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Abstract: Carotid bodies (CBs) are peripheral chemoreceptors that sense changes in blood O2, CO2,
and pH levels. Apart from ventilatory control, these organs are deeply involved in the homeostatic
regulation of carbohydrates and lipid metabolism and inflammation. It has been described that CB
dysfunction is involved in the genesis of metabolic diseases and that CB overactivation is present
in animal models of metabolic disease and in prediabetes patients. Additionally, resection of the
CB-sensitive nerve, the carotid sinus nerve (CSN), or CB ablation in animals prevents and reverses
diet-induced insulin resistance and glucose intolerance as well as sympathoadrenal overactivity,
meaning that the beneficial effects of decreasing CB activity on glucose homeostasis are modulated
by target-related efferent sympathetic nerves, through a reflex initiated in the CBs. In agreement
with our pre-clinical data, hyperbaric oxygen therapy, which reduces CB activity, improves glucose
homeostasis in type 2 diabetes patients. Insulin, leptin, and pro-inflammatory cytokines activate
the CB. In this manuscript, we review in a concise manner the putative pathways linking CB
chemoreceptor deregulation with the pathogenesis of metabolic diseases and discuss and present
new data that highlight the roles of hyperinsulinemia, hyperleptinemia, and chronic inflammation as
major factors contributing to CB dysfunction in metabolic disorders.

Keywords: carotid body; obesity related syndromes; type 2 diabetes; glucose; insulin; leptin;
inflammation; sympathetic overactivation

1. Introduction

Metabolic diseases such as obesity, metabolic syndrome, and type 2 diabetes are some of the most
common non-communicable diseases whose prevalence continues to increase, contributing to significant
morbidity and mortality worldwide and considered worldwide epidemics [1,2]. The increasing
incidence of these diseases is mainly due to lifestyle changes such as the sedentary lifestyle and the
increase in the consumption of hypercaloric diets. The sympathetic nervous system is known to play
a role in the generation of metabolic diseases [3,4] and several factors have been postulated to be
responsible for this increased sympathetic activation, such as hyperinsulinemia, hyperleptinemia,
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and inflammatory cytokines [5]. However, there is no consensus on the major mediators responsible for
it. Additionally, afferent pathways and the stimuli that trigger afferent activation are poorly studied.

Carotid bodies (CBs), located bilaterally at the bifurcation of each common carotid artery,
are peripheral chemoreceptors that classically sense changes in arterial blood O2, CO2, and pH levels.
In response to hypoxia (O2 deprivation), hypercapnia (CO2 retention), and acidosis (pH drop), type I
cells, the CB chemosensory unit, release neurotransmitters that act on the nerve terminals of the CB
sensitive nerve, the carotid sinus nerve (CSN), to generate action potentials or to inhibit its activity [6].
CSN activity is integrated in the brainstem to induce a set of respiratory reflexes aimed, primarily,
at normalizing the altered blood gases via hyperventilation [6] and regulating blood pressure and
cardiac performance via sympathetic nervous system activation [7]. Besides its role as an oxygen
sensor, in the last few years, the CB has also been proposed to be a metabolic sensor implicated in
the control of carbohydrate and lipid metabolism [8–11] and in the regulation of peripheral insulin
sensitivity and glucose homeostasis [8,9,12–17] (Figure 1a). Recently, we showed that CB activity is
increased in prediabetes and type 2 diabetes animal models [13,18–20] and patients [21] (Figure 1a)
and that the abolishment of CB activity in animals, via chronic resection of the CSN or CB ablation,
prevents and reverses dysmetabolism in rodent models of metabolic disease [13,15,16] (Figure 1b)
by positively impacting glucose uptake and insulin signaling in the liver and in the visceral adipose
tissue [15]. Additionally, we have previously shown that CSN resection in animal models prevents
and restores the heightened sympathetic activity, measured as increased plasma and adrenal medulla
catecholamines levels and increased LF bands and LF/HF ratio in heart rate variability analysis,
which is characteristic of metabolic diseases [13,15]. In agreement with this heightened sympathetic
activity, electrophysiological recordings at the superior cervical chain confirmed the overactivation
of the sympathetic nervous system in rodent models of dysmetabolism that disappear with CSN
resection [19]. Altogether, these results mean that CB dysfunction is involved in the development of
metabolic diseases via an overactivation of the sympathetic nervous system (Figure 1a).
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Figure 1. Schematic representation of the carotid body (CB) involvement in the development of
obesity, insulin resistance, and glucose intolerance through an increase in sympathetic nervous
system activity. (A) Hypercaloric diets and intermittent hypoxia promote an increase in CB activity
that contributes to the augmentation of sympathetic nervous system activity, leading to metabolic
dysfunction. (B) Modulation of CB activity through the carotid sinus nerve (CSN) resection or via
hyperbaric oxygen therapy, normalized sympathetic nervous system activity, improving dysmetabolism.
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Alongside the hypothesis that CB dysfunction contributes to metabolic diseases, we described
how hypercaloric diet animals [13] and prediabetes patients [21] exhibit increased basal ventilation
and showed that prediabetic dysmetabolism correlates with increased peripheral chemosensitivity,
as evaluated by the Dejours test, which measures the decrease in basal ventilation produced by
100% O2 (hyperoxia), and that this correlates with abdominal perimeter and insulin resistance [21].
This increased peripheral chemosensitivity observed both in prediabetes and type 2 diabetes was shown
to be associated with increased CB weight, with an increase in the percentage of CB chemoreceptor cells
and CB tyrosine hydroxylase activity as well as with augmented CB release of catecholamines and CSN
activity in metabolic disease animals [13,18,19,22] and with an increase in CB size of approximately
25% in type 2 diabetes patients [23]. In line with our hypothesis that CB dysfunction is associated
dysmetabolism, it was shown by Paleczny et al. that, in men, overweight/obesity is accompanied by an
augmented blood pressure response from peripheral chemoreceptors, while respiratory and heart rate
responses remain unaltered, and that hyperinsulinemia and insulin resistance (but not hyperleptinemia)
are associated with an augmented pressure response from chemoreceptors [24]. In agreement with the
pre-clinical data showing that CB dysfunction is involved in the development of metabolic diseases,
hyperbaric oxygen therapy, an intervention that dramatically reduces CB activity [25], improves fasting
glucose and post-prandial glucose management in type 2 diabetes patients [26] (Figure 1b).

