 ºC for 4 h. These activations removed most volatile matter present in P1C, leading to 

higher surface areas and pore volumes. The chemical activation generated the pyrolysis-derived 

AC (P1C+CA) with the highest surface area (415 m2 g-1) and pore volume (0.22 cm3 g-1) as some 

ashes were also removed. Still, these areas and volumes were significantly lower than the ones 

of the commercial activated carbons (with and without treatment). 

In the Cr(III) removal assays from the synthetic solution by gasification chars, both chars (G4C 

and G5C) presented higher removal efficiencies and uptake capacities than CAC, due to their 

high ion exchange capacity. G4C at a S/L of 5 g L-1 obtained the highest uptake capacity of all 

chars with a value of 8.19 mg g-1, a value significantly higher than for CAC (3.93 mg g-1). For the 

removal assays from the industrial wastewater, G4C presented better results than CAC when 

precipitation occurred, but when adsorption ruled the removal process CAC obtained slightly 

better results than G4C. The highest uptake capacity found for G4C was 14.9 mg g-1, while this 

value increased slightly for CAC (16.1 mg g-1). 
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Regarding the pyrolysis activated carbons (PAC), P1C+PA presented the best properties of all 

PACs for Cr(III) removal, due to its high mineral content (allowing removal by ion exchange) and 

interesting textural properties (allowing removal by pore filling). At a solid/liquid ratio (S/L) of 5 g 

L-1, P1C+PA and CAC obtained the highest uptake capacities of 9.23 and 9.80 mg g-1, 

respectively, in the synthetic solution, and 12.4 and 16.1 mg g-1, respectively, in the industrial 

wastewater. 

In the conditions where precipitation did not occur, the mechanisms involved on Cr(III) removal 

by the gasification chars were ion exchange, while in the pyrolysis activated carbons a mix of ion 

exchange and pore filling was registered. Cr(III) removal by CAC was ruled by pore filling. 

G4C was selected to be used in the column assays. The performance of both G4C and CAC was 

lower than in the batch assays, obtaining uptake capacities of 1.60 and 2.14 mg g-1, respectively, 

in the synthetic solution and 3.25 and 7.83 mg g-1, respectively, in the industrial wastewater. Both 

G4C and CAC showed no capacity to be used in more than one adsorption cycle. 

These results suggest that, under batch conditions, G4C and P1C+PA showed good properties 

to be alternative adsorbents in the removal of Cr(III) from liquid effluents, especially G4C that, 

even without any activation process, obtained similar or even better results than CAC. However, 

under continuous flow, G4C did not performed has expected, probably because diffusion 

constraints were more significant for G4C than for CAC due to the lower porosity in the former 

compared to the latter. 

For WO4
2 adsorption assays, only pyrolysis-derived activated carbons were produced, once the 

high mineral content of the gasification chars was not an advantage in this case. WO4
2- is an anion 

and the minerals present in the gasification chars are mainly cations, thus ion exchange could not 

be a possibility for WO4
2 removal. Six activated carbons were produced, three derived from P1C, 

two from P4C and one from a direct carbonization/activation of rice husk. 

The properties that most influenced the adsorption process were pH of the solution (lower values 

benefit WO4
2- adsorption) and pHpzc, surface area and mesopore volume of ACs (higher values 

benefit WO4
2- adsorption). Of all ACs tested, P4C+KOH presented the highest surface area (2 610 

m2 g-1) and mesopore volume (1.14 cm3 g-1) and the second highest pHpzc (6.92). For that reason, 

it led to the best results on WO4
2 adsorption. The highest uptake capacities found for P4C+KOH 

were 854 mg g-1 in the synthetic solution and 1561 mg g-1 in the mining wastewater, while CAC’s 

values were significantly lower (113 and 572 mg L-1, respectively). P4C+KOH clearly showed 

better properties than CAC on WO4
2- adsorption, obtaining uptake capacities almost 8 times 

higher in the synthetic solution and almost 3 times higher in the mining wastewater. These results 

suggest that P4C+KOH seems to be a more efficient alternative to CAC in the adsorption of WO4
2- 

from liquid effluents. 

The main objective of the work was achieved as for both Cr and W removal it was possible to 

produce alternative adsorbents to the typical commercial activated carbon. Concerning Cr, the 

adsorbents produced obtained similar results to CAC, while for W the expectations were widely 

exceeded, as the produced adsorbents largely overcame CAC’s results. 
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VISIONS FOR FUTURE 
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This work allowed to study the use of different chars and activated carbons in the removal of 

Cr(III) and WO4
2- from aqueous solutions. However, being a long and diverse work, several 

questions came out during the PhD period that, due to the time limitation, were not possible to be 

answered. For that reason, and in order to fill the gaps that have emerged along the work, the 

following future visions are suggested for future: 

- At the end of Cr(III) removal assays it was concluded that the ion exchange was the main 

mechanism for Cr(III) removal. For that reason, it would be interesting to selected, from the 

immense set of chars produced in “Ricevalor” project, the ones that had the highest mineral 

content, namely AAEMs, to study their performance in Cr(III) removal.  

- The pyrolysis-derived activated carbons used in Cr(III) removal assays fell short of expectations. 

However, the pyrolysis-derived activated carbons used in the WO4
2- adsorption assays presented 

really good surface properties. For that reason, it would be interesting to test these set of ACs in 

Cr(III) removal, both in batch and column assays. 

- Due to the physical limitation of the columns, it was not possible to use higher masses of char 

in the column assays. For that reason, adsorption assays in bigger columns should be performed 

in order to overcome mass adsorbent limitations. 

- Test lower flow rates in the column assays to increase the contact time and consequently the 

uptake capacity. 

- The WO4
2- adsorption assays obtained really good results in the batch assays. Unfortunately, 

there was no time left to perform the column assays. In order to complete this study, it would be 

very important to perform column assays with the ACs used in the batch assays, especially 

P4C+KOH. 

- Unfortunately, the mining wastewater used on the WO4
2- adsorption assays had no tungsten in 

solution. For that reason, tungstate was added to the wastewater. It would be interesting to use a 

real wastewater that had already tungsten in solution, in order to compare the results with the 

ones obtained for the mining wastewater. 

- To test the different carbonaceous materials produced in this work in the removal of other critical 

elements from wastewaters. 

- After having all previous questions answered, adsorption and desorption studies at a pilot scale 

should be performed. 
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