Electrochimica Acta

Electrodialytic Recovery of Rare Earth Elements from Coal Ashes --Manuscript Draft--

Manuscript Number:	EREM19-11R2	
Article Type:	VSI: EREM 2019 Guanajuato	
Keywords:	Coal ash; electrodialytic separation; critical raw materials; LREE; HREE	
Corresponding Author:	Nazaré P.F.S Couto, PhD CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. Caparica, Portugal	
First Author:	Nazaré P.F.S Couto, PhD	
Order of Authors:	Nazaré P.F.S Couto, PhD	
	Ana Rita Ferreira, PhD	
	Vanda Lopes, MSc	
	Stephen Peters, Professor	
	Eduardo P. Mateus, PhD	
	Alexandra B Ribeiro, Professor	
	Sibel Pamukcu, Professor	
Manuscript Region of Origin:	PORTUGAL	
Abstract:	Rare earth elements (REE) are critical raw materials crucial for modern technologies and used in a variety of industries. There is a need of investment in REE recovery from secondary sources. The present work was designed to assess the potential of the electrodialytic process to recover REE from coal ash. The content of REE was evaluated in bituminous and anthracite ash. Anthracite presented higher REE concentration (447 ppm vs. 138 ppm) and a triple concentration of critical REE compared with bituminous ash. Anthracite ash was treated aiming to test the REE recover potential, including differences between light REE (LREE) and heavy REE (HREE) fractions as well as the specific recovery of REE with high criticality. A two-compartment electrodialytic cell was tested with the matrix placed in the anode compartment and a cation-exchange membrane separating the compartments. Experiments lasted a maximum of 7 days applying different current intensities and pH adjustment in the catholyte (» 2). Three main steps are observed in the removal process 1) REE solubilization - from the solid to the liquid phase (anolyte); 2) REE mobilization - movement from the anolyte towards the cathode end; 3) REE removal - presence in the catholyte. The extent of each step observed for the REE depends on their individual position in the periodic table with HREE removal being more regulated by step 1 and LREE by step 2. At the best tested conditions (50 mA, 3 days, pH adjustment), more than 70% of REE were extracted from the ash with the catholyte enclosing up to » 50% of LREE and HREE. Combining the high criticality of neodymium with its high concentration in anthracite coal ash (65 ppm), the electrodialytic treatment is highly recommended to concentrate this REE in the catholyte. The results demonstrated the proof-of-concept for electro-assisted extraction of REE from anthracite coal ash, opening perspectives to a selective recovery of these elements from secondary sources.	

Date: 07-08-2020

Ms. Ref. No.: ELECTACTA-S-20-00995 Title: Electrodialytic Recovery of Rare Earth Elements from Coal Ashes Journal: Electrochimica Acta (EREM SI)

Letter to Editor

Dear Dr. Sergio Trasatti,

The authors would like to thank the Editor for the given opportunity to clarify the points risen to the manuscript "Electrodialytic Recovery of Rare Earth Elements from Coal Ashes". We analyzed all the reviewer's comments and the manuscript was revised accordingly (please see the reply to reviewer's comments below). Corrections and changes are highlighted with a yellow background. We trust these changes will clarify all the points risen by the referees. Authors would like to acknowledge the dedication, time and effort that reviewers put throughout the revision process. Additionally, authors included a Graphical Abstract & Highlights section and changed the word "Extraction" by "Recovery" in the Article title.

Yours sincerely, Nazaré Couto

Reviewer 3

The authors have revised the manuscript according the reviewers' comments, and it can be considered for publication.

Previous Comment	Recent Comment	Author response	Changed text in the
			revised manuscript
pH adjustment with	I still suggest to	Authors	Section 2.2.3.
HNO3 1:1, it means	include the	acknowledge all the	() for 3 days,
50% or 30% or other	concentration of the	reviewing process.	without (EDR3) or
	nitric solution in the	The info was added	with (EDR4) pH
	text of the	to the manuscript	adjustment in the
	manuscript "(32.5%		catholyte (pH \approx 2)
	of HNO ₃ in water).		using a HNO3
			solution in water
			(32.5%)"

Reviewer 4

The revised version of this manuscript shows improvement in clarity. But some questions were responded only partly and still need to be clarified. I am summarizing the concerned point below:

Previous	Recent	Author response	Changed text in
Comment	Comment		the revised
			manuscript

	1 1) T		g .: 2.2.2
1. The information	ad 1) I	Authors acknowledge the	Section 2.2.3
on ashes used and	understand	comment and inserted the	"Coal ash extract
leacheates obtained	from the	information in two ways :	and the liquid
does contain just	response	• "Materials and methods"	samples <mark>were</mark>
information on the	provided, that	section - explaining that	analysed for REE
REEs content. No	analysis of the	only REE were analyzed	content by ICP-
information on	leachate	• "Technology feasibility	MS."
other elements	provided	and further investigations	
present in the	covers only	" section - explaining that	Section 3.4
solution and	REE. It is to	the process efficiency did	
potentially	the certain	not consider the	Another point is
transported	degree	of other elements than	the understanding
through the	unfortunate,	REE	about the
membrane (or	because		potential presence
accumulated in the	important		of other extract
membrane) is	content of		<mark>constituents –</mark>
provided. What is	various ions		elements present
composition of the	may be		in the solution
cathode	expected. And		and potentially
compartment	this would have		transported
solution and metals	implications for		through the
deposited on the	the process		membrane (or
cathode? What are	studied. What I		accumulated in it)
the other major	am not sure		– as the process
elements present	about about are		efficiency may
and their	the changes in		increase if
concentration?	manuscript		electrons or ions
What is the value	provided. It, in		are not
of Faradayic	majority, does		participating in
efficiency reached	not correspond		(unwanted) side
for the REEs	to the question		reactions and/or
transport?	raised.		(electro)migration
	Information on		

	the absence of		
	information on		
	other potential		
	extract		
	constituents		
	would be		
	sufficient.		
2. I did not find any	ad 2) Thanks	Author thanks for the valuable	Section 3.4
information in the	for added	comment and output.	
manuscript on the	information on		Average energy
energy	energy	Taking into consideration that	consumption in
consumption	consumption.	"criticality" is different among	EDR4, the
related to the REEs	However, it	rare earth elements, authors	optimized
removal/transport	shall be related	related energy consumption	conditions, is of
to the cathode	to the kg (or	with Nd and Dy recovery. The	2.84 kWh per kg
compartment. This	gram) of the	relation with kg of ash is still	of ash,
should provide	product, i.e.	present to have an idea of the	representing a
sound conclusions,	sum of	overall process consumption /	recovery [cathode
together with	recovered	scale up.	end, average
identification of	REEs. Relation		(stdev)] of 36.5
the most promising	to the kg of		(9.2) mg of Nd
conditions/directio	treated ash is		and 4.0 (0.3) mg
n of research and	not relevant. It		of Dy; to scale-up
development	can be set		the process by
leading to the	arbitrary and it		increasing CEM
economically	does not		area (same current
feasible	provide		density) the
technology.	information		recovery would
	about energy		be of 2.4 (0.6) g
	costs per unit		Nd / m ² / day.
	of product.		
3. Description of	ad 3) Thanks	Authors revised the text for	Still directed to
design of the	for the	sake of clarity	the process up-

