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Abstract
This article uses an anonymous 2014–15 school year dataset from the
Directorate-General for Statistics of Education and Science (DGEEC) of the
Portuguese Ministry of Education as a means to carry out a predictive power
comparison between the classic multilinear regression model and a chosen set
of machine learning algorithms. A multilinear regression model is used in
parallel with random forest, support vector machine, artificial neural network
and extreme gradient boosting machine stacking ensemble implementations.
Designing a hybrid analysis is intended where classical statistical analysis and
artificial intelligence algorithms are blended to augment the ability to retain
valuable conclusions and well-supported results. The machine learning algo-
rithms attain a higher level of predictive ability. In addition, the stacking
appropriateness increases as the base learner output correlation matrix determi-
nant increases and the random forest feature importance empirical distributions
are correlated with the structure of p-values and the statistical significance test
ascertains of the multiple linear model. An information system that supports the
nationwide education system should be designed and further structured to
collect meaningful and precise data about the full range of academic achieve-
ment antecedents. The article concludes that no evidence is found in favour of
smaller classes.

Keywords Machine learning . Stacking . Random forest . Support vector regression .

Academic achievement . High school grades

Education and Information Technologies
https://doi.org/10.1007/s10639-020-10316-y

* Ricardo Costa-Mendes
rmendes@novaims.unl.pt

Extended author information available on the last page of the article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/344686238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-020-10316-y&domain=pdf
https://orcid.org/0000-0002-9259-4576
https://orcid.org/0000-0001-6523-0809
https://orcid.org/0000-0002-8793-1451
https://orcid.org/0000-0002-4446-5980
mailto:rmendes@novaims.unl.pt


1 Introduction

A nation’s wealth, interconnected with the availability of human capital in its
economy, hinges on its citizens’ academic achievement and generally on the educa-
tion system attainment level (Becker 1964; Hanushek and Wößmann 2010; Strenze
2007). Knowing the determinants of academic success in detail is an essential
cornerstone in the pursuit of appropriate public policy designs. The ability to predict
and anticipate student academic grades would enable policymakers, principals, and
teachers to take timely action on preventing unfavourable results and provide a
readily available solid conceptual framework, capable of feeding sound decision
support systems (van der Scheer and Visscher 2018). The development and manage-
ment of a nationwide schooling and education system database which brings together
relevant information on the determinants of academic achievement is an investment
that requires attention to the complexity of data collection and management at the
school-teacher-student trinomial level. Still, it is an indispensable step in promoting
conceptually well-designed policies which would confer an enhanced predictive
ability to stakeholders.

Both in the scientific literature and practical institutional roles, academic perfor-
mance prediction and the conceptual approach to its determinants have been massively
based on the application of classical methods of statistical analysis, such as structural
equation, multilinear, and panel data regression models. However, as machine learning
and artificial intelligence algorithms show superior predictive ability, it is of great
interest and pertinence to develop and deploy methodologies and methodological leads
that intertwine approaches and simultaneously make it possible to seize the parametric
nature of classical methods and the essentially empirical and predictive nature of
machine learning algorithms.

Following this line of thought and research, the present study aims to predict high
school academic scores by applying both frameworks simultaneously. A multilinear
regression model is used to represent the classical approach. Random forest, support
vector machine, artificial neural network, and extreme gradient boosting machine
stacking ensemble models are implemented to constitute the machine learning outlook.
Specifically, designing a hybrid analysis is intended where classical statistical analysis
and artificial intelligence algorithms would blend and augment the ability to infer
valuable conclusions. The answers to the following research questions, in particular,
are sought:

1) Is machine learning algorithms’ prediction accuracy superior to multilinear
regression?

2) Are there any conclusions we can retain from the hybrid approach about the
academic achievement conceptual framework?

3) Is there any empirical relationship between the classical conceptual analysis of the
multilinear regression model and the feature importance empirical distributions of
the random forest implementation?

In this sense, the study begins with an academic achievement literature review,
followed by a presentation of the methodology and algorithms. The results and
discussion sections come next, and finally, we present the conclusions.
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2 Literature review

Research in academic achievement (AA) has not lost interest and relevance since the
publication of “The Coleman Report” in 1966 (Coleman 1966). The report’s main
statement was that the family background of students is a decisive AA determinant,
conferring a secondary role to the resources and characteristics of schools and teachers.

Student cognitive ability has been undoubtedly identified as the major and funda-
mental determinant of AA as there is strong empirical evidence that confirms their
generally accepted association (Jensen 1998). Indeed, 25 to 49% of AA variance is
bound to be explained by differences in cognitive ability (Rohde and Thompson 2007).
However, other student characteristics also exert their influence. Some personality
traits, such as self-organization, attentiveness, perseverance, and focus on results, are
associated with overachievement (Di Fabio and Busoni 2007). Females tend to have
higher AA. Empirical evidence shows that the gender performance gap is wider in
languages and literature and narrower in mathematics (Francis 2005; Lupart et al. 2004;
Mensah and Kiernan 2010). Males seem to develop a more negative peer attitude
relative to school (King 2016). There is also a non-neglectable performance gap
between different ethnicities (Kuhfeld et al. 2018) and immigrant-origin countries
(Levels et al. 2008; Perreira et al. 2006). Computer usage and internet access can have
a positive effect on academic performance provided it is mindful and primarily directed
towards learning support activities (Lei and Zhao 2007; Salomon and Ben-David
Kolikant 2016). Nevertheless, in case its main target is leisure pursuits, it can be
counterproductive (Kubey et al. 2001).

