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Background: In this paper, we evaluate the different thresholding strategies that have been used for the 
quantification of the choriocapillaris (CC) and explore their repeatability and the interchangeability of the 
measurements resulting from its application.
Methods: Observational study. Eighteen eyes from nine healthy volunteers aged >18 years were imaged 
four consecutive times with a SD-OCTA system (Heidelberg Engineering, Germany) using a 10°×10° high-
resolution protocol centered on the fovea. Projection artifacts were removed, and the CC was bracketed 
between 10 and 30 µm below Bruch’s membrane. For the quantification of CC, we used four flow deficits (FD) 
parameters: FD number, mean FD size, total FD area and FD density. We performed a systematic review 
of literature to collect the thresholding methods that have been used for the quantification of CC. The CC 
quantification parameters were then evaluated after applying each of the thresholding strategies. Intraclass 
correlation coefficient (ICC) and Pearson’s correlation analysis were used to compare the repeatability and 
interchangeability among the different thresholding strategies for quantifying the CC.
Results: A total of 72 optical coherence tomography angiography (OCTA) examinations were considered. 
The systematic review allowed us to conclude that three local thresholding strategies (Phansalkar, mean and 
Niblack) and three global thresholding strategies (mean, default, Otsu) have been used for CC quantification. 
These strategies were evaluated in our observational study. We found a high agreement within the same 
method in the quantification of FD number, mean FD size, total FD area and FD density but a poor 
agreement with different strategies. Local strategies achieved a significantly superior ICC than global ones in 
CC quantification.
Conclusions: In conclusion, the interchangeability of the CC quantification using different thresholding 
strategies is low, and direct comparisons should not be performed. Local thresholding strategies are 
significantly superior to global ones for quantifying CC and should be preferred. There is an unmet need for 
a uniform strategy to quantify CC in future studies.
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Introduction

The choriocapillaris (CC) is a dense vascular layer that is 
located beneath Bruch’s membrane and provides metabolic 
support for the outer retina, retinal pigmented epithelium 
and choroidal stroma (1). The study of CC properties and 
morphology has been of interest throughout the years as 
histopathological studies revealed that the CC plays an 
important role in prevalent retinal and choroidal diseases 
(2-4). However, quantitative studies of the CC have been 
limited by its in-vivo inaccessibility (5,6).

Recently, optical coherence tomography angiography 
(OCTA) emerged as means of providing detailed images of 
retinal vasculature. Currently available OCTA devices are 
capable of generating high-quality en-face images of the retinal 
plexuses that enable retinal vasculature quantification (7).  
Such ability of resolving the microvascular networks 
of the retina is possible as the inter-capillary distance 
of the vessels in these plexuses (71.3±5.2 µm) (8) are 
generally larger than the lateral resolution of the system  
(15–20 µm) (9). Particularly for research purposes, the 
ability to reproducibly and objectively quantify OCTA 
scans is critical as it allows images to be compared. Not 
all OCTA instruments have built-in software to calculate 
the vasculature metrics. As such, researchers and clinicians 
currently face the challenges of exploring quantification 
methodologies on en-face OCTA exported images  
(10-12). The process of OCTA image quantification 
requires the application of a thresholding strategy (in 
other words, a process that enables the separation of the 
region of interest from the background) (13). The output 
of the thresholding operation is a binary image, where the 
foreground and the background are represented by white 
or black pixels, according to a pre-definition. Different 
thresholding strategies have been described by researchers, 
most of them based on the use of open-source software, 
such as Image J (National Institutes of Health, Bethesda, 
available at https://imagej.nih.gov/ij/) (14).

Currently, there are no clear consensus on the best 
thresholding strategy for the binarization of CC images 
and multiple strategies have been reported. With OCTA 
quantification becoming increasingly common among 
researchers, there is a pressing need to understand how 
different methodologies can affect metrics. It is also 
important to understand how well different methods 
perform in both producing accurate metrics and minimizing 
variability. To our knowledge, few studies have reported the 
reproducibility and reliability of the different thresholding 

strategies for the quantification of CC vasculature in OCTA.
The aim of our work is to evaluate the repeatability of 

the different thresholding strategies that have been used 
for the quantification of CC as well as to evaluate how 
the CC images are affected by the application of different 
thresholding strategies.

Methods

Systematic review

We conducted a systematic review and comprehensive 
search to identify the thresholding strategies that have been 
applied for the purpose of CC quantification in OCTA 
scans.

Terminology
For the purpose of this paper, the following terminology 
was used:

(I)	 CC: the capillary plexus of the choroid located 
between the Sattler’s layer and Bruch’s membrane. 
For the purpose of this review, we considered the 
OCTA slab defined by the authors in each study.

(II)	 Thresholding strategy: this term is used to refer to 
the strategy that was applied in raw greyscale CC 
scans to convert them into binary images (separate 
the region of interest from the background).