electrodialysis cell	improvement	scale, the impact
used for the	of Figure 1.	of ash particles on
reported	Now it is much	mechanical
experiments is not	clearer. I have	stability of the
clear. Cell is	some doubts	membrane during
claimed to be	about this	long term
cylindrical. Figure	design. This	exposure, test of
1 at the same time	concerns	other market
shows cell, which	energy	available CEM
does not look like	efficiency,	(e.g. Fuji CEMT1
cylindrical, unless	local potential	or Fumasep FKS),
only cut through	and current	shorter treatment
half of the cell is	density	times and
shown. At such	distribution	development of
case, however,	homogeneity,	economically
stirrer will not	mass transfer	feasible solutions,
work very well. In	intensity,	e.g., by using
chapter 2.2.3,	impact of ash	pulse current or
length of cathode	particles on	by changing
compartment is	mechanical	energy sources
given as 5 cm and	stability of the	such as solar or
that of the anode	membrane	photovoltaic
compartment as 10	during long	panels, should
cm. What does	time exposure	also be studied.
mean this length?	etc., but if I	
Is it the radius, or	consider this	
height? If this is the	study just as a	
distance between	trial of	
the electrode and	transport of the	
membrane, it is	REEs ions	
extremely high and	across the	
I do not see the	membrane, it	
reason for such	may provide	

arrangement.	some		
Especially, if we	information.		
consider, that ash is			
suspended in			
distilled water, i.e.			
in medium of very			
low conductivity.			
Moreover, we are			
dealing with highly			
diluted systems			
and mass transport			
pathway becomes			
extremely long.			
4. Cation selective	ad 4) My	The use of CR67 had the	Section 3.4
membrane from	question did	purpose to follow the working	
IONICS has been	not concern	line previously developed by	Still directed to
chosen for the	polarity of the	the group with different	the process up-
experiment. Why	membrane. It is	classes of contaminants and	scale, the impact
this particular	rather obvious,	matrices (please see examples	of ash particles
membrane? Does it	that cation	below).	on mechanical
possess any	selective		stability of the
specific properties	membrane has	1. A.R. Ferreira, N. Couto, P.	membrane during
needed for this	to be used in	Guedes, E.P. Mateus, A.B. Ribeiro (2018) "Electrodialytic	long term
application? Any	this particular	2-compartment cells for	exposure, test of
information on	case. The	emerging organic	other market
membrane	question is	contaminants removal from effluent". Journal of Hazardous	available CEM
activation etc. prior	more in	Materials, 358, 467-474 DOI:	(e.g. Fuji CEMT1
the experiment? Is	direction, why	10.1016/j.jhazmat.2018.04.06	or Fumasep
there any potential	this particular	6 2. A.R. Ferreira. P. Guedes F.P.	<mark>FKS),</mark> shorter
impact of the	membrane	Mateus, N. Couto, A.B. Ribeiro	treatment times
membrane	(CR67) was	(2017) "Influence of the cell	and development
	used and not	design in the electroremoval of PPCPs from soil slurry",	of economically

selection on the	e.g. Fuji	Chemical Engineering Journal,	feasible solutions,
results obtained?	CEMT1 or	326, 162–168 DOI:	e.g., by using
	fumasep FKS,	3. P. Guedes, N. Couto, L.M.	pulse current or
	which are also	Ottosen, G.M. Kirkelund, E.P.	by changing
	available on the	Mateus, A.B. Ribeiro (2016) "Valorization of ferric sewage	energy sources
	market?	sludge ashes: potential as a	such as solar or
	Membrane may	phosphorus source", Waste	photovoltaic
	have significant	Management, 52, 193-201,	panels, should
	impact on the	10.1016/j.wasman.2016.03.04	also be studied.
	separation	0	
	process and this	4. P. Guedes, N. Couto, L.M. Ottosen A.B. Ribeiro (2014)	
	aspect is not	"Phosphorus recovery from	
	treated here at	sewage sludge ash through an	
	all. So, I would	electrodialytic process", Waste Management, 34(5), pp. 886-	
	welcome	892, DOI:	
	comment on	10.1016/j.wasman.2014.02.02	
	this aspect.	1	
		In the manuscript, the	
		possibility of testing other	
		commercial membranes	
		(giving Fuji CEMT1 and	
		Fumasep FKS as exemples)	
		was highlighted in the	
		"Technology	
		Feasibility and future	
		investigations" section.	
e) Terms like "ash	ad 5)	-	
pH" and "ash	Confusing		
conductivity"	terms		
(page 4 and Table	corrected.		
3) are misleading.	Thanks.		

If I understand			
description			
provided well, it			
concerns			
conductivity of			
suspension of the			
ash in distilled			
water. In Table 3,			
moreover, units			
used are missing at			
the conductivity			
values reported.			
5. Definitions of	ad 6/5)	-	
the terms "removal	Removal		
efficiency" and	efficiency and		
"extracted	extracted		
fraction" provided	fraction are		
at page 8 is not	now clear.		
very clear.	Thanks.		
"Removal			
efficiency" - is the			
CEM counted as a			
cell compartment?			
Numerator			
contains REEs			
content in all cell			
compartments. It			
shall include also			
CEM. "Extracted			
fraction" -			
Denominator			
contains REEs in			
both ED cell			

compartments.			
Numerator			
contains again			
REEs content sum			
in all cell			
compartments. So,			
it means, it is by			
definition equal to			
1.			
6. Figure 3 shows	ad 7/6) Yes, it	In this revised version the lines	Section 2.2
clear minimum at	concerns figure	connecting the dots were	
pH around 1.8. I	2. Sorry for	removed as the behavior of pH	Ash suspensions
did not find any	typo. Now the	leaching could change	were shaken for 7
comment on it. Is	scale of axis X	between the tested pHs. Also,	days in a vertical
this observation	is changed and	the legend of YY axis changed	rotating mixer at
reproducible?	region between	from "recovery" to	21 rpm, room
	pH 1 and	"extraction".	temperature
	approx 2.8 is		<mark>(n=1).</mark>
	marked to	Authors studied Fig.2 and	
	indicate	assume the reviewer was	Section 3.2
	optimal pH of	referring to pH 4 as the	
	selected metals	extraction efficiency is	REE were
	extraction. But	decreasing in the order 1.8 -	extracted
	my question on	2.5 - 4. For this reason, authors	(desorbed from
	the REE	will discuss this pH.	ash to the liquid
	recovery		phase) at acidic
	minimum	Due to the absence of	pH, particularly
	occurring at pH	replicates the behavior for	at a pH \leq 2.5
	approx 1.8 was	different pHs cannot be	where between 70
	not responded	considered reproducible.	and 100% of
	at all. Is this	Nevertheless, the decrease of	LREE, and 17
	systematic	REEs desorption with	and 88% of
	local extreme?	increased pH $(1.8 > 2.5 > 4)$ is	HREE were

How many	in line with the extraction	extracted (Fig. 2).
times it was	observed at alkaline pHs (up to	The extraction
reproduced? If	13%).	efficiency
it was		continued to
reproduced,	The text was revised for sake	decrease with
what is the	of clarity.	increasing pH. At
reason for this		pH 4, up to 27%
behavior? If it		REE were
was not		desorbed from the
reproduced,		ash to the liquid
what is the		phase whereas in
accuracy of the		alkaline
data provided?		conditions the
		<mark>maximum value</mark>
		was of 13% (data
		<mark>not shown).</mark>
		There is a
		different
		tendency for REE
		desorption
		according to its
		position in the
		periodic table.
		Extraction
		efficiency is,
		generally, higher
		for LREE than
		for HREE. It is
		clear that, for pH
		desorption, Eu
		follows the
		behavior of
		LREE, in this

			case, following
			the IUPAC
			classification.
7. On page 8 is	ad 8/7)	-	
mentioned possible	Complexation -		
complexation of	OK. Good it is		
the REE in the	removed. It		
anolyte	will thus not		
compartment.	confuse reader.		
What shall be the			
complexing agent?			
8. On the page 8	ad 9/8) OK,	-	
again following	thanks for		
sentence appears:	modification.		
"LREE stayed in			
the membrane			
whereas HREE			
reached catholyte -			
HREE presence in			
anolyte suggests			
migration would			
continue, but for			
LREE more time			
would be needed to			
allow extraction			
from the ash". This			
is not consistent.			
LREEs stay in			
membrane, or in			
the ash?			