Some family background variables are also salient determinants of AA. Parental
school involvement has a noticeable relationship with achievement (Fan and Chen
2001; Gilar-Corbi et al. 2019). Parental educational involvement enhances students’
ability to cope with schooling activities and promotes appropriate behavioural attitudes
that lead to success (Hill and Taylor 2004). More importantly, participating in school
activities seems to be more decisive for lower socioeconomic status parents (Benner
et al. 2016), whom themselves are associated with lower scholarship outcomes (Sirin
2005). Indeed, academic performance is positively linked to parental income, education
level, and type of occupation (Steinmayr et al. 2010; Tesfagiorgis et al. 2020; Tomul
and Savasci 2012).

Smaller schools seem to benefit both students with a lower economic and social
status and students with a history of learning problems (Leithwood and Jantzi 2009).
Class size seems to have a somehow blurred effect on achievement. The conclusions of
Hoxby (2000) that class size does not influence AA contradict the findings of Krueger
(1999) that performance increases in smaller classes, especially for students from ethnic
minorities and lower social-economic statuses. In addition, the conclusions of
Wößmann and West (2006) indicate that the effect of class size depends both on the
educational system as a whole and on teachers’ general lecturing capabilities. Design
quality and adequacy of school facilities in terms of environmental comfort can
determine AA at least through students and teachers enhanced willingness to perform
(Schneider 2002). In the same manner, physical design and spatial configuration
matters and should meet users’ expectations (Woolner et al. 2007). Teacher quality,
measured by teacher panel data fixed effects on student outcomes, has a positive
relationship with AA (Aaronson et al. 2007; Rockoff 2004). Despite the low percentage
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of teacher quality variance explained by teacher education and experience (Rivkin et al.
2005), higher teacher college rankings and scores appear to be associated with higher
academic outcomes (Wayne and Youngs 2003).

There are some studies in the literature that use machine learning in the context of
AA. On a dataset of 110,267 high school students, Cruz-Jesus et al. (2020) applied
artificial neural network, decision tree, extremely randomized trees, random forest,
support vector machine, k-nearest neighbours and logistic regression classifiers to
anticipate high school retentions. Miguéis et al. (2018) using a dataset of 2459 higher
education students employed naïve Bayes, support vector machine, decision tree,
random forest, bagged trees and adaptive boosting trees classifiers to address an
academic achievement five classes’ problem. Musso et al. (2020) called on a 655
university students’ dataset and an artificial neural network to deal with a problem of
classification between low and high levels of three different measures of AA. Mengash
(2020) made use of artificial neural network, decision tree, support vector machine and
a naïve Bayes classifiers to anticipate five classes of higher education AA from a
sample of 2039 students in order to evaluate the admission criteria of a Saudi
University. Sorensen (2019) collected a sample of 220,685 students from the North
Carolina Department of Public Instruction and addressed a dropout classification
problem with decision tree and support vector machine classifiers. Above all, it can
be highlighted that the literature in the AA scientific domain tends to prefer to tackle
classification instead of regression problems presumably as a result of the former
having simpler probability functions and a much easier bias to handle.

3 Methodology

3.1 Learning algorithms

Supervised learning consists in estimating a mathematical function that maps a vector
of predictor variables – feature space - to a vector of target or response variables
through learning from a set of training data. The learning phase perdures until the
function approximation is sufficiently accurate to produce sensible predictions. The
target variables can either be binary - a classification or pattern recognition - or
continuous - a regression (Murphy 2012).

In our case, the dataset was split into training and test datasets, 70% and 30% of the
samples, respectively. The test dataset is a holdout dataset as it had no rule in the
learning phase and was only used for testing and evaluating the generalisation perfor-
mance of the applied algorithms. The training input variables vectors were
standardised, and the result transformations were applied to the test dataset.

Before the learning phase and whenever applicable, a hyperparameter optimisation
procedure was carried out. A hyperparameter subspace was built from several vectors
of hyperparameters values. A five-fold cross-validation (Hastie et al. 2008; Mohri et al.
2018) grid search (Bergstra and Bengio 2012; Nievergelt 2000) was performed, and the
best average cross-validation estimator score was elected. This blended method at-
tempts to manage the bias and variance trade-off of the model generalisation perfor-
mance (Briscoe and Feldman 2011; Hastie et al. 2008) and is a well-known method in
the machine learning community. The randomness of the cross-validation procedure
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allows the choice of a hyperparameter combination that has a lower variance, decreas-
ing the risk of overfitting to the training data. The grid search aims at ensuring a
reduced bias through overcoming underfitting issues on the training data.

Follows the regression algorithms that were chosen to perform the prediction of our
target variable - the student high school final grades.