Besides prediabetes and type 2 diabetes, CB overactivation has been associated with other
pathologies that occur with cardiometabolic comorbidities, such as obstructive sleep apnea (OSA) [27,28].
OSA is a potentially serious sleep disorder characterized by repetitive episodes of complete or
partial nocturnal breathing obstructions and by altered hypoxic ventilatory responses [27,29–31],
being also associated with several metabolic and cardiovascular abnormalities [32–34]. The consensus
is that CB overactivation due to chronic intermittent hypoxia (CIH) is involved in the genesis of
OSA-mediated hypertension and insulin resistance through an increase in sympathetic nervous system
activity [10,27,29,30,35]. One of the risk factors contributing to the development of OSA is obesity
and, in fact, it is estimated that 40% of obese individuals have OSA and that approximately 70% of
individuals with OSA are obese [36,37]. In addition, in middle-aged men with OSA, it was observed that
there is an association with visceral obesity, inflammation, hyperinsulinemia, and hyperleptinemia [36].
Obesity is also known to be present in 90% of type 2 diabetes patients and in 85–99% of metabolic
syndrome patients, being a risk factor for the development of these diseases [38,39] due to adipose tissue
dysfunction. White adipose tissue is the main lipid storage depot in humans, being critically important
in buffering the dietary fat influx entering the circulation by suppressing the release of non-esterified
fatty acids into the circulation and by increasing the clearance of triacylglycerols [40]. Apart from
the decrease in lipid storage and the release of free fatty acids into the circulation, promoting thereby
whole-body insulin-resistance, adipose tissue plays a crucial role in the development of metabolic
diseases, due to its critical immune and endocrine functions. Adipose tissue is an active endocrine organ
that secretes several humoral factors named adipokines, such as leptin and adiponectin, that exhibit
important systemic metabolic effects, from food intake to glucose tolerance [41–43]. Along with the
production of specialized adipokines, such as leptin and adiponectine, adipose tissue also secretes
proinflammatory cytokines that contribute to the low-level systemic inflammation that is involved in
adipose tissue dysfunction and systemic metabolic abnormalities [43,44].

Leptin, also known as the satiety hormone, is increased in the plasma of obese subjects, being highly
associated with the degree of adiposity and body mass index [45]. Apart from regulating satiety,
leptin has other body functions and has been proposed to be one of the major contributors to the
increased sympathetic nervous system activity observed in obesity and obesity-induced cardiometabolic
disturbances. It was observed that there is a positive correlation between whole-body norepinephrine
spillover and plasma leptin levels in overweight and obese metabolic syndrome subjects [46], results that
were also described in animal studies [47]. This effect of leptin in promoting sympathetic nervous
system activation has been mainly attributed to its action on the central nervous system [48]; however,
we can postulate that actions outside the brain can add to these effects. Like leptin, proinflammatory
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cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), have also been
suggested to increase sympathetic nervous system activity by acting centrally [5]. Serum levels of
TNF-α and IL-6 are increased in diabetic patients, being found in higher levels in obese than non-obese
diabetic patients [49]. Moreover, central IL-6 administration promoted an increase in uncoupling
protein 1 (UCP1) activity and oxygen consumption [50,51], suggesting a direct link to sympathetic
nervous system activation. However, it cannot be ruled out that, besides its action in the central
nervous system, IL-6 as well as other pro-inflammatory cytokines may exert their effects in periphery
to increase sympathetic nervous system activity.

Another factor that has been shown to enhance sympathetic drive in cardiometabolic diseases is
hyperinsulinemia [52], particularly by acting in the central nervous system. The injection of insulin
into the arcuate nucleus and paraventricular nucleus promote an increase in spinal sympathetic
outflow, mediated by the dorsal hypothalamus and rostral ventrolateral medulla (for a review, see [53]).
Additionally, insulin infusion augments muscle sympathetic nervous activity in healthy individuals
under euglycemic conditions [54,55]. Nevertheless, these effects cannot be exclusively attributed to
central nervous system-mediated mechanisms, as the administration of insulin into the carotid artery of
anesthetized dogs leads to a higher increase in blood pressure and sympathetic activity than systemic
insulin administration, this effect being abolished by the ganglionic blockade [56]. These results clearly
suggest a role for the peripheral nervous system in insulin-mediated sympathetic activity.

Therefore, knowing that leptin, proinflammatory cytokines, and insulin augment sympathetic
nervous system activity, that the CB integrates its action centrally via the modulation of sympathetic
activity, and that the CB possesses receptors for all these mediators, we hypothesize that hyperleptinemia,
proinflammatory cytokines, and hyperinsulinemia are mediators that contribute to the CB dysfunction
that contributes to the genesis of metabolic diseases (Figure 2).
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Figure 2. Mediators contributing to carotid body (CB) overactivation in metabolic diseases. Schematic
representation of the several factors, such as hyperglycemia, hyperinsulinemia, hyperleptinemia,
and inflammation, could induce an increase in CB that will contribute to the development of obesity,
insulin resistance, and glucose tolerance through the overactivation of the sympathetic nervous system.

2. Insulin: A Stimulus for Carotid Body Activation in Metabolic Diseases

In the last few decades, the CB has been proposed to have metabolic sensing properties by
responding to alterations in blood glucose and insulin [10,17]. Considering the anatomic location
of the CB and its high vascularization [6], it is possible to anticipate that the CB is able to monitor
metabolic states in the blood, this information being integrated in the brain.
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Several in vivo and in vitro studies demonstrated the involvement of the CB in whole-body
glucoregulation [8,9,12,57–59] and, more recently, it was postulated that it may directly sense arterial
glucose concentrations [60,61]. However, to date, no consensus has been reached regarding CB’s
glucose sensing properties and the involvement of hyperglycemia in the mechanisms promoting CB
overactivation in metabolic diseases does not seem plausible [14]. In 2002, Pardal and López-Barneo
reported in CB slices that hypoglycemia augmented chemoreceptor cells’ sensitivity and enhanced their
response to hypoxia [60]. Additionally, in co-cultures of petrosal ganglions with CB chemoreceptor cells,
Zhang et al. [61] reported that hypoglycemia increased afferent action potential frequency. On the other
hand, Conde et al. [61] reported, using freshly isolates intact rat CB preparations, that hypoglycemia
did not modify catecholamine release from CB type I cells or CSN action potential frequency [62],
results confirmed previously by Almaraz et al. [62] and Bin-Jaliah et al. [63] obtained in intact CB-CSN
preparations. More recently, Shirahata et al. [64] described in mice that basal CSN frequency of discharge
and the CSN response to hypoxia did not change with low glucose concentrations, supporting the idea
that CBs do not sense low glucose levels directly. Knowing that metabolic diseases are characterized by
high glucose concentrations in blood, our group tested, in the isolated rat CB-CSN ex vivo preparation,
the effect of 25mM of glucose on CSN chemosensory activity and showed that hyperglycemia did
not change either basal or CSN chemosensory activity in response to hypoxia [14]. This suggests
that hyperglycemia acting directly on the CB cannot be one of the major factors contributing to CB
dysfunction in metabolic diseases.