9. Once more page	ad 10/9) I	Thank you for the comment.	Section 3.3				
8. Different	assume, the						
electromigration	original	The expression was adjusted	The HREE with				
velocity of selected	sentence is now	and authors inserted the	an odd atomic				
elements is	changed to "	explanation about Nernst-	number (Eu, Tb,				
mentioned at page	more efficient	Planck equation in the	Ho, Tm, Lu)				
8. It concerns	dissolution and	manuscript.	present a more				
higher migration of	electromigratio		efficient				
atoms with higher	n towards"		dissolution <mark>and</mark>				
atomic number. I	on page 9. But		thus more				
am missing any	since the		intensive				
discussion here.	authors do not		electromigration				
Are mobilities of	comment		towards the				
concerned ions in	specifically in		electrode of				
the solutions	their response		opposite charge,				
known? If not, is	on		with a final value				
there a chance for	corresponding		between 17 - 28%				
their estimation?	change		in the catholyte.				
At least discussion	provided, it is		In fact, a more				
of the ions size,	just my guess.		efficient				
charge and from	This		dissolution is				
this following	formulation is		connected with				
extend of their	slightly		more intensive				
solvation shall can	inaccurate.		mass transfer, as				
be used to discuss	Dissolution and		the migration				
the phenomena	migration are		term in Nernst-				
observed.	interconnected.		Planck equation				
	As the		<mark>contains</mark>				
	migration term		concentration.				
	in Nernst-						
	Planck						
	equation						
	contains						

	concentration,		
	it is clear, that		
	more efficient		
	dissolution is		
	connected with		
	more intensive		
	mass transfer		
	via migration.		
	May be		
	something like		
	" and thus		
	more intensive		
	electromigratio		
	n" is more		
	appropriate.		
10. Statement on	ad 11/10) OK,	-	
page 10 on more	question of the		
efficient migration	H+ ions impact		
through CEM due	is clearer now.		
to the presence of			
H+ in the cathode			
compartment is			
interesting and			
deserves			
discussion. Does it			
mean penetration			
of H+ to the bulk of			
the membrane and			
change of its			
transport properties			
due to the more			
extensive			
swelling? Or is it			

related just to the			
blockage of the			
membrane surface			
by precipitates? Or			
something			
completely			
different, e.g.			
change of the			
membrane cycle?			
11. Manuscript is	ad 12/11) This	-	
rather descriptive	part is		
in general.	improved now.		
Discussion of the	Thanks.		
observed			
phenomena is			
close to zero and			
just results			
obtained are listed.			
	a)		Section 3.4
	Experimental	The information was added to	
	section -	the "Technology feasibility	Average energy
	current load	and further investigation"	consumption in
	used, i.e. 10	section taking into	EDR4, the
	mA and 50	consideration the REE selected	optimized
	mA, is reported	on ad 2.	conditions, is of
	in absolute		2.84 kWh per kg
	values? So,		of ash,
	average current		representing a
	density on the		recovery [cathode
	membrane is		end, average
	0.2 and 1 mA		<i>(stdev)</i>] of 36.5
	cm-2? This		(9.2) mg of Nd
	provokes one		and 4.0 (0.3) mg

question - how		of Dy; to scale-up
many grams of		the process by
REE are		increasing CEM
transported to		area (same current
the cathode		density) the
compartment		recovery would
per day and per		be of 2.4 (0.6) g
meter square of		Nd / m ² / day.
the membrane?		
This		
information is		
missing in the		
manuscript.		
Just percents		
are given It		
is closely		
related to point		
(2) above. So,		
absolute values		
should be		
added as well.		
b) line 248 -	Authors removed the part of	Section 3.3
REE in an	"uncharged species" for sake	
anolyte in form	of clarity.	REE in the
of uncharged		anolyte may be <mark>as</mark>
species. What		uncharged
form it is?		species or as
Metallic??? If		ionic forms,
we consider		mainly present
acidic pH of		with an ionic
the anolyte, it		charge of +3. The
will not be		recovery (REE in
form of		the cathode end)

	hydroxide	was between 0.9
	precipitates.	and 13.6%.

Graphical Abstract

- Removal process regulated by 3 main steps dependent on REE position in the periodic table
- HREE removal more regulated by solubilization and LREE by mobilization.
- EDR under the tested conditions allow >70% REE extracted from ash and up to $\approx 50\%$ in the catholyte
- Criticality, concentration and EDR-removal puts the process in the path of Nd recovery

Electrodialytic Recovery of Rare Earth Elements from Coal Ashes

Nazaré Couto^{1,2*}, Ana Rita Ferreira^{1,2}, Vanda Lopes^{1,2}, Stephen Peters³, Eduardo P.
Mateus¹, Alexandra B. Ribeiro¹, Sibel Pamukcu²

¹ Center for Environmental and Sustainability Research (CENSE), NOVA School of
 Science and Technology, NOVA University Lisbon 2929-516 Caparica, Portugal

² Department of Civil and Environmental Engineering, Lehigh University, Bethlehem,
 PA 18015, USA

³ Department of Earth and Environmental Sciences, Lehigh University, 1 West Packer
Avenue Bethlehem, PA 18015, USA

10 *Corresponding author: E-mail address: md.couto@fct.unl.pt

12 Abstract

Rare earth elements (REE) are critical raw materials crucial for modern technologies and used in a variety of industries. There is a need of investment in REE recovery from secondary sources. The present work was designed to assess the potential of the electrodialytic process to recover REE from coal ash. The content of REE was evaluated in bituminous and anthracite ash. Anthracite presented higher REE concentration (447 ppm vs. 138 ppm) and a triple concentration of critical REE compared with bituminous ash. Anthracite ash was treated aiming to test the REE recover potential, including differences between light REE (LREE) and heavy REE (HREE) fractions as well as the specific recovery of REE with high criticality. A two-compartment electrodialytic cell was tested with the matrix placed in the anode compartment and a cation-exchange membrane separating the compartments. Experiments lasted a maximum of 7 days applying different current intensities and pH adjustment in the catholyte (≈ 2). Three main steps are observed in the removal process 1) REE solubilization - from the solid to the liquid phase (anolyte); 2) REE mobilization - movement from the anolyte towards the cathode end; 3) REE removal - presence in the catholyte. The extent of each step observed for the REE depends on their individual position in the periodic table with HREE removal being more regulated by step 1 and LREE by step 2. At the best tested conditions (50 mA, 3 days, pH adjustment), more than 70% of REE were extracted from the ash with the catholyte enclosing up to \approx 50% of LREE and HREE. Combining the high criticality of neodymium with its high concentration in anthracite coal ash (65 ppm), the electrodialytic treatment is highly recommended to concentrate this REE in the catholyte. The results demonstrated the proof-of-concept for electro-assisted extraction of REE from anthracite