3.1.1 Multiple linear regression

In a multiple linear regression (MLR), a linear mathematical function is assumed
between the predictors and the target variable in an additive fashion (James et al.
2013). In the learning phase, the parameters are estimated using the ordinary least
squares method (OLS). The multiple linear regression is a classical statistical model
that has somehow strong assumptions. It imposes a linear relationship between
response and predictors and assumes the sphericity of the error term when
interpreting and statistically testing the regression coefficients βi. This is a para-
metric approach with more emphasis on conceptual ascertainment as in augmenting
the predictive accuracy.

3.1.2 Random forest

Random forest (Breiman 2001) is a machine learning ensemble method of randomised
decision trees. Random forest is an ensemble method as the outcome is derived from
the various decision tree scores produced by bagging or bootstrapping subsampling
(Breiman 1996a). In the case of regression, the random forest outcome is the averages
of the randomised decision trees scores. A decision tree is a machine learning algorithm
that splits the predictor variables space sequentially in a set of partitions and sub-
partitions to form homogenous classes in terms of target variables. In the case of
regression, the split flow is interrupted when a further sub-partition is considered to
non-significantly decrease the mean square error of the target variables. The final nodes
of the tree are called leaves and consubstantiate the decision rules on which the target
variable predictions are based. In a randomized decision tree, the search for the best
split in each node is conducted through a random variable selection (Amit and Geman
1997).

The hyperparameter optimisation procedure included the number of trees in the
forest, the minimum number of samples required to be at a leaf and the minimum
number of samples required to split an internal node. For full reference, take notice of
the scikit-learn python module that was used in the study (Pedregosa et al. 2011).

3.1.3 Support vector regression

The support vector regression algorithm (SVR) consists of trying to find the flattest
mathematical function of the predictor variables whose deviation from the target is less
than ε ∈ℝ+ for all the training data (Smola and Scholkopf 2004). That function is the
backbone of a tube whose distance to both margins is ε ∈ℝ+. In contrast with the hard
margin, the soft margin hyperplane SVR allows a deviation beyond ε ∈ℝ+ through the
introduction of slack variables ξ ≥ 0. For the primal form of the optimization problem
for SVR see, e.g., Mohri et al. (2018).

Education and Information Technologies



The gaussian radial basis function (RBF) kernel was used, adding some nonlinearity
and flexibility to the model. In this case, as the feature space dimension is infinite, it is
not feasible to solve the optimisation problem through the primal form. Yet the dual
form derived from the Lagrange multipliers method can be applied (Rivas-Perea et al.
2013).

The hyperparameter optimisation procedure included the hyperparameter C, a
penalisation factor for the points placed outside the ε-tube, and γ that defines the radius
of influence of the support vectors in the RBF kernel function.

The scikit-learn module follows the libsvm implementation (Chang and Lin 2007).
As the fit time complexity is more than quadratic with the number of samples, a
subsampling without replacement procedure – pasting – was undertaken for the larger
training datasets.

3.1.4 Multilayer feed-forward neural network

Amultilayer feed-forward neural network is a multilayer perceptron. The perceptron
architecture is the simplest form of a neural network. It is intended to solve linearly
separable binary pattern classification problems through a nonlinear activate func-
tion – the threshold - which input is a linear combination of the predictor variables
and a bias (Rosenblatt 1958). The perceptron just has an input layer and an output
layer. Themultilayer perceptron has hidden layers between them. The introduction of
hidden layers in the perceptron architecture is bound to augment the ability to solve
nonlinear problems. A fully connected multilayer feed-forward neural network, as is
the case, is a multilayer perceptron, where each neuron in the input layer connects to
every neuron in the first hidden layer, which in turn connects to every neuron of the
next hidden or output layer. The input neurons collect the predictor variables values
and send a signal to every neuron in the first hidden layer. The inputs of the first
hidden layer neurons are linear combinations of the signals received plus a bias. The
first hidden layer is the input layer of the second hidden layer, and the feed-forward
process goes on up to the output layer. The nonlinear activation function of the
hidden layer neurons, and of the output layer neurons in a classification problem,
allow the neural network to learn and approximate complex functions between the
predictor and the target variables. Indeed, neural networks are known as universal
function approximators due to both the nonlinearity of the activation function and the
existence of hidden layers (see,e.g., Basheer and Hajmeer 2000; Haykin 2009;
Ramchoun et al. 2016).

The architecture has two hidden layers. The logistic activation function was used in
every hidden neuron. However, the output neuron has no activation function. The feed-
forward error-backpropagation algorithm was employed to search the connection
weights and biases that minimise the square error loss function. It is a gradient descent
optimisation algorithm that uses the derivative chain rule to compute the derivatives of
the loss function with respect to each weight and bias in the network. During the
learning phase, the weights and the biases change iteratively in the direction that
minimises the cost function. As the cost function of a multilayer neural network with
nonlinear activation functions is non-convex, the final solution is certain to be a local
minimum with an expected good generalisation performance (Choromanska et al.
2015; Rumelhart et al. 1986).
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The hyperparameter optimisation procedure included the hyperparameters
hidden_layer_sizes, activation, alpha (L2 penalty) and learning_rate_init as defined
by the scikit-learn documentation.

