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systems were modeled using a Quantitative-Structure-Property Relationship (QSPR) 

method. Data on equilibrium concentrations were taken from the ILThermo Ionic 

Liquids database, curated and used to make models that predict the weight fraction of 

water in ionic liquid rich phase and ionic liquid in the aqueous phase as two separate 

properties. The major modeling challenge stems from the fact that each single IL is 

characterized by several data points, since equilibrium concentrations are temperature 

dependent. Thus, new approaches for the detection of potential data point outliers, 

testing set selection, and quality prediction have been developed. Training set 

comprised equilibrium concentration data for 67 and 68 ILs in case of water in IL and 

IL in water modelling, respectively. SiRMS, MOLMAPS, Rcdk and Chemaxon 

descriptors were used to build Random Forest models for both properties. Models 

were subjected to the Y-scrambling test for robustness assessment. The best models 

have also been validated using an external test set that is not part of the ILThermo 

database. A two-phase equilibrium diagram for one of the external test set IL is 

presented for better visualization of the results and potential derivation of tie lines. 
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Introduction 

The interest in ionic liquids (ILs) has increased over the last two decades due to some 

of their properties, [1] such as low melting points, [2] high electronic conductivities, [3] 

negligible vapor pressures [4,5], high thermal stabilities [6] and a set of complex 

molecular interactions related to electric charges, polarity and electronic structure, 

resulting in specific interactions (especially Coulombic and apolar interactions, as well 

as, hydrogen bonding).[7] These facts turn many ILs into well-marked nanostructured 

fluids, [8] making them useful for carbon dioxide capture, [9] azeotrope breaking [10,11] 

and extraction of bioactive compounds. [12,13] 

The use of aqueous biphasic systems (ABS), as a promising extraction and purification 

medium for water-soluble molecules, particularly for biomolecules, is associated with 

high water concentrations. [14] The efficiency of the extraction will be determined by the 

equilibrium concentrations of the system. However, before predicting phase equilibria 

with 3 components it is sensible to try modeling of simpler, 2-component system, since 

its equilibria is already dependent on many parameters. One of the most important 

thermodynamic parameters that influences liquid-liquid phase equilibrium is 

temperature. Thermoresponsive water/IL mixtures can be divided into two main 

categories: those with an Upper Critical Solution Temperature (UCST) and those with 

a Lower Critical Solution Temperature (LCST) behavior. The character and magnitude 

of the temperature influence on the phase equilibrium varies significantly from one 

ionic liquid to another, which makes prediction of the equilibrium concentrations of the 

IL/water systems at different temperatures worth exploring.  

Quantitative Structure-Property Relationship (QSPR) modeling of equilibrium 

concentrations of IL in water [15] has been carried out previously. However, in that study 

the data set has been restrained to only four ILs with the data in the narrow 

temperature range of 288.15 - 318.15 °K and water solubility in the IL was not 

examined at all. One of the major challenges of this work is to model a one-to-many 

relationship between the chemical compound and property data points, where one 

chemical has several equilibrium concentration values depending on temperature of 

experiment, unlike conventional one-to-one QS(P)AR studies. In previous QSPR 
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studies of temperature-dependent IL properties, the impact of temperature on the 

modeling approach was either ignored [16,17] 

or separate models were made for every particular temperature [18,19]. In modeling of 

compounds other than IL, QSPR is applied to predict temperature-independent 

parameters, which are used in equations with direct temperature impact [20]. One-to-

many relationships creates additional issues for the modeling as assessment of 

prediction accuracy, applicability domain definition and test set selection.. [21] The latter 

can be exceptionally difficult, as shown by [22,23] in their attempt to model properties of 

mixtures and facing challenges to select a robust method for test set selection. In [24], 

researchers tried to overcome the "many-to-many" relationship issue in test set 

selection that arises from modeling properties of mixtures by doing external 5-fold 

cross-validation. This approach had some success, however it is time-consuming and 

authors acknowledge that the results of such external validation were overoptimistic, 

relatively to additional independent external validation. 

Another challenge in modeling one-to-many relationship can be the presence of 

activity cliffs, or data points looking like that, due to heterogeneous data source. 