35 36	coal ash, opening perspectives to a selective recovery of these elements from secondary sources.
37	
38	
30	
39	
40	Keywords: Coal ash, electrodialytic separation, critical raw materials, LREE, HREE
41	
42	
43	
11	A gronyms:
44	Actonyms.
45	CEM: Cation Exchange Membrane
46	ED: Electrodialytic Process
47	EDR: Electrodialytic Recovery
48	HREE: Heavy Rare Earth Elements
49	ICP-MS: Inductively Coupled Plasma-Mass Spectrometer
50	LREE: Light Rare Earth Elements
51	MMO: Mixed Metal Oxide
52	PCA: Principal Component Analysis
53	REE: Rare Earth Elements
54	
55	
56	
57	
58	
59	
60	
61	
	2

Rare earth elements (REE) are a group of metallic elements, similar to each other, composed of scandium, yttrium, and the 15 lanthanides. REE are divided in light (LREE) and heavy rare earth elements (HREE) according to their atomic number. Reserves of REE are unequally distributed in the world and for instance the European Union is entirely dependent on imports [1]. REE are listed as critical raw materials which are extremely important for economic growth, development of modern technology and environmental protection [2–4]. According to European Commission, LREE and HREE substitution indexes are low (between 0.89 and 0.93 in a scale from 0 to 1, where 1 is non substitutable) and the recycling rate between 3% and 8% for LREE and HREE, respectively [4]. The substitutes available for some applications may induce technical problems, loss of performance and/or high cost [5–7].

The medium-term criticality matrix (2015-2025) defined the five most critical REE as
neodymium (Nd), dysprosium (Dy), europium (Eu), yttrium (Y) and terbium (Tb) [8].
However, due to market changes, recent studies show Nd and Dy as the elements
presenting the highest criticality while Tb and Eu criticality is decreasing [9].

REE are not found in an isolated form but in a variety of minerals where, in most cases, they exist in concentrations too small for economical extraction [10]. Primary mining of REE focus on bastnaesite, monazite and loparite and the lateritic ion-adsorption clays, whereas secondary sources/ores are urban mines or industrial process residues [11]. Acid mine drainage, mine tailings, metallurgical slags, wastewater streams, coal and by-coal products [6,12–14] are examples of secondary sources with potential for REE recovery with socio-economical and environmental benefits.

Power plant coal ash may have a substantial enrichment of REE compared to feed coal [15,16]. USA is in a privileged position for REE recovery from coal ash attending to (i) the three USA geostrategic coal basins (Appalachian, Illinois and Powder River basins) and (ii) up to \approx 90% of the consumed coal is burned for power generation [17]. In Europe, although the much-needed energetic transition is in place closing coal power plants, there are million tonnes of coal fly ash landfilled that can eventually be processed with innovative cost-efficient technology to satisfy the market needs.

92 The concentration of REE in coal fly ash depends on the coal origin and is in the order of
93 hundreds of ppm [18–22]. Specifically, fly ash from Illinois Basin coals presented an

average total REE content of 403 mg/kg, Powder River Basin of 337 mg/kg and
Appalachian coals of 591 mg/kg, depending on the power plant location [22]. High
demand REEs according to the medium-term criticality matrix (2015-2025) (Nd, Y, Dy,
Er, Tb, and Eu) may represent 34 – 38% of total REEs in fly ash [22].

REE recovery may be achieved by a broad range of techniques and procedures such as: leaching, digestion, electrolysis, ion exchange, sintering, calcination, chlorination, precipitation, sublimation, magnetic separation, flotation and solvent extraction, e.g. [12,18,23-25]. Almost all the technologies may have selectivity and purification limits. In the case of acid leaching, recovery efficiency is dependent on the source and characteristics of the coal ashes [19]. A preparation step may be carried out to increase the extraction efficiency as, e.g., hindered solubilization happens when aluminosilicate glass is the predominant phase in fly ash ([19], [26]).

The electrodialytic (ED) process (PCT/DK95/00209) has been investigated over the years as a technique to separate a broad range of contaminants from different matrices under the influence of an electric field generated between electrodes and using ion exchange membranes to separate (physically and chemically) the contaminated matrix from the electrolytes. ED process proved to be efficient in removing metals and/or phosphorus (a critical raw material [4]) from, e.g., sewage sludge ash, in a cell divided into two or three compartments [27-31].

This work aims to evaluate the possibility to recover REE from coal ash using the ED recovery (EDR) process. Bituminous and anthracite coal ash was assessed in terms of REE concentration for treatability studies. Anthracite ash was electrodialytically treated as stirred suspensions in a two-compartment cell at different current intensities, treatment period and with pH adjustment, aiming to study the selectivity of REE recovery, focus on Nd, Dy and Tb.

- **2.** Materials and Methods
- **2.1.** Coal ash

Samples were collected from a strip mine in the Eastern Middle field, Columbia County,
Pennsylvania, USA (Lat. 40.8° N, Long. 76.36° W). For anthracite samples, the coal seam
sampled was the Mammoth Vein, a single bed up to 12-15 m (40-50 ft) thick. Coal was

cut, crushed and ground to *approx*. <1 mm using an electrical wet saw, jaw crusher and a
ball mill, respectively.

127 Anthracite and bituminous coal were processed in laboratory according to ASTM 128 (D3174-12). Briefly, the sample was gradually heated till 500 °C, for 1 h, then heated to 129 750 °C for another hour staying at this temperature for 2 h, followed by overnight cooling.

2.2. Analytical

2.2.1. Coal ash characterization

Bituminous and anthracite ashes were extracted by mixing 0.2 g of dry ash and 0.9 g of lithium metaborate, heated till 1000 °C for 8 min, dissolved in 50 mL of 5% nitric acid and filtered (0.45 µm). REE were measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS, Thermoelemental X-Series 2, Winsford, UK). One sample of bituminous and one of anthracite ash were analysed for initial REE characterization. Three replicates were made for the initial and EDR treated ash. Conductivity and pH of the ash suspension (1:15 in deionized water, mass:volume (m:v), after 1 h of agitation) was measured using a Radiometer pH and conductivity electrodes.

142 2.2.2. Leaching tests

Leaching tests of the anthracite coal ash were carried out with a liquid:solid ratio (L/S) of 144 15. Concentration ranged between 1.0, 0.5, 0.1, 0.05, 0.01 M using NaOH and HNO₃. 145 Ash suspensions were shaken for 7 days in a vertical rotating mixer at 21 rpm, room 146 temperature (n=1). The samples were filtered through a 0.45 μ m filter and REE 147 determined by ICP-MS.

2.2.3. Electrodialytic experiments

The EDR experiments tested with anthracite coal ash (Fig. 1) were carried out in a Plexiglas cylindrical cell, with an internal diameter of 8 cm, divided in two compartments and separated by a homogeneous cation exchange membrane (CEM) containing sulfonic acid functional groups (CR67, MKIII, blank, GE Water & Process Technologies). The cathode compartment had a length of 5 cm and 210 mL of 0.01 M NaNO₃ solution as electrolyte. The anode compartment had a length of 10 cm, equipped with a stirrer and the coal ash suspended in deionized water in a ratio of 1:15 (m:v). Mixed metal oxide
(MMO) electrodes with a length of 6 cm and a diameter of 3 mm (Force[®]) were used. A
power supply (Fisher Scientific FB1000) was used to maintain a constant DC current.

160 Please insert Fig. 1

At the beginning and at the end of experiments current intensity, voltage, pH and conductivity were measured. At the end of the experiment CEM and electrodes were soaked in HNO₃ (1 M and 5 M, respectively) for 24 h and the suspended ash was drained through filter paper to separate the solid from the liquid phase. The solid phase was dried (105 °C) and extracted as referred in section 2.2.1. The liquid phase (anolyte, catholyte, CEM and electrodes soaking solution) was filtrated through a 0.45-µm filter. Coal ash extract and the liquid samples were analysed for REE content by ICP-MS.