3.1.5 Extreme gradient boosting machine

Boosting is an ensemble method that improves the accuracy of any given machine
learning algorithm. Its primary attention is to reduce bias in the learning phase. It
consists in combining weak learners sequentially in order to build a strong ensemble
learner (Bishop 2006). A weak learner is a function approximator machine learning
algorithm whose architecture is simple and whose accuracy is slightly better than
random guessing, in case of binary classification, or than a flat function, in case of
regression. During the learning phase and in every boosting iteration, the distribution or
the training data itself is changed in a manner that allows the next weak learner to
primarily focus on the largest predictor error samples. The strong learner is built upon
the weak learners by a majority voting scheme in case of classification or average and
summation in regression. Normally the weak learners are weighted by accuracy
(Schapire 2003).

Gradient boosting machine (Friedman 2001; Hastie et al. 2008) is an additive
training ensemble algorithm that fits several weak learners sequentially on the last
boosting iteration residual errors. In our case, the weak learner is a regression decision
tree, and the objective function is the square loss.

The extreme gradient boosting machine (Chen and Guestrin 2016) is a regularised
version of the gradient boosting machine. It introduces a penalisation to the complexity
of the trees in the machine, defining it as the number of leaves and the squares of their
scores.

In the stacking ensemble learning technique, the base level models are trained
through a complete training set, and the meta-model is trained on the outputs of the
base level models (Wolpert 1992). The aim is to improve generalisation performance
(Breiman 1996b). In our case, the different regression algorithms were combined via an
extreme gradient boosting machine. The input matrix of the regression tree extreme
gradient boosting machine comprises the outputs of the other models except for the
stand-alone SVR algorithm. Before learning, the input matrix underwent a principal
components analysis (PCA) orthogonal transformation.

The hyperparameter optimisation procedure included the hyperparameters maxi-
mum tree depth for weak learners, boosting learning rate, number of trees to fit, L2
regularisation term on weights as defined by the scikit-learn documentation.

3.2 Feature selection

The feature selection consists in reducing the number of predictive variables that
are used to learn a function that approximates a given response variable. The
objective is to ease the model interpretability, reduce the complexity, enhance the
computational efficiency and convergence of the algorithms, and at last to avoid
overfitting.

In our case, the feature selection was undertaken by the lasso method (Tibshirani
1997). The method adds an L1 norm regularisation to the multilinear regression model
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objective function, forcing the parameters estimates of those predictive variables that
are not sufficiently strong to converge to zero.

A search grid cross-validation procedure was carried out to find the shrinkage
pressure that produces the best average score. The model whose score is immediately
higher than the best mean score minus its standard deviation is chosen to lead the

variable selection. Each variable with a null bβ was dropped.

4 Data and results

4.1 Data

In the experimental phase, an anonymous 2014–15 school year dataset from the
Information Systems Integration Mission Unit database, that supports the Directorate-
General for Statistics of Education and Science (DGEEC) of the Portuguese Ministry of
Education information system, was used. Its purpose is to centralize all educational data
collection from pre-school, primary, and high school, as well as provide the respective
institutes with the necessary information that will serve as the basis for the production
of educational statistics to be used in decision-making processes. From the database,
data from students and schools were collected through Microsoft ® SQL Server
Management Studio queries. Students’ residence area data such as urban, income,
aging, employment, and cultural level indicators were added from Statistics Portugal
to gather information on their socioeconomic background. Only broad attendance
subjects were considered. The final teachers’ high school grades per subject that were
predicted are shown in bold in Table 1.

Table 1 Dataset disaggregation

Samples

Subject Quantitative & qualitative
subjects

n Outlier and incomplete
records

Subtotal

English Qual 54,885 20 54,905

Mathematics Quant 46,593 13 46,606

Biology Quant 16,451 2 16,453

Psychology Qual 16,197 7 16,204

Portuguese Qual 75,035 26 75,061

History Qual 19,756 11 19,767

Philosophy Qual 57,249 23 57,272

Geography Quant 19,884 8 19,892

Physics and Chemistry Quant 28,581 18 28,599

Biology and Geology Quant 27,496 6 27,502

Quantitative Subjects Quant 139,005 47 139,052

Qualitative Subjects Qual 223,122 87 223,209

Total 362,127 134 362,261
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The samples that were removed from the dataset correspond either to extreme values
of the predictive variables, e. g: outliers, or incomplete records. In accordance with
Table 2, the dataset includes the high school final grades as the variable to be
anticipated and a vector of 23 potential predictive variables that fed the algorithms
input matrix through the Lasso feature selection method. The variables denoted in bold
in Table 2 were dropped to avoid perfect collinearity problems.