However, even if the CB is not able to sense glucose directly, there is undoubtedly an association
between CB activity and the regulation of glucose homeostasis. CB stimulation promoted a reflex
hyperglycemia [65] and increased hepatic glucose output in cats [12], effects that were abolished by CSN
resection [12]. The role of CB in the regulation of glucose homeostasis was also demonstrated in vivo,
by Koyama et al. [8], since dogs submitted to CSN denervation exhibit a reduction in arterial glucagon
in basal conditions. Additionally, the same authors reported that CB-resected dogs, in response to a
hypoglycemia induced by insulin, exhibit a decrease in glucagon and cortisol levels, together with a
reduction in endogenous hepatic glucose production in response to hypoglycemia and an increase in
insulin sensitivity, independent of blood glucose level [8]. In agreement with the results obtained by
Koyama et al. [8] in dogs, when CB activity was blunted by hyperoxia in healthy volunteers, there was
a decrease in the release of counter-regulatory hormones such as epinephrine, cortisol, glucagon,
and growth hormone in response to hypoglycemia induced by hyperinsulinemia [58]. Nevertheless,
the counterregulatory responses to hypoglycemia in CB-resected patients were relatively normal [59].
In addition, in another clinical study, both hypoglycemia and hyperglycemia induced an increase in
ventilation and in the ventilatory response to hypoxia [66], suggesting that, apart from glucose, insulin
could account for the effects described above.

Bin-Jaliah et al. [63] reported that insulin-induced hypoglycemia increased spontaneous ventilation
in rats, an effect that was abolished in CSN-sectioned animals, but that hypoglycemia per se was
unable to alter CSN frequency, suggesting that the effects of insulin-induced hypoglycemia were
mediated only by insulin and not by hypoglycemia. The effect of insulin per se on ventilation and on
CB activity was then confirmed in 2013 [13]. It was observed in anesthetized rats that insulin, during
an euglycemic clamp, increased ventilation in a dose-dependent manner, an effect that was abolished
after CSN resection [13]. Moreover, insulin receptors were shown to be present at the CB, and insulin,
in physiological concentrations, was able to elicit a neurosecretory response in CB type I cells, measured
by the increase in intracellular calcium and by the release of ATP and catecholamines [13]. When the
effect of insulin, perfused intravenously, was evaluated in the output of the CB, insulin was shown
to increase CSN and sympathetic nervous system electrophysiological activity in vivo in the rat,
the effect on the sympathetic nervous system being abolished in CSN-sectioned animals [19,20].
In agreement with these, Barbosa et al. [67,68] observed in heathy volunteers that hyperinsulinemia,
during a euglycemic clamp, increased minute ventilation independently of alterations in glucose
levels. Confirming the effect of insulin via its action in the CB on glucose homeostasis, Vidal et al. [68]



Int. J. Mol. Sci. 2020, 21, 5545 6 of 22

recently showed that insulin promotes hepatic glycogenolysis by acting on the CB. Taking all these data
together, we postulate that, in metabolic diseases, hyperinsulinemia, rather than hyperglycemia, is one
of the major stimuli contributing to CB dysfunction [13,14] (Figure 2). Alongside these, increased CB
chemosensitivity, measured by the Dejours test, observed in prediabetes patients is directly correlated
with plasma insulin levels and with insulin resistance but not with fasting glycemia [21].

3. Hyperleptinemia: A Major Factor Contributing to CB Dysfunction in Metabolic Diseases

Leptin is an adipocyte-derived hormone that acts on the hypothalamus to regulate food intake
and energy consumption [69–71] and promotes lipolysis by the activation of sympathetic inputs to
adipose tissue [72]. However, the scientific excitement about leptin discovery faded when it was
demonstrated that plasma leptin levels were increased in obesity and metabolic diseases, defining a
state of leptin resistance [69–71]. Indeed, both human and animal studies have demonstrated resistance
to the anorexic and weight-lowering effects of leptin, while some of its actions on the sympathetic
nervous system, namely renal and adrenal activation, are preserved, demonstrating a state of selective
leptin resistance [73–75]. Apart from its role in metabolism, leptin is known to play an important role
in immunity and inflammation [76], being also involved in the central control of breathing, as the
administration of leptin reverses hypoxia and hypercapnia in animal models with a mutation in the
leptin gene [77,78]. Moreover, leptin levels are increased in OSA patients [36,79] and correlates with
OSA severity [79], suggesting that part of the CB overactivity and altered hypoxic ventilatory responses
in OSA and obesity might be associated with a direct action of leptin in the CB.

Groeben et al. [80], in 2004, were the first to suggest that leptin could also act on peripheral
chemoreceptors. The authors showed that hyperoxia decreased the respiratory rate in wild-type mice but
not in leptin receptor deficient (ob/ob) mice, an effect that was restored by leptin replacement in ob/ob
mice [80]. Later, in 2011, Porzionato et al. [81] described the presence of leptin and leptin receptor isoforms
in type I, but not type II, cells of both rat and human CBs. In the CBs of humans, approximately 40% of type
I cells were immunoreactive to leptin, 57% of the type I cells being immunoreactive for all leptin receptors
isoforms, with approximately 30% being reactive for Ob-Rb isoforms [81]. The authors postulated that
these findings were associated with a physiological role of circulating or locally produced leptin in the
regulation of CB function by means of a direct action on type I cells [81]. The work of Porzionato et al. [81]
was then corroborated by Messenger et al. [82] as they described that rat CB cells express the Ob-Rb and
that these receptors overlap in distribution with cells expressing tyrosine hydroxylase, indicating the
presence of this leptin receptor in CB type I cells. More recently, the presence of Ob-Rb isoforms was also
described in mice type I and type II cells [83]. Altogether, these findings support the idea that the effects
of leptin on ventilation are, at least in part, mediated by CB chemoreceptors.