A total of four EDR experiments (Table 1, two replicates) were carried out. Experiments were performed applying a current intensity of 10 mA for 3 days (EDR1) or 7 days (EDR2), and applying a higher current intensity, 50 mA, for 3 days, without (EDR3) or with (EDR4) pH adjustment in the catholyte (pH \approx 2) using a HNO₃ solution in water (32.5%).

175 Please insert Table 1

3. Results and discussion

3.1. REE content in Coal ash

The overall REE concentration in bituminous and anthracite coal ash is presented in Table 2. As reviewed in [9], IUPAC classifies La to Eu elements as LREE and Gd to Lu plus Y as HREE, while in Europe La to Sm elements are classified as LREE and Eu to Lu elements plus Y as HREE; Scandium is normally treated separately. This work assumes the european classification. Total REE concentration is 3.2 times higher in anthracite than in bituminous coal ash (447 *vs.* 138 ppm). REE concentrations in coal ash are in accordance with values already reported in literature e.g. [20,21]. Promethium was not

detected in any of the ashes possibly due to the short half-life of its isotopes [9]. Comparing with bituminous ash, anthracite ash presented *approx*. quadruple concentration (3.8x) of LREE (351 vs. 92 ppm) and triple of HREE (80 vs. 27 ppm). In both cases, (i) LREE are more abundant than HREE and (ii) REE with even atomic number are also more abundant than those of odd atomic number due to the Oddo-Harkins rule, as reported in literature e.g., [9]. Anthracite ash presented 8.5 ppm of Dy and 65.3 ppm of Nd, approx. the triple concentration [Dy (2.9x higher) and Nd (3.2x higher)] when compared to the bituminous ash. The Tb, still critical but with an expecting decreasing in criticality, also has a triple concentration in anthracite ash (1.2 vs. 0.4 ppm). These results suggested that Mammoth Vein ash was the best matrix for the recovery of the extremely critical Nd (as well as Dy and Tb, despite being in a lower concentration).

198 Please insert Table 2

3.2. Leaching experiments

REE were extracted (desorbed from ash to the liquid phase) at acidic pH, particularly at a pH \leq 2.5 where between 70 and 100% of LREE, and 17 and 88% of HREE were extracted (Fig. 2). The extraction efficiency continued to decrease with increasing pH. At pH 4, up to 27% REE were desorbed from the ash to the liquid phase whereas in alkaline conditions the maximum value was of 13% (data not shown). There is a different tendency for REE desorption according to its position in the periodic table. Extraction efficiency is, generally, higher for LREE than for HREE. It is clear that, for pH desorption, Eu follows the behavior of LREE, in this case, following the IUPAC classification. They are mostly desorbed at pH 1.2, whereas the remaining HREE had a better response for pH 0.9 followed by 1.2. Sc has a behavior different from the other elements with a desorption decrease between pH 0.9 and 2.5 from 65 to only 6%, corroborating the literature that treat this element separately. For the critical REE, the approximate maximum desorption rate at acidic conditions (0.9 < pH < 2.5) is ordered in the way: Dy $(44 - 31\%) \ll$ Tb (65) - 48%) << Nd (95 - 79%).

216 Please insert Fig. 2

3.3. EDR experiments

Changes in voltage, pH, and conductivity throughout the EDR experiments are shown in Table 3. Voltage decreased at the end of all treatments reflecting the conductivity increase after the EDR treatments through an increased concentration of ions in solution: in anode compartment through H⁺ formation and particle dissolution, and in cathode compartment through OH⁻ formation and cations migration.

The initial pH in the anolyte varied between 4 - 5 and catholyte around 5 - 6. At the end of EDR treatment pH increased till *approx*. 12 - 13 in catholyte (except for EDR4 where it was manually adjusted to acidic) and decreased till *approx*. 2-3 in the anolyte. Placing the coal ash in the anode compartment allowed to take advantage of the generated acidic pH that enhances REE solubility, thus converting them into mobile ionic species that may migrate towards the cathode compartment, where they are removed.

230 Please insert Table 3

231 Please insert Fig. 3

Desorption and distribution of each REE in different cell compartments after the EDR treatments is shown in Fig. 3. The REE recovery efficiency is considered the quotient between the element removed from the ash and transported to the cathode end (catholyte + electrode + CEM) and the sum of REE in all cell compartments after the EDR treatment (equation 1). The REE extracted fraction is considered the quotient between the element in the anode end except in the ash (i.e. anolyte + electrode + stirrer) plus the element in the cathode end and the sum of REE in all cell compartments after the EDR treatment (equation 2).

 $Recover Efficiency (\%) = \frac{REE \text{ content in cathode end}}{REE \text{ content in [cathode end + anode end (including ash)]}} \times 100$ (1)

 $Extraction \ Efficiency \ (\%) = \frac{REE \ content \ in \ [cathode \ end \ + \ anode \ end \ (excluding \ ash)]}{REE \ content \ in \ [cathode \ end \ + \ anode \ end \ (including \ ash)]} \times 100$

 (2)

 The application of 10 mA for 3 days, EDR1, resulted in REE extraction between 1.1 and 23.4%, showing that the majority of REE were still bound to coal ash particles (not desorbed). REE in the anolyte may be as uncharged species of as ionic forms, mainly present with an ionic charge of +3. The recovery (REE in the cathode end) was between 0.9 and 13.6%. The critical REE were extracted in the order Dy (5.4%) < Nd (12.0%) < Tb (14.4%) with 5 – 11% being mobilized to the cathode end [recovery Dy (4.8%) < Tb (9.5%) \approx Nd (10.6%)].

Extending the treatment for 7 days (EDR2; 10 mA, 7 d) enhanced REE extraction (between 19.9 and 78.1%) and recovery (between 14.8 and 40.9%) suggesting that an increase in the variable time improves the release of REE from the ash to the liquid phase and promotes their movement towards the electrode of opposite charge. At the end of the treatment, a total of approx. 60% of LREE were in the ash fraction, 27 - 38% in the CEM, up to 6% in the analyte, and ≈ 0.5 - 4% in the catholyte. Concerning the HREE between 23 - 79% were in the ash, 7 - 25% in the CEM, 21 - 34% in the analyte [except for Gd, Dy (and Sc) where the value was 5%] and 9 - 27% in the catholyte (except for Gd, Dy and Y where the value was 2-3%). The HREE with an odd atomic number (Eu, Tb, Ho, Tm, Lu) present a more efficient dissolution and thus more intensive electromigration towards the electrode of opposite charge, with a final value between 17 - 28% in the catholyte. In fact, a more efficient dissolution is connected with more intensive mass transfer, as the migration term in Nernst-Planck equation contains concentration. The HREE with even atomic number, are mainly present in the ash. Critical REE had a maximum extraction and recovery for Tb [extraction: Dy (26.0%) < Nd (34.6%) < Tb (64.3%); recovery: Dy (20.2%) < Nd (32.0%) < Tb (34.6%)].