4.2 Results

4.2.1 Training results

In the learning phase, the algorithms are fitted to the training dataset while the test
dataset is kept aside. The stacking with the extreme gradient boosting algorithm (XGB)
presents the best performances in any of the measures considered, mean absolute error

Table 2 Dataset variables

Variables Description Data Type

PermanentIncomeSupport_0 No public support for family income Binary

PermanentIncomeSupport_1 High level of public support for family income Binary

PermanentIncomeSupport_2 Medium level of public support for family income Binary

PermanentIncomeSupport_3 Low level of public support for family income Binary

Scholargrant_0 No public support for education expenses Binary

Scholargrant_1 High level of public support for education expenses Binary

Scholargrant_2 Low level of public support for education expenses Binary

Gender_M Male Binary

AcYear_10 Tenth academic year Binary

AcYear_11 Eleventh academic year Binary

AcYear_12 Twelfth academic year Binary

N_NoApprovals Number of times the student fails to pass Integer

Nationality Foreign nationality Binary

N_Enrollments Number of times the student has been enrolled Integer

Computer The student has a computer Binary

InternetAccess The student has access to the internet Binary

UrbanIndex Population density measured by the school’s county Float

IncomeIndex Income per capita measured by the school’s county Float

AgingIndex Population ageing measured by the school’s county Float

UnemploymentIndex Unemployment index by school’s county Float

CulturalLevelIndex Cultural level index by school’s county Float

ClassSize Number of class students Integer

SchoolSize Number of school students Integer

N_SubjectsEnrolled Number of subjects the student was enrolled Integer

Gender_M__ClassSize Class size if the student is male Integer

FinalMark Student’s score in a 1–20 range Integer
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(MAE), mean square error (MSE) and determination coefficient (R2) (see Table 3). In
contrast, the classic multilinear regression model (OLS) has the worst performance,
corroborating the well-known statement that machine learning algorithms have higher
generalisation potential.

Just following the XGB algorithm, and focusing on MAE results, random forest
(RF) comes in second concerning performance. Support vector regression (SV) ranks
third in English and mathematics and fourth in Portuguese, surpassed by the artificial
neural network (NN). The support vector regression bagging (BSV) was unable to
exceed NN performance. Anyway, it did not drag as far behind as to consider it an
unreasonable alternative to SV.

Another result worth mentioning refers to the gap between XGB and RF perfor-
mance and its association with the stacking outputs correlation matrix determinant (Det
[R]). For the same level of performance, the stacking efficiency is meant to be higher
whenever the base algorithms outputs are uncorrelated. The correlation coefficient
between the Det [R] and the performance gap between XGB and RF is 0.7911.

4.2.2 Test results

The main issue of our study is bias as made evident by the R2 figures (see
Table 4). Boosting is a class of algorithms whose primary focus is decreasing

Table 3 Learning phase results

Train

English Maths Portuguese Quantitative subjects Qualitative subjects

MAE OLS 2.38 2.68 1.85 2.44 2.26

RF 2.24 2.54 1.72 2.34 2.17

SV 2.34 2.63 1.79

BSV 2.35 2.65 1.81 2.40 2.22

NN 2.34 2.64 1.79 2.40 2.22

XGB 2.18 2.50 1.68 2.32 2.14

MSE OLS 8.20 10.98 5.30 9.19 7.54

RF 7.29 9.92 4.63 8.59 7.02

SV 8.06 10.78 5.13

BSV 8.11 10.82 5.19 9.08 7.45

NN 7.96 10.72 5.05 8.99 7.33

XGB 7.04 9.71 4.47 8.50 6.90

R2 OLS 12.88% 12.22% 15.27% 13.36% 11.19%

RF 22.53% 20.64% 25.94% 18.96% 17.31%

SV 14.30% 13.81% 17.96%

BSV 13.84% 13.49% 16.94% 14.32% 12.27%

NN 15.37% 14.30% 19.13% 15.23% 13.71%

XGB 25.18% 22.34% 28.43% 19.79% 18.73%

Det [R] XGB 0.0011 0.0010 0.0013 0.0005 0.0010
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the bias as is apparent in the training figures. However, the XGB performance
drops substantially in unseen data, and RF presents better figures in English,
mathematics and quantitative subjects. Mathematics is an extreme case as the
XGB performance is the worst among the machine learning algorithms. XGB
seems to overfit more on smaller datasets, exhibiting lower robustness in terms
of a trade-off between bias and variance than RF. In this regard, OLS is the
best method, only surpassed by BSV in quantitative subjects. The BSV algo-
rithm has a narrower performance gap between training and testing than the SV
parent. This enhanced robustness comes from the pasting randomisation.

4.2.3 Feature space analysis

The feature space analysis aims to assess the importance of each input variable in the
predicting process of the target variable. The quantitative subjects and the qualitative
subjects’ results are based on agglomerated datasets that condense information and
generate a more general outlook.

In our case, the feature space is the input subspace that is formed by the
independent variables that have overcome the lasso feature selection filter (non-
zero lasso βs).