Search strategy
We conducted a systematic review from 1st January 2014 to 
31st December 2019 using the PubMed electronic database. 
We’ve used the following query: “(choriocapillaris AND 
[(optical coherence tomography angiography) OR (OCTA) 
OR (OCT angiography)]”. We opted to include a broad 
query so that we could encompass the larger number of 
studies possible.

Eligibility criteria
We only included studies that reported macular CC vascular 
quantification strategies in OCTA images in humans 
(either as flow voids/deficits or as vascular density or similar 
concepts). Identified publications were screened manually 
based on the title and abstract. We placed no restrictions or 
limits during the search process (language, time or country 
of origin).

Data extraction and synthesis
After excluding publications that did not analyze 
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quantitatively CC OCTA macular scans, we then manually 
searched on the manuscripts and the thresholding strategy 
that had been used was collected.

Observational study

A prospective study was performed at Centro Hospitalar de 
Entre o Douro e Vouga (Portugal). The study was approved 
by the Institutional Ethics Committee of Centro Hospitalar 
de Entre o Douro e Vouga (No. CA-0708/18-0t_MP/AC) 
and adhered to the tenets of the Declaration of Helsinki and 
its later amendments. Informed consent was obtained from 
participants before the inclusion in the study.

Sample
Eighteen eyes from nine healthy individuals >18 years (8 
females, mean age of 38.2±11.4 years) with no systemic or 
ocular history, no visual complaints, and no identified optic 
disc, retinal or choroidal pathologies on examination and a 
refractive error <6.00 diopters were enrolled in the study.

Image acquisition
The individuals were scanned in both eyes using a 10°×10° 
scan high-resolution protocol centered on the fovea with 
the Heidelberg Spectralis OCTA system (version 1.10.2.0, 
Spectralis; Heidelberg Engineering, Heidelberg, Germany). 
The device uses an 870 µm central wavelength and images 
at 85,000 per second with an isotropic lateral resolution of  
5.7 µm/pixel. The image cubes were acquired using 5 repeated 
scans with the TruTrack technology from Heidelberg. The 
imaging protocol was explained to the participants before 
any acquisition. For evaluating repeatability, we performed 
four consecutive OCTA acquisitions in each eye, separated 
by a few seconds. Images were manually reviewed, and low-
quality scans were excluded (scans with motion, projection or 
other image artifacts). All images were obtained by the same 
trained ophthalmic professional and in the same environment 
conditions. Acquisitions were repeated if necessary, to obtain 
high-quality images.

Image processing
Automated segmentation of the CC was performed using 
the software provided within the Spectralis® (Heidelberg 
Engineering). The boundary of the CC slab is defined 10–
30 µm below the Bruch’s membrane. The retinal projection 
artifacts were removed using the projection artifact removal 
tool from Heidelberg (Software version 6.14.1) before 
the images were further processed for quantification. The 

algorithm removes flow projection from the normally 
avascular outer retinal slab and preserves in situ flow signal 
of the deeper vessels. The angiograms were exported for 
analysis as Tagged Image File Format (tiff) format. Image 
analysis was performed using Image J V. 1.51 (National 
Institutes of Health, Bethesda) (14). Raw data was cut using 
the same frame (960×960 pixels) in order to exclude artifacts 
that sometimes occur in the margin of the scan. Brightness 
and contrast adjustments were not performed, the images 
were manipulated in the native form. Before any conversion, 
the initial pixel values were coded as 8-bit values, ranging 
from 0–255.

Histogram analysis
For analysis purpose, we extracted the images histograms 
of each CC image to verify if different eyes followed similar 
distributions. Histogram analysis was performed using Image 
J V. 1.51 (National Institutes of Health, Bethesda) (14).

Image post-processing
Following the mentioned transformations, each CC 
angiogram was then processed with all of the thresholding 
strategies found in the initial systematic review using Image 
J V. 1.51 (National Institutes of Health, Bethesda) (14).

Quantification parameters
Contrasting to the retinal plexuses, the CC is a much denser 
vascular network (15,16) with a much smaller inter-capillary 
distance [average 10–25 µm (17)] that cannot be resolved 
by OCTA devices. Thus, a different approach is necessary 
for quantification purposes. This limitation has been 
resolved by the quantification of the flow deficits (FD) in 
the exported CC images (18-26). FD are defined as regions 
of non-perfusion or low perfusion, where the flow is below 
the sensitivity limit of the current OCTA technology (19). 
In a binary image of the CC, FD correspond to black pixels 
or the background. In our study, to quantify the FD, images 
were processed with the ‘Analyze Particles’ command (Image 
J V. 1.51, National Institutes of Health, Bethesda) (14). This 
function retrieved the following measurements: (I) the FD 
number, (II) mean FD size, (III) total FD area and (IV) FD 
density. These variables were represented using box blots to 
allow the visualization the quantitative distribution of the 
values according to the thresholding strategy.