In Wistar rats, intravenous [22,84] and intracarotid [22] administration of leptin increased basal
ventilation and ventilation in response to ischemic hypoxia, assessed by the occlusion of the common
carotid artery, in a dose-dependent manner. In the same line of evidence, subcutaneous leptin
administration in C57BL/6J mice increased minute ventilation and hypoxic ventilatory response,
effects abolished by the CSN resection [83]. These results, together with the findings that CSN
resection decreased in approximately 30% of subjects the spontaneous ventilation induced by acute
leptin intracarotid administration (90 and 270 ng/mL) (Figure 3), confirmed that the CB contributes
to the effects of leptin on basal ventilation and in response to acute hypoxia. However, as described
for the effects of leptin in satiety [85], the acute and chronic actions of leptin on basal ventilation
seem to be opposite. Chronic leptin administration for 7 days (60 µg/mL) did not modify resting
respiratory parameters but increased hypoxic ventilatory response in rats, effects abolished by CB
denervation [86]. Additionally, animals submitted to a high-fat (HF) diet (60% energy from fat) for
3 weeks, although exhibiting increased basal ventilation [22], showed a 40–50% decrease in the excitatory
effect of leptin in spontaneous ventilation [22] (Figure 3), effects that were not modified with CSN
resection (Figure 3). In agreement with the effects of leptin as a sympathetic activator, leptin increased
electrophysiological sympathetic nervous system activity, measured at the cervical sympathetic chain,
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in control animals, but in HF animals, the rise in sympathetic activity induced by the HF diet was
not modified after leptin administration or CSN resection [86]. Alongside these blunted effects on
ventilation and on the sympathetic activity produced by a HF diet and the absence of effects of CSN
resection in these animals, leptin was unable to modify the increase in basal CSN electrophysiological
activity induced by 3 weeks of HF diet in rats [22], while in control rats and mice, leptin augmented
basal CSN chemoreceptor activity [22,64,83]. Additionally, 3 weeks of HF diet increased the expression
of leptin receptor Ob-R (short and long form) by 35% [22], suggesting a feed-forward mechanism to
increase CB activity or the saturation of Ob-R leptin receptors during hyperleptinemic states, in parallel
to what is described in the central nervous system [87]. Taken together, these results suggest that
leptin is probably involved in the activation of the CB in initial states of dysmetabolism that run with
hyperleptinemia, such as overweight and prediabetes, but that a resistance to leptin signaling and the
blunting of leptin responses might develop with chronic hyperleptinemia. This initial involvement of
leptin in CB overactivation was also supported by data showing that CB activity is increased in both lean
and obese animal models of insulin resistance but that obese animals possess more pronounced increases
in spontaneous ventilation, ischemic hypoxia-induced hyperventilation, CB weight, and tyrosine
hydroxylase expression at the CB compared to lean animals [13]. In addition, in concordance with the
blunting produced by chronic hyperleptinemia, animals submitted to longer periods of exposure to
hypercaloric diets—8 weeks of HF diet [88], 16 weeks of HF diet [89], and 25 weeks of HF-high sucrose
diet [16]—exhibited decreased basal ventilation and decreased responses to hypoxia, as well as the
genetic model, the obese Zucker rat, a model that lacks the gene coding for the Ob-R leptin receptor [88].
The role of CB in mediating the effects of leptin on spontaneous ventilation and hypoxic ventilatory
responses in obesity was also confirmed by Caballero-Eraso et al. [83]. In Ob-R leptin receptor deficient
obese db/db mice, the application of an adenovirus harboring the Ob-R gene bilaterally in the CB area
promoted an increase in minute ventilation during wakefulness and sleep and augmented the hypoxic
ventilatory response without affecting food intake, rectal temperature, body weight, and circulating
leptin levels [83]. These results lead the authors to suggest that leptin signaling in the CB may protect
against sleep disordered breathing in obesity.
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Figure 3. Effect of carotid sinus nerve resection (CSN) on leptin effects on ventilation in control (CTR)
and high-fat (HF) animals. Leptin (90 and 270 ng/mL) was administrated intracarotidally, as a bolus in
anesthetized animals with pentobarbital (60 mg/kg i.p.), as previously described by Ribeiro et al. [13,22].
CSN resection was performed acutely prior to leptin administration. HF animals were submitted to a
lipid-rich diet (60% energy from fat) for 3 weeks. Data are presented as mean ± SEM of 5–8 control and
3–5 HF animals. Two-way ANOVA with Bonferroni multiple comparison tests: * p < 0.05, ** p < 0.01,
leptin (ng/mL) baseline vs. diet or diet plus leptin; # p < 0.01 without CSN resection vs. with CSN
resection; § p < 0.05 control vs. HF diet.
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Leptin is also known to be one of the key factors associated with the development of obesity-induced
hypertension, acting both centrally and peripherally [3,4]. Recently, the CB was described to contribute
to leptin-induced hypertension, since CSN denervation abolished the increase in mean arterial pressure
induced by 3 days of subcutaneous administration of leptin in C57BL/6J mice [90]. The effect of
leptin on the CB, at least in modulating blood pressure, seems to be mediated by the transient
receptor potential melastatin 7 channel (Trpm 7), as its blocker, FTY720, abolished the increase in blood
pressure [89], and the SKF96365, 2-APB Trp channel blockers abolished the leptin-mediated increase in
CSN activity [65]. In agreement with these findings, the Trpm7 was identified in CB [64], co-localized
with the Ob-R leptin receptor in CB type I cells [90], and leptin administration increased Trpm7
current in isolated CB type I cells [90]. Confirming the involvement of the CB in the development of
obesity-induced hypertension, Shin et al. [89] showed that the overexpression of Ob-R leptin receptor
in the CB of Ob-R-deficient obese db/db mice induced hypertension. In conclusion, leptin is able to
increase CB activity, being involved in obesity and its cardiovascular consequences. The levels of
circulating and/or locally produced leptin might be determinant for the initiation and maintenance of
dysmetabolic states associated with obesity.