The random forest feature importance used follows the scikit-learn implementation.
In a regression tree the node importance NIj comes as follows:

Table 4 Generalization on the test dataset

English Maths Portuguese Quantitative subjects Qualitative subjects

MAE OLS 2.41 2.69 1.86 2.44 2.26

RF 2.35 2.63 1.77 2.36 2.19

SV 2.37 2.65 1.81

BSV 2.38 2.65 1.82 2.40 2.22

NN 2.38 2.66 1.80 2.40 2.22

XGB 2.36 2.66 1.77 2.36 2.18

MSE OLS 8.31 10.97 5.34 9.16 7.51

RF 7.94 10.67 4.93 8.75 7.15

SV 8.23 10.81 5.20

BSV 8.24 10.82 5.26 9.05 7.42

NN 8.16 10.79 5.12 8.96 7.32

XGB 8.12 10.93 4.98 8.78 7.13

R2 OLS 13.28% 11.66% 15.44% 13.77% 11.00%

RF 17.18% 14.05% 21.92% 17.65% 15.29%

SV 14.18% 12.95% 17.66%

BSV 14.10% 12.88% 16.78% 14.86% 12.06%

NN 14.84% 13.07% 18.95% 15.63% 13.28%

XGB 15.35% 11.97% 21.17% 17.38% 15.51%

Education and Information Technologies



NI j ¼ W jmse j− Wleft
j mseleftj þWright

j mserightj

� �
ð1Þ

Where Wj is the proportion of the samples that reach the node j, left and right refer to
the classes after a split and mse is the mean square error. The node importance increases
with the proportion of samples and the decrease of the mean square error due to the
split. The feature importance FIi is the proportion of the importance of those nodes
whose splits are based on the feature i:

FIi ¼
∑
j
NI ij

∑
j
NI j

ð2Þ

The feature importance is normalised to a value between 0 and 1 as follows:

FIi ¼ FI i
∑
i
FI i

ð3Þ

In a random forest, the feature importance is the feature importance mean of all trees
(T):

FIi;rf ¼ ∑T
k FI ik
T

ð4Þ

The dummy variables AcYear_11 and AcYear_12 just capture the gap between the
academic years’ average scores. As they are related to a natural partition of the target
variable that is ever-present, the random forest feature importance was adjusted to
cancel out their influence in the relative feature importance (%*).

Quantitative subjects In the study of the quantitative subjects (Table 5), the eleventh-
year average score was almost coincident with the tenth year score, but the twelfth-year
average score was about 1.99 points higher as shown by MLR βs in Table 5 for
AcYear_11 and AcYear_12 variables.

The study corroborates the assertion that the permanent income support and scholar
grant variables, both capturing the neediest students, should have a negative relation-
ship with achievement. Furthermore, the second level of the scholar grant variable that
includes the most impoverished students has the most significant negative effect.
However, the second level of permanent income is not statistically significant for a
confidence level of 5%. The RF feature importance empirical distribution seems to
corroborate it. In fact, the correlation coefficient between p values and the RF feature
importance coefficient of variation is a striking 0.98. In addition, first and third levels of
the permanent income support were dropped in the lasso feature selection filter and the
adjusted random forest feature importance, when considering them all together, reached
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only a modest 4.77%. Take note that none of the socio-economic indexes could pass
the lasso step except the unemployment index with an importance of 10.06%. As the
indexes are highly interrelated, the lasso feature selection tends to select just one or at
most just a few of them.

Male students have, on average, 0.49 points lower scores than female students. It is a
somehow narrow gender gap with a feature importance of only 4.81%.

As they are highly correlated, either the computer usage or internet access was
dismissed by the lasso feature selection step. As a result, they should be interpreted
jointly. Thus, their negative effect on achievement was not unexpected as high school
students tend to use computers and the internet for recreational purposes (Salomon and
Ben-David Kolikant 2016). Anyway, their negative effect is only 0.19 points on final
scores. Nationality does not play a relevant role in the models. The students were split
between nationals and non-nationals, but no significant pattern was inferred. The
school size variable appears positively related to achievement with a feature importance

Table 5 Feature space analysis: quantitative subjects

Variables Quantitative subjects

β RF feature importance

Lasso MLR Literature expected sign p-value % δ %*

PermanentIncomeSupport_1 0.00 n.a. – n.a. n.a. n.a. n.a.

PermanentIncomeSupport_2 −0.01 −0.13 – 0.09 0.16% 0.20% 0.21%

PermanentIncomeSupport_3 0.00 n.a. – n.a. n.a. n.a. n.a.

Scholargrant_1 −0.07 −0.37 – 0.00 1.35% 0.24% 1.78%

Scholargrant_2 −0.12 −0.64 – 0.00 2.10% 0.20% 2.77%

Gender_M −0.18 −0.49 – 0.00 3.64% 0.27% 4.81%

AcYear_11 0.00 n.a. n.a. n.a. n.a. n.a. n.a.

AcYear_12 0.64 1.99 n.a. 0.00 24.27% 0.58% 0.00%

N_NoApprovals −0.76 −1.24 – 0.00 41.76% 0.79% 55.14%

Nationality 0.00 n.a. – n.a. n.a. n.a. n.a.

N_Enrollments −0.09 −0.34 – 0.00 0.99% 0.22% 1.31%

Computer −0.02 −0.19 - + 0.00 1.26% 0.23% 1.66%

InternetAccess 0.00 n.a. - + n.a. n.a. n.a. n.a.

UrbanIndex 0.00 n.a. + n.a. n.a. n.a. n.a.

IncomeIndex 0.00 n.a. + n.a. n.a. n.a. n.a.

AgingIndex 0.00 n.a. + n.a. n.a. n.a. n.a.

UnemploymentIndex −0.01 −0.03 – 0.00 7.62% 0.65% 10.06%

CulturalLevelIndex 0.00 n.a. + n.a. n.a. n.a. n.a.

ClassSize 0.00 n.a. – n.a. n.a. n.a. n.a.

SchoolSize 0.07 0.0004 + 0.00 11.83% 0.73% 15.62%

N_SubjectsEnrolled 0.07 0.25 + 0.00 5.01% 0.45% 6.62%

Gender_M__ClassSize 0.00 n.a. – n.a. n.a. n.a. n.a.
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of 15.62%. In turn, class size was not selected by lasso, being considered dispensable
for predictive purposes.

The primary variable that is related to a student’s cognitive ability is the number of
non-approvals that has a feature importance of 55.14%. The other cognitive ability
proxy variables are the number of enrollments and the number of subjects enrolled that
have a feature importance of 1.31% and 6.62% respectively.

Qualitative subjects In the qualitative subjects’ case (Table 6), the eleventh and the
twelfth year average scores were higher than the tenth year scores by 0.94 and 1.47
points respectively, as shown by MLR βs in Table 6 for AcYear_11 and AcYear_12
variables.

As in the quantitative subjects’ case, the permanent income support and the scholar
grant variables appear to have a negative relationship with achievement. As expected,
the second level of the scholar grant had the most significant effect. However, the two

Table 6 Feature space analysis: qualitative subjects

Variables Qualitative subjects

Β RF feature importance

Lasso MLR Literature
expected sign

p-value % δ %*

PermanentIncomeSupport_1 −0.02 −0.14 – 0.02 0.65% 0.79% 0.72%

PermanentIncomeSupport_2 0.00 n.a. – n.a. n.a. n.a. n.a.

PermanentIncomeSupport_3 0.00 n.a. – n.a. n.a. n.a. n.a.

Scholargrant_1 −0.12 −0.46 – 0.00 1.89% 0.19% 2.08%

Scholargrant_2 −0.16 −0.48 – 0.00 2.28% 0.85% 2.51%

Gender_M −0.17 0.02 – 0.81 1.19% 1.71% 1.31%

AcYear_11 0.34 0.94 n.a. 0.00 6.04% 0.37% 0.00%

AcYear_12 0.38 1.47 n.a. 0.00 3.20% 0.55% 0.00%

N_NoApprovals −0.70 −1.12 – 0.00 48.27% 0.62% 53.18%

Nationality 0.00 n.a. – n.a. n.a. n.a. n.a.

N_Enrollments −0.14 −0.47 – 0.00 2.94% 0.25% 3.24%

Computer 0.00 n.a. - + n.a. n.a. n.a. n.a.

InternetAccess 0.05 0.15 - + 0.00 0.76% 0.18% 0.84%

UrbanIndex −0.03 0.00 + 0.00 4.74% 0.51% 5.22%

IncomeIndex 0.00 n.a. + n.a. n.a. n.a. n.a.

AgingIndex 0.02 0.00 + 0.00 5.72% 0.53% 6.30%

UnemploymentIndex 0.00 n.a. – n.a. n.a. n.a. n.a.

CulturalLevelIndex 0.00 n.a. + n.a. n.a. n.a. n.a.

ClassSize 0.05 0.02 – 0.00 4.54% 0.52% 5.00%

SchoolSize 0.07 0.00 + 0.00 8.18% 0.62% 9.01%

N_SubjectsEnrolled 0.11 0.26 + 0.00 5.13% 0.59% 5.65%

Gender_M__ClassSize −0.06 −0.02 – 0.00 4.48% 1.77% 4.94%
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last levels of the permanent income support were dropped in the lasso feature selection
and the joint adjusted random forest feature importance is only 5.31%. Among the
socioeconomic indexes, just urban and ageing indexes were strong enough to overcome
the lasso step with a joint importance of 11.52%.

Male students have an average score comparable with female students. Notice that
the gender MLR β is not statistically significant, and again, the RF importance standard
deviation is greater than the RF feature importance itself. In fact, the correlation
coefficient between p values and RF feature importance coefficient of variation is 0.74.

Computer usage did not pass the lasso feature selection. Contrary to the case of
quantitative subjects, internet access and computer usage have a modest but positive
joint effect on AA. Nationality has the same result as quantitative subjects, not playing
a relevant role in the models. The school size variable appears to be positively related to
achievement, and its feature importance reaches 9.01%. Male students scores appear to
be insensitive to class size, but females tend to thrive in larger classes, as can be
inferred from the ClassSize and Gender_M_ClassSize joint results.

Concerning the influence of student’s cognitive ability on AA, the figures are as
bold as the quantitative subjects’ case. The number of non-approvals, number of
enrollments and number of subjects enrolled have feature importance of 53.18%,
3.24% and 5.13% respectively.