Reproducibility of CC FD quantification
We evaluated the reproducibility of CC FD quantification 
for each thresholding strategy found in the systematic 
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review. This was performed using the four consecutive scans 
from the same eye, acquired in the same environmental 
conditions, as previously described. After applying the 
same thresholding strategy to the four scans per eye, we 
calculated the FD number, the mean FD size, the total FD 
area and the FD density for each scan. The repeatability 
of the CC FD quantification for each strategy was then 
estimated using the intraclass correlation coefficient (ICC) 
and the respective 95% confidence interval (CI), with the 
two-way mixed, single measures, absolute agreement mode. 
All statistical analysis was performed using IBM SPSS 
Statistics v. 25 (SPSS Inc., Chicago, IL, USA). Significance 
was set at 0.05.

Agreement among the strategies for CC quantification
For this purpose, the first CC scan of each eye was used. 
We first evaluated the correlation among the same FD 
quantification parameters after applying the different 
thresholding strategies to verify if the algorithms retrieved 
similar trends in values variation. Correlation among 
the different obtained values using different strategies 
was evaluated using the Pearson’s correlation coefficient 
(both r values and P values are reported). In the absence 
of correlation, either the thresholding strategies had a 
complete absolute agreement, either they fail in retrieving 
FD. We then tested the absolute agreement for the different 
thresholding strategies for measuring the same scan and 
evaluated the correlation between the different parameters 
of FD obtained using different thresholding strategies. The 
agreement among the different thresholding strategies for 
quantifying FD in the same CC scan was evaluated using 
the ICC and the respective 95% CI, as previously described. 
All statistical analysis was performed using IBM SPSS 
Statistics v. 25 (SPSS Inc., Chicago, IL, USA). Significance 
was set at 0.05.

Results

Systematic review

Figure S1 presents the search strategy and its results. 
One thousand six hundred and seventy-four studies were 
identified by the query. From these, 1,490 were excluded 
after a primary screening. From the remaining 184 studies, 
51 were excluded as they did not meet the inclusion criteria. 
One hundred and thirty-three studies were included in 
the final synthesis. The detailed results are summarized in  
Table S1. We grouped the found thresholding strategies in 

major categories as:
(I)	 OCTA device-related thresholding strategies 

(n=40): studies that used the thresholding method 
that is intrinsic to the OCTA device. These 
algorithms are not customizable and are device-
dependent and thus were not considered for the 
observational study.

(II)	 Thresholding strategies customized by the author 
(n=37): studies that used customized thresholding 
strategies designed by the authors. These strategies 
were not included in the observational study.

(III)	 Unknown/inaccessible (n=5): studies in which 
the thresholding strategy was not accessible, and 
authors did not answer to direct email questioning. 
These strategies were not included in the 
observational study.

(IV)	 Global thresholding strategies (n=25): the simplest 
form of binarization uses global thresholds. These 
methods employ a threshold value, t, pixel values 
greater that t are set to 1 and pixel values smaller or 
equal to t are set to 0, or vice versa (27-30). Image 
histogram (the representation of the number of 
pixels in an image as a function of their intensity) 
computing is an important tool in the decision for 
global thresholding methods and values (30). In 
an ideal case, the histogram has a deep and sharp 
valley between two peaks representing objects and 
background, respectively, so that the threshold 
can be chosen at the bottom of this valley. As a 
single threshold is applied to the entire image, 
these methods produce incompetent binarization 
in conditions as the presence of noise or uneven 
background. Three global thresholding strategies 
have been used to quantify CC OCTA scans 
according to our review and were evaluated in the 
observational study: global Otsu, global mean and 
global default. The definition of each algorithm is 
presented as a Supplementary file 1.

(V)	 Local thresholding strategies (n=32): local 
binarization methods were created to surpass 
the limitations of global methods as they assign 
different threshold values according to local 
properties of the image (28). Various factors, such 
as nonstationary and correlated noise, ambient 
illumination, busyness of gray levels within the 
object and its background, inadequate contrast, 
and object size not commensurate with the scene, 
complicate the thresholding operation. Thus, 
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the ideal method must be selected case by case, 
depending on the image properties. Three local 
thresholding strategies have been used to quantify 
CC OCTA scans according to our review and 
were evaluated in the observational study: local 
Phalsankar, local mean/median and local Niblack. 
The definition of each algorithm is presented as a 
Supplementary file 1.

Observational study

In the following paragraphs we present the results of 
CC scans analysis using the three global (global Otsu, 
global mean and global default) and the three local 
(local Phalsankar, local mean/median and local Niblack) 
thresholding strategies obtained in the systematic review.

Histogram analysis
A typical histogram from the en-face CC images after 
8-bit conversion is demonstrated in Figure 1 as an example. 
Inspection of the histogram showed a Gaussian curve of 
grey-scale values. In these histograms, it is not possible 
to trace a deep and sharp valley between two peaks 
representing objects and background, so that the threshold 
can be chosen at the bottom of this valley. Thus, from the 
visual inspection of this histogram no single thresholding 
value can be inferred to segment the region of interest in 
the image.

Image post-processing
In Figure 2, we demonstrate the visual result of applying 

the different thresholding strategies (in the left square 
the result of applying each of the global strategies, and 
in the right square the result of applying each of the 
local strategies). The original image of the CC is in the 
center for comparison. Figure 2 illustrates the pronounced 
differences of applying local and global thresholding 
strategies, that are evidenced by the different black and 
white regions highlighted by each thresholding strategy. All 
the global thresholding strategies produced binary images 
that qualitatively appeared identical. The local methods 
generated a more homogeneous appearance.

Quantification parameters
Figure 3 illustrates the differences in the quantification 
of the four considered CC FD metrics (either the FD 
number—A, total FD area—B, mean FD size—C, and FD 
density—D) using the six considered thresholding strategies 
applied to a single typical OCTA scan. As seen in the 
graphs, we verified a high amount of variation for each of 
the quantitative parameters according to the used method. 
The quantitative parameters generated after applying global 
strategies achieved a less dispersive distribution, that is in 
accordance with the observation in Figure 2. By contrast, 
measurements resulting from applying local strategies 
generated more dispersed values, as seen in the boxplots.

Reproducibility of CC FD quantification
The repeatability of CC FD quantification after applying 
each thresholding strategy was evaluated for each individual 
CC quantitative parameter (FD number, mean FD size, 
total FD area and FD density) using the four OCTA 
consecutive scans (Table 1). Globally, the ICC was superior 
in the quantification of FD number (ranging between 0.852 
to 0.964) followed by FD density (ranging from 0.786 to 
0.974). No isolated strategy was found to be significantly 
superior than the others in analyzing repeated scans, as 
demonstrated by the overlapping of the ICC 95% CI 
presented in Table 1.

We compared the repeatability of global versus local 
thresholding strategies for evaluating each of the four 
considered CC quantitative parameters (FD number, mean 
FD size, total FD area and FD density). As seen in Table 2, 
the agreement was significantly superior for local versus 
global strategies for all the four quantitative parameters. 
Local strategies achieved an ICC of 0.978 (95% CI: 0.967–
0.986) for FD number quantification, 0.950 (95% CI: 
0.926–0.969) for FD area, 0.925 (95% CI: 0.889–0.952) for 
average FD size and 0.958 (95% CI: 0.936–0.974) for FD 

Figure 1 The figure illustrates the histogram from one of the CC 
exported images after 8-bit conversion. Analysis was performed 
using Image J V. 1.51 (National Institutes of Health, Bethesda). 
CC, choriocapillaris.

Count: 921,600
Mean: 74.344
StdDev: 41.409

Min: 0
Max: 255
Mode: 56 (9,284)

0			   255
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Figure 2 The figure illustrates one of the CC images in its 8-bit original form and the results after applying the 6 different thresholding 
strategies. Analysis was performed using Image J V. 1.51 (National Institutes of Health, Bethesda). CC, choriocapillaris.

Figure 3 Differences in the quantification of the four considered CC metrics (either the FD number—A, total FD area—B, mean FD size—
C, and FD density—D) using the six considered thresholding strategies (local mean, local Phansalkar, local Niblack, global mean, global 
Otsu, global default) in the same scan. Individual boxplots show the median with the 25th–75th percentile (box) and range (brackets). CC, 
choriocapillaris; FD, flow deficits; L., local; G., global.

GLOBAL

Default

Otsu

Mean

Original

Niblack

Mean

Phalsankar

LOCAL

8000

6000

4000

2000

0

400000

300000

200000

100000

0

100

80

60

40

20

0

40

30

20

10

0

FV
 c

ou
nt

To
ta

l a
re

a 
FV

A
ve

ra
ge

 s
iz

e 
FV

FV
 d

en
si

ty

G. D
efa

ult

G. M
ea

n

G. O
tsu

L. 
Niblac

k

L. 
M

ea
n

L. 
Pha

lsa
nk

ar

G. D
efa

ult

G. D
efa

ult

G. M
ea

n

G. M
ea

n

G. O
tsu

G. O
tsu

L. 
Niblac

k

L. 
Niblac

k

L. 
M

ea
n

L. 
M

ea
n

L. 
Pha

lsa
nk

ar

L. 
Pha

lsa
nk

ar

G. D
efa

ult

G. M
ea

n

G. O
tsu

L. 
Niblac

k

L. 
M

ea
n

L. 
Pha

lsa
nk

ar

A

C

B

D



2000 Laiginhas et al. Comparing CC thresholding methods using OCTA

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(10):1994-2005 | http://dx.doi.org/10.21037/qims-20-340

Table 1 Agreement among the four scans for each parameter  
measured using each of the six thresholding strategies

Quantitative  
parameter

Thresholding  
strategy

ICC (95% CI)

N. FD G. Otsu 0.909 (0.820-0.960)

G. Mean 0.852 (0.730-0.983)

G. Default 0.904 (0.818-0.958)

L. Mean 0.925 (0.856-0.968)

L. Phansalkar 0.964 (0.928-0.985)

L. Niblack 0.955 (0.910-0.981)

FD area G. Otsu 0.880 (0.777-0.947)

G. Mean 0.115 (–0.064-0.395)

G. Default 0.838 (0.707-0.927)

L. Mean 0.880 (0.777-0.947)

L. Phansalkar 0.937 (0.877-0-973)

L. Niblack 0.881 (0.777-0.948)

FD average size G. Otsu 0.771 (0.605-0.894)

G. Mean 0.627 (0.412-0.813)

G. Default 0.684 (0.484-0.847)

L. Mean 0.825 (0.687-0.921)

L. Phansalkar 0.850 (0.727-0.933)

L. Niblack 0.843 (0.716-0.930)

FD density G. Otsu 0.873 (0.763-0.944)

G. Mean 0.786 (0.618-0.902)

G. Default 0.833 (0.699-0.925)

L. Mean 0.879 (0.774-0.946)

L. Phansalkar 0.917 (0.840-0.964)

L. Niblack 0.974 (0.946-0.989)

Values presented correspond to ICC. ICC, intraclass correlation  
coefficient; G., global; L., local; N., number; CI, confidence  
interval; FD, flow deficits.

Table 2 Agreement among the four scans for each parameter  
measured using either local or global thresholding strategies

Quantitative  
parameter

Thresholding 
strategy

ICC (95% CI)

N. FD Local 0.978 (0.967–0.986)

Global 0.901 (0.854–0.936)

Area FD Local 0.950 (0.926–0.969)

Global 0.446 (0.309–0.589)

Average size FD Local 0.925 (0.889–0.952)

Global 0.701 (0.591–0.796)

FD density Local 0.958 (0.936–0.974)

Global 0.843 (0.770–0.899)

Values presented correspond to ICC. ICC, intraclass correlation 
coefficient; FD, flow deficits; N., number; CI, confidence interval.

density.

Agreement among the strategies for CC quantification
We verified variable degrees of correlation among the 
different thresholding strategies for measuring the same 
quantitative parameter (either the FD number, mean FD 
size, total FD area and FD density). All the correlation 
coefficients, r, and respective P value are in Table 3.

Although some degree of correlation may be found 

among the measurements, the absolute agreement among 
the six thresholding methods for measuring the same 
quantitative parameter in the CC images was low, with an 
ICC ranging from 0.000 to 0.339—Table 4. The lowest 
absolute agreement was found for average FD size, followed 
by FD area, FD density and FD number.

Discussion

In this study we systematically reviewed the thresholding 
strategies that have been recently used to quantify CC and 
evaluated their interchangeability and reproducibility. From 
our systematic review, we concluded that there is an unmet 
need for the homogenization of the methods that are used 
to threshold CC images. We found a marked variability in 
the thresholding methods that have been applied to CC 
angiograms, thus conditioning future aggregation of the 
results.

A signif icant number of authors choose to use 
customized or device-included algorithms. Although 
they may improve the quantification process, they have a 
narrow spectrum of application as they are not universally 
applicable due either to device conditioning or expertise 
programing needs. In our observational study, we evaluated 
three global and three local thresholding methods. We 
found that local thresholding methods have a superior 
performance in CC angiograms (either by a superior 
repeatability and an adequacy to CC histogram properties) 
and should be preferred to global ones. We also concluded 
that the CC metrics that are obtained through them are not 
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Table 3 Correlation among the different parameters measured using six thresholding strategies

Thresholding strategy 1 Thresholding strategy 2 FD number Area FD Average size FD FD density

G. Otsu G. Mean r=0.951; P<0.001* r=0.892; P<0.001* r=0.578; P=0.015* r=0.920; P<0.001*

G. Default r=0.999; P<0.001* r=0.992; P<0.001* r=0.969; P<0.001* r=0.992; P<0.001*

L. Mean r=0.823; P<0.001* r=0.741; P<0.001* r=0.687; P=0.002* r=0.735; P<0.001*

L. Phansalkar r=0.956; P<0.001* r=0.837; P<0.001* r=0.681; P=0.003* r=0.859; P<0.001*

L. Niblack r=0.467; P=0.051 r=0.686; P=0.002* r=–0.62; P=0.814 r=0.826; P<0.001*

G. Mean G. Otsu r=0.951; P<0.001* r=0.892; P<0.001* r=0.578; P=0.015* r=0.920; P<0.001*

G. Default r=0.957; P<0.001* r=0.875; P<0.001* r=0.547; P=0.023* r=0.890; P<0.001*

L. Mean r=0.680; P<0.001* r=0.556; P=0.017* r=0.365; P=0.150 r=0.545; P=0.016*

L. Phansalkar r=0.935; P<0.001* r=0.876; P<0.001* r=0.502; P=0.040* r=0.771; P<0.001*

L. Niblack r=0.427; P=0.077 r=0.695; P=0.001* r=–0.286; P=0.266 r=0.814; P<0.001*

G. Default G. Otsu r=0.999; P<0.001* r=0.992; P<0.001* r=0.969; P<0.001* r=0.992; P<0.001*

G. Mean r=0.957; P<0.001* r=0.875; P<0.001* r=0.547; P=0.023* r=0.890; P<0.001*

L. Mean r=0.813; P<0.001* r=0.782; P<0.001* r=0.717; P=0.001* r=0.779; P<0.001*

L. Phansalkar r=0.958; P<0.001* r=0.802; P<0.001* r=0.630; P=0.007* r=0.851; P<0.001*

L. Niblack r=0.468; P=0.050 r=0.671; P=0.002* r=–0.069; P=0.791 r=0.795; P<0.001*

L. Mean G. Otsu r=0.823; P<0.001* r=0.741; P<0.001* r=0.687; P=0.002* r=0.735; P<0.001*

G. Mean r=0.680; P<0.001* r=0.556; P=0.017* r=0.365; P=0.150 r=0.545; P=0.016*

G. Default r=0.813; P<0.001* r=0.782; P<0.001* r=0.717; P=0.001* r=0.779; P<0.001*

L. Phansalkar r=0.789; P<0.001* r=0.365; P=0.136 r=0.191; P=0.463 r=0.841; P=0.037*

L. Niblack r=0.495; P=0.037* r=0.409; P=0.092 r=–0.020; P=0.938 r=0.453; P=0.051

L. Phansalkar G. Otsu r=0.956; P<0.001* r=0.837; P<0.001* r=0.681; P=0.003* r=0.859; P<0.001*

G. Mean r=0.935; P<0.001* r=0.876; P<0.001* r=0.502; P=0.040* r=0.771; P<0.001*

G. Default r=0.958; P<0.001* r=0.802; P<0.001* r=0.630; P=0.007* r=0.851; P<0.001*

L. Mean r=0.789; P<0.001* r=0.365; P=0.136 r=0.191; P=0.463 r=0.481; P=0.037*

L. Niblack r=0.474; P=0.047* r=0.628; P=0.005* r=–0.012; P=0.963 r=0.863; P<0.001*

L. Niblack G. Otsu r=0.467; P=0.051 r=0.686; P=0.002* r=–0.062; P=0.814 r=0.826; P<0.001*

G. Mean r=0.427; P=0.077 r=0.695; P=0.001* r=–0.286; P=0.266 r=0.814; P<0.001*

G. Default r=0.468; P=0.050 r=0.671; P=0.002* r=–0.069; P=0.791 r=0.795; P<0.001*

L. Mean r=0.495; P=0.037 r=0.409; P=0.092 r=–0.020; P=0.938 r=0.453; P=0.051

L. Phansalkar r=0.474; P=0.047* r=0.628; P=0.005* r=–0.012; P=0.963 r=0.863; P<0.001*

Values of Pearson correlation coefficient (r) and P value are presented. *, P<0.05. FD, flow deficits; G., global; L., local; N., number.

interchangeable. Thus, direct comparisons cannot be made 
from studies that adopt different thresholding strategies.

OCTA quantification was a change in the paradigm 
for the evaluation of most macular diseases. However, 
there is currently a need to improve and uniformize 

the segmentation methods for OCTA quantification. 
In addition, before any clinical trial, it is essential to 
precisely know the strengths and limitations of the 
image segmentation strategies that are being applied. As 
previously mentioned, the CC images are challenging as 
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the intracapillary distance of the vessels is general under 
the resolution of OCTA devices, what does not occur in 
retinal capillary plexus. Thus, the CC images quantification 
is more prone to be influenced by the image processing 
methods and all sources of variability must be explored to 
prevent biased conclusions.

Thresholding is known to be a critical step in image 
segmentation as it will influence all the analysis that 
are subsequently applied to CC angiograms. When 
thresholding CC OCTA images, a balance must be struck 
between excluding noise and including valid signal. If the 
threshold is set low, then there will be more noise above the 
threshold (and hence in the resulting thresholded OCTA 
image), but the subsequent OCTA output will be less likely 
to have eliminated any true vasculature.

In the current study, we explored the influence 
of applying different thresholding strategies in the 
quantification of the CC FD. We found that, considering 
each of the thresholding strategy individually, the four CC 
quantitative parameters were highly correlated. This is in 
accordance with the study performed by Shi et al. (26), that 
also found excellent correlations among the percentage of 
CC FD and the average area of FD. However, we found that 
the absolute agreement among the evaluated thresholding 
strategies for measuring the same quantitative parameter 
in the CC images was low, with ICC ranging from 0.000 to 
0.339. Therefore, although somewhat correlated, the CC 
FD values obtained using different thresholding strategies 
are not interchangeable and direct comparisons should not 
be performed among studies that use different strategies.

In this study we also demonstrated that the histogram of 
the CC en-face 8-bit image follow a Gaussian distribution 
of grey-scale values. This is in accordance to what has 
been described in the literature (6,31) and, from this, we 
can conclude that global thresholding strategies will not 

have an adequate performance as the distribution does 
not suggest a value to separate the background from the 
foreground. By using a global thresholding strategy, we will 
erroneously classify noise as FD or the opposite. This was 
corroborated by our findings as the global thresholding 
strategies, as a group, achieved a significant lower reliability 
in the quantification of CC consecutive scans when 
comparing to the local ones. This was verified irrespective 
of FD characteristics. Therefore, local strategies should 
be preferred to global ones for CC FD quantitative 
analysis purpose. Among local strategies, we found similar 
repeatability and no standard could be inferred from this 
analysis.

To our knowledge, few studies have investigated the 
variability in CC quantification induced by the thresholding 
process. Yun et al. (32) compared the Phansalkar and a 
device-specific global thresholding method in images from 
four OCTA devices. Mehta et al. (33) also investigated CC 
quantitative measurements variability using four different 
thresholding strategies (global default, global mean, global 
Otsu, local mean, and local Phansalkar) in a SS OCTA. 
Although the previous authors concluded about the 
differences that exist in FD quantification when each strategy 
is applied in a single examination, no repeatability analysis 
is reported in the study and no comparison is reported 
among the local and global strategies as major groups. Chu 
et al. (20) also used SS OCTA and compared the correlation 
and agreement between one local thresholding method 
(fuzzy C-means algorithm) and one global thresholding 
method (an algorithm that uses standard deviation from a 
young normal database) and concluded about the strong 
correlation between the two methods for measuring FD 
density and mean FD size. In the another study (23), Chu 
et al. compared the variation in quantitative CC metrics 
after applying both fuzzy C-means thresholding method 
and Phansalkar method (using different pixel radius) and 
found heterogeneous results. Interestingly the authors also 
performed a repeatability study and ICC values reported for 
CC metrics using Phansalkar method are superior than those 
we found. This may be explained either by the different 
post-processing of the signal, either by the use SS OCTA 
device to perform acquisitions. In SS OCTA, the longer 
wavelength that has better penetration through the RPE 
and less sensitivity roll-off into the choroid, which results in 
an improvement in the likelihood of detecting the weaker 
signals from under the retinal pigment epithelium (34).  
Previous reports have reported the superiority of SS-
OCTA for detecting macular neovascularization under the 

Table 4 Absolute agreement among the six thresholding strategies 
for measuring the same quantitative parameter in the same scan

Quantitative parameter ICC (95% CI)

FD number 0.339 (0.124–0.601)

Area FD 0.224 (0.063–0.468)

Average size FD 0.000 (–0.090–0.191)

FD density 0.278 (0.091–0.530)

Mean value of the four acquisitions was considered in each pair. 
Values presented correspond to ICC. ICC, intraclass correlation 
coefficient; CI, confidence interval; FD, flow deficits.



2003Quantitative Imaging in Medicine and Surgery, Vol 10, No 10 October 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(10):1994-2005 | http://dx.doi.org/10.21037/qims-20-340

retinal pigmented epithelium (35,36). Thus, we may infer 
that SS technology will have a superior reliability for the 
quantification of CC FD than SD do.

Our study has several limitations. Firstly, as previously 
mentioned by Chu et al. (23), there is a lack of ground truth 
for CC vasculature, as all the techniques to validate it are 
invasive involving sacrificing animals to compare harvested 
eyes with previous imaging. Secondly, we are aware that the 
quantitative CC parameters may be significantly influenced 
by small differences in the slab selection (21). We did not 
stratify the results by slab classification as that was not the 
purpose of the review. In our observational study, we opted 
to maintain the manufacturer CC segmentation for clinical 
relevance. We are also aware of other sources of variability 
in OCTA images quantification as the use of different 
algorithms and averaging (13,37). Thus, more studies 
in the field are needed. Finally, our study only included 
healthy eyes from young patients. It is thus unpredictable 
how much our results would change if the validation was 
performed in patients with significant retinal diseases. 
Further studies are needed to evaluate the behavior of these 
thresholding methods in more complex and noisy scans 
as in the presence of macular neovascularization and to 
evaluate their discriminative power to differentiate normal 
versus abnormal CC.

Besides all the potential limitations, our study has several 
strengths. We report the heterogeneity of thresholding 
process in CC quantification thus raising awareness for the 
need of uniformization to achieve comparable conclusions. 
We also evaluated the interchangeability among different 
algorithms for measuring the same parameter and the 
reproducibility of each algorithm for measuring repeated 
scans. This gives a broad perspective of the variability that 
is inherent to choosing different thresholding strategies. In 
addition, no data exists for SD device regarding this topic. 
We believe our research will help future researchers in the 
field to improve their thresholding selection.

Conclusions

As OCTA becomes incorporated into clinical decision 
making, the ability to understand the thresholding process, 
and the artifacts that this process introduces in CC FD 
quantification, is of utmost importance. We found no 
interchangeability among different thresholding strategies 
for quantifying CC FD. Thus, direct comparisons should 
not be considered in future studies. Local thresholding 
strategies demonstrated a superior repeatability and should 

be preferred to the global ones for CC quantitative analysis 
in OCTA angiograms. There is currently an unmet need for 
a uniform strategy to quantify CC in future studies.
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Supplementary file 1 Thresholding strategies—definitions

Global thresholding

The mean global threshold method (27) takes the average grayscale value across the image as a threshold value. The default global 
method which is a variation of the IsoData algorithm that divides the image into foreground and background pixels and iteratively 
tries different threshold values until finding one larger than the mean value (38). The Otsu global algorithm determines a threshold 
value that minimizes the variance in grayscale values within each class and maximizes variance between the classes (39).

Local thresholding

Local mean method selects the threshold as the mean of the local grayscale distribution (14). In local thresholding methods, the 
threshold for binarization is computed for each pixel according to the image characteristics within a window of radius r. The 
default r value in Image J is 15 pixels. This valued was not changed as we conclude that the most of the authors from previous CC 
quantitative studies left this value unchanged, according to what was originally reported by Spaide (40). Niblack’s thresholding 
method is the oldest local binarization method found in the literature. In this method, the estimation of a threshold value is based 
on the calculation of local mean and standard deviation of pixels value in a local window confined to an image (41). The Phansalkar 
algorithm incorporates the mean and standard deviations of the grayscale values in the local area. It was designed for images with a 
variable appearance and particularly to optimize binarization thresholding in low contrast images (42).

Figure S1 PRISMA 2009 flow diagram.
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Table S1 Summary of the thresholding strategies found through the systematic review

OCTA device related (n=40) Customized by the author (n=37) Unknown/inaccessible (n=5)
Global thresholding strategies Local thresholding strategies

G. Otsu (n=5) G. Mean (n=14) G. Default (n=6) L. Phansalkar (n=27) L. Mean/median (n=3) L. Niblack (n=2)

Abbouda et al. [2018], (43) Ahn et al. [2018], (44) Al-Sheikh et al. [2017], (45) Abroug et al. [2019], (46) Borrelli et al. [2018], (47) Cicinelli et al. [2017], (48) Alagorie et al. [2019], (22) Mehta et al. [2019]**, (33) Wang et al. [2018], (49)

Agemy et al. [2015], (50) Alten et al. [2016], (51) Guduru et al. [2018], (52) Al-Sheikh et al. [2017], (53) Borrelli et al. [2017], (54) Mehta et al. [2019]**, (33) Borrelli et al. [2018], (55) Tepelus et al. [2019], (56) Kaur et al. [2019], (57)

Alabduljalil et al. [2019], (58) Cakir et al. [2019], (59) Qu et al. [2017], (60) Mehta et al. [2019]**, (33) Caplash et al. [2019], (61) Murro et al. [2019], (62) Borrelli et al. [2018], (63) Mastropasqua et al. [2019], (64)

Augstburger et al. [2018], (65) Camino et al. [2019], (66) Yang et al. [2019], (67) Nicolò et al. [2017], (68) Carnevali et al. [2017], (69) Battaglia Parodi et al. [2017], (70) Borrelli et al. [2018], (71)

Ayhan et al. [2017], (72) Chu et al. [2019]**, (23) Yu et al. [2017], (73) Rodrigues et al. [2019], (74) Chu et al. [2018]**, (20) Battaglia Parodi et al. [2018], (75) Borrelli et al. [2019], (76)

Cao et al. [2018], (77) Chu et al. [2018]**, (20) Costanzo et al. [2019], (78) Sakurada et al. [2020], (79) Braun et al. [2019], (80)

Cennamo et al. [2019], (81) Chu et al. [2018], (24) Jauregui et al. [2018], (82) Byon et al. [2019], (21)

Cennamo et al. [2020], (83) Chua et al. [2019], (84) Mastropasqua et al. [2019], (85) Chanwimol et al. [2019], (86)

Chan et al. [2019], (87) Fernández-Vigo et al. [2020], (88) Mehta et al. [2019]**, (33) Chu et al. [2019]**, (23)
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