Knowing that, in obesity, and in parallel with the increased secretion of leptin from adipose
tissue, there is a disturbed adipose tissue secretory pattern characterized by an increased release of
pro-inflammatory factors and decreased production of anti-inflammatory adipokines [42] and associated
with the development of obesity-associated comorbidities, we hypothesize that inflammation can also
contribute to the CB dysfunction that is involved in the genesis of metabolic diseases.

4. Inflammation: A Role in CB Dysfunction?

In the last few years, a growing body of evidence established that the CB can sense both pro- and
anti-inflammatory mediators. The expression of receptors for TNF-α and for the interleukins IL-1, IL-6,
and IL-10 has been shown in human CBs, and as well in the mouse CB, except for the IL-1 and IL-10
receptors [91,92]. In addition, the rat CB expressed IL-1 receptor in type I cells [93–95], although the
expression of this receptor was not restricted to these cells, since this receptor was observed in other
cellular types including blood vessels, type II cells, or connective tissue cells [93]. IL-1β mRNA
and immunoreactivity were also described in rat CBs and co-localized with CB type I cells [94–96].
Additionally, the presence of TNF-α, IL-1β, and IL-6 receptors was determined in rat CBs by Western
blot (Figure 4a). The consumption of a HF diet for 3 weeks augmented the expression of the receptor
IL-1R in the CB, an effect that was smaller in HF-high sucrose (HFHSu) animals, probably because
these animals, when submitted to an HFHSu diet, consume more sugar that fat in their diet (Figure 4a).
Additionally, preliminary results showed that the expression of TNF-R1 increased in the CB of both
rat models of metabolic dysfunction, being higher in HFHSu animals, while the expression of the
receptor IL-6Rα did not change with hypercaloric diet consumption (Figure 4a). These results suggest
that alterations in IL-1β and TNF-α signaling might contribute to the CB overactivation described in
metabolic diseases [13,22].

Besides the presence of TNF-α, IL-1β, IL-6, and their receptors in the CB, it has been described
that these pro-inflammatory cytokines can modulate CB type I cells’ excitability, CB neurotransmitter
release, and CSN chemosensory discharge [97,98].
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Figure 4. Effect of hypercaloric diets on the expression of pro-inflammatory cytokines receptors
in CB and effect of pro-inflammatory cytokines on ventilation and catecholamine release from the
carotid body (CB). (A) Effect of high-fat (HF) for 3 weeks and high-fat high-sucrose (HFHSu) diet
for 25 weeks on the expression of the receptors IL-1RI, IL-6Rα, and TNF-R1 in rat CB. (B) Effect of
interleukin-1 beta (IL-1β, 40 ng/mL) on the release of catecholamines from the CB in control and HF
animals. (C,D) Effect of interleukin-6 (IL-6, 0.5 or 5 ng/mL) and tumor necrosis factor alpha (TNF-α,
0.5 or 5 ng/mL) on basal ventilation, respectively, measured in anesthetized animals with pentobarbital
(60 mg/kg.i.p.). TNF-α and IL-6 were administrated in the femoral vein, as described previously by
Cracchiolo et al. [20]. Carotid sinus nerve (CSN) resection was performed acutely prior to TNF-α
and IL-6 administration. The catecholamine release protocol consisted of two incubations of CB in
normoxic solutions (20% O2 plus 5% CO2 balanced 75% N2, 10 min), followed by IL-1β application for
30 min in normoxia, followed by two normoxic incubations, one hypoxic incubation (5% O2, 10 min),
and two final normoxic incubations. The release of catecholamines from the CB was normalized for
catecholamine content in each CB. Each bar represents a 10 min incubation and sample collection
period. Protocol for catecholamines release from the CB was similar to that previously used [13,83].
Data are presented as mean ± SEM of 3 (A), 14–15 carotid bodies (B), and 3–6 animals (C,D). Two-way
ANOVA with Bonferroni multicomparison test: * p < 0.05, ** p < 0.01 and *** p < 0.001 compared with
20% O2 prior to hypoxic (5% O2) stimulus.

4.1. Effect of Inflammatory Cytokines on the Carotid Body

Evidence suggests that IL-1β can activate the CB [99,100]. In isolated rat CB type I cells,
the application of IL-1β decreased the outward potassium current and triggered a transient increase in
[Ca2+]i, an effect that was abolished by the application of an IL-1β receptor antagonist and without
any change in the release of catecholamines [99]. In agreement with these results, we have observed
that 40 ng/mL of IL-1β did not modify the release of catecholamines from CBs in control and HF rats
(Figure 4b). However, extracellular recordings of CSN chemosensory activity showed an increase in
the CSN frequency of discharge in response to topical application of IL-1β, an effect that was partially
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inhibited by suramin, a P2X receptor antagonist, but not by a D1 and D2 receptor antagonist, suggesting
that ATP and not dopamine mediates the CSN response to IL-1β [98]. In addition, the expression
of IL-1 receptor and tyrosine hydroxylase, a rate-limiting enzyme for catecholamine synthesis in CB
type I cells, increased after intraperitoneal IL-1β administration [100]. Altogether, these results clearly
demonstrate that IL-1β promotes CB activation and that the increase in its levels might contribute to
CB dysfunction.

The presence of IL-6 and its receptor was also found in rat CB, IL-6R being localized in type I
cells [94–96,101]. As for IL-1 receptor, IL-6R was found to be expressed in other cellular types apart
from type I cells, probably type II cells, blood vessels, and/or connective tissues [101]. In rat CB type
I cells, the application of exogenous IL-6 increased [Ca2+]i and promoted the rise in the release of
catecholamines [102]. Besides the modulation of CB type I cells excitability [102], Wang et al. [101]
proposed that IL-6 might modulate the survival, proliferation, and differentiation of type 1 cells in the
CB. When tested on the output of CB on ventilation, the administration of IL-6 (0.5 and 5 ng/mL) in the
rat femoral vein increased minute ventilation, an effect that was abolished by CSN resection, meaning
that the effect of IL-6 on ventilation is mediated by the CB (Figure 4c).