Applying a higher current for a short time-period (EDR3, 50 mA, 3 d) resulted in an extraction between 27 and 86% and a recovery between 22 and 50%. This treatment slightly enhanced the recovery efficiency comparing with EDR2 (10 mA, 7 d) suggesting that the increased current may substitute the need for a longer treatment time. On the other hand, comparing the same treatment period for 10 and 50 mA, EDR1 and EDR3, the application of higher current increased the desorption and electromigration of critical REE. As already reported for other elements, after solubilization, mobilization towards the opposite electrode compartment appears to be fast [27]. In EDR3 treatment, LREE were mainly found in the ash fraction (51 - 61%), CEM (29 - 41%) and catholyte (up to 5%), as observed in Fig. 3. Europium, Tb, Ho, Lu - HREE with odd atomic number – are

mainly in the liquid phase of the EDR cell: 22 - 31% in the catholyte, 27-38% in the
anolyte, whereas those with an even atomic number in the ash (44 - 69%) and CEM (Gd
28%, Dy 16%). Regarding critical REE, extraction ranged between 33 and 74% with 24
- 38% already in the cathode end [extraction Dy (33.1%) < Nd (39.9%) < Tb (74.3%);
recovery Dy (24.0%) < Nd (36.0%) < Tb (38.4%)].

By applying 50 mA for a short time-period with catholyte pH adjustment (EDR4, 50 mA, 3 d, pH \approx 2) the REE extraction increased compared with the previous applied treatments, ranging from 70 to 100%. The percentage that was extracted and present in the cathode end was between 49 and 78%. The catholyte presented \approx 50% of LREE and between 38 and \approx 50% of HREE. Looking to the critical REE, recoveries were in the range 55 - 74% [recovery Tb (54.9%) < Dy (62.0%) < Nd (74.1%); extraction Dy (73.7%) < Nd (80.1%)< Tb (89.8%)]. More specifically, the presence in catholyte follows the order: Tb (41.8%) < Dy (45.9%) < Nd (50.1%) and shows that EDR4 conditions are very promising to achieve high recovery efficiency in high criticality REE. The data supports that the increased efficiency in the arrival of the REE to the catholyte is related to pH adjustment. Table 3 shows that pH difference between anolyte and catholyte in EDR1-EDR3 is between 9 and 10 whereas in EDR4 is 0.2, which attending to the experimental error, puts EDR4 with a uniform acid pH value throughout the EDR cell. Considering that, without pH adjustment, CEM is the interface between an acidic (anode compartment) and an alkaline environment (cathode compartment), one hypothesis is that REE (or other elements) may precipitate at the membrane due to the pH transition between sides, promoting the clogging/blockage of the CEM surface hindering species migration towards catholyte (EDR1-EDR3).

303 Please insert Fig. 4

To summing up, a principal component analysis (PCA) biplot was created to allow a comprehensive analysis and the establishment of some patterns from the experimental datasets (Fig. 4). Overall the biplot mainly divides, through the second component (F2), the REE whose removal is controlled by the presence of CEM (and pH adjustment) from those in which it is not a determining factor. By the first component (F1) the REE are separated according to their presence in the solid phase (ash) *vs.* their presence in liquid

phase (anolyte and catholyte). LREE behave more homogeneously across all EDR
experiments and present a lower scattering, on the plot quadrants, than HREE. Focusing
on LREE: LREE in EDR1 are in ash, in EDR2 and EDR3 they are moving to the CEM,
and in EDR4 they are found in the catholyte. Gd (an HREE with even atomic number)
follows the LREE behavior in all EDR experiments. La is the REE with higher percentage
in CEM.

From EDR1 to EDR4 the observed pattern for LREE suggests that: (i) LREE are desorbed
from ash; (ii) move towards the cathode end till CEM influenced by time and/or current
and (iii) then arrive to the catholyte following pH adjustment.

Focusing on HREE: HREE with odd atomic number are clustered in the ash in EDR1, starting to scatter but grouped in pairs (e.g. Tm and Lu; Tb and Ho) in EDR2 - EDR4. From EDR2 to EDR4 they form a cluster in the analyte quadrant being closer or in catholyte quadrant in the EDR4. The HREE with even atomic number follow the same pattern of pairing, namely Er and Yb. From EDR1-EDR3, they are mainly "moving" across the ash and anolyte quadrants. In EDR4 Er is in the border of catholyte quadrant and Yb close in the anolyte quadrant, suggesting that pH adjustment may also slightly improve their removal, independently of the CEM interface. Dy (even) and Y (odd), that can also be seen as a "behavioral" pair, follow a different pattern: in EDR1 to EDR3 they are in the ash and in EDR4 they are observed in the catholyte suggesting a positive effect of pH adjustment in reaching the catholyte. Eu is observed in EDR2 to EDR4 in the catholyte, suggesting that all tested experimental variables (time, current and pH) improved their removal.

Regarding the observed distribution in EDR4 of critical elements. Nd, a LREE, is expected to be mainly distributed in the catholyte, 50%, and CEM, 24%; Dy, a HREE with even atomic number, mainly present in catholyte, 46%, and CEM, 16%; Tb, a HREE with odd atomic number, expected to be mainly divided between catholyte, 42%, and anolyte, 30%.

- 338 Overall, when applying EDR treatment aiming to remove REE from anthracite coal ash,
 339 3 main steps mediate the process:
- *Initial State (Step 0):* REEs are in the solid matrix (ash).

 Step 1: REEs solubilization; passing from the solid to the liquid phase (anolyte). This step
is based on an equilibrium and depends on the concentration of REEs in the anolyte as
well as their individual solubility.

Step 2: REEs mobilization from the liquid phase towards the cathode through the CEM
(for example, observed through the presence of REE in CEM). This step promotes a
gradient formation towards the cathode and depends on step 1.

Step 3: REEs removal; when they already reached the catholyte (after passing CEM).
This step depends on the previous steps 2 and 3.

On the other end, the mobilization (step 2) and catholyte arrival (step 3) will contribute
to balance REE saturation on anolyte and thus promoting "continuously" their ash
desorption (step 1).

Two main pathways are suggested to explain the REE removal from the ash to the catholyte, based on the PCA analysis. From the ash (step 0: 3rd quadrant) to the catholyte (step 3: 1st quadrant), HREE are more influenced by solubilization (step 1: 4th quadrant) and LREE are more influenced by mobilization through the CEM, as observed on the experimental data by REE "trapping" on the membrane (step 2: 2nd quadrant). The division between LREE and HREE is now associated to their EDR distribution on the PCA biplot supporting differences in elements according to their position in the periodic table (e.g. lanthanide contraction and/or in formation of nona-hydrates or octa-hydrates when LREE and HREE are in aqueous solution, respectively [32,33]). Exceptions in the "expected" distribution as happened with, e.g., Gd, also confirms the mixed behavior of some REE.

3.4. Technology feasibility and further investigation

These results are the proof-of-concept for the potential of the ED process to recover REE, taking advantage of the low pH produced in the anode compartment, thus preventing the use of acids to promote REE desorption. REE individual separation is challenging due to the similar physico-chemical properties of elements and further work is needed to promote a selective recovery instead of having REE in a mixed solution. One possibility is selective precipitation that may be coupled to the EDR process to achieve this purpose.

 Average energy consumption in EDR4, the optimized conditions, is of 2.84 kWh per kg of ash, representing a recovery [cathode end, average (stdev)] of 36.5 (9.2) mg of Nd and 4.0 (0.3) mg of Dy; to scale-up the process by increasing CEM area (same current density) the recovery would be of 2.4 (0.6) g Nd / m^2 / day. Still directed to the process up-scale, the impact of ash particles on mechanical stability of the membrane during long term exposure, test of other market available CEM (e.g. Fuji **CEMT1** or Fumasep FKS), shorter treatment times and development of economically feasible solutions, e.g., by using pulse current or by changing energy sources such as solar or photovoltaic panels, should also be studied. Another point is the understanding about the potential presence of other extract constituents – elements present in the solution and potentially transported through the membrane (or accumulated in it) - as the process efficiency may increase if electrons or ions are not participating in (unwanted) side reactions and/or (electro)migration.