QSPRs can be either continuous (“activity hills”) or discontinuous (“activity cliffs”) 

based on whether small changes in compounds’ structure lead to small or dramatic 

changes in activity or, in our case, physico-chemical property. Small changes in 

molecular structure will cause small effects in the presence of gently rolling hills, or 

continuous SARs. This is in contrast to discontinuous SARs, where small changes in 

structure have dramatic effects. [25,26] Activity cliff estimation is also dependent on the 

descriptor space, since different descriptors reflect molecular properties differently. 

Another issue concerns data points for different temperatures of the same compound 

originated from several sources that have little concordance, thus deteriorating the 

trend of temperature influence. If this happens, the model will have difficulties in 

predicting the equilibrium concentrations at different temperatures with high 

accuracy. The goal of this study is the development of QSPR models capable of 

predicting equilibrium concentrations for two phase water+IL systems in a broad 

range of temperatures (Figure 1). 
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Figure 1 Workflow for the modeling of two-phase equilibrium for water+IL system at 

different temperatures. 

Materials and Methods 

Equilibrium concentration data was extracted from Ionic liquids database (ILThermo), 

[27] that consists of the published experimental data of thermodynamic and transport 

properties of ionic liquids, as well as, their binary and ternary mixtures. Data extraction 

was done using the pyILT2 package API. [28] The query is a function that makes use 

of a request module to carry out the search on the NIST server. The resulting JSON 

object is then decoded to a python dictionary. The reduced web form is composed of 

the mixture compound, number of components and the physical property of interest. 

By querying “H2O”, “binary mixture” and “composition at phase equilibrium” we have 

successfully collected a data set of 350 files. 

For all ILs in the extracted data, both cations’ and anions’ IUPAC names were used as 

input to generate the SMILES representation using a Java library, OPSIN. [29] Only 13 

out of 350 ionic liquid structures could not be parsed by this algorithm due to semantic 

issues occurring in the IUPAC string obtained from the ILThermo database due to 

semantic issues occurring in the IUPAC string obtained from the ILThermo database. 

Hence, a 96% coverage was accomplished by this method that turns to be a reliable 

technique for automatized data manipulation. The remaining 13 chemical structures 
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required manual inspection, through individual conversion of respective 2D structures 

into the SMILES file format. 

Extracted data required curation both in terms of activity and structure. First, activity 

data were curated. Only data describing liquid-liquid equilibria with clearly determined 

temperature and pressure were kept. The decision was to model activity as weight 

(mass) fraction, which is a mass of constituent divided by the total mass of all 

constituents in the mixture [30]. Weight fraction was chosen for modelling, since it was 

important to distinguish between data from water-rich and IL-rich phase. Weight 

fraction always allows to do that in the simplest manner, i. e. considering data point 

with the weight fraction value below 0.5 indicates that the compound is a solute and if 

it is higher than 0,5, then it is a solvent (compound-rich phase). This is not 

straightforward using mole fraction. Thus, data in other units that cannot be converted 

into weight fraction were discarded: this applies to molality, molarity, mass per volume 

of solution and mass ratio to solvent. The data in molar fraction units was transformed 

into weight fraction. Then, the data was split into two data sets: 1) water in IL and 2) 

IL in water based on the value of the weight fraction of the solute: if the weigh fraction 

was higher than 0.5, then solute was re-labeled as solvent and data point transferred 

to the other data set after “1-weight fraction” transformation.  

Structure standardization was done using Chemaxon Standardizer. [31] This includes 

standardizing the representation of aromaticity, mesomeric structure and functional 

groups. The full list of actions is given in Supplementary Material Table A1. Both data 

sets were examined for duplicate values, i. e. several data entries with the same 

structure and temperature value (group of duplicates). Structures were compared 

using both SMILES and InChi representations. SMILES strings and InChi notations 

came from standardized structure representation produced by Chemaxon 

Standardizer, where the same set of rules, including “Mesomerize” were applied to all 

compounds. The chances of overlooking a duplicate using SMILES and InChi under 

these conditions are very low. Conflicting weight fraction values in duplicates were 

looked upon carefully by inspecting the source publications. The definition of 

conflicting values is as follows: if absolute residual between standard deviation (SD) 

for the group of duplicates and mean SD for all duplicate groups is more or equal to 

SD of SD for all duplicate groups, then this group of duplicates has conflicting values. 