Another important pro-inflammatory cytokine is TNF-α. In the rat and in the cat, the co-localization
of TNF-a and its type 1 receptor (TNF-RI) in CB type I cells has been reported [94,95,103]. However,
the TNF-a type 2 receptor (TNF-RII) does not co-localize with CB type I cells but has been identified
in endothelial cells [104,105] and near the cell limit of nodose–petrosal–jugular ganglion complex
neurons [104]. In the cat, Fernandez et al. [103] demonstrated, through in vitro recordings of the CSN
activity, that TNF-α was unable to change the basal CSN chemosensory activity, although it was able
to reduce the hypoxia-induced enhanced frequency of chemosensory discharge in a dose-dependent
manner [103]. This inhibitory effect of TNF-α observed in the cat contrasts with the findings reported by
Lam et al. [94,95] in rats, as the authors described in dissociated CB type I cells that TNF-α application
induces a rise in [Ca2+]i in response to acute hypoxia, this increase being larger in cells from the CBs of
rats exposed to chronic hypoxia [95] or chronic intermittent hypoxia [95]. In addition, these effects
were also described after IL-1β and IL-6 application [94,95]. This increase in type 1 cell excitability,
measured as [Ca2+]i observed by Lam et al. [94,95], is in accordance with our findings that TNF-α,
when administrated in the femoral vein in a dose of 5 ng/mL, induced an increase in minute ventilation
in rats (Figure 4d). This effect was not observed with lower doses of TNF-α (0.5 ng/mL) and was
abolished by CSN resection, demonstrating that the effect of TNF-α on ventilation is CB-mediated
(Figure 4d). Taken together, this evidence suggests that all these pro-inflammatory cytokines are able
to modulate CB function via the activation of different signaling pathways and that probably different
chronic inflammatory conditions will induce different alterations in TNF-α, IL-1, and IL-6 levels that
will differently contribute to CB activation, namely in metabolic diseases.

4.2. Role of Carotid Body in Acute Systemic Inflammation

The role of CB as an immunity receptor was also suggested in animal models of sepsis syndrome
induced by the administration of lipopolysaccharide (LPS) [103,104]. Topical administration of LPS on
the CB as well as intravenous administration promoted histological alterations in the cat CB, by recruiting
polymorphonuclear cells into the vascular bed and the stroma of the CB [103], resembling the histological
features of carotid glomitis in humans [105]. In agreement with its pro-inflammatory action in the CB,
intravenous administration of LPS in cats augmented the basal respiratory frequency, decreased the
ventilatory chemoreflex responses to acute hypoxia, and increased basal CSN chemosensory activity,
without modifying the CSN response to acute hypoxia [103]. The effect of LPS on CSN frequency of
discharge and on respiratory activity was also described in mice by the administration of zymosan,
which induces inflammation [106]. Finally, the tachypnoea induced by LPS was prevented by the
bilateral carotid neurotomy [103], meaning that the CB is responsible for LPS’ effects on ventilation.
Searching for the mechanism behind LPS action on the CB, Fernandez et al. [104] reported the presence
of toll-like receptor 4 in the CB and in the nodose–petrosal–jugular ganglion complex neurons that are
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activated and evoke the MyD38-dependent mechanism in CB chemoreceptor neural pathway after the
intraperitoneal administration of LPS. Consequently, after LPS administration, IkB degradation with
NF-kB p65 nuclear translocation in CB type I cells and neurons of the nodose–petrosal–jugular ganglion
complex was observed, together with an increase in pERK fraction in the CB and an increase in pERK
and p-p38 MAPK fractions in the nodose–petrosal–jugular ganglion complex [104]. The activation
of this mechanism after LPS administration promotes an increase in the expression of TNF-α and its
receptor, TNF-RII, both at the CB and in the nodose–petrosal–jugular ganglion complex neurons [104].

Systemic inflammation also induced the production of IL-1β in the CB, since the application of
zymosan in rat type I cells activated toll-like receptor 2 and the NLRP3 inflammasome, which could be
the source of IL-1β in CB type I cells [106].

More recently, it was described that electrical CSN stimulation in conscious rats attenuated the
innate immune response to LPS by decreasing plasma inflammatory cytokine levels such as TNF, IL-1β,
and IL-6 while enhancing the levels of the anti-inflammatory cytokine IL-10, an effect that was abolished
by CB denervation [107]. In addition, the anti-inflammatory effect of CSN electrical stimulation was
also abolished by the administration of propranolol, a β-adrenergic antagonist, and methylatropine,
a muscarinic antagonist, demonstrating that the mechanism by which CBs mediate inflammation
involves both the sympathetic and the parasympathetic systems [107]. Therefore, these results suggest
that CSN stimulation might be an innovative therapeutic strategy to treat inflammatory diseases
mediated by cytokines, such as auto-immune diseases and sepsis, as well as the inflammation observed
in metabolic dysfunction. However, we have to take into account that possibly there will be differences
between the mediators, the mechanisms, and the neural circuits in response to acute situations like
sepsis, chronic inflammation, chronic hypoxia, or obesity.

4.3. Role of Carotid Body in Chronic Inflammation

4.3.1. Chronic Sustained Hypoxia-Induced Inflammation

In chronic sustained hypoxia (CSH), the low PO2 exposure lasts for hours to days to months or
years. CSH induces gene expression, leading to profound morphological as well as biochemical changes
in the CB. It has been demonstrated that CSH induces an increase in the sensitivity of CB chemoreceptors
to acute hypoxia [108] and this mechanism plays a significant role in the time-dependent increase
in ventilation in breathing on ascent to high altitude, which is termed ventilatory acclimatization
to hypoxia (VAH) [109–113]. Chronic sustained hypoxia is also involved in pathological conditions;
for example, in humans, CSH is associated with chronic obstructive pulmonary disease (COPD),
asthma, or pulmonary fibrosis originating from pulmonary hypertension, which are clinical situations
associated with inflammation, and in infants, it is associated with sudden infant death syndrome (SIDS).

Early theories and experiments on VAH have focused on changes in the pH of cerebrospinal fluid
as a stimulus for central chemoreceptors. However, time-dependent changes in this parameter do not
explain VAH [114] and lead to the idea of neural plasticity, i.e., central nervous system processing
of afferent information is enhanced by CSH. Nowadays, it is known that plasticity occurs both in
peripheral and central chemoreceptors (for a review, see [113]).