4. Conclusions

This work shows the potential of the electrodialytic process to promote REE recovery from coal ashes. In a first stage the concentration of REE was studied in anthracite and bituminous ash. Anthracite presented higher REE concentration (447 ppm vs. 138 ppm), and a triple concentration of critical elements comparing with bituminous ash. Anthracite ash was then treated in a two compartment EDR cell aiming to assess the potential for REE recovery, including differences between LREE and HREE fractions, as well as the selective separation of the critical elements (Dy, Tb and Nd). In EDR treatment three main steps were identified: 1) REE solubilization, 2) REE mobilization, 3) REE removal. It is suggested that HREE removal are controlled mainly by step 1 (anolyte solubilization) and LREE by step 2 (movement towards the cathode end through the CEM), corroborating the division of REE in light or heavy according to the position in the periodic table. Nevertheless, some exceptions, such as Gd, also support the mixed behavior of some REE. At the best tested conditions (EDR4, 50 mA, 3 d, pH 2 adjusted at cathode) more than 70% of REE were extracted from coal ash and catholyte presented \approx 50% of LREE and 38 to \approx 50% of HREE. From most critical REE, recovery was in the range between 55 - 62% for Tb and Dy, and $\approx 7\frac{4}{4}\%$ for Nd. Attending to the high criticality of Nd and its high concentration in anthracite ash (65 ppm vs. 8.5 ppm to Dy and 1.2 ppm to Tb), the EDR treatment is highly recommended for this element extraction by, e.g.

1 2	405
3 4	406
5 6	407
7 8 9	408
10 11	409
12 13	410
14 15 16	411
17	412
19	413
20 21	414
22 23	415
24 25	416
26 27	417
28	
30	
31 32	
33 34	
35 36	
37 29	
39	
40 41	
42 43	
44 45	
46	
48	
49 50	
51 52	
53 54	
55	
57	
58 59	
60 61	
62 63	
64 65	
<u> </u>	

Acknowledgments

404 further EDR process operational optimization with an additional step that promotes a405 selective recovery.

411 This work has received funding from the European Union's Horizon 2020 research and 412 innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045; 413 and from Fundação para a Ciência e a Tecnologia, I.P., Portugal, UIDB/04085/2020 414 (Research unit CENSE "Center for Environmental and Sustainability Research"). 415 Fundação para a Ciência e a Tecnologia is also acknowledged for N. Couto Contract 416 established under Individual Call to Scientific Employment Stimulus 417 (CEECIND/04210/2017). Paula Guedes is also acknowledged for PCA biplot analysis.

References

S. Massari, M. Ruberti, Rare earth elements as critical raw materials: Focus on [1] international markets and future strategies, Resour. Policy. 38 (2013) 36-43. S. Cao, C. Zhou, J. Pan, C. Liu, M. Tang, W. Ji, T. Hu, N. Zhang, Study on [2] influence factors of leaching of rare earth elements from coal fly ash, Energy Fuels. 32 б (2018) 8000-8005. https://doi.org/10.1021/acs.energyfuels.8b01316. K. Binnemans, P.T. Jones, B. Blanpain, T.V. Gerven, Y. Pontikes, Towards [3] zero-waste valorisation of rare-earth-containing industrial process residues: a critical review, J. Clean. Prod. 99 (2015) 17-38. https://doi.org/10.1016/j.jclepro.2015.02.089. European Comission, 2017 list of Critical Raw Materials for the EU, Brussels, [4] 2017, COM(2017) 490 final. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0490&from=EN. [5] R.M. Izatt, S.R. Izatt, R.L. Bruening, N.E. Izatt, B.A. Moyer, Challenges to achievement of metal sustainability in our high-tech society, Chem Soc Rev. 43 (2014) 2451-2475. https://doi.org/10.1039/C3CS60440C. S.M. Jowitt, T.T. Werner, Z. Weng, G.M. Mudd, Recycling of the rare earth [6] elements, Curr. Opin. Green Sustain. Chem. 13 (2018) 1-7. M.V.R. Garcia, A. Krzemien, M.Á. Manzanedo del Campo, M. Menéndez [7] Álvarez, M.R. Gent, Rare earth elements mining investment: It is not all about China, Resour. Policy. 53 (2017) 66-76. D. Bauer, D. Diamond, J. Li, D. Sandalow, P. Telleen, B. Wanner, U.S. [8] Department of Energy Critical Materials Strategy, Report, 2010. [9] K. Binnemans, P.T. Jones, T. Müller, L. Yurramendi, Rare Earths and the balance problem: How to deal with changing markets?, J. Sustain. Metall. 4 (2018) 126-146. https://doi.org/10.1007/s40831-018-0162-8. [10] USDOE, Report on Rare Earth Elements from Coal and Coal Byproducts, United States Department of Energy, 2017. [11] V. Balaram, Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front. 10 (2019) 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005. R. Lin, B.H. Howard, E.A. Roth, T.L. Bank, E.J. Granite, Y. Soonga, [12] Enrichment of rare earth elements from coal and coal by-products by physical separations, Fuel. 200 (2017) 506-520. J. López, M. Reig, O. Gilbert, J.L. Cortina, Integration of nanofiltration [13] membranes in recovery options of rare earth elements from acidic mine waters, J. Clean. Prod. 210 (2019) 1249–1260. K. Binnemans, P.T. Jones, B. Blanpain, T. van Gerven, Y. Yang, A. Walton, M. [14] Buchert, Recycling of rare earths: a critical review, J Clean Prod. 51 (2013) 1–22. D. Smolka-danielowska, Rare earth elements in fl y ashes created during the [15] coal burning process in certain coal- fi red power plants operating in Poland e Upper Silesian Industrial Region, J. Environ, Radioact. 101 (2010) 965–968. https://doi.org/10.1016/j.jenvrad.2010.07.001. [16] M. Stuckman, C. Lopano, E. Granite, Distribution and speciation of rare earth elements in coal combustion by-products via synchrotron microscopy and spectroscopy Mengling, Int. J. Coal Geol. 195 (2018) 125-138 https://doi.org/10.1016/j.coal.2018.06.001. U.S. Energy Information Administration, Quarterly Coal Report, (2019). [17] [18] C. Lanzerstorfer, Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements, Energy Rep. 4 (2018) 660-663.