After conflicting values were examined, only one value was kept based on the 
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reliability of the source. Only one value from non-conflicting duplicates was kept as 

well. 

The following molecular descriptors were generated in this study: 1) SiRMS [32] 2) 

MOLMAPS [33] 3) Chemaxon [34] 4) Rcdk. [35] SiRMS are fragment-based descriptors 

of varying length, atom and bond types and topology. In this study, fragments of size 

from 2 to 4 labeled by elements (atoms in fragments are either fully connected or 1 

disconnection is allowed). MOLMAPs are descriptors based on physicochemical 

properties of fragments and were generated similar to Gupta et al. [33] but from atomic 

properties instead of bonds. In this study, 1) the descriptors were generated separately 

for the cation and anion 2) we used atom charge, orbital electronegativity, atomic 

polarizability , steric hindrance, H- bond donor and H-bond acceptor capacity as 

atomic properties 3) the Self-Organising Map (SOM) needed to generate the pattern 

of activated neurons was built using JATOON [36] software, based on 75% randomly 

selected atoms from the training set data 4) the SOM size was always 30x30 and the 

activation pattern was 1 0.75 0.5 0.25 for the central neuron first, second, and third 

level of neighbourhood, respectively. Both Chemaxon and Rcdk descriptors used in 

this study provide information on integral characteristics of the IL, such as molecular 

weight, lipophilicity, polar surface area, among other parameters. All Chemaxon and 

Rcdk descriptors are listed in Supplementary Material Table A4. In the end, four 

combinations of the above-mentoned descriptors (one fragment+one integral) were 

used as descriptor spaces for modelling: Chemaxon+SiRMS (ChSi), Rcdk+SiRMS 

(RcSi), Chemaxon+MOLMAPS (MoCh) and Rcdk+MOLMAPS (MoRc).  

The distribution of the weight fraction values in both data sets is not normal, also poor 

solubility of most of the IL resulted in small property range with very small values, 

which can potentially complicate the modelling. In order to tackle that, dependent 

variables were normalized by cubic root transformation (√𝜔
3

). Although distributions 

became less skewed, they were still abnormal, thus excluding the possibility to use 

the parametric statistic estimators (e.g. R2, RMSE) for the model predictivity 

assessment. Two non-parametric error measures, namely Mean Average Error (MAE) 

and Mean Average Percentage Error (MAPE) were used in this study in two versions. 

The first consisted in treating all the data points as equal (eq. 1-2). The second, 

compound-based, consisted in processing all data points of a particular compound 

and then averaging the results from all compounds (eq. 3-4). This was done to tackle 
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potential bias against compounds with fewer data points having little impact on 

MAE/MAPE values, potentially leaving their misprediction unnoticed. 
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, where 𝑘 is the number of compounds in the test set, 𝑛 is the number of data points 

per compound, 𝑥𝑗𝑖 is the experimental result for the 𝑗-th compound at the  𝑖-th 

temperature. 𝑦𝑗𝑖 is the predicted result for the 𝑗-th compound at the 𝑖-th temperature. 

Random Forest [37] (RF) was chosen as a machine-learning method and its 

implementation in R was used for the modelling. [38] RF is an algorithm consisting of a 

collection of tree-structured classifiers {h(x,), k=1, . . .} where the {} are independent 

identically distributed random vectors and each tree casts a unit vote for the most 

popular class (or in case of regression,  average value) at input x. The out-of-bag 

(OOB) error estimation procedure was used for internal validation. The number of 

variables randomly sampled as candidates at each split (mtry) was optimized in every 

model in order to assure that the algorithm recognises the impact of the temperature 

on the equilibrium. There were 500 trees in every developed Random Forest model. 