CSH has been shown to increase oxygen sensitivity in the CB, as it increases the CSN discharges
in response to hypoxic tests in several species such as goats [115], cats [108,116], and rats [117–119].
This increase is a major factor for the increased hypoxic ventilatory response (HVR) observed with
CSH, as shown by Bisgard et al. [120,121] in goats, in a preparation in which CBs are isolated from
systemic circulation, and in which 6 h of isolated CB hypoxia increased ventilation above the acute
HVR [122], demonstrating that the response is specific to the CB and not due to central chemoreceptors.
This plasticity induced by decreased PO2 in the CB during the first hours explains VAH.

Humans who are native to regions with high altitudes or have lived at high altitudes for many
years may have subnormal or complete loss of the ventilatory response to acute hypoxia, commonly
referred to as a “blunted” response to hypoxia [123]. This effect has been attributed to a loss of
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responsiveness of the CB to hypoxia. Additionally, some authors have reported decreased CB hypoxic
sensitivity in response to a prolonged exposure to hypoxia (3–4 weeks at an altitude of 5500 m or
breathing 10% O2) that contributes to the decreased HVR in chronic hypoxia [124–126]. Associated
with CSH, and therefore with the ascension to high altitudes, there is also an acclimatization in glucose
homeostasis, as short-term exposures to CSH increase fasting plasma glucose [127], followed by
normalization after 1 week [128], with a subsequent decline even to pre-exposure levels during the
second week of CSH [129]. These adaptations in glucose homeostasis mechanisms seem to be reflected
in the inverse association found between the prevalence of diabetes and obesity with altitude in
the United States adult population [130]. The initial, transient hyperglycemia could be partially
attributed to the increase in sympathetic nervous system activity [130] and stress hormones, mainly
catecholamines that have been documented to increase with altitude [131,132] and that are in agreement
with a possible overactivation of the CB.

One of the factors that might explain the increased HVR and increased fasting plasma glucose
within the first few days of CSH is CB’s response the inflammation promoted by hypoxia.

Exposure for 3, 7, and 28 days to CSH (10% O2) increased the expression of IL-1β, Il-6, and TNF-α
and the corresponding receptors in the rat CB [94]. Additionally, exposure to 380 Torr increased the
mRNA expression of IL-1β, IL-6, and TNF-α in rat CBs after 1 day, levels that remain elevated after
7 days of chronic hypoxia [133]. However, Liu et al. [133] found that, after 28 days of CSH, only the
levels of IL-6 remain elevated, suggesting the development of mechanisms that can contribute to the
ventilatory acclimatization to hypoxia as well as to the glucose homeostasis adaptation. Moreover,
the up-regulation of IL-6 was mainly observed in CB type II cells and with less extension in CB
type I cells [133], suggesting that type II cells also contribute to IL-6 production in CBs. In contrast,
Feng et al. [134] did not observe significant differences in CB IL-6 levels between normoxia and CSH in
rabbits, which suggests that probably different inflammatory mediators could be involved in different
animal species and may be involved in the response to different chronic hypoxia protocols or times
of exposure.

Ibuprofen and dexamethasone, two anti-inflammatory drugs, administered for 8–10 days of CSH
decreased the rise in CB IL-1β, IL-6, and TNF-α expression induced by CSH and abolished the increase
in CSN frequency of discharge induced by hypoxia in these animals [132], suggesting that the effect of
CSH on chemoreceptor excitability is mediated by a local immune response in the CB. Additionally,
ibuprofen treatment in rats blocked the increase in HVR described in rats exposed to CSH for 7 days at
70 Torr [135]. In agreement with the studies in animals, ibuprofen treatment for 48 h at a high altitude
(3800 m, PO2 = 90 Torr) in healthy men and women decreased HVR compared to a placebo, without
any effect on basal ventilation and arterial O2 saturation breathing at high altitudes [135]. These results
obtained in both animals and humans show that ibuprofen impairs ventilatory acclimatization to
high altitudes [135,136]. However, in rats submitted to 11–12 days of chronic hypoxia (70 Torr),
treatment with ibuprofen in the last 2 days was unable to reverse the ventilatory acclimatization already
established by sustained hypoxia [137]. Taken together, these results suggest that, in an early phase
of CSH, an adaptive inflammatory response could be important in the modulation of CB function
that promotes the increase in basal ventilation as well as the altered hypoxic ventilatory responses
and hyperglycemia.

4.3.2. Chronic Intermittent Hypoxia-Induced Inflammation

Chronic intermittent hypoxia (CIH) is characterized by transient episodes of hypoxia of small
durations. Episodic or intermittent hypoxia is associated with many pathophysiological situations
including sleep apnea and apnea of prematurity. CIH leads to systemic hypertension, myocardial
and brain infarctions, cognitive dysfunction, sudden death in the elderly [138–140], and metabolic
diseases [141].

Inflammation in CIH has been proposed as one of the possible mechanisms underlying
CIH-induced comorbidities such as hypertension [142] and insulin resistance [141]. Pro-inflammatory



Int. J. Mol. Sci. 2020, 21, 5545 13 of 22

molecules are known to stimulate the sympathetic nervous system [5] by acting on brainstem and
hypothalamic nuclei, such as the nucleus of the solitary tract, which is the primary site for the afferent
inputs from the CB. Therefore, it is plausible to postulate that inflammation is a major determinant in
the development of CIH-induced comorbidities via activation of the CB chemoreflex pathway.

The expression of IL-1β, IL-6, and TNF-α, and their respective receptors shown to be present in the
CB [93,94] were increased in the CB of rats exposed to 7 days of CIH, a typical hallmark of obstructive
sleep apnea [97]. In agreement, Del Rio et al. [96] described an increase in TNF-α immunoreactivity
in the rat CB after 14 and 21 days of CIH, although IL-1β immunoreactivity only increased after 21
days of CIH and IL-6 immunoreactivity in rat CB was not modified after 7, 14, or 21 days of CIH [96].
The enhanced levels of TNF-α and IL-1β in rat CBs exposed to 21 days of CIH were associated with
oxidative stress, since the increase in both cytokines was prevented by ascorbic acid treatment during
the hypoxia protocol [143]. Contrastingly, Feng et al. [134] reported that, in the rabbit CB, IL-6 levels
increased but then decreased with the increase in intermittent hypoxia frequency, which could indicate
species differences and/or different intermittent hypoxia frequencies applied. Interestingly, CIH (5% O2,
12 times/h per 8 h) for 7, 14, or 28 days in rats did not modify systemic plasma TNF-α and IL-1β levels,
only inducing a transient increase in IL-6 levels [96].

Apart from increasing the expression of IL-1β, IL-6, and TNF-α in rat CBs exposed to CIH for 7 days,
it also produced an increase in the mRNA levels of NADPH oxidase subunits, an effect attenuated by
anti-inflammatory drug treatment [94]. Moreover, CBs of rats exposed to 7 days of CIH also showed
an increase in chemokine levels, such as monocyte chemoatractant protein-1 (MCP-1), chemokine
receptor 2 (CCR2), macrophage inflammatory protein (MIP-1α and MIP-1β), and intercellular adhesion
molecule (ICAM-1), supporting the notion that CIH induced local inflammation in the CB [95].

CIH exposure for 3 and 7 days in rats produced an increase in immunoreactivity to ED1,
a macrophage marker, in the CB, an effect that was prevented by dexamethasone or ibuprofen
treatment [95]. In contrast with these findings, rats exposed to 21 days of CIH did not exhibit
any ED1 positive cells in the CB [96]. The results obtained by Del Rio et al. [96] suggest that the
elevated levels of TNF-α and IL-1β observed in the CB after 21 days of CIH were not explained
by the infiltration of immune cells in the CB, or by the increase in TNF-α and IL-1β systemic
levels, but by an increase in local production of cytokines in the CB. As previously described
in rats exposed to 21 days of CIH, ibuprofen treatment prevented the CIH-induced increase in
TNF-a and IL-1β in the CB [143,144]. This anti-inflammatory drug also prevented the increase in
c-fos-positive neurons in the nucleus solitary tract, the increase in hypoxic ventilatory responses,
and the development of hypertension [143], suggesting that inflammatory cytokines acting within
the CB are determinant in promoting CB dysfunction and the alterations in CB-brain neuro-circuits
responsible for CIH-pathological conditions. However, ibuprofen failed to avoid the CB chemosensory
sensitization in response to acute hypoxia [143,144], suggesting that the mechanisms underlying the
CB chemosensory sensitization promoted by CIH are not associated with an increase in CB TNF-α and
IL-1β levels and a distinction between the mechanisms basal vs. hypoxic alterations in CIH.

4.3.3. Obesity-Induced Inflammation

Obesity is tightly connected with OSA and therefore with CIH. There is substantial evidence
that hypoxia develops within the adipose tissue as the tissue mass expands, with the reduction
in interstitial PO2 being considered to underlie the inflammatory response, as the secretion of
a number of inflammation-related cytokines (IL-6, TNFα) and adipokines are upregulated by
hypoxia [141,145]. In addition, it has been shown that hypoxia stimulates glucose utilization in
adipocytes, with correspondent lactate production [145,146], and this produces insulin resistance in
fat cells [147]. Local hypoxia within adipose tissue also stimulates the secretion of leptin, even with
a normoxic systemic PO2 [148]. Since many of the responses of adipocytes to hypoxia are initiated
at oxygen levels above the normal physiological range for adipose tissue, it can be postulated that
the CBs can be important integrators of information relating blood oxygen levels and adipose tissue
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homeostasis and, therefore, leptin and pro-inflammatory cytokines may represent key neurohumoral
mediators in the balance of CB-mediated systemic responses of adipocytes to hypoxia.

Among the adipokines secreted by the adipose tissue are growth factor-β (TGF-β), angiopoietin,
and insulin-like growth factor-1 (IGF-1) which are growth and angiogenic factors; TNF-α, IL-6,
and IL-1β, classified as cytokines; and complement-like factors, such as acylation stimulating protein
(ASP) [149]. The normal secretion of such substances in adipose tissue is differently influenced by
diverse factors such as the increase in body fat, which changes the adipocytes’ size, and hypoxia, which
alters the secretion of pro-inflammatory substances into the blood and other tissues, leading to the
development of systemic inflammation [150]. However, these substances are not equally secreted in
all white adipose tissue depots, the consensus being that increased visceral white adipose tissue is
associated with a higher risk of developing metabolic diseases such as insulin resistance and type 2
diabetes as well as cardiovascular diseases [151]. In fact, the secretion of pro-inflammatory cytokines,
such as IL-6, IL-8, MCP-1, and PAI-1, among others, is higher in visceral adipose tissue, while leptin is
higher in subcutaneous adipose tissue [152].

One of the first changes that takes place in adipose tissue during obesity is the increase in the
number of macrophages within the tissue, which are sources of TNF-α and other pro-inflammatory
cytokines [146]. Weisberg et al. [153] estimated that the percentage of macrophages in adipose tissue
changes from 10% in lean mice and humans to 40% in obese humans and 50% in extreme obesity and
leptin-deficient mice. Such results allowed us to conclude that the size of adipocytes could help to
predict the macrophage percentage in humans, once adipocyte volume is associated with dyslipidemia,
systemic insulin resistance, and with the risk of developing type 2 diabetes [154,155]. Therefore, we can
hypothesize that the increased levels of pro-inflammatory cytokines released from the visceral adipose
tissue [156] or by the adipose tissue surrounding the CB can act on the CB to activate it and in the long
term might contribute to CB overactivation in subjects with obesity. In fact, CBs of animals submitted
to hypercaloric diets showed increased expression of TNF-α and IL-1β receptors (Figure 4a), probably
representing a feed-forward vicious cycle between adipose tissue inflammation and the action of
pro-inflammatory cytokines in the CB that promotes adipose tissue dysfunction and metabolic diseases.

5. Conclusions

In conclusion, we provide substantial evidence showing that insulin, leptin, and pro-inflammatory
cytokines are able to activate the CB and modulate its function and that probably hyperinsulinemia,
hyperleptinemia, and high pro-inflammatory cytokine levels are determinant factors contributing to
the CB overactivation that contributes to the genesis of metabolic diseases. However, there is still a
huge lack of knowledge regarding the mechanisms and signal pathways by which these mediators
activate and/or modify CB action and CSN activity, particularly in metabolic disease conditions.
Information on insulin, leptin, and cytokine signaling pathways within the CB might be of key
importance and have significant clinical relevance as it might unravel therapeutic targets for the
treatment of metabolic diseases.
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