5 Discussion

5.1 Academic achievement

Despite the indecisiveness that pervades the literature about the school size effect
on AA (Schwartz et al. 2013), in this case, they appear positively associated. It
should be interpreted with care because it can be related to omitted variables such
as teaching quality, school design, management soundness, and student social
economic status (Opdenakker and Van Damme 2007). The Portuguese public
education system, the ambit of this study, is much centralized: Schools are quite
homogeneous in the physical conditions they provide; Teachers are hired and
allocated nationwide through a centralized selection process; Parents cannot
choose freely, being restricted to enrol their children in neighbourhood schools.
Teachers’ evaluation cornerstones are uniform across the country. Furthermore,
the target variable is teachers’ grades, instead of grades of a unified test that would
shed light on their lecturing quality. Thus, the effects of the variables’ omission
are considered minor despite the toll they inflict on the final robustness of the
model. However, and most importantly, as the nation observes a significant
income gap between coastal areas, where most of the large schools are located,
and the countryside, along with the socioeconomic variables’ lack of detail and
scope, it is appropriate to accept that the school size importance is being distorted
by the school socioeconomic status average.

The importance of the socioeconomic status variables in AA prediction was not as
strong as might be expected. First, the socioeconomic indexes have an inherent limited
predictive power due to their municipal level scope much larger than the student or
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family scope optimal. Secondly, the relationship between family income and AA is
moderated by resources accessibility and the education system in question belongs to a
medium-high-income country where poor people can enjoy a reasonable rapport of
crucial social capital. Indeed, the differences between publicly funded schools in terms
of physical conditions and teacher capabilities are almost inexistent, decreasing the
effect of school choice on AA that is typically driven by socio-economical differences
(Sirin 2005). The public high school education system being free and widely accessible
contributes to narrow the socioeconomic gap in AA. However, if we consider that the
importance of school size reflects differences in school socioeconomic status average,
the results shall otherwise be read as inconclusive.

The AA gender gap, given by the difference between mean scores, is narrow. This
result is in accordance with the country’s PISA results (OEDC 2016) where fifteen-
year-old male students outperformed female students in science and mathematics and
behaved above the OEDC average when lagging in reading. Clearly, the gender gap
does not seem to be as profound as it is in other countries, even though male students’
dropout and retention rates are significantly higher than female ones.

Concerning public policies, as female students thrive in larger classes in qualitative
subjects and male students seem to be insensitive to class size, no evidence is shown
that smaller classes improve AA.

The importance of cognitive ability variables corroborates the central asser-
tion of the literature. However, they do have limited predictive power as they
fundamentally rely on the number of times a student has failed to ascertain
overall student cognitive ability.

5.2 Machine learning

Even though the XGB stacking input matrix determinant is ever close to zero in our
case and the potential for stacking enhancing is limited, the XGB went further on
average relatively to RF whenever the Det [R] was higher.

The correlation between the p-values and RF feature importance coefficient of
variation is a significant empirical result. As the tree feature space was not randomised,
when the RF importance standard deviation is much larger than the RF feature
importance itself, it is because the variable was unable to sustain a proper level of
relevance in each tree that belongs to the forest. The variable importance varies bluntly
from tree to tree because it is not decisive in the process of decreasing the mean square
error of the outcomes.

5.3 Limitations

The study underfitting is expected. The number of times a student has not
passed and the number of times he is enrolled in a particular subject are only
weak proxy variables for cognitive ability. Analogously, the permanent income
support, the scholarship grant and the county socioeconomic indexes cannot
replace socioeconomic variables at the student or family level without a signif-
icant loss of information and model ableness of pattern retention. Moreover,
teaching quality is an omitted variable, and the school facilities are reduced to
size and location.
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6 Conclusions

Concerning the first research question, the results show that all machine learning
algorithms have attained a higher level of predictive ability when compared with the
classical multiple linear regression model. However, data appropriateness in detail and
scope is nevertheless of utmost importance.

Pasting the support vector machine regressor had appreciable results, especially for
the larger datasets where the similarity matrix computation cost is much higher.

Stacking efficiency is enhanced if the outputs of the base learners are uncorrelated.
Empirically, it was shown that the stacking appropriateness increases as those outputs’
correlation matrix determinant also increases. In this regard, the objective function and
the performance measure that supports the tuning of the base learners can be adapted to
take-into-account the efficiency of the stacking step.

Concerning the second research question and the hypothetical implications for
public policies, and given the purpose of deploying accurate and robust predictive
models, an information system that supports the nationwide education system should
be designed and further structured as to collect meaningful and precise data about the
full range of academic achievement antecedents.

As female students thrive in larger classes in qualitative subjects and male students
seem to be insensitive to size, no evidence is shown that smaller classes would improve
AA.

Concerning the last research question, the random forest feature importance empir-
ical distributions are correlated with the structure of p values and statistical significance
test ascertains of the multiple linear model. This conclusion can lead to a new line of
research in terms of using the random forest algorithm to develop conceptual specifi-
cation tests. It is not cumbersome to put forward the hypothesis of a mismatching
specification relationship between the target and predictor variables when the p values
structure is not in accordance with the inherent RF feature importance empirical
distributions.
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