It was decided to define the Applicability Domain (AD) based on the proximity between 

a training set data point and a predicted data point, i.e. how often a predicted data 

point ends up in the same terminal node of the tree as the particular training set data 

point. Distance between test set and training set data points have been used 

previously as a basis for AD [39], however in that case Euclidean distance was used to 

determine points proximity. Use of Euclidean distance was justified in that case, since 

model development was done with kNN algorithm that uses Euclidean distance to 

predict the property. However, the RF algorithm is based on different principles, thus 

in our case a RF-based proximity was used for AD definition. AD was defined as 

follows: if a data point has a terminal nodes proximity higher or equal to the threshold 
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value (0.5 for water in IL, 0.3 IL in water) with at least one training set data point, then 

the predicted data point is within AD. Threshold values differ due to difference in 

training set size between water in IL and IL in water equilibrium concentration data 

sets, in terms of the number of data points: the smaller size in case of IL in water 

makes it harder to find a training set data point analogue for a predicted data point. 

Prior to test set selection, all data points were examined for activity cliffs formation 

potential. For every descriptor space, pairwise SAR analysis between all data point 

was done using the Structure-Activity Relationship Analyser (SARA), [Error! Reference source 

not found., 41] in order to detect potential outliers. A data point must fulfil a criterion to be 

considered a potential outlier, i. e. it must be prone to form activity cliffs. The data 

point’s potential to form activity cliffs, is determined as follows: first, SALId (absolute 

difference between activities divided by Euclidean distance) was calculated using z-

normalized descriptors for all possible pairs of data points in the data set. Next, a 

threshold value for SALId was calculated according to eq. 5 

𝐴𝑐𝑇ℎ𝑟 =  𝑆𝐴𝐿𝐼𝑑 + 𝑐𝑜𝑒𝑓𝐴 × 𝜎𝑆𝐴𝐿𝐼𝑑  (5) 

where, 𝐴𝑐𝑇ℎ𝑟 is the threshold value for activity cliffs, 𝑆𝐴𝐿𝐼𝑑   is the mean value of SALIds 

for all pairs in the data set, 𝑐𝑜𝑒𝑓𝐴 is a constant that determines how strict the threshold 

is, and 𝜎𝑆𝐴𝐿𝐼𝑑 is the standard deviation of SALIds for all pairs in the data set. If SALId 

for two data points is higher than the threshold value, then the SAR between the two 

is considered to be an activity cliff. Then, occurrence of activity cliffs was calculated 

for every data point. A threshold for occurrence values was derived in the similar 

manner to the threshold of the eq. 5 – the mean occurrence value summed with the 

product of a coefficient with the standard deviation of the occurrence value. If the 

activity cliff occurrence value of a data point was higher than the occurrence threshold, 

then the data point was considered to be a potential outlier. The software’s default 

values of coefficients were used in this study. 

Potential to form an activity cliff, however, might not be enough to remove the data 

point from the data set, thus a manual inspection of data was carried out. Eight 

substances (1-methyl-3-octylimidazolium perfluorobutanesulfonate, 1-methyl-3-

octylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1-

decyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium 

tetracyanoborate, 1-ethyl-3-methylpyridinium bis--trifluoromethyl-sulfonylamide, 1-
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ethyl-2-methylpyridinium_bis--trifluoromethyl-sulfonylamide, 1-butyl-3-

methylpyridinium 1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide) had 

data points marked as potential outliers within every descriptor space, so they were 

selected for further investigation. The plots that show weight fraction dependence on 

temperature are given in Supplementary Material Figure A1.  

In three cases outlying data points were a result of high weight fraction values, one 

substance had a very steep increase in concentration with respect to temperature and 

one had no apparent reasons for forming discontinuous SARs. Data points from these 

substances were kept in the data set, since above-mentioned explanations do not 

provide enough ground for their removal. In three other cases analysis revealed one-

or two data points that had weight fraction values that deteriorated the visible trend of 

equilibrium concentration dependency on temperature. Further investigation has 

shown that the outlying data point and the rest of the data point for a particular 

substance were produced by different research teams. Therefore, outliers can be a 

consequence of poor interlaboratory reproducibility. It was also discovered that two 

homologues of these substances (1-ethyl-4-methylpyridinium 

bis((trifluoromethyl)sulfonyl)amide, 1-ethylpyridinium 

bis[(trifluoromethyl)sulfonyl]imide) had outlying data point according to two out of four 

descriptor spaces, closer look at them showed that those substances have outliers. In 

the IL in water data set, data points from five ILs were marked as potential outliers 

(methylimidazolium tricyanomethane, 1-butyl-3-methylimidazolium 

hexafluorophosphate, 1-decyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-

methylimidazolium tetrafluoroborate, 1-methyl-3-octylimidazolium tetrafluoroborate). 