- J.F. King, R.K. Taggart, R.C. Smith, J.C. Hower, H. Hsu-Kim, Aqueous acid [19] and alkaline extraction of rare earth elements from coal combustion ash, Int. J. Coal Geol. 195 (2018) 75-83. R.S. Blissett, N. Smalley, N.A. Rowson, An investigation into six coal fly ashes [20] from the United Kingdom and Poland to evaluate rare earth element content, Fuel. 119 (2014) 236–239. https://doi.org/10.1016/j.fuel.2013.11.053. б W. Franus, M.M. Wiatros-Motyk, M. Wdowin, Coal fly ash as a resource for [21] rare earth elements, Environ. Sci. Pollut. Res. 22 (2015) 9964-9474. R.K. Taggart, J.C. Hower, G.S. Dwyer, H. Hsu-Kim, Trends in the Rare Earth [22] Element Content of U.S.-Based Coal Combustion Fly Ashes, Environ. Sci. Technol. 50 (2016) 5919–5926. https://doi.org/10.1021/acs.est.6b00085. X. Yang, J. Werner, R.Q. Honaker, Leaching of rare Earth elements from an [23] Illinois basin coal source, J. Rare Earths. (2018). A.R.K. Gollakota, V. Volli, C.M. Sun, Progressive utilisation prospects of coal [24] fly ash: A review, Sci. Total Environ. 672 (2019) 951-89. B.K. Mutlu, B. Cantoni, A. Turolla, M. Antonelli, H. Hsu-Kim, M.R. Wiesner, [25] Application of nanofiltration for Rare Earth Elements recovery from coal fly ash leachate: Performance and cost evaluation, Chem. Eng. J. 349 (2018) 309-317. R.K. Taggart, J.C. Hower, H. Hsu-Kim, Effects of roasting additives and [26] leaching parameters on the extraction of rare earth elements from coal fly ash, Int. J. Coal Geol. 196 (2018) 106–114. P. Guedes, N. Couto, L.M. Ottosen, A.B. Ribeiro, Phosphorus recovery from [27] sewage sludge ash through an electrodialytic process, Waste Manag. 34 (2014) 886–92. https://doi.org/10.1016/j.wasman.2014.02.021. [28] L.M. Ottosen, P.E. Jensen, G.M. Kirkelund, Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell, Waste Manag. 51 (2016) 142–148. https://doi.org/10.1016/j.wasman.2016.02.015. [29] B. Ebbers, L.M. Ottosen, P.E. Jensen, Comparison of two different electrodialytic cells for separation of phosphorus and heavy metals from sewage sludge ash, Chemosphere. 125 (2015) 122-129. https://doi.org/10.1016/j.chemosphere.2014.12.013. [30] R.P. Viader, P.E. Jensen, L.M. Ottosen, J. Ahrenfeldt, H. Hauggaard-Nielsen, Sequential electrodialytic recovery of phosphorus from low-temperature gasification ashes of chemically precipitated sewage sludge, Waste Manag. 60 (2017) 211-218. https://doi.org/10.1016/j.wasman.2016.11.030. R.P. Viader, P.E. Jensen, L.M. Ottosen, J. Ahrenfeldt, H. Hauggaard-Nielsen, [31] Electrodialytic extraction of phosphorus from ash of low-temperature gasification of sewage sludge, Electrochim- Acta 181 (2015) 100-108. https://doi.org/10.1016/j.electacta.2015.05.025. W.W. Rudolph, G. Irmer, On the Hydration of the Rare Earth Ions in Aqueous [32] Solution, J. Solut. Chem. 49 (2020) 316-331. https://doi.org/10.1007/s10953-020-00960-w. [33] E.N. Rizkalla, G.R. Choppin, Hydration of lanthanides and actinides in solution, J. Alloys Compd. 180 (1992) 325-336. https://doi.org/10.1016/0925-8388(92)90398-S. **Captions for Figures**

Fig. 2. REE coal ash leaching at acidic pH.

521 Fig. 3. Percentage of REE in the electrodialytic cell sections at the end of the experiments.
522 Error bars represent standard deviation (n=2).

523 Fig. 4. PCA biplot of REE distribution according to the applied experimental conditions

524 (EDR1-EDR4, the number accompanying each REE reports to the respective EDR

525 experiment). Legend: HREE (E) heavy REE with even atomic number; HREE (O)

526 heavy REE with odd atomic number; LREE light REE

- 30
 531
 31
 32
 532

Fig. 1. Schematic representation of the two-compartment electrodialytic cell used in experiments: ash suspension in the anode compartment. The separation between anode compartment and cathode compartment was carried out through a cation exchange membrane (CEM).

Fig. 2. REE coal ash leaching at acidic pH.

Fig. 3. Percentage of REE in the electrodialytic cell sections at the end of the experiments. Error bars represent standard deviation (n=2).

Biplot (axis F1 and F2: 90,59%)

Fig. 4 PCA biplot of REE distribution according to the applied experimental conditions (EDR1-EDR4, the number accompanying each REE reports to the respective EDR experiment). Legend: **HREE (E)** heavy REE with even atomic number; **HREE (O)** heavy REE with odd atomic number; **LREE** light REE

Experiment	Time (days)	Current intensity (mA)	pH adjustment
EDR1	3	10	No
EDR2	7	10	No
EDR3	3	50	No
EDR4	3	50	Yes*

 Table 1. Experimental conditions for the different electrodialytic experiments.

* cathode compartment with pH adjusted to 2 with HNO₃

			Atomic	REE (ppm)	
	Element	Symbol La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Sc	number	Bituminous	Anthracite	
	Lanthanum	La	57	19.6	86.5	
	Cerium	Ce	58	42.7	170.2	
IDEE	Praseodymium	Pr	59	5.1	18.0	
LKEE	Neodymium	Nd	60	20.3	65.3	
	Promethium	Pm	61	n.d.	n.d.	
	Samarium	Sm	62	4.1	10.7	
	Europium	Eu	63	1.4	1.9	
	Gadolinium	Gd	64	3.9	9.4	
	Terbium	Tb	65	0.4	1.2	
	Dysprosium	Dy	66	2.9	8.5	
HDEE	Holmium	Но	67	0.3	1.5	
HKEE	Erbium	Er	68	1.3	5.4	
	Thulium	Tm	69	n.d.	0.5	
	Ytterbium	Yb	70	1.4	5.7	
	Lutetium	Lu	71	n.d.	0.4	
	Yttrium	Y	39	15.4	45.1	
	Scandium	Sc	21	19.5	16.6	
			Total	138.3	446.9	
			LREE	91.8	350.7	
			HREE	27.0	79.6	
			Critical	23.6	75.0	

Table 2. REE atomic number, concentration in bituminous and anthracite coal ash samples. (n.d: below detection limit).

[EDR1		EDR2		EDR3		EDR4		4				
Voltage (V)initialfinal		initial	21.0	±	11.0	10.0	±	2.7	48.0	±	0.9	26.6	±	23.3
		final	8.0	±	0.8	5.0	±	0.3	16.0	±	0.9	5.0	±	0.9
рН	analyta	initial	4.9	±	0.4	4.5	±	0.4	4.2	±	0.4	4.0	±	0.1
	anoryte	final	2.7	±	0.1	3.2	±	0.4	2.8	±	0.1	2.3	±	0.2
	catholyte	initial	5.6	±	1.3	6.2	±	0.6	6.4	±	0.8	3.1	±	1.5
		final	11.8	±	0.4	12.7	±	0.2	12.7	±	0.2	2.1	±	0.1
	anolyte	initial	70	±	28	712	±	244	534	±	146	200	±	2
Conductivity (µS/cm)		final	207	±	46	2240	±	877	3310	±	14	3300	±	37
	catholyte initiation	initial	614	±	23	1441	±	151	1187	±	561	1140	±	56
		final	892	±	298	1650	±	71	2540	±	28	2700	±	13

Table 3. Parameters measured at the beginning and at the end of the electrodialytic experiments.

CRediT author statement

Nazaré Couto: Conceptualization, Investigation, Writing- Original draft preparation.
Ana Rita Ferreira: Methodology, Investigation, Writing- Reviewing and Editing.
Vanda Lopes: Methodology, Investigation, Writing- Reviewing and Editing.
Stephen Peters: Resources, Methodology, Writing- Reviewing and Editing.
Eduardo P. Mateus: Writing- Reviewing and Editing.
Alexandra B. Ribeiro: Supervision, Funding acquisition, Writing- Reviewing and Editing.

Sibel Pamukcu: Supervision, Resources, Writing- Reviewing and Editing.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: