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Title: Can Machine Learning algorithms predict Football players’ Market Values? A data-

driven approach 

 

Abstract: Football players transfer fees have been increasing in an unprecedented manner in 

the last decade. As so, it is crucial for football clubs to correctly assess the value of its players. 

To tackle this problem, this thesis proposes a data-driven solution. After assembling a dataset 

with data regarding football players’ characteristics, on-field performance indicators and 

market values, Machine Learning algorithms were used to construct a prediction model. The 

final proposed model is a Random Forest regression, which registered a coefficient of 

determination (R2) of 0.88 in the test set, displaying a promising outcome for future research. 

 

Keywords: Football, Data analytics, Machine Learning, Management 

 

 

 

 

 

This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia 

(UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209), 

POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209) 

and POR Norte (Social Sciences DataLab, Project 22209).  



2 
 

1. Introduction 

Most association football, football hereafter, clubs’ major source of income comes from 

players rights transactions, i.e. selling players to other clubs. In the past decade, players’ transfer 

fees have been increasing in an unprecedented manner, due to larger availability of capital in 

the football realm, having the European market size reach € 28.4 billion in 2018 (Barnard et al., 

2019). Nonetheless, players’ market value estimates have not kept up with this upsurge, 

building a considerable discrepancy between what a club is willing to pay, and the experts’ 

financial value of a player estimation. This situation creates an opportunity for data-driven 

systems to help football stakeholders, especially club management, to get a clearer assessment 

of the true monetary value of a football player. 

The following thesis is organised as follows: literature review on using data analytics to 

predict players market values, methodology with detailed description of the machine learning 

techniques and algorithms employed and of the data used, discussion of the results and 

concluding notes. In brief, I will apply Machine Learning algorithms on football players’ 

performance data and discrete information about themselves, the clubs and competitions they 

have represented and played. Then, through model comparison, regularisations and ensemble 

methods, I will propose a model that predicts a market value for football players. 

 

2. Literature Review 

The literature on using data analytics to estimate the financial value of a football player 

can almost be fully encompassed on the last two decades. Initial frameworks to determine the 

financial value of football players were mainly statistical models – i.e. regressions – based on 

variables like past transfer fees and player’s performance indicators (Carmichael, Forrest and 

Simmons, 1999), but also on characteristics of the selling club and players wages (Lucifora and 
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Simmons, 2003). Extending on these, Tunaru, Clark and Viney (2005) proposed to treat players 

financial values as financial options, using stochastic calculus. This approach introduced a 

concept which was being neglected by previous models: players contracts are time bounded 

and during this period it is possible to exercise rights on the contract. 

Subsequent research followed quantitative finance and econometric methodology, like 

Majewski and Majewska (2017), which instead of providing a value estimate, the model yielded 

a range of possible values, providing club management the ability of plan different strategies, 

based on distinct probable scenarios. 

More recently, other approaches began to appear. Instead of just focusing on inside 

information, football fans’ insights and experts’ judgements on value estimation have also been 

analysed (Herm, Callsen-Bracker and Kreis, 2014), supporting the hypothesis that 

crowdsourcing judgements about a player’s market value can influence the value of a 

hypothetical transfer fee. Despite being similar and correlated with the actual estimations of 

inside professionals, crowdsourcing estimation presents drawbacks like biased estimations and 

both lack of formality and validation (Müller, Simons and Weinmann, 2017). Müller, Simons 

and Weinmann (2017) proposed a data-driven approach towards market value estimation, 

leveraging player performance data with players characteristics and popularity, suggesting that 

football professionals were underestimating the data feeds provided by sports-data companies 

and in-house data collected by clubs themselves, using these just to improve on-field 

performance. 

In what regards using Machine Learning, ML hereafter, techniques in football market 

values predictions, it is still in its embryonic stage, having only a handful of scholars applied 

these to the subject. Yiğit, Samak and Kaya (2020) used supervised ML techniques on 

videogames attributes of football players, recognising these as proxies of player quality. The 
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model was able to predict market values closer to transfer fees, when compared with 

crowdsourcing estimation. Kim, Bui and Jung (2019) produced a two-dimensional 

classification model, assessing player performance and transfers fees using player statistics 

data. On the other hand, sports-data companies like Opta Sports (Opta Sports, 2019) and InStat 

(InStat, n.d.) have proprietary software that may include ML techniques. In addition, KPMG 

offers a player valuation benchmark tool in a partnership with Opta Sports (KPMG, 2019). 

 

3. Methodology 

To perform this study, data regarding football players’ basic information, performance, 

and market value was retrieve by implementing web scraping techniques, using Python 

programming language. After performing data curation - i.e. cleaning, filtering, wrangling and 

storage - descriptive statistics and data visualisation techniques were produced to assess data 

quality and appropriateness. The Scikit-Learn software library was used for data pre-processing 

and to assemble supervised ML algorithms to build market values prediction models. The 

algorithms used were Ordinary Least Squares (OLS) and Classification and Regression Tree 

(CART). On top of these algorithms, regularisations and ensemble learning methods were also 

implemented. Through model comparison, the model with better performance was selected as 

the most appropriate to produce football players’ market values predictions. 

Overall, it is suitable to follow such methodology because I have access to a large 

quantity of good quality data that allows me to make good features engineering, and the sample 

data, i.e. training-data, is a good representation of the population of professional football players 

in the most valuable football leagues. 
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3.1 Machine Learning algorithms and techniques 

Like most ML problems, no algorithm is bound to out-perform any other algorithm. By 

ensuring data quality and appropriateness, simple models can produce very good results. I 

decided to test two different algorithms with the default Scikit-Learn parameters and 

hyperparameters, each one representing a different category of algorithms. 

Ordinary Least Squares regression (OLS) – Linear regression model 

Commonly known as linear regression, it tries to fit a line which minimises the residual 

sum of squares (RSS) of the input variables (the features) and the output variable (the label). 

The goal is to minimise the sum of the squared differences between the model predictions and 

actual label values. It seeks to identify linear relationship between the output variable with input 

variables. 

Ridge and Lasso regressions – Regularisations 

Also known as shrinking methods, while Lasso penalises the weights of less important 

variables by setting their coefficients to zero, i.e. L1 regularisation, Ridge regression also 

penalises the weights of less important variables, but the coefficients are always greater than 

zero, i.e. L2 regularisation (Géron, 2017). These can be seen as automatic feature selectors, 

especially the Lasso regularisation. 

Classification and Regression Tree (CART) – Regression tree 

Based on simple decision trees, “by learning decision rules inferred from the data 

features” it tries to predict the target variable value (Scikit-Learn, 2019). Respecting a top-down 

framework from a root node, the algorithm uses recursive partitioning, i.e. continuously splits 

the dataset, until no additional information gain results from splitting a node. This algorithm 

can identify non-linear relationships between features and label.  
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Random Forest – Bagging ensemble learning 

The Random Forest ensemble method “builds multiple decision trees and merges them 

together to get a more accurate and stable prediction.” (Géron, 2017). The final output is the 

average of outputs of the several decision trees, that have attributes and features randomly 

selected. By combining several independent learners, i.e. trees, and averaging their prediction, 

the algorithm produces trees with less variance, thus reducing the risk of overfitting the model 

to the training set. 

 

3.2 Data description 

All data was retrieved from transfermarkt.com (Transfermarkt, n.d.). Transfermarkt is a 

digital football platform that provides facts and figures about football and its partakers. Its 

database expands from simple in-game statistics to market values estimations. The provided 

market value estimates start at the 2004/2005 (or 2005) season, but just to specific leagues. 

The data retrieved goes across 14 years, from 2006 to 2019, representing 13 football 

seasons. It is comprised by discrete information, per-season performance data and per-season 

market values estimation of football players. In total, data about 11 340 players from 22 leagues 

(14 European, 5 American and 3 Asian) across 13 seasons was scraped, resulting in a dataset 

with 40 173 records and 67 features. Leagues selection respected the following criteria: country-

wise top division, having a total sum of players market value of at least € 250 million, as of 

September 2019. The leagues used are the top division from The United Kingdom, Spain, 

Germany, Italy, France, Portugal, Russia, The Netherlands, Brazil, Argentina, Belgium, 

Turkey, Austria, Ukraine, Greece, Switzerland, China, Japan, Saudi Arabia, Mexico, The 

United States of America and Colombia. 
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In what regards the dataset’s features, discrete information about players includes their 

nationality, age, height in centimetres, on-field position, on-field main position, preferred foot, 

player’s agent, outfitter (i.e. main sports sponsor), and also the club and national league they 

represented and played during the season. Some of these are categorical variables that suffered 

some transformation, which will be addressed in the following sections. Performance indicators 

are composed by club games, player played games, estimate of the points the club achieved to 

which the player contributed, goals scored, assists for goals made, own goals scored, times it 

got substitute on and off pitch, times it received a yellow, second yellow and red card, penalty 

goals and the total amount of minutes played. These 13 variables are recorded four times in the 

dataset, each time corresponding to different types of competitions, being national league, 

UEFA Champions League (UCL), other international competitions and other competitions. The 

remaining five features are the season in cause, two binary features stating whether the player 

played in the UCL and in other international competitions, and two market values features, 

being previous market value, i.e. at the beginning of the season, and market value, i.e. at the 

end of the season. 

Whilst football players can be divided into four categories according with their playing 

area, being goalkeepers, defenders, midfielders and forwards, due to the characteristics of the 

collected performance data, only midfielders and forwards were analysed. 

 

3.3 Priors, assumptions and data transformations 

While building the dataset, some assumptions were made. If a player played in two 

different clubs or leagues during a season, it was assumed that he only played for the last club 

and league, having the in-game statistics of previous clubs been placed in other competitions. 

Player’s agents and outfitters remain constant over time. The UEFA Champions League and 
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other international competitions have a different weight than other competitions, like national 

cups, so they their observations are not grouped with those competitions. 

In order to use ML algorithms and to improve data quality and appropriateness, some 

mechanisms were employed. Categorical features observations were clustered into small 

groups, since most of these features had many different observations. The initial dataset had 22 

different leagues, 717 clubs, 156 nationalities, 1778 player agents and 16 outfitters. Clubs were 

grouped based on the UEFA Club coefficients ranking for each season: the top five clubs were 

assigned with “UEFA Top 5”, the top six to ten with “UEFA Top 10”, the top 11 to 20 with 

“UEFA Top 20”, while all other clubs were grouped into “Other”. To nationalities, the 

clustering was based on the market value of the corresponding national teams, i.e. country 

squads, as of October 2019: the top 20 nationalities were left untouched, while the outstanding 

ones were categorised as “Other”. Player agents were sorted by the total sum of market values 

of the players the agency represents, having the nomenclature of “Top 5 Agent”, “Top 10 

Agent” and “Top 20 Agent” for the 20 most valuable agencies, “Other” for the remaining 

agencies and “No agent” for null observations. Outfitters were rearranged as “Top Brand” for 

the two most representative brands, “Other” for the outstanding ones and “No outfitter” for null 

observations. Lastly, leagues, foot, on-field position, on-field main position, played UCL and 

played other international competitions did not suffer any kind of transformation. 

 

3.4 Data pre-processing and feature engineering 

Before training any model, descriptive statistics and data visualisation techniques like 

correlation matrixes and distribution plots were produced to access data appropriateness. 

Analysing these provided important insights: some competition-based features (e.g. UCL 

features) were strongly correlated with each other, registering Pearson correlation coefficients 
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above 0.6. Regarding the label “Market value”, only “Previous market value” was highly 

correlated with it, with a correlation coefficient of 0.9. This does not come as a surprise, since 

it is expected that market values suffer from the anchoring cognitive bias of previous 

assessments (Lewicki, Barry and Saunders, 2010). Due to such high correlation, it was decided 

to assess two different scenarios: how ML algorithms would perform on predicting market 

value estimates knowing and not knowing the immediate previous judgment. 

The “Market value” label also displayed high skewness to the right, with a positive skew 

of 7.17. To make the identification of patterns easier and more readable, natural logarithmic 

transformation was applied to the label “Market value”. Graphic 1 shows the effect of the 

applied transformation. 

Graphic 1 – Effect of natural logarithm on Market value 

 

Note: Market value distribution before and after logarithmic transformation, where is possible to see 

that most players have market values under € 10 million. Each bar on the left chart corresponds to a bin 

of € 10 million. 

 

 Additionally, manual feature engineering and selection was performed on the same 

competition-based features. In total, 16 new features were created, four for each type of 

competition (i.e. national league, UCL, other international competition and other competitions), 
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and 36 features were removed, nine for each type of competition. The new features were 

formalised as follows: “Minutes per game” by dividing the amount of minutes by the amount 

of games played, “Points per game” by dividing the amount of points by the amount of games 

played, “Disciplinary points” by combining the amount of yellow and red cards, but attributing 

more weight to red ones, and “Number of substitutions” by summing the times a player got 

substitute on and off. Equations 1, 2, 3 and 4 display the generic formalisation of “Minutes per 

game”, “Points per game”, “Disciplinary points” and “Number of substitutions” respectively. 

 

Equation 1 – Minutes per game formulation 

𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑒𝑟 𝑔𝑎𝑚𝑒 =
𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑

𝐺𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 

 

Equation 2 – Points per game formulation 

𝑃𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑔𝑎𝑚𝑒 =
𝑃𝑜𝑖𝑛𝑡𝑠

𝐺𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 

 

Equation 3 – Disciplinary points formulation 

𝐷𝑖𝑠𝑐𝑖𝑝𝑙𝑖𝑛𝑎𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑌𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑟𝑑𝑠 + (𝑆𝑒𝑐𝑜𝑛𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 𝑐𝑎𝑟𝑑𝑠 + 𝑅𝑒𝑑 𝑐𝑎𝑟𝑑𝑠) ∗ 2 

 

Equation 4 – Number of substitutions formulation 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 = 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 + 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓𝑓 
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 Consequently, most features used to generate the new ones were removed from the 

dataset. With the addition of “Own goals” and “Club games”, the features removed were 

“Minutes played”, “Yellow cards”, “Second yellow cards”, “Red cards”, “Points”, “Substitutes 

on” and “Substitutes off”, for each type of competition. “Own goals” were removed because 

these are misfortunate events that do not affect the assessment of a player quality, and “Club 

games” features were highly correlated with most features from the same competition, not 

providing sufficient new information. Once feature engineering and selection was finalised, the 

dataset was randomly split into two: a training set and a test set. The training set accounted for 

80% of the total dataset, while the test set for 20%. 

Further data transformations had to be executed before applying ML algorithms. These 

transformations include encoding categorical features. To encode categorical variables, the one-

hot-encoding method was chosen. This method replaces the categorical feature with new binary 

features, one for each category (Scikit-Learn, 2019). As example, the “Club” feature had four 

possible categories: “UEFA Top 5”, “UEFA Top 10”, “UEFA Top 20” and “Other”. By 

applying the one-hot-encoding scheme, four new features are created to replace the “Club” 

feature: “Club_UEFA_Top_5”, “Club_UEFA_Top_10”, “Club_UEFA_Top_20” and 

“Club_Other”. For every instance in the dataset, if the “Club” value was “UEFA Top 5”, to 

“Club_UEFA_Top_5” is attributed the value “1”, and to “Club_UEFA_Top_10”, 

“Club_UEFA_Top_20” and “Club_Other” the value “0”. The same process is applied for the 

remaining values of the “Club” feature: “UEFA Top 10”, “UEFA Top 20” and “Other” 

attributed the value of “1” to ““Club_UEFA_Top_10”, “Club_UEFA_Top_20” and 

“Club_Other”, respectively, and “0” for the outstanding three features. By applying the one-

hot-encoding, the nine initial categorical features were replaced by 56 binary features. As a 

result, a total of 111 features composed the transformed dataset. 
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4. Results and Discussion 

The transformed training dataset was fitted in the two algorithms. To assess which one 

is more suitable to the dataset two metrics were selected: Root Mean Square Error (RMSE) and 

Coefficient of determination (R2). Equation 5 and Equation 6 show the mathematical 

expressions of RMSE and R2, respectively. 

Equation 5 – Root Mean Square Error 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑗 − ŷ𝑗)

2
𝑛

𝑗=1

 

 𝑤ℎ𝑒𝑟𝑒, 𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒,   𝑦𝑗 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, ŷ𝑗 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒  

 

Equation 6 – Coefficient of determination 

𝑅2 = 1 −
∑ (𝑦𝑗 − ŷ𝑗)

2𝑛
𝑗=1

∑ (𝑦𝑗 − 𝑦 )
2𝑛

𝑗=1

 

𝑤ℎ𝑒𝑟𝑒, 𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑦𝑗 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, ŷ𝑗 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,  

�̅� = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

While RMSE measures the average difference between the estimate and the real value, 

in the same unit scale (i.e. lower is better), the R2 measures the proportion of variance of the 

target variable explained by the predictor variables (i.e. higher is better). Table 1 summarises 

the findings of applying the two algorithms, using all possible features. The only restriction 

made was on the CART algorithm, imposing early stopping at a depth of 10 nodes. 
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Table 1 – RMSE and R2 scores for the two algorithms, on the first training 

Scenario Algorithm RMSE R2 

Using “Previous 

market value” 

Ordinary Least Squares 0.70 0.73 

Classification and 

Regression Tree 

0.46 0.88 

Not using “Previous 

market value” 

Ordinary Least Squares 0.75 0.69 

Classification and 

Regression Tree 

0.80 0.65 

 

Two main conclusions can be drawn. First, as expected, “Previous market value” has a 

significant impact on the algorithms’ performance. Secondly, the CART decision tree seems to 

be underfitting if “Previous market value” is not used. This is a result of early stopping. If no 

restrictions were made, the CART would most likely overfit the training set. The algorithm 

would have designed a very complex tree that could predict any instance in the training set, 

making it hard to generalised for new data points. 

To assess overfitting in both the OLS and CART algorithms, some mechanisms were 

adopted. To the OLS, two types of regularisations, i.e. shrinking methods, were used and 

computed: Lasso and Ridge regularised regression versions. In what regards the CART, the 

Random Forest bagging ensemble method was select. Table 2 indicates the results of the 

regularisations and Random Forest. 
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Table 2 – RMSE and R2 scores for regularised regressions and Random Forest, on the 

first training 

Scenario Algorithm RMSE R2 

Using “Previous 

market value” 

Lasso Regression 0.93  0.53 

Ridge Regression 0.69 0.73 

Random Forest 0.42 0.91 

Not using “Previous 

market value” 

Lasso Regression 1.07 0.37 

Ridge Regression 0.74 0.69 

Random Forest 0.74 0.70 

 

Based on these metrics, it is possible to see that the regularised linear regression models 

have different performances. Ridge regularisation clearly outperforms the Lasso one, meaning 

that less important variables play a significant role. By the Ridge result, it seems that the OLS 

model is not overfitting the training set. On the other hand, the Random Forest was able to 

outperform the CART algorithm, with the same level of depth, and with 200 estimators, i.e. 

number of trees. 

In order to select the most appropriate model, a 10-fold cross validation evaluation was 

performed. This method randomly splits the training set into 10 distinct subsets, called folds. 

Then it trains and evaluates the models 10 times, picking a different fold for every evaluation 

and training on the other nine folds. The result is an array containing the 10 evaluation scores. 

The measure selected to assess how good the model generalises was the RMSE. Table 3 

displays the results. 
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Table 3 – Results from the 10-fold cross validation 

Scenario Algorithm Mean RMSE 

RMSE Standard 

deviation 

Using “Previous 

market value” 

Ordinary Least Squares 0.70 0.02 

Classification and 

Regression Tree 

0.56 0.01 

Random Forest 0.49 0.01 

Not using “Previous 

market value” 

Ordinary Least Squares 0.75 0.01 

Classification and 

Regression Tree 

0.88 0.01 

Random Forest 0.79 0.01 

 

If “Previous market value” is known, the Random Forest model clearly outperformed, 

on average, the other two models across the 10 folds. If “Previous market value” is unknown, 

the OLS outperformed, on average, the remaining models, but closely followed by the Random 

Forest. Since that there is such a difference in performance in the first scenario, and the standard 

deviations on both settings are similar across the models, the Random Forest was the model 

selected. 

The following step was to fine tune the Random Forest hyperparameters. To perform 

this task, a 10-fold cross-validation grid search was executed. The selection criteria was again 

the RMSE, having the grid two hyperparameters to optimise: the maximum number of features 

the algorithm can consider to find the best split at each node and the number of trees in the 

forest. The proposed values were [10, 50, “auto”] for the maximum features and [100, 200, 500] 

for the number of trees in the forest, where “auto” means all features. All other hyperparameters 
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values remained as the default Scikit-Learn values. Chart 1 shows all the hyperparameters of 

the final proposed tuned model, which result from the 10-fold cross-validation grid search.  

Chart 1 - Random Forest model hyperparameters after tuning 

 

Note: This is a detailed description of the hyperparameters used on the final model. This piece of code 

runs on Python, through the Scikit-Learn library, if instantiated, creating a Random Forest regression 

model. 

 

The final stage was to predict market values on the test set. Results are displayed in 

Table 4. 