In four of them activity cliffs can be attributed to sharp increase in solubility at high 

temperatures, and, thus, data points were kept in the data set. One compound, 

however, had data points from different sources with no apparent concordance (Figure 

2). It was decided to remove data points that correspond to this IL altogether. 
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Figure 2 Weigh fraction (IL)-temperature plot for 1-butyl-3-methylimidazolium 

hexafluorophosphate resulting from the incorporation of data points from different 

sources with no apparent concordance. 

Since there is a one-to-many relationship between substances and data point for this 

property, test set selection is crucial to the assessment of performance. Several test 

set selection schemes were tried with a Random Forest model trained with default 

parameters based on Chemaxon+SiRMS molecular descriptors. Other schemes were 

“random data point-out” and “random IL-out”, which are modified approaches of 

published test set selection procedures for mixture properties, [22] where these 

methods were referred to as “points-out” and “mixtures-out”, respectively. In 5-trials of 

25% random data point-out selection, high reproducibility and accuracy were observed 

for the test set prediction (MAE range: from 0.0155 to 0.023, MAPE range: from 4.98% 

to 6.61%). However, this method has been criticized for overfitting the model since the 

test set, to a large extent, contains the same substances as the training set. 5-trials of 

20% random IL-out have shown moderate accuracy and low reproducibility (MAE 

range: from 0.045 to 0.07, MAPE range: from 15.52% to 20.95%). It was decided not 

to pursue modeling with this scheme due to the lack of reproducibility, although IL-out 

seems to provide a more robust assessment, which is a desired feature. Thus, IL-out 

selection was modified by introducing selection criteria. Two schemes were designed: 

a) IL-out based on the number of data points per IL 

b) IL-out based on the number of data points per IL & structural similarity 
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In scheme a), the number of data points per every compound on the data set was 

calculated. Then, quartile values for number of data points distribution within the data 

set were calculated. Finally, 20% of compounds from each data subset formed by 

quartiles were selected for the test set randomly. Five modeling trials using this 

scheme showed almost no reproducibility (MAE range: from 0.025 to 0.082, MAPE 

range: from 7.76% to 28.63%). This approach was discarded. 

The scheme b) was designed with the goal of selecting a subset that not only covers 

compounds with representative numbers of data points but also have similarities 

between ILs in the test and training set. In scheme b), after quartile values for the 

number of data points distribution within the data set were obtained, the Euclidean 

distance between substances within every subset formed by quartiles in the afore-

mentioned z-normalized descriptor space (minus the temperature) was calculated. 

Then, for every subset, for every compound, median distance was found. Next, the 

median distance of the median distances was found and used as a threshold (eq. 6). 

In the end, the first 10% of compounds that had median values higher than the 

threshold and the first 10% of compounds that had median values lower than the 

threshold were selected for the test set. 

𝑇ℎ𝑟 =  median
𝑗=1

(median
𝑖=1

(𝑥𝑖𝑗)) (6) 

, where Thr is a threshold value, 𝑥𝑖𝑗 is Euclidean distance between the 𝑖-th 

compound to the 𝑗-th compound in the data subset (𝑖 = 𝑗 = number of compounds in 

the subset).  

Computations using the scheme b) has led to a model with good predictive capacity 

(MAE = 0.0523, MAPE = 15.29%). This scheme was selected for the modeling that 

followed. However, the fact that there can be only one way to select test set 

compounds under this scheme makes robustness of this approach questionable and 

overfit is possible. Thus, an external test set had to be used to assess model 

performance in new situations. 

 

Results & Discussion 

Structure standardization and data curation, resulted in 548 data point (85 

compounds) for water in IL data set and 424 data point (87 compounds) for IL in water 
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data set. Curated datasets have property range [0.002 - 0.48] and standard deviation 

of 0.069 for water in IL and range [0 - 0.33], standard deviation of 0.042 for IL in water. 

Main chemotypes of cations and anions are given in Supplementary Material Table A2 

& A3 The composition of sets for model development is given in Table 1. 

