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ABSTRACT  

The main objective of this paper is to discuss suitable methods for the modelling of weather 

variables and to bring together much of the current thinking in terms of the pricing of their 

respective derivative contracts (CDD, HDD) with payoffs depending on temperature. In 

addition to the theoretical overview provided, an empirical investigation is undertaken using 

historical data from the De Bilt meteorological station: we use the aforementioned data to first 

suggest a stochastic process that describes the evolution of the temperature. Further, such 

temperature modelling phase is accompanied by the numerical technique of Monte Carlo 

simulation for derivatives pricing. Finally, we will analyse some weather-sensitive industries 

and discuss possible weather hedging strategies they could apply. 
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1. INTRODUCTION 

Nowadays, the entire industrialised world is somehow affected by variations in weather 

patterns, being apparently random or predictable. These fluctuations affect certain products 

and without exception have financial impacts on their producers and consumers, thus leading 

them to the desire of minimising as much of this risk as possible. The list of businesses 

subject to weather risk is long and includes, for example, energy producers and consumers, 

supermarket chains, the agricultural industries and many other sectors. As a matter of fact, it 

is primarily the energy sector that, in recent years, has driven the demand for weather 

derivatives, a relatively new innovation in financial engineering that has been receiving a 

significant attention as the world continues to realise the magnitude of the risk management 

applications that these contracts own. The purpose of weather derivatives is to allow an 

investor to hedge against undesirable weather states, i.e. it gives weather dependent industries 

and organizations a possibility to protect themselves against potential financial losses that 

could be caused by unpredictable weather changes. For example, they allow natural gas 

supply companies to avoid the negative impact of a mild winter when no one turns on the 

heating, or they allow construction companies to avoid the losses due to a period of rain when 

construction workers cannot work outside. Anyway, this list could be extended. 

The types of impact of weather on businesses range from small reductions in revenues to total 

disasters, such as when a tornado destroys a factory. Tornadoes are an example of what we 

will call catastrophic weather events, causing extreme damage to property and, in the worst 

cases, loss of life. Companies wishing to protect themselves against the financial impact of 

such disasters can buy insurance that will pay them according to the losses they sustain. 

Weather derivatives, however, are designed to help companies insure themselves against non- 

catastrophic weather events. Non-catastrophic weather variations include warm or cold 
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periods, rainy or dry periods, windy or calm periods, and so on. They are expected to occur 

reasonably frequently. Nevertheless, they can cause a significant soreness for businesses with 

profits that depend in a sensitive way on the weather. Hedging with weather derivatives is 

desirable for such businesses because it significantly reduces the year-to-year volatility of 

their profits. This is beneficial for a number of reasons: 1) low volatility in profits can often 

reduce the interest rate at which companies borrow money; 2) in a publicly traded company, 

low volatility in profits usually translates into low volatility in the share price, meaning that, 

being less volatile, shares are valued more highly; 3) low volatility in profits reduces the risk 

of bankruptcy.  

In the following paragraphs we will analyse this argument in depth. In section 2, we will give 

an overview of the weather derivatives market; in section 3, we will describe the different 

weather contracts, the variables characterizing them and the payoff functions; section 4 is 

dedicated to temperature modelling; in section 5, we will discuss the weather derivatives 

pricing and in section 6 we will show an empirical example of it. Section 7 is dedicated to the 

examination of some hedging strategies using weather derivatives along with some empirical 

examples. Finally, in section 8, we will draft our final conclusions on the study.  

2. THE WEATHER DERIVATIVES MARKET 

The first transaction in the weather derivatives market took place in the US in 1997, but the 

demand for weather hedging products skyrocketed during the mild winter of 1997/98, also 

known as El Niño1. This phenomenon received huge publicity in the American press, thus 

many companies decided to hedge their seasonal weather risk due to the exposure to a 

 
1 El Niño is a periodic warming of the tropical Pacific Ocean which affects weather around the world. Typical consequences of El Niño 
include increased rainfall in the southern US and drought in the western Pacific. Winter temperatures in the north-central US states are 
typically higher than normal in El Niño years, and lower than normal in the south-east and south-west of the country. 
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potential significant earnings decline. After that, the market for weather derivatives expanded 

rapidly and contracts started to be traded over-the-counter (OTC) as individually negotiated 

contracts. Then, in September 1999, in order to increase the size of the market and to remove 

credit risk from the trading of the contracts, the Chicago Mercantile Exchange (CME) created 

a marketplace for weather derivatives’ transactions. This was the first exchange where 

standard weather derivatives could be traded. In the beginning, CME only traded two weather 

products: Heating Degree Days (HDD) and Cooling Degree Days (CDD) for ten cities in the 

US. Later, in 2003, CME expanded its weather derivatives to six European cities and also 

launched a new weather contract, the Cumulative Average Temperature (CAT).  

2.1 OTC vs Exchange-Traded Weather Derivatives: the location basis risk 

As we all know, one noticeable drawback from using Exchange-traded contracts of CME is 

the so-called “basis risk”. CME’s weather derivatives are only written over a few cities in the 

US and over Amsterdam and London in Europe and, as a consequence, the underlying 

temperature index of an Exchange-traded contract will not correspond and be perfectly 

correlated with the temperature index of the targeted weather-exposed region. This situation 

may increase the basis risk. In general, “basis risk is smallest when the financial loss is highly 

correlated with the weather, and when contracts of the optimum size and structure, based on 

the optimum location, are used for hedging” (Stephen Jewson and Anders Brix, 2005). In the 

context of weather derivatives, we can refer to this specific type of basis risk as “location 

basis risk”.  

3. THE CONTRACTS: WEATHER VARIABLES, INDICES AND PAYOFF 

When we speak about weather derivatives, we refer to swaps, call and put options based on a 

variety of different underlying weather variables. The most commonly used is the 
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temperature (we could take hourly values, daily minima or maxima, or daily averages). In 

most countries the daily average, the most common frequency utilized, is defined as the 

midpoint of the daily minimum and maximum. However, the market provides us with many 

derivative contracts depending on a wide variety of weather indices, like wind-based, rain-

based and snow-based derivatives.   

The exact relationship between the relevant weather variable and the impact on businesses 

will be different for different variables and different companies though: indeed, specific 

hedges are structured using indexes designed to capture as much of this dependence as 

possible. The most commonly used indexes for temperature-based contracts are degree day 

indices (DD), average temperature indices, cumulative average temperature indices(CAT), 

and event indices, but in our study we will just consider the former.  

3.1 Degree day indices 

Degree day (DD) indices are usually employed in the energy sector for planning energy 

systems and predicting seasonal domestic demand for heating and cooling. They can be 

divided into two main categories: 1) Heating Degree Days (HDD); 2) Cooling Degree Days 

(CDD).  

3.1.1 Heating Degree Days 

Commonly used in the U.S. and Europe, but seldom in Japan, Heating Degree Days (HDDs) 

are utilized during the winter to measure the demand for heating, and are thus a measure of 

how cold it is (the colder it is, the more HDDs there will be). Given that patterns of energy 

usage vary from location to location, we could find different definitions describing HDDs, but 

the mostly used in the weather market is the following:  
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 𝑧"	 = max(𝑇* − 𝑇", 0) (3.1) 
 = (𝑇* − 𝑇")/  

This formula will provide us with the number of HDDs (𝑧") on a particular day 𝑖, where 𝑇" is 

the average temperature on day 𝑖, while, 𝑇* is the baseline temperature.  

In all  the countries, where temperature is measured in Celsius, the baseline is usually taken to 

be 18°C (64.4°F), while, in the United States, where temperature is measured in Fahrenheit,  

the baseline is usually set at 65°F (≈ 18°C).  

An HDD index 𝑥 over an 𝑁3 day period is usually defined as the sum of the HDDs over all 

days during that period:  

 
𝑥 = 	4𝑧"

56

"78

 
(3.2) 

As would be expected, what we can usually observe is a large number of HDDs in winter, and 

fewer, or none, in summer.  

3.1.2 Cooling Degree Days 

Mainly used in the U.S. and rarely in Europe and Japan, Cooling Degree Days (CDDs) are 

used in summer to measure the demand for energy used for cooling, and are thus a measure of 

how hot it is (the hotter it is, the more CDDs there will be). Cooling is almost regularly driven 

by electricity, and so CDDs are most relevant to the electricity market (even if more and more 

electricity is being generated from natural gas, and so CDDs are also becoming relevant for 

the gas industry). The number of CDDs 𝑧"	on a particular day 𝑖 is defined as:  

 𝑧" = max(𝑇" −	𝑇*, 0) (3.3) 
 =	 (𝑇" − 𝑇*	, 0)/  
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where 𝑇*	is again the baseline temperature (18°C). A CDD index 𝑥 over a certain period is 

defined as the sum of the CDDs over all days during that period, as in equation (3.2). 

3.1.3 Derivatives Payoff: Swaps, Call Options and Put Options 

Once the index value is measured, it is used as input to a payoff function in order to 

financially settle the derivative contract. The function defines who should pay what to whom 

at the end of the contract’s period. In the following paragraphs, we are going to define the 

payoff functions of weather swaps, calls and puts from the point of view of the buyer of a 

contract, as reported by Stephen Jewson and Anders Brix (2005). 

A long swap contract has the aim of insuring against high future values of the index. In fact, 

for low values (more precisely, when the index is lower than the strike), the buyer has to pay 

the seller. To understand the logic behind that, let’s analyse the payoff function (p(x)) of a 

CME’s weather swap contract. We can write it as:   

 𝑝(𝑥) = 𝐷(𝑥 − 𝐾) (3.4) 

where, 𝑥 arises from equation (3.2), 𝐾 is the strike price and 𝐷 is the “tick size”, the monetary 

value associated to one index point. We can call this “linear swap”. The majority of swaps are 

costless, meaning that there is no premium, and the profit or loss for a swap are equal to the 

payoff. Swap contracts traded on exchanges (like the CME) involve a daily settlement and 

they are known as futures contracts, while those exchanged OTC usually involve a settlement 

at the end of the contract. The latter are also named forward contracts, whose payoff includes 

limits. An important feature