Table 4 – Model predictions on the test set metrics 

Scenario Model RMSE 

RMSE 95% 

confidence interval 

R2 

Using “Previous 

market value” 

Random 

Forest 

0.46 [0.45 : 0.47] 0.88 

Not using “Previous 

market value” 

Random 

Forest 

0.68 [0.66 : 0.69] 0.74 

 

RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse', 

max_depth=None, max_features='auto', max_leaf_nodes=None, 

max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, 

n_estimators=500, n_jobs=4, oob_score=False, random_state=42, verbose=0, 

warm_start=False) 
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In both scenarios the Random Forest model registered a good performance on the test 

set. A sample comparison between the predicted and actual market values can be seen in 

Graphic 2. 

Graphic 2 – Comparison between actual and predicted market values 

 

Note: Each number represents a specific player. It is possible to see that in both scenarios the model 

yields proper predictions. To get these predictions in Euros, the natural logarithm transformation had to 

be reverted, by applying its inverse function to the Random Forest outputs. 

 

 Although the predictions consider all features, depending on the situation, the Random 

Forest model attributes different importance to different features to make node decision. Table 

5 and 6 show the top five features and their relative importance to the model, if “Previous 

market value” is known or unknown, respectively. 
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Table 5 – Random Forest feature importance, if previous market value is known 

Feature Importance (%) 

Previous market value 78.38 

Age 3.05 

League Games 2.84 

League Minutes per game 1.37 

League Points per game 1.20 

Note: These are the first features the model looks for to make node local decision. 

 

Table 6 – Random Forest feature importance, if previous market value is unknown 

Feature Importance (%) 

UCL Minutes per game 17.56 

League Games 12.63 

Age 4.97 

League Points per game 4.45 

League Goals 4.32 

Note: These are the first features the model looks for to make node local decision. 

 

4.1 Limitations 

There are two main drawbacks in the dataset, being the frequency of instances and the 

small range of performance features. Instances are annual, meaning that for one player the 

maximum number of observations per season is just one. This situation has to do with the 

frequency to which market values are updated, and also how these updates are made – not all 
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players have their market values updated at the same point in time. Regarding performance 

data, it is strict to offensive (goals and assists), disciplinary display (yellow and red cards) and 

play time (minutes and substitutions). This hindered the possibility of analysing individual 

performance indicators with great detail. Indicators related with other on-field actions like 

passes, tackles and dribbles are expected to increase the robustness of the model. 

 

5. Conclusions 

 This thesis is an end-to-end project that started from identifying possible data feeds 

sources, passed through assembling a dataset from scratch and produce ML supervised models 

capable of predicting football players market values. After completing the whole process, the 

fundamental question still is: can machine learning algorithms predict football players’ market 

values? The answer is not obvious. The proposed model is able to predict market value 

estimates with a coefficient of determination of 0.88 in the test set. Although the model 

decreased its performance on the test set when compared with the results on the training set, if 

previous market value assessments were unknown the model was able par its test and training 

performances. 

 In fact, the key point in this study was to try to explain what can influence the value 

attributed to a football player. The first main conclusion is that what influences the most are 

previous assessments. The market values estimates used in this thesis were crowdsourced-

based. Once a football player is recognised as valuable, the anchoring cognitive bias towards 

that value is activated. 

 Secondly, the model gives more importance to success-based features rather than 

players’ characteristics. Only to age was given a close relative importance as to play time and 

winning games, i.e. points per game. This fact goes into accordance with the colloquial 
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knowledge that many clubs value their players not just on past performance, but also on 

potential future performance, appraising young players as more prone to display such potential 

ability. Yet, it was expected that age would play a larger role, i.e. more relative importance, in 

assessing the value of a player. 

 The last main conclusion is that estimating a player’s market value is not a simple task. 

Other instances like popularity, influence and professionalism were not tackled. For example, 

superstar players cannot just be valued by their on-field performance. These players not only 

exert influence over the fans, but also on the business side of football, e.g. sponsorships. 

Nonetheless, most football players market values do not reach the € 10 million mark. This was 

observed when the skewness of the “Market value” feature was analysed. Although, the high 

transfer fees were the ones that inspired this study, it is crucial for clubs’ management, both on 

the buying and selling side, to effectively establish a threshold, and not rely just on crowdsource 

assessments. 

In what regards the model, two different approaches could be tried to improve it: gather 

more data and better feature selection. Nevertheless, these are hard to implement. Getting access 

to better data its costlier. As previously stated, clubs and sports-data providers collect and have 

access to more granular and diverse data. With such data better feature engineering can be 

achieved, but the level of noisy data also increases. This would imply applying other 

mechanisms, like dimensionality reduction of the dataset. 

Lastly, the applied algorithms have a small level of complexity. Future research should 

focus on using more complex algorithms, like Artificial neural networks (ANN), which could 

achieve better results. Yet, these deep learning algorithms create black-box models, in which 

there is little knowledge on how these models make predictions.  
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7. Appendices

Appendix 1 – Python code used for applying Machine Learning

Standard imports

In [1]:

Import dataset

In [2]:

Dataset information

In [4]:

Number of records = 40173 
Number of variables = 67 

import numpy as np
import pandas as pd
pd.options.mode.chained_assignment = None
pd.options.display.max_columns = 150
pd.options.display.max_rows = 150
pd.options.display.float_format = '{:.3f}'.format
from datetime import datetime
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatter
import seaborn as sns
sns.set()
import scipy
import sklearn
from scipy import stats
np.random.seed(42)

data = pd.read_csv('Final dataset.csv', squeeze=True, index_col=0)

print(f'Number of records = {data.shape[0]}\nNumber of variables = {data.shape[1]}')



In [5]:

Categorical variables

Nationality

List of variables and their data type: 

Season                                      int64 
League                                     object 
Club                                       object 
League Club games                           int64 
League Games                                int64 
League Points                             float64 
League Goals                                int64 
League Assists                              int64 
League Own goals                            int64 
League Subs on                              int64 
League Subs off                             int64 
League Yellow cards                         int64 
League Second yellow cards                  int64 
League Red cards                            int64 
League Penalty goals                        int64 
League Minutes played                       int64 
Height (in cm)                            float64 
Nationality                                object 
Position                                   object 
Main position                              object 
Foot                                       object 
Player agent                               object 
Outfitter                                  object 
Age                                       float64 
Market value                              float64 
Previous market value                     float64 
Other competitions Club games             float64 
Other competitions Games                  float64 
Other competitions Points                 float64 
Other competitions Goals                  float64 
Other competitions Assists                float64 
Other competitions Own goals              float64 
Other competitions Subs on                float64 
Other competitions Subs off               float64 
Other competitions Yellow cards           float64 
Other competitions Second yellow cards    float64 
Other competitions Red cards              float64 
Other competitions Penalty goals          float64 
Other competitions Minutes played         float64 
UCL Club games                            float64 
UCL Games                                 float64 
UCL Points                                float64 
UCL Goals                                 float64 
UCL Assists                               float64 
UCL Own goals                             float64 
UCL Subs on                               float64 
UCL Subs off                              float64 
UCL Yellow cards                          float64 
UCL Second yellow cards                   float64 
UCL Red cards                             float64 
UCL Penalty goals                         float64 
UCL Minutes played                        float64 
Played UCL                                 object 
Other int. comp. Club games               float64 
Other int. comp. Games                    float64 
Other int. comp. Points                   float64 
Other int. comp. Goals                    float64 
Other int. comp. Assists                  float64 
Other int. comp. Own goals                float64 
Other int. comp. Subs on                  float64 
Other int. comp. Subs off                 float64 
Other int. comp. Yellow cards             float64 
Other int. comp. Second yellow cards      float64 
Other int. comp. Red cards                float64 
Other int. comp. Penalty goals            float64 
Other int. comp. Minutes played           float64 
Played Other int. comp.                    object 
dtype: object 

print(f'List of variables and their data type:\n\n{data.dtypes}')



In [6]:

Position

In [7]:

Main position

In [8]:

Foot

In [9]:

Player Agent

Number of categories: 21 

Out[6]: Other          15448 
Brazil          4140 
Argentina       2194 
Spain           1916 
France          1860 
Italy           1715 
Turkey          1630 
Netherlands     1557 
Portugal        1304 
Germany         1208 
Belgium         1146 
England         1065 
Austria         1065 
Colombia        1057 
Switzerland      790 
Serbia           507 
Uruguay          460 
Senegal          380 
Croatia          370 
Denmark          202 
Poland           159 
Name: Nationality, dtype: int64

Number of categories: 2 

Out[7]: Midfielder    21846 
Forward       18327 
Name: Position, dtype: int64

Number of categories: 11 

Out[8]: Centre-Forward        10212 
Defensive Midfield     7226 
Central Midfield       7102 
Attacking Midfield     4765 
Right Winger           3693 
Left Winger            3400 
Left Midfield          1374 
Right Midfield         1318 
Second Striker          958 
Forward                  64 
Midfielder               61 
Name: Main position, dtype: int64

Number of categories: 3 

Out[9]: Right    28840 
Left      7931 
Both      3402 
Name: Foot, dtype: int64

print(f'''Number of categories: {len(np.sort(data['Nationality'].unique()))}''')
data['Nationality'].value_counts()

print(f'''Number of categories: {len(np.sort(data['Position'].unique()))}''')

data['Position'].value_counts()

print(f'''Number of categories: {len(np.sort(data['Main position'].unique()))}''')

data['Main position'].value_counts()

print(f'''Number of categories: {len(np.sort(data['Foot'].unique()))}''')

data['Foot'].value_counts()



In [10]:

Outfitter

In [11]:

League

In [12]:

Club

In [13]:

Played UCL

Number of categories: 5 

Out[10]: Other           22497 
No agent        14956 
Top 20 Agent     1006 
Top 5 Agent       974 
Top 10 Agent      740 
Name: Player agent, dtype: int64

Number of categories: 3 

Out[11]: No outfitter    33806 
Top brand        5379 
Other             988 
Name: Outfitter, dtype: int64

Number of categories: 22 

Out[12]: Serie A                   3116 
Premier League            3051 
LaLiga                    2814 
Ligue 1                   2797 
Süper Lig                 2517 
Bundesliga                2504 
Série A                   2422 
Eredivisie                2262 
Jupiler Pro League        2122 
Liga NOS                  2078 
Premier Liga              1948 
MLS                       1797 
Super League 1            1749 
Liga MX Clausura          1698 
Ukrainian Premier Liga    1521 
Austrian Bundesliga       1285 
Super League              1275 
Chinese Super League       943 
Professional League        789 
Liga Águila II             574 
Superliga                  526 
J1 League                  385 
Name: League, dtype: int64

Number of categories: 4 

Out[13]: Other          37005 
UEFA Top 20     1621 
UEFA Top 10      775 
UEFA Top 5       772 
Name: Club, dtype: int64

print(f'''Number of categories: {len(np.sort(data['Player agent'].unique()))}''')

data['Player agent'].value_counts()

print(f'''Number of categories: {len(np.sort(data['Outfitter'].unique()))}''')

data['Outfitter'].value_counts()

print(f'''Number of categories: {len(np.sort(data['League'].unique()))}''')

data['League'].value_counts()

print(f'''Number of categories: {len(np.sort(data['Club'].unique()))}''')

data['Club'].value_counts()



In [14]:

Played Other int. comp.

In [15]:

Summary of the numerical attributes

Number of categories: 2 

Out[14]: No     35958 
Yes     4215 
Name: Played UCL, dtype: int64

Number of categories: 2 

Out[15]: No     30622 
Yes     9551 
Name: Played Other int. comp., dtype: int64

print(f'''Number of categories: {len(np.sort(data['Played UCL'].unique()))}''')

data['Played UCL'].value_counts()

print(f'''Number of categories: {len(np.sort(data['Played Other int. comp.'].unique()))}''')

data['Played Other int. comp.'].value_counts()



In [16]:

Out[16]:
count mean std min 25% 50% 75% max

Season 40173.000 2013.270 3.816 2006.000 2010.000 2014.000 2017.000 2019.000

League Club games 40173.000 22.441 9.871 1.000 15.000 25.000 31.000 38.000

League Games 40173.000 19.383 10.160 0.000 11.000 20.000 28.000 38.000

League Points 40173.000 28.177 18.057 0.000 14.000 27.020 40.000 99.940

League Goals 40173.000 3.012 4.082 0.000 0.000 2.000 4.000 50.000

League Assists 40173.000 2.132 2.674 0.000 0.000 1.000 3.000 25.000

League Own goals 40173.000 0.016 0.128 0.000 0.000 0.000 0.000 2.000

League Subs on 40173.000 4.698 4.366 0.000 1.000 4.000 7.000 30.000

League Subs off 40173.000 5.555 4.571 0.000 2.000 5.000 8.000 30.000

League Yellow cards 40173.000 2.829 2.657 0.000 1.000 2.000 4.000 18.000

League Second yellow cards 40173.000 0.080 0.291 0.000 0.000 0.000 0.000 5.000

League Red cards 40173.000 0.070 0.269 0.000 0.000 0.000 0.000 3.000

League Penalty goals 40173.000 0.268 0.861 0.000 0.000 0.000 0.000 12.000

League Minutes played 40173.000 1310.431 878.533 0.000 549.000 1242.000 2038.000 3420.000

Height (in cm) 40173.000 179.534 6.179 154.000 175.000 180.000 184.000 203.000

Age 40173.000 25.989 3.993 16.000 23.000 26.000 29.000 42.000

Market value 40173.000 3928344.908 8297998.564 25000.000 600000.000 1500000.000 3750000.000 200000000.000

Previous market value 40173.000 3457459.737 7182414.508 25000.000 500000.000 1200000.000 3500000.000 180000000.000

Other competitions Club games 40173.000 6.953 7.822 0.000 2.000 4.000 9.000 96.000

Other competitions Games 40173.000 6.084 7.084 0.000 1.000 4.000 8.000 89.000

Other competitions Points 40173.000 9.902 11.886 0.000 1.000 6.000 14.000 177.810

Other competitions Goals 40173.000 1.195 2.423 0.000 0.000 0.000 1.000 51.000

Other competitions Assists 40173.000 0.673 1.378 0.000 0.000 0.000 1.000 21.000

Other competitions Own goals 40173.000 0.005 0.070 0.000 0.000 0.000 0.000 3.000

Other competitions Subs on 40173.000 1.454 2.376 0.000 0.000 1.000 2.000 45.000

Other competitions Subs off 40173.000 1.750 2.634 0.000 0.000 1.000 2.000 40.000

Other competitions Yellow cards 40173.000 0.836 1.479 0.000 0.000 0.000 1.000 16.000

Other competitions Second yellow cards 40173.000 0.026 0.169 0.000 0.000 0.000 0.000 4.000

Other competitions Red cards 40173.000 0.027 0.167 0.000 0.000 0.000 0.000 2.000

Other competitions Penalty goals 40173.000 0.106 0.474 0.000 0.000 0.000 0.000 11.000

Other competitions Minutes played 40173.000 420.447 521.482 0.000 90.000 244.000 530.000 6336.000

UCL Club games 40173.000 0.663 2.114 0.000 0.000 0.000 0.000 13.000

UCL Games 40173.000 0.568 1.879 0.000 0.000 0.000 0.000 13.000

UCL Points 40173.000 0.850 3.249 0.000 0.000 0.000 0.000 33.020

UCL Goals 40173.000 0.092 0.568 0.000 0.000 0.000 0.000 17.000

UCL Assists 40173.000 0.068 0.405 0.000 0.000 0.000 0.000 8.000

UCL Own goals 40173.000 0.000 0.019 0.000 0.000 0.000 0.000 1.000

UCL Subs on 40173.000 0.150 0.654 0.000 0.000 0.000 0.000 9.000

UCL Subs off 40173.000 0.161 0.694 0.000 0.000 0.000 0.000 11.000

UCL Yellow cards 40173.000 0.076 0.377 0.000 0.000 0.000 0.000 5.000

UCL Second yellow cards 40173.000 0.002 0.045 0.000 0.000 0.000 0.000 1.000

UCL Red cards 40173.000 0.001 0.031 0.000 0.000 0.000 0.000 1.000

UCL Penalty goals 40173.000 0.007 0.108 0.000 0.000 0.000 0.000 4.000

UCL Minutes played 40173.000 37.740 136.472 0.000 0.000 0.000 0.000 1200.000

Other int. comp. Club games 40173.000 1.277 2.762 0.000 0.000 0.000 0.000 17.000

Other int. comp. Games 40173.000 1.120 2.491 0.000 0.000 0.000 0.000 17.000

Other int. comp. Points 40173.000 1.754 4.462 0.000 0.000 0.000 0.000 46.070

Other int. comp. Goals 40173.000 0.177 0.723 0.000 0.000 0.000 0.000 17.000

Other int. comp. Assists 40173.000 0.123 0.517 0.000 0.000 0.000 0.000 9.000

Other int. comp. Own goals 40173.000 0.001 0.028 0.000 0.000 0.000 0.000 1.000

Other int. comp. Subs on 40173.000 0.286 0.868 0.000 0.000 0.000 0.000 12.000

Other int. comp. Subs off 40173.000 0.321 0.935 0.000 0.000 0.000 0.000 13.000

Other int. comp. Yellow cards 40173.000 0.157 0.531 0.000 0.000 0.000 0.000 7.000

Other int. comp. Second yellow cards 40173.000 0.005 0.070 0.000 0.000 0.000 0.000 2.000

data.describe().transpose()



In [17]:

In [18]:

count mean std min 25% 50% 75% max

Other int. comp. Red cards 40173.000 0.004 0.063 0.000 0.000 0.000 0.000 1.000

Other int. comp. Penalty goals 40173.000 0.013 0.136 0.000 0.000 0.000 0.000 4.000

Other int. comp. Minutes played 40173.000 75.319 181.241 0.000 0.000 0.000 0.000 1336.000

distributions = data.hist(figsize=(25,25))

plt.show()

correlations = data.corr()



In [19]:

Out[19]: Text(0.5, 1, 'Correlation Matrix')

sns.set(rc={'figure.figsize':(25,15)})
sns.set(font_scale=1.5)

mask = np.zeros_like(correlations, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

ax = sns.heatmap(correlations, cmap='Blues', yticklabels=correlations.index,
                 xticklabels=correlations.columns)

ax.set_yticklabels(ax.get_yticklabels(), rotation = 0, fontsize = 10)
ax.set_xticklabels(ax.get_xticklabels(), rotation = 90, fontsize = 10)

ax.set_title('Correlation Matrix', fontsize = 25)



In [20]:

In [21]:

Out[20]: Market value                              1.000 
Previous market value                     0.901 
UCL Points                                0.567 
UCL Minutes played                        0.566 
UCL Games                                 0.548 
UCL Goals                                 0.541 
UCL Club games                            0.519 
UCL Assists                               0.469 
League Points                             0.433 
UCL Subs off                              0.425 
League Goals                              0.394 
League Assists                            0.360 
UCL Yellow cards                          0.354 
League Minutes played                     0.286 
UCL Penalty goals                         0.281 
League Games                              0.276 
League Club games                         0.242 
UCL Subs on                               0.241 
League Penalty goals                      0.212 
League Subs off                           0.173 
Other int. comp. Goals                    0.131 
Other int. comp. Points                   0.127 
Other int. comp. Assists                  0.123 
League Yellow cards                       0.119 
Other int. comp. Minutes played           0.116 
Other int. comp. Games                    0.107 
Other int. comp. Club games               0.097 
Other int. comp. Subs off                 0.086 
Season                                    0.084 
Other competitions Assists                0.082 
UCL Second yellow cards                   0.074 
Other int. comp. Yellow cards             0.071 
Other int. comp. Penalty goals            0.064 
Other competitions Goals                  0.052 
UCL Red cards                             0.047 
Other competitions Penalty goals          0.035 
Other int. comp. Subs on                  0.034 
League Red cards                          0.028 
UCL Own goals                             0.027 
Other competitions Points                 0.022 
League Own goals                          0.020 
Other int. comp. Red cards                0.012 
Other int. comp. Second yellow cards      0.012 
Height (in cm)                            0.011 
League Second yellow cards                0.011 
Other int. comp. Own goals                0.007 
Other competitions Own goals             -0.005 
Other competitions Red cards             -0.009 
Other competitions Second yellow cards   -0.012 
Age                                      -0.014 
Other competitions Minutes played        -0.017 
League Subs on                           -0.021 
Other competitions Yellow cards          -0.027 
Other competitions Subs off              -0.028 
Other competitions Games                 -0.029 
Other competitions Subs on               -0.039 
Other competitions Club games            -0.040 
Name: Market value, dtype: float64

Out[21]:

Season
League

Club
games

League
Games

League
Points

League
Goals

League
Assists

League
Own

goals

League
Subs

on

League
Subs

off

League
Yellow
cards

League
Second
yellow
cards

League
Red

cards

League
Penalty

goals

League
Minutes

played

Heig
(

cm

Season 1.000 -0.015 -0.074 -0.053 -0.025 -0.012 -0.003 -0.004 -0.024 -0.059 -0.038 -0.036 0.007 -0.072 -0.03

League
Club games -0.015 1.000 0.914 0.773 0.412 0.453 0.063 0.324 0.568 0.501 0.097 0.083 0.189 0.790 0.03

League
Games -0.074 0.914 1.000 0.844 0.512 0.548 0.072 0.180 0.631 0.586 0.123 0.107 0.248 0.932 0.02

League
Points -0.053 0.773 0.844 1.000 0.541 0.598 0.058 0.147 0.548 0.471 0.087 0.078 0.247 0.787 0.01

League
Goals -0.025 0.412 0.512 0.541 1.000 0.522 0.023 -0.046 0.393 0.200 0.010 0.063 0.572 0.531 0.08

League 0 012 0 453 0 548 0 598 0 522 1 000 0 018 0 058 0 435 0 259 0 024 0 051 0 286 0 568 0 05

correlations['Market value'].sort_values(ascending=False)

correlations



In [22]:

Feature engineering

Minutes per game

In [23]:

Points per game played

Out[22]: UCL Own goals                            51.724 
Other int. comp. Own goals               35.391 
UCL Red cards                            32.049 
UCL Second yellow cards                  22.067 
UCL Penalty goals                        19.374 
Other competitions Own goals             16.472 
Other int. comp. Red cards               15.751 
Other int. comp. Second yellow cards     15.009 
Other int. comp. Penalty goals           12.477 
UCL Goals                                10.351 
UCL Assists                               8.519 
League Own goals                          8.193 
Other competitions Second yellow cards    7.404 
Market value                              7.172 
Previous market value                     6.951 
Other competitions Penalty goals          6.950 
Other competitions Red cards              6.510 
Other int. comp. Goals                    6.431 
UCL Yellow cards                          6.106 
Other int. comp. Assists                  5.986 
UCL Subs off                              5.635 
UCL Subs on                               5.606 
UCL Points                                4.747 
League Penalty goals                      4.504 
Other competitions Goals                  4.328 
Other int. comp. Yellow cards             4.286 
UCL Minutes played                        4.191 
Other int. comp. Subs on                  4.095 
League Red cards                          3.943 
Other int. comp. Subs off                 3.933 
League Second yellow cards                3.890 
UCL Games                                 3.600 
Other competitions Assists                3.570 
UCL Club games                            3.352 
Other int. comp. Points                   3.211 
Other competitions Subs on                3.083 
Other competitions Yellow cards           2.940 
Other int. comp. Minutes played           2.932 
Other competitions Subs off               2.818 
Other int. comp. Games                    2.509 
League Goals                              2.490 
Other int. comp. Club games               2.325 
Other competitions Minutes played         2.282 
Other competitions Points                 2.160 
Other competitions Games                  2.015 
League Assists                            1.944 
Other competitions Club games             1.885 
League Subs on                            1.178 
League Yellow cards                       1.129 
League Subs off                           0.952 
League Points                             0.471 
Age                                       0.288 
League Minutes played                     0.223 
Height (in cm)                           -0.050 
Season                                   -0.217 
League Games                             -0.218 
League Club games                        -0.457 
dtype: float64

data.skew().sort_values(ascending=False)

data['League Minutes per game'] = ((data['League Minutes played']) /
                                     (data['League Games']))

data['UCL Minutes per game'] = ((data['UCL Minutes played']) /
                                  (data['UCL Games']))

data['Other int. comp. Minutes per game'] = ((data['Other int. comp. Minutes played']) /
                                               (data['Other int. comp. Games']))

data['Other competitions Minutes per game'] = ((data['Other competitions Minutes played']) /
                                                 (data['Other competitions Games']))



In [24]:

Disciplinary points

In [25]:

Number of substitutions

In [26]:

Drop features used to compute other features

In [27]:

data['League Points per game'] = data['League Points'] / data['League Games']
data['UCL Points per game'] = data['UCL Points'] / data['UCL Games']
data['Other int. comp. Points per game'] = data['Other int. comp. Points'] / data['Other int. comp. Games']
data['Other competitions Points per game'] = data['Other competitions Points'] / data['Other competitions Games']

data['League Red cards'] = data['League Red cards'] + data['League Second yellow cards']
data['League Disciplinary points'] = data['League Yellow cards'] + data['League Red cards']*2

data['UCL Red cards'] = data['UCL Red cards'] + data['UCL Second yellow cards']
data['UCL Disciplinary points'] = data['UCL Yellow cards'] + data['UCL Red cards']*2

data['Other int. comp. Red cards'] = (data['Other int. comp. Red cards'] +
                                      data['Other int. comp. Second yellow cards'])

data['Other int. comp. Disciplinary points'] = (data['Other int. comp. Yellow cards'] +
                                                data['Other int. comp. Red cards']*2)

data['Other competitions Red cards'] = (data['Other competitions Red cards'] +
                                        data['Other competitions Second yellow cards'])

data['Other competitions Disciplinary points'] = (data['Other competitions Yellow cards'] +
                                                  data['Other competitions Red cards']*2)

data['League Substitutions'] = data['League Subs on'] + data['League Subs off']

data['UCL Substitutions'] = data['UCL Subs on'] + data['UCL Subs off']

data['Other int. comp. Substitutions'] = (data['Other int. comp. Subs on'] +
                                          data['Other int. comp. Subs off'])

data['Other competitions Substitutions'] = (data['Other competitions Subs on'] +
                                            data['Other competitions Subs off'])

data.drop(['League Club games','UCL Club games','Other int. comp. Club games',
           'Other competitions Club games'], axis=1, inplace=True)

data.drop(['League Second yellow cards', 'UCL Second yellow cards',
           'Other int. comp. Second yellow cards',
           'Other competitions Second yellow cards'], axis=1, inplace=True)

data.drop(['League Yellow cards', 'UCL Yellow cards',
           'Other int. comp. Yellow cards',
           'Other competitions Yellow cards'], axis=1, inplace=True)

data.drop(['League Red cards', 'UCL Red cards',
           'Other int. comp. Red cards',
           'Other competitions Red cards'], axis=1, inplace=True)

data.drop(['League Subs on', 'League Subs off', 'UCL Subs on', 'UCL Subs off',
           'Other int. comp. Subs on', 'Other int. comp. Subs off',
           'Other competitions Subs on', 'Other competitions Subs off',], axis=1, inplace=True)

data.drop(['League Own goals', 'UCL Own goals',
           'Other int. comp. Own goals',
           'Other competitions Own goals'], axis=1, inplace=True)

data.drop(['League Points', 'UCL Points',
           'Other int. comp. Points',
           'Other competitions Points'], axis=1, inplace=True)

data.drop(['League Minutes played', 'UCL Minutes played',
           'Other int. comp. Minutes played',
           'Other competitions Minutes played'], axis=1, inplace=True)

data.fillna(0, inplace=True)



In [28]:

Out[28]: Text(0.5, 1, 'Correlation Matrix')

correlations = data.corr()
sns.set(rc={'figure.figsize':(25,15)})
sns.set(font_scale=1.5)

mask = np.zeros_like(correlations, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

ax = sns.heatmap(correlations, cmap='Blues', mask=mask, yticklabels=correlations.index,
                 xticklabels=correlations.columns)

ax.set_yticklabels(ax.get_yticklabels(), rotation = 0, fontsize = 10)
ax.set_xticklabels(ax.get_xticklabels(), rotation = 90, fontsize = 10)

ax.set_title('Correlation Matrix', fontsize = 25)



In [29]:

In [30]:

Prepare data for Machine Learning algorithms

Out[29]: Market value                              1.000 
Previous market value                     0.901 
UCL Games                                 0.548 
UCL Goals                                 0.541 
UCL Minutes per game                      0.495 
UCL Points per game                       0.478 
UCL Assists                               0.469 
UCL Substitutions                         0.402 
League Goals                              0.394 
League Assists                            0.360 
UCL Disciplinary points                   0.353 
UCL Penalty goals                         0.281 
League Games                              0.276 
League Points per game                    0.272 
League Penalty goals                      0.212 
League Minutes per game                   0.188 
Other competitions Points per game        0.145 
Other int. comp. Points per game          0.135 
Other int. comp. Goals                    0.131 
Other int. comp. Assists                  0.123 
League Disciplinary points                0.115 
Other int. comp. Minutes per game         0.114 
Other competitions Minutes per game       0.110 
Other int. comp. Games                    0.107 
League Substitutions                      0.106 
Season                                    0.084 
Other competitions Assists                0.082 
Other int. comp. Substitutions            0.074 
Other int. comp. Disciplinary points      0.070 
Other int. comp. Penalty goals            0.064 
Other competitions Goals                  0.052 
Other competitions Penalty goals          0.035 
Height (in cm)                            0.011 
Age                                      -0.014 
Other competitions Disciplinary points   -0.028 
Other competitions Games                 -0.029 
Other competitions Substitutions         -0.039 
Name: Market value, dtype: float64

Out[30]: Season                                    1 
League Games                              1 
League Goals                              1 
League Assists                            1 
League Penalty goals                      1 
Height (in cm)                            1 
Age                                       1 
Market value                              2 
Previous market value                     2 
Other competitions Games                  2 
Other competitions Goals                  1 
Other competitions Assists                1 
Other competitions Penalty goals          1 
UCL Games                                 4 
UCL Goals                                 1 
UCL Assists                               1 
UCL Penalty goals                         1 
Other int. comp. Games                    4 
Other int. comp. Goals                    1 
Other int. comp. Assists                  1 
Other int. comp. Penalty goals            1 
League Minutes per game                   1 
UCL Minutes per game                      3 
Other int. comp. Minutes per game         3 
Other competitions Minutes per game       1 
League Points per game                    1 
UCL Points per game                       4 
Other int. comp. Points per game          3 
Other competitions Points per game        1 
League Disciplinary points                1 
UCL Disciplinary points                   1 
Other int. comp. Disciplinary points      1 
Other competitions Disciplinary points    1 
League Substitutions                      1 
UCL Substitutions                         3 
Other int. comp. Substitutions            2 
Other competitions Substitutions          2 
dtype: int64

correlations['Market value'].sort_values(ascending=False)

(correlations > abs(.7)).sum()



In [31]:

Machine Learning

Create a Traning and Test Set

In [32]:

Handling Categorical Attributes

fig, axs = plt.subplots(1, 2, figsize=(17,6), sharey=False)
plt.subplots_adjust(wspace=.5, hspace=.5)

axs[0].hist(data['Market value'], bins=20)
axs[0].set_title('Market value')
axs[0].set_xlabel('Value (in €)')
axs[0].ticklabel_format(axis='both', style='plain')
axs[0].set_ylabel('Players count')

axs[1].hist(np.log(data['Market value']), bins=20)
axs[1].set_title('Natural logarithm of Market value')
axs[1].set_ylabel('Players count')
axs[1].set_xlabel('Value (in ln (€))')

def millions(x, pos):
    if x != 0:
        return '%1.1fM' % (x*1e-6)
    else:
        return x
formatter = FuncFormatter(millions)

axs[0].xaxis.set_major_formatter(formatter)

from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(data, test_size=0.2, random_state=42)

# ln(Market value) as label, using previous market value as feature
ln_mkwp_x_train = train_set.drop(['Market value'], axis=1).copy()
ln_mkwp_y_train = np.log(train_set['Market value'].copy())

ln_mkwp_x_test = test_set.drop(['Market value'], axis=1).copy()
ln_mkwp_y_test = np.log(test_set['Market value'].copy())

# ln(Market value) as label, not using previous market value as feature
ln_mknp_x_train = train_set.drop(['Market value', 'Previous market value'], axis=1).copy()
ln_mknp_y_train = np.log(train_set['Market value'].copy())

ln_mknp_x_test = test_set.drop(['Market value', 'Previous market value'], axis=1).copy()
ln_mknp_y_test = np.log(test_set['Market value'].copy())



In [34]:

Pipeline - Categorical encoder

In [35]:

In [36]:

# ln(Market value) as label, using previous market value as feature
ln_mkwp = data.copy().drop('Market value', axis=1)
ln_mkwp_cat = ln_mkwp[['Nationality', 'Position', 'Main position', 'Foot', 'Player agent',
                       'Outfitter', 'League', 'Club', 'Played UCL', 'Played Other int. comp.']]

ln_mkwp_num = ln_mkwp.drop(['Nationality', 'Position', 'Main position', 'Foot', 'Player agent',
                         'Outfitter', 'League', 'Club', 'Played UCL', 'Played Other int. comp.'], axis=1)

# ln(Market value) as label, not using previous market value as feature
ln_mknp = data.copy().drop('Market value', axis=1)
ln_mknp_cat = ln_mknp[['Nationality', 'Position', 'Main position', 'Foot', 'Player agent',
                       'Outfitter', 'League', 'Club', 'Played UCL', 'Played Other int. comp.']]

ln_mknp_num = ln_mknp.drop(['Nationality', 'Position', 'Main position', 'Foot', 'Player agent',
                            'Outfitter', 'League', 'Club', 'Played UCL', 'Played Other int. comp.',
                            'Previous market value'], axis=1)

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer

# Create a class to select numerical or categorical columns 
class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values

def num_pipeline(num_attribs):
    return Pipeline([
        ('selector', DataFrameSelector(list(num_attribs)))
         ])

def cat_pipeline(cat_attribs):
    return Pipeline([
        ('selector', DataFrameSelector(cat_attribs)),
        ('cat_encoder', OneHotEncoder(sparse=False))
    ])

# ln(Market value) as label, using previous market value as feature
ln_mkwp_pipeline = ColumnTransformer([
        ('num', num_pipeline(ln_mkwp_num), list(ln_mkwp_num)),
        ('cat', OneHotEncoder(sparse=False), list(ln_mkwp_cat)),
    ])

ln_mkwp_x_train_prepared = ln_mkwp_pipeline.fit_transform(ln_mkwp_x_train)
ln_mkwp_x_test_prepared = ln_mkwp_pipeline.fit_transform(ln_mkwp_x_test)

# ln(Market value) as label, not using previous market value as feature
ln_mknp_pipeline = ColumnTransformer([
        ('num', num_pipeline(ln_mknp_num), list(ln_mknp_num)),
        ('cat', OneHotEncoder(sparse=False), list(ln_mknp_cat)),
    ])

ln_mknp_x_train_prepared = ln_mknp_pipeline.fit_transform(ln_mknp_x_train)
ln_mknp_x_test_prepared = ln_mknp_pipeline.fit_transform(ln_mknp_x_test)



In [37]:

Training and Evaluating on the Training Set

Ordinary least squares Linear Regression

In [38]:

If "Previous market value" is known: 
Before encoding categorical variables: 
Number of records = 40173  
Number of features = 46 

After encoding categorical variables: 
Number of records = 40173  
Number of features = 111 

If "Previous market value" is not known: 
Before encoding categorical variables: 
Number of records = 40173  
Number of features = 45 

After encoding categorical variables: 
Number of records = 40173  
Number of features = 110 

 
 
ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 0.6962617343485532  
LNMKWP R2 = 0.734262006215131 
 
 
ln(Market value) as label, not using previous market value as feature 
LNMKNP RMSE = 0.7499200606145551  
LNMKNP R2 = 0.691724834654293 

print('If "Previous market value" is known:')
print(f'Before encoding categorical variables:',
      f'\nNumber of records = {ln_mkwp_x_train.shape[0] + ln_mkwp_x_test.shape[0]}',
      f'\nNumber of features = {ln_mkwp_x_train.shape[1]}')

print(f'\nAfter encoding categorical variables:',
      f'\nNumber of records = {ln_mkwp_x_train_prepared.shape[0] + ln_mkwp_x_test_prepared.shape[0]}',
      f'\nNumber of features = {ln_mkwp_x_train_prepared.shape[1]}\n\n')

print('If "Previous market value" is not known:')
print(f'Before encoding categorical variables:',
      f'\nNumber of records = {ln_mknp_x_train.shape[0] + ln_mknp_x_test.shape[0]}',
      f'\nNumber of features = {ln_mknp_x_train.shape[1]}')

print(f'\nAfter encoding categorical variables:',
      f'\nNumber of records = {ln_mknp_x_train_prepared.shape[0] + ln_mknp_x_test_prepared.shape[0]}',
      f'\nNumber of features = {ln_mknp_x_train_prepared.shape[1]}')

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error as MSE
from sklearn.metrics import r2_score as R2

#ln(Market value) as label, using previous market value as feature
ln_mkwp_lin_reg = LinearRegression(fit_intercept=True, n_jobs=-1)
ln_mkwp_lin_reg.fit(ln_mkwp_x_train_prepared, ln_mkwp_y_train.values)

ln_mkwp_train_lin_predictions = ln_mkwp_lin_reg.predict(ln_mkwp_x_train_prepared)
ln_mkwp_lin_mse = MSE(ln_mkwp_y_train, ln_mkwp_train_lin_predictions)
ln_mkwp_lin_rmse = np.sqrt(ln_mkwp_lin_mse)
ln_mkwp_lin_r2 = R2(ln_mkwp_y_train, ln_mkwp_train_lin_predictions)

print('ln(Market value) as label, using previous market value as feature',
      '\nLNMKWP RMSE =', ln_mkwp_lin_rmse, '\nLNMKWP R2 =', ln_mkwp_lin_r2)

#ln(Market value) as label, not using previous market value as feature
ln_mknp_lin_reg = LinearRegression(fit_intercept=True, n_jobs=-1)
ln_mknp_lin_reg.fit(ln_mknp_x_train_prepared, ln_mknp_y_train.values)

ln_mknp_train_lin_predictions = ln_mknp_lin_reg.predict(ln_mknp_x_train_prepared)
ln_mknp_lin_mse = MSE(ln_mknp_y_train, ln_mknp_train_lin_predictions)
ln_mknp_lin_rmse = np.sqrt(ln_mknp_lin_mse)
ln_mknp_lin_r2 = R2(ln_mknp_y_train, ln_mknp_train_lin_predictions)

print('\n\nln(Market value) as label, not using previous market value as feature',
      '\nLNMKNP RMSE =', ln_mknp_lin_rmse, '\nLNMKNP R2 =', ln_mknp_lin_r2)



Ridge

In [40]:

Lasso

In [41]:

ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 0.6962620409366952  
LNMKWP R2 = 0.7342617721878056 
 
 
ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 0.7499204066552911  
LNMKWP R2 = 0.6917245501551967 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_ridge.py:148: LinAlgWarning: Ill-conditioned matrix 
(rcond=5.95093e-19): result may not be accurate. 
  overwrite_a=True).T 

ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 0.9298130751035072  
LNMKWP R2 = 0.5260856112290235 
 
 
ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 1.07364970194343  
LNMKWP R2 = 0.3681211594901228 

from sklearn.linear_model import Ridge

#ln(Market value) as label, using previous market value as feature
ln_mkwp_rid_reg = Ridge(random_state=42)
ln_mkwp_rid_reg.fit(ln_mkwp_x_train_prepared, ln_mkwp_y_train.values)

ln_mkwp_rid_predictions = ln_mkwp_rid_reg.predict(ln_mkwp_x_train_prepared)
ln_mkwp_rid_mse = MSE(ln_mkwp_y_train, ln_mkwp_rid_predictions)
ln_mkwp_rid_rmse = np.sqrt(ln_mkwp_rid_mse)
ln_mkwp_rid_r2 = R2(ln_mkwp_y_train, ln_mkwp_rid_predictions)

print('ln(Market value) as label, using previous market value as feature',
      '\nLNMKWP RMSE =', ln_mkwp_rid_rmse, '\nLNMKWP R2 =', ln_mkwp_rid_r2)

#ln(Market value) as label, not using previous market value as feature
ln_mknp_rid_reg = Ridge(random_state=42)
ln_mknp_rid_reg.fit(ln_mknp_x_train_prepared, ln_mknp_y_train.values)

ln_mknp_rid_predictions = ln_mknp_rid_reg.predict(ln_mknp_x_train_prepared)
ln_mknp_rid_mse = MSE(ln_mknp_y_train, ln_mknp_rid_predictions)
ln_mknp_rid_rmse = np.sqrt(ln_mknp_rid_mse)
ln_mknp_rid_r2 = R2(ln_mknp_y_train, ln_mknp_rid_predictions)

print('\n\nln(Market value) as label, using previous market value as feature',
      '\nLNMKWP RMSE =', ln_mknp_rid_rmse, '\nLNMKWP R2 =', ln_mknp_rid_r2)

from sklearn.linear_model import Lasso

#ln(Market value) as label, using previous market value as feature
ln_mkwp_las_reg = Lasso(random_state=42)
ln_mkwp_las_reg.fit(ln_mkwp_x_train_prepared, ln_mkwp_y_train.values)

ln_mkwp_las_predictions = ln_mkwp_las_reg.predict(ln_mkwp_x_train_prepared)
ln_mkwp_las_mse = MSE(ln_mkwp_y_train, ln_mkwp_las_predictions)
ln_mkwp_las_rmse = np.sqrt(ln_mkwp_las_mse)
ln_mkwp_las_r2 = R2(ln_mkwp_y_train, ln_mkwp_las_predictions)

print('ln(Market value) as label, using previous market value as feature',
      '\nLNMKWP RMSE =', ln_mkwp_las_rmse, '\nLNMKWP R2 =', ln_mkwp_las_r2)

#ln(Market value) as label, not using previous market value as feature
ln_mknp_las_reg = Lasso(random_state=42)
ln_mknp_las_reg.fit(ln_mknp_x_train_prepared, ln_mknp_y_train.values)

ln_mknp_las_predictions = ln_mknp_las_reg.predict(ln_mknp_x_train_prepared)
ln_mknp_las_mse = MSE(ln_mknp_y_train, ln_mknp_las_predictions)
ln_mknp_las_rmse = np.sqrt(ln_mknp_las_mse)
ln_mknp_las_r2 = R2(ln_mknp_y_train, ln_mknp_las_predictions)

print('\n\nln(Market value) as label, using previous market value as feature',
      '\nLNMKWP RMSE =', ln_mknp_las_rmse, '\nLNMKWP R2 =', ln_mknp_las_r2)



CART Decision Tree

In [43]:

Ensamble methods

Random Forrest

ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 0.45934642552104377  
LNMKWP R2 = 0.8843383777935785 
 
 
ln(Market value) as label, not using previous market value as feature 
LNMKNP RMSE = 0.7983320649414579  
LNMKNP R2 = 0.6506379374829665 

from sklearn import tree

#ln(Market value) as label, using previous market value as feature
ln_mkwp_tree = tree.DecisionTreeRegressor(criterion='mse', splitter='best', max_depth=10, random_state=42)
ln_mkwp_tree.fit(ln_mkwp_x_train_prepared, ln_mkwp_y_train.values)

ln_mkwp_train_tree_predictions = ln_mkwp_tree.predict(ln_mkwp_x_train_prepared)
ln_mkwp_tree_mse = MSE(ln_mkwp_y_train, ln_mkwp_train_tree_predictions)
ln_mkwp_tree_rmse = np.sqrt(ln_mkwp_tree_mse)
ln_mkwp_tree_r2 = R2(ln_mkwp_y_train, ln_mkwp_train_tree_predictions)

print('ln(Market value) as label, using previous market value as feature',
      '\nLNMKWP RMSE =', ln_mkwp_tree_rmse, '\nLNMKWP R2 =', ln_mkwp_tree_r2)

#ln(Market value) as label, not using previous market value as feature
ln_mknp_tree = tree.DecisionTreeRegressor(criterion='mse', splitter='best', max_depth=10, random_state=42)
ln_mknp_tree.fit(ln_mknp_x_train_prepared, ln_mknp_y_train.values)

ln_mknp_train_tree_predictions = ln_mknp_tree.predict(ln_mknp_x_train_prepared)
ln_mknp_tree_mse = MSE(ln_mknp_y_train, ln_mknp_train_tree_predictions)
ln_mknp_tree_rmse = np.sqrt(ln_mknp_tree_mse)
ln_mknp_tree_r2 = R2(ln_mknp_y_train, ln_mknp_train_tree_predictions)

print('\n\nln(Market value) as label, not using previous market value as feature',
      '\nLNMKNP RMSE =', ln_mknp_tree_rmse, '\nLNMKNP R2 =', ln_mknp_tree_r2)



In [47]:

Model Comparison - K-folds validation

In [48]:

In [51]:

ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 0.4162896656762193  
LNMKWP R2 = 0.9050051948522376 
 
 
ln(Market value) as label, not using previous market value as feature 
LNMKNP RMSE = 0.7379027191300592  
LNMKNP R2 = 0.7015257853142046 

Out[51]:
Algorithm Mean RMSE RMSE Standard deviation

0 OLS 0.699 0.017

1 CART 0.557 0.006

2 Random Forest 0.489 0.009

from sklearn.ensemble import RandomForestRegressor

#ln(Market value) as label, using previous market value as feature
ln_mkwp_forest = RandomForestRegressor(n_estimators=200, criterion='mse', max_depth=10, oob_score=True,
                                      random_state=42, n_jobs=4)
ln_mkwp_forest.fit(ln_mkwp_x_train_prepared, ln_mkwp_y_train.values)

ln_mkwp_train_forest_predictions = ln_mkwp_forest.predict(ln_mkwp_x_train_prepared)
ln_mkwp_forest_mse = MSE(ln_mkwp_y_train, ln_mkwp_train_forest_predictions)
ln_mkwp_forest_rmse = np.sqrt(ln_mkwp_forest_mse)
ln_mkwp_forest_r2 = R2(ln_mkwp_y_train, ln_mkwp_train_forest_predictions)

print('ln(Market value) as label, using previous market value as feature',
      '\nLNMKWP RMSE =', ln_mkwp_forest_rmse, '\nLNMKWP R2 =', ln_mkwp_forest_r2)

#ln(Market value) as label, not using previous market value as feature
ln_mknp_forest = RandomForestRegressor(n_estimators=200, criterion='mse', max_depth=10, oob_score=True,
                                      random_state=42, n_jobs=4)
ln_mknp_forest.fit(ln_mknp_x_train_prepared, ln_mknp_y_train.values)

ln_mknp_train_forest_predictions = ln_mknp_forest.predict(ln_mknp_x_train_prepared)
ln_mknp_forest_mse = MSE(ln_mknp_y_train, ln_mknp_train_forest_predictions)
ln_mknp_forest_rmse = np.sqrt(ln_mknp_forest_mse)
ln_mknp_forest_r2 = R2(ln_mknp_y_train, ln_mknp_train_forest_predictions)

print('\n\nln(Market value) as label, not using previous market value as feature',
      '\nLNMKNP RMSE =', ln_mknp_forest_rmse, '\nLNMKNP R2 =', ln_mknp_forest_r2)

from sklearn.model_selection import cross_val_score

#ln(Market value) as label, using previous market value as feature
ln_mkwp_lin_reg_scores = cross_val_score(ln_mkwp_lin_reg, ln_mkwp_x_train_prepared, ln_mkwp_y_train.values,
                               scoring=('neg_mean_squared_error'), cv=10, n_jobs=4)

ln_mkwp_tree_scores = cross_val_score(ln_mkwp_tree, ln_mkwp_x_train_prepared, ln_mkwp_y_train.values,
                               scoring=('neg_mean_squared_error'), cv=10, n_jobs=4)

ln_mkwp_forest_scores = cross_val_score(ln_mkwp_forest, ln_mkwp_x_train_prepared, ln_mkwp_y_train.values,
                               scoring=('neg_mean_squared_error'), cv=10, n_jobs=4)

ln_mkwp_lin_reg_cv_mean_rmse = np.sqrt(-ln_mkwp_lin_reg_scores).mean()
ln_mkwp_tree_cv_mean_rmse = np.sqrt(-ln_mkwp_tree_scores).mean()
ln_mkwp_forest_cv_mean_rmse = np.sqrt(-ln_mkwp_forest_scores).mean()

ln_mkwp_lin_reg_cv_std_rmse = np.sqrt(-ln_mkwp_lin_reg_scores).std()
ln_mkwp_tree_cv_std_rmse = np.sqrt(-ln_mkwp_tree_scores).std()
ln_mkwp_forest_cv_std_rmse = np.sqrt(-ln_mkwp_forest_scores).std()

ln_mkwp_cv_metrics = {'Algorithm' : ['OLS', 'CART', 'Random Forest'],
                      'Mean RMSE': [ln_mkwp_lin_reg_cv_mean_rmse,
                                    ln_mkwp_tree_cv_mean_rmse,
                                    ln_mkwp_forest_cv_mean_rmse],
                      'RMSE Standard deviation':[ln_mkwp_lin_reg_cv_std_rmse,
                                                 ln_mkwp_tree_cv_std_rmse,
                                                 ln_mkwp_forest_cv_std_rmse]}

pd.DataFrame(ln_mkwp_cv_metrics)



In [53]:

Tunning models - Grid Search

Random Forest

In [56]:

In [58]:

In [60]:

Out[53]:
Algorithm Mean RMSE RMSE Standard deviation

0 OLS 0.752 0.012

1 CART 0.880 0.012

2 Random Forest 0.794 0.009

Out[58]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse', 
                      max_depth=None, max_features=50, max_leaf_nodes=None, 
                      max_samples=None, min_impurity_decrease=0.0, 
                      min_impurity_split=None, min_samples_leaf=1, 
                      min_samples_split=2, min_weight_fraction_leaf=0.0, 
                      n_estimators=500, n_jobs=None, oob_score=False, 
                      random_state=42, verbose=0, warm_start=False)

Out[60]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse', 
                      max_depth=None, max_features=50, max_leaf_nodes=None, 
                      max_samples=None, min_impurity_decrease=0.0, 
                      min_impurity_split=None, min_samples_leaf=1, 
                      min_samples_split=2, min_weight_fraction_leaf=0.0, 
                      n_estimators=500, n_jobs=None, oob_score=False, 
                      random_state=42, verbose=0, warm_start=False)

#ln(Market value) as label, not using previous market value as feature
ln_mknp_lin_reg_scores = cross_val_score(ln_mknp_lin_reg, ln_mknp_x_train_prepared, ln_mknp_y_train.values,
                               scoring=('neg_mean_squared_error'), cv=10, n_jobs=4)

ln_mknp_tree_scores = cross_val_score(ln_mknp_tree, ln_mknp_x_train_prepared, ln_mknp_y_train.values,
                               scoring=('neg_mean_squared_error'), cv=10, n_jobs=4)

ln_mknp_forest_scores = cross_val_score(ln_mknp_forest, ln_mknp_x_train_prepared, ln_mknp_y_train.values,
                               scoring=('neg_mean_squared_error'), cv=10, n_jobs=4)

ln_mknp_lin_reg_cv_mean_rmse = np.sqrt(-ln_mknp_lin_reg_scores).mean()
ln_mknp_tree_cv_mean_rmse = np.sqrt(-ln_mknp_tree_scores).mean()
ln_mknp_forest_cv_mean_rmse = np.sqrt(-ln_mknp_forest_scores).mean()

ln_mknp_lin_reg_cv_std_rmse = np.sqrt(-ln_mknp_lin_reg_scores).std()
ln_mknp_tree_cv_std_rmse = np.sqrt(-ln_mknp_tree_scores).std()
ln_mknp_forest_cv_std_rmse = np.sqrt(-ln_mknp_forest_scores).std()

ln_mknp_cv_metrics = {'Algorithm' : ['OLS', 'CART', 'Random Forest'],
                      'Mean RMSE': [ln_mknp_lin_reg_cv_mean_rmse,
                                    ln_mknp_tree_cv_mean_rmse,
                                    ln_mknp_forest_cv_mean_rmse],
                      'RMSE Standard deviation':[ln_mknp_lin_reg_cv_std_rmse,
                                                 ln_mknp_tree_cv_std_rmse,
                                                 ln_mknp_forest_cv_std_rmse]}

pd.DataFrame(ln_mknp_cv_metrics)

# Create the random grid
from sklearn.model_selection import GridSearchCV

param_grid = [
    {'max_features': [10, 50, 'auto'],
     'n_estimators': [100, 200, 500]}
  ]

forest_reg = RandomForestRegressor(random_state=42)
grid_search = GridSearchCV(forest_reg, param_grid, cv=10,
                           scoring='neg_mean_squared_error', return_train_score=True, n_jobs=4)

#ln(Market value) as label, using previous market value as feature
ln_mkwp_gr=grid_search.fit(ln_mkwp_x_train_prepared, ln_mkwp_y_train.values)

ln_mkwp_gr.best_estimator_

#ln(Market value) as label, not using previous market value as feature
ln_mknp_gr=grid_search.fit(ln_mknp_x_train_prepared, ln_mknp_y_train.values)

ln_mknp_gr.best_estimator_



Predicting on the Test set

If Previous Market Value is known

In [61]:

In [66]:

Top 10 most important features

In [67]:

Predictions

Out[61]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse', 
                      max_depth=None, max_features='auto', max_leaf_nodes=None, 
                      max_samples=None, min_impurity_decrease=0.0, 
                      min_impurity_split=None, min_samples_leaf=1, 
                      min_samples_split=2, min_weight_fraction_leaf=0.0, 
                      n_estimators=500, n_jobs=4, oob_score=False, 
                      random_state=42, verbose=0, warm_start=False)

ln(Market value) as label, using previous market value as feature 
LNMKWP RMSE = 0.4574377757817017  
LNMKWP R2 = 0.8806409814271537  
LNMKWP RMSE 95% CI = [0.44533357 0.46922984] 

Out[67]: [(0.7837923403242727, 'Previous market value'), 
 (0.03054948702622499, 'Age'), 
 (0.02841507539912998, 'League Games'), 
 (0.013697508328784695, 'League Minutes per game'), 
 (0.011974167596970432, 'League Points per game'), 
 (0.011124945258368395, 'Season'), 
 (0.010683038809960344, 'League Goals'), 
 (0.006561625214384067, 'Other competitions Minutes per game'), 
 (0.006094613397068786, 'Other competitions Games'), 
 (0.005804345064534985, 'Height (in cm)')]

ln_mkwp_final_forest = RandomForestRegressor(n_estimators=500, min_samples_leaf=1, criterion='mse',
                                             random_state=42, n_jobs=4)

ln_mkwp_final_forest.fit(ln_mkwp_x_train_prepared, ln_mkwp_y_train.values)

#ln(Market value) as label, using previous market value as feature

ln_mkwp_test_forest_predictions = ln_mkwp_final_forest.predict(ln_mkwp_x_test_prepared)
ln_mkwp_test_forest_mse = MSE(ln_mkwp_y_test, ln_mkwp_test_forest_predictions)
ln_mkwp_test_forest_rmse = np.sqrt(ln_mkwp_test_forest_mse)
ln_mkwp_test_forest_r2 = R2(ln_mkwp_y_test, ln_mkwp_test_forest_predictions)

confidence = 0.95
squared_errors = (ln_mkwp_test_forest_predictions - ln_mkwp_y_test) ** 2
mean = squared_errors.mean()
m = len(squared_errors)

ln_mkwp_test_forest_rmse_95_ci=np.sqrt(stats.t.interval(confidence, m - 1,
                         loc=np.mean(squared_errors),
                         scale=stats.sem(squared_errors)))

print('ln(Market value) as label, using previous market value as feature\nLNMKWP RMSE =',
      ln_mkwp_test_forest_rmse, '\nLNMKWP R2 =', ln_mkwp_test_forest_r2,
      '\nLNMKWP RMSE 95% CI =', ln_mkwp_test_forest_rmse_95_ci)

ln_mkwp_features_importance = ln_mkwp_final_forest.feature_importances_
cat_encoder = ln_mkwp_pipeline.named_transformers_['cat']
cat_one_hot_attribs = list(cat_encoder.categories_[0])
attributes = list(ln_mkwp_num) + cat_one_hot_attribs
sorted(zip(ln_mkwp_features_importance, attributes), reverse=True)[:10]



In [68]:

If Previous Market Value is not known

In [69]:

In [70]:

Top 10 most important features

Out[68]:
Actual Predicted

28900 600000.000 485744.894

24209 8000000.000 5282936.099

11240 1000000.000 957686.324

31834 1200000.000 972272.301

29904 1800000.000 1699676.311

... ... ...

30684 5000000.000 5664167.192

1697 1300000.000 1365552.884

36303 400000.000 450976.685

32760 250000.000 272203.099

666 2000000.000 1557287.715

8035 rows × 2 columns

Out[69]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse', 
                      max_depth=50, max_features='auto', max_leaf_nodes=None, 
                      max_samples=None, min_impurity_decrease=0.0, 
                      min_impurity_split=None, min_samples_leaf=1, 
                      min_samples_split=2, min_weight_fraction_leaf=0.0, 
                      n_estimators=500, n_jobs=4, oob_score=True, 
                      random_state=42, verbose=0, warm_start=False)

 
 
ln(Market value) as label, not using previous market value as feature 
LNMKNP RMSE = 0.6750880457858243  
LNMKNP R2 = 0.7400367115820219  
LNMKNP RMSE 95% CI = [0.66145432 0.68845183] 

ln_mkwp_df = pd.DataFrame({'Actual':np.e**ln_mkwp_y_test, 'Predicted':np.e**ln_mkwp_test_forest_predictions})
ln_mkwp_df

ln_mknp_final_forest = RandomForestRegressor(n_estimators=500, min_samples_leaf=1, criterion='mse',
                                             max_depth=50, oob_score=True, random_state=42, n_jobs=4)

ln_mknp_final_forest.fit(ln_mknp_x_train_prepared, ln_mknp_y_train.values)

#ln(Market value) as label, not using previous market value as feature

ln_mknp_test_forest_predictions = ln_mknp_final_forest.predict(ln_mknp_x_test_prepared)
ln_mknp_test_forest_mse = MSE(ln_mknp_y_test, ln_mknp_test_forest_predictions)
ln_mknp_test_forest_rmse = np.sqrt(ln_mknp_test_forest_mse)
ln_mknp_test_forest_r2 = R2(ln_mknp_y_test, ln_mknp_test_forest_predictions)

confidence = 0.95
squared_errors = (ln_mknp_test_forest_predictions - ln_mknp_y_test) ** 2
mean = squared_errors.mean()
m = len(squared_errors)

ln_mknp_test_forest_rmse_95_ci=np.sqrt(stats.t.interval(confidence, m - 1,
                         loc=np.mean(squared_errors),
                         scale=stats.sem(squared_errors)))

print('\n\nln(Market value) as label, not using previous market value as feature\nLNMKNP RMSE =',
      ln_mknp_test_forest_rmse, '\nLNMKNP R2 =', ln_mknp_test_forest_r2,
     '\nLNMKNP RMSE 95% CI =', ln_mknp_test_forest_rmse_95_ci)



In [71]:

Predictions

In [72]:

Comparison

Out[71]: [(0.17155067116365044, 'UCL Minutes per game'), 
 (0.12630553355672683, 'League Games'), 
 (0.04965448745410156, 'Age'), 
 (0.044453061651216194, 'League Points per game'), 
 (0.04324527412514572, 'League Goals'), 
 (0.0405866501076086, 'League Minutes per game'), 
 (0.03375758028532208, 'Season'), 
 (0.024008378369048698, 'Other int. comp. Minutes per game'), 
 (0.017971521519330413, 'UCL Games'), 
 (0.017757981922154616, 'Other int. comp. Games')]

Out[72]:
Actual Predicted

28900 600000.000 613888.756

24209 8000000.000 4517585.980

11240 1000000.000 974899.788

31834 1200000.000 855351.541

29904 1800000.000 1140403.650

... ... ...

30684 5000000.000 7048042.432

1697 1300000.000 2074682.291

36303 400000.000 394523.984

32760 250000.000 310746.997

666 2000000.000 481240.219

8035 rows × 2 columns

ln_mknp_features_importance = ln_mknp_final_forest.feature_importances_
cat_encoder = ln_mknp_pipeline.named_transformers_['cat']
cat_one_hot_attribs = list(cat_encoder.categories_[0])
attributes = list(ln_mknp_num) + cat_one_hot_attribs
sorted(zip(ln_mknp_features_importance, attributes), reverse=True)[:10]

ln_mknp_df = pd.DataFrame({'Actual':np.e**ln_mknp_y_test, 'Predicted':np.e**ln_mknp_test_forest_predictions})
ln_mknp_df



In [87]:

Out[87]:
Actual Market Value RF knowing previous market value RF not knowing previous market value

1 2500000.000 2744772.777 3424234.416

2 450000.000 534559.762 640662.102

3 450000.000 727379.081 883668.835

4 450000.000 656016.565 542905.470

5 500000.000 816656.472 685111.340

6 2000000.000 2679369.770 2393770.951

7 1000000.000 1284131.771 1999046.151

8 1800000.000 1477454.638 1682112.739

9 800000.000 834008.054 661585.083

10 250000.000 289911.555 332323.427

11 2000000.000 1781684.955 914659.095

12 3000000.000 2889861.170 3966584.499

13 3500000.000 3645898.281 5358250.090

14 800000.000 1493403.729 1546552.634

15 9900000.000 13980638.575 10679951.114

16 200000.000 184174.010 353084.715

17 750000.000 1267958.178 904850.128

18 9000000.000 11785935.114 5292499.727

19 100000.000 210671.273 322288.348

20 6000000.000 3452539.969 4035642.993

compare_df = pd.DataFrame({'Actual Market Value':np.e**ln_mknp_y_test,
                           'RF knowing previous market value':np.e**ln_mkwp_test_forest_predictions,
                           'RF not knowing previous market value':np.e**ln_mknp_test_forest_predictions})

comparison_sample_with_replacement = compare_df.sample(n=20,replace=True)
comparison_sample_with_replacement.reset_index(drop=True, inplace=True)
comparison_sample_with_replacement.index += 1
comparison_sample_with_replacement



In [94]:

Out[94]: <matplotlib.legend.Legend at 0x19fd8adc048>

fig1 = plt.figure()
ax1 = fig1.add_subplot(1, 1, 1)

comparison_sample_with_replacement.plot(kind='bar', figsize=(16,10), ax=ax1, width=.9)

ax1.set_title('Comparison between actual and predicted market values\n(Random sample of 20 players)',
              pad=20, fontfamily='Times New Roman', fontsize=25,
              horizontalalignment='center')
ax1.set_xlabel('Players', labelpad=20, fontfamily='Times New Roman', fontsize=25)
ax1.set_ylabel('Market Value in €', labelpad=20, fontfamily='Times New Roman', fontsize=25)
ax1.legend(loc='best')
ax1.tick_params(axis='both', labelsize=15, rotation=0)
ax1.ticklabel_format(axis='y', style='plain')

def millions(x, pos):
    if x != 0:
        return '€%1.1fM' % (x*1e-6)
    else:
        return x

formatter = FuncFormatter(millions)
ax1.yaxis.set_major_formatter(formatter)
ax1.grid(False, axis='x')
plt.yticks(fontname = "Times New Roman")
plt.xticks(fontname = "Times New Roman")
plt.legend(prop={"size":18, 'family':"Times New Roman"})