System Overall Training Test External test 

water in IL 548 (85) 422-433 (67) 110-121 (18) 118 (17) 

IL in water 424 (87) 318-321 (68) 78-81 (18) 84 (16) 

Table 1 Number of data points and compounds (in brackets) in the modeling sets. 

The overall set is the QSAR-ready one, without the outliers removed. Internal 

validation for the random forest used all data points from the training set, since the 

out-of-bag method was used. External test set is comprised of data not included in 

the ILThermo database 

Eight QSAR models were developed in this study based on the descriptor spaces 

mentioned before: four for IL in water and the four for water in IL. The mtry value was 

optimized in terms of OOB internal validation results (results are given in 

Supplementary Material Figure A2). The results of both internal validation and IL-out 

external validations are given in Table 2 and Table 3 for water in IL and IL in water 

systems, respectively. Model coverage is defined as the ratio between the number of 

predicted data points within the AD and the overall number of predicted data points. 

Model 

# of 

descr. 

MAE 

(OOB) 

MAPE 

(OOB) 

# of 

ts 

data 

point 

MAE 

(ts) 

MAPE 

(ts) 

MAE 

(ts per 

comp) 

MAPE 

(ts per 

comp) 

Model 

coverage 

ChSi 657 0.003 0.87 110 0.0492 14.01 0.0484 16.78 1.00 

MoCh 1226 0.0032 0.88 120 0.1040 26.51 0.1061 25.97 0.98 

MoRc 1245 0.0029 0.8 121 0.0321 10.78 0.0428 12.46 0.76 

RcSi 676 0.0031 0.88 116 0.0906 28.14 0.0647 22.13 0.85 

Table 2 OOB validation and similarity-based IL-out test set validation results for the 

prediction of weight fraction of water in IL. descr. – molecular descriptors, ts – test 

set, per comp – per compound. Models are referred to by the descriptor space used. 
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Model 

# of 

descr. 

MAE 

(OOB) 

MAPE 

(OOB) 

# of 

ts 

data 

point 

MAE 

(ts) 

MAPE 

(ts) 

MAE 

(ts per 

comp) 

MAPE 

(ts per 

comp) 

Model 

coverage 

ChSi 625 0.0068 Nonea 78 0.0914 33.91 0.0604 23.36 0.67 

MoCh 1801 0.0050 None 81 0.0571 28.48 0.0583 23.65 0.54 

MoRc 1822 0.0041 None 78 0.0534 13.61 0.0417 17.48 0.35 

RcSi 642 0.0068 None 78 0.0993 34.22 0.0621 23.97 0.73 

Table 3 OOB validation and similarity-based IL-out test set validation results for the 

weight fraction of IL in water. descr. – molecular descriptors, ts – test set, per comp – 

per compound. Models are referred to by the descriptor space used. aMAPE (OOB) 

cannot be computed since some experimental results have weight fraction values of 

0. 

OOB validation results are quite optimistic for all the models because they incorporate 

predictions for data points obtained with trees trained with data points of the same 

compounds. However, accuracy of test set predictions varies enormously between the 

models with no particular space being the best. Using AD improves the predictivity for 

both IL in water, than water in IL models (see Supplementary Material Table A5 & A6 

for statistics with no AD applied). Moreover, IL in water models have, in general, worse 

coverage than the water in IL ones (Figure 3). 
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Figure 3 Observed vs predicted plots for the best models. A, B – water in IL models, 

C,D – IL in water models. Circles – test set, triangles – external test set, blue – within 

AD, red – out of AD. 

The selection of the best models is the challenging due to the large number of 

statistical estimators that were used, all of which seem to highlight important aspects 

of models’ performance. We decided that MAE and MAE per compound in 

combination with the model coverage must become the parameters the decision is 

based on. Thus, external test set was predicted by ChSi & MoRC models for water in 

IL systems and MoCh & MoRc for IL in water systems. The results are given in Table 

4. 
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Model 

# of 

ts 

data 

point 

MAE 

(ts) 

MAPE 

(ts) 

MAE 

(ts per 

comp) 

MAPE 

(ts per 

comp) 

Model 

coverage 

water in IL 

ChSi 118 0.0761 18.91 0.0819 19.64 0.95 

MoRc 118 0.0730 18.95 0.0764 24.34 0.64 

IL in water 

MoCh 84 0.1092 32.98 0.1094 35.45 0.57 

MoRc 84 0.0849 30.99 0.0918 33.98 0.81 

Table 4 External test set validation results for the prediction of the weight-fraction of 

water in IL and IL in water. Models correspond to describe spaces from Table 2 and 

Table 3. ts – test set, per comp. – per compound, data point – data points. 

External test set results mostly show worse accuracy and coverage, and a closer look 

at prediction results revealed a potential problem with the proximity-based AD. When 

a new data point is predicted, it is characterized by the molecular descriptors and a 

temperature. The closest training set data point is also characterized by molecular 

descriptors and temperature. One could speculate that a certain data point that does 

not have one clear closest neighbor from the training set can still be predicted 

correctly, within the AD. Indeed, the training/test sets split was designed to have as 

much of the descriptor variety as possible. In many cases, data points are left out of 

coverage because of temperature, although similar structures were used in the training 

set, which enable reasonable predictions.  

The skewness of the data set towards poorly miscible IL raised concerns about the 

models’ ability to show chance correlation in prediction. Thus, a Y-scrambling, also 

known as y-randomization, [42] was done for ChSi (water in IL) and MoRc (IL in water). 

The dependent variable data was randomized 5 times in case of every data set, for 

both training and test set and modeling with RF was carried out with the same mtry 

optimization and statistical estimation as described above. The results are given in 

Table 5. Since re-modeling based on the scrambled data affects model coverage, the 

results are reported without AD restrictions and compared to the original modeling 

results without AD restrictions as well. The results of Y-scrambling model validation 
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show that models based on randomized data show less predictive capacity, then the 

original ones. The IL in water models are less robust than the water in IL ones. 

 

 Y-R MoRc (IL) MoRc (IL) Y-R ChSi (water) ChSi (water) 

MAE  0.0919±0.0098 0.0749 0.1136±0.0027 0.0492 

MAPE None 24.54 34.95±3.53 14.01 

MAE (per comp) 0.0869±0.0124 0.0534 0.1105±0.0079 0.0483 

MAPE (per comp) None 20.44 33.53±4.56 16.78 

Table 5 Comparison of the Y-scrambling and normal models predictivity for the test 

set. Y-scrambling (Y-R) results are given with the standard deviation. MAPE for Y-R 

MoRc models could not be calculated since randomization have put some of the 0 

values that were previously in the training set into the test set.  

The skewness and range of both observed and predicted values raise another 

concern about the usefulness of models, particularly whether they can distinguish 

between highly soluble and insoluble IL, as well as, ILs high or poor capacity to 

dissolve water. Thus, a classification interpretation of the test set and external test 

set results was done for the four best models mentioned above. The data point was 

considered highly soluble if the weight fraction is equal or higher than 0.1. The 

classification statistics is given at Table 6. The results show that, in case of water in 

IL equilibria, ChSi model has good performance in both test set and external test set, 

whereas MoRc model performed well on the external test set but was unable to 

detemine highly soluble data points in the test set. None of the IL in water models 

performed well on the test set but MoRc showed acceptable results on the external 

test set. The problem with correctly classifying highly soluble compounds, especially 

in the case of IL in water, may be due to imbalanced data set, since highly soluble 

compounds are underrepresented.  

 water in IL IL in water 

 ChSi MoRc MoCh MoRc 
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 ts ext ts ts ext ts ts ext ts ts ext ts 

Sensitivity 0.62 0.81 0 0.77 0 0.14 0 0.43 

Specificity 0.93 1 0.98 1 1 1 1 1 

Accuracy 0.86 0.97 0.89 0.96 0.95 0.78 0.96 0.88 

BA 0.78 0.91 0.49 0.88 0.5 0.57 0.5 0.71 

PPV 0.71 1 0 1 NA 1 NA 1 

NPV 0.9 0.97 0.91 0.95 0.95 0.77 0.96 0.87 

MCC 0.64 0.89 0.04 0.86 NA 0.33 NA 0.61 

TP 15 13 0 10 0 2 0 6 

TN 80 96 85 62 42 40 26 54 

FP 6 0 2 0 0 0 0 0 

FN 9 3 8 3 2 12 1 8 

Table 6 Statistics on categorical interpretation of the results. ts is -  set, ext ts - 

external test set. BA – Balanced Accuracy, PPV – Positive Predictive Value, NPV – 

Negative Predictive Value, MCC – Matthews Correlation Coefficient, TP – number of 

True Positive results, TN – number of True Negative results, FP – number of False 

Positive results, FN – number of False Negative results. Positive are values of highly 

soluble data points, Negative are poorly soluble ones. NA indicates a parameter that 

can not be computed.  

Descriptor analysis based on variable importance in RF has shown the importance of 

temperature above all other descriptors. Molecular weight (MW) and logP (MlogP), 

number of rotatable bonds (Rotatable bond count, nRotB) are also present among the 

most influential descriptors. One out of two models have number of H-bond acceptors 

(acceptorcount) and topological polar surface area (TopoPSA) among the most 

important variables (Figure 4). 
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Figure 4. Variable importance of the best models. Importance is given as a percent 

of average increase in mean square error of the random forest as a result of variable 

values random shuffling. A – ChSi (water in IL), B – MoRc (IL in water). 

Two-phase diagram for water + IL system 

In order to have a better visualization of a water + IL system, a two-phase diagram 

was made for one of the external set compounds. Ethyl-dimethyl-propylammonium 

bis(trifluoromethylsulfonyl)imide was chosen as an example because it has data points 

in broad temperature range for both water in IL and IL in water phase (Figure 5). The 

diagram is made as follows:  

- First, weight fractions for water in IL and IL in water are predicted for  

temperatures between 278-369 K  – the range covered by ILThermo data sets. The 

conversion from the normalized values to original weight fraction is made and 1-weight 

fraction of IL in water transformation is applied to present all values in one plot. 

- Next, if the weight fraction value is constant within a certain temperature range, 

then a median temperature value is used. 

- After all predicted values are plotted, the experimental values are added to the 

graph as well, to show how close they are to the prediction. 
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Figure 5 Example of a two-phase diagram generated using the best models of this 

study. A – the two-phase diagram  over the whole weight fraction range, B – a 

zoomed plot for IL in water phase, C – a zoomed plot of water in IL. Yellow and 

green lines – predicted values, blue points – experimental values. More examples of 

two-phase diagrams are given for external test set ILs. The examples illustrate 

phase equilibria for ILs with experimental data points in both water-rich and IL-rich 

phases within a wide range of temperatures. 

The figure shows that Ethyl-dimethyl-propylammonium     

bis(trifluoromethylsulfonyl)imide was predicted rather well. The fact that experimental 

values have a much more monotonous trend in temperature dependency can be 

attributed to the fact that they come from one source, whereas training set data was 

heterogeneous, sometimes with several local minima and maxima, which affected the 

ability of the model to predict temperature trends. 

Ethyl-dimethyl-propylammonium bis(trifluoromethylsulfonyl)imide, just like most IL, is 

poorly miscible with water. This creates a problem for interpolation algorithms that are 

needed to close the envelop, since they will not be able to give a robust estimate for 

a point of convergence. However, the two-phase diagram representation is still useful 

for predicting tie lines of the particular system, since it provides equilibrium points in 
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both water-rich and IL-rich phases per every plausible temperature of liquid-liquid 

equilibrium of water+IL system. 

This study, in line with the literature, shows that modeling a one-to-many relationships 

is a hard task, especially when data points come from different sources. An additional 

problem arises from the generally low mutual solubility of water and IL, that makes the 

distribution of equilibrium concentrations very narrow and skewed. Potential outlier 

detection and rational IL-out test set selection allow to overcome the problem to a 

certain extent, more efficiently for water in IL than IL in water models. This might be 

due to smaller number of data points in the IL in water data set.  

Using a two-phase liquid-liquid equilibrium diagram for visualization provides 

experimentalists with an easy interpretation of predicted equilibria and allows to derive 

additional system parameters, such as tie lines. AD definition for these models are 

somewhat controversial and we encourage to trust the envelope prediction if at least 

one data point on both sides of the envelope are within the AD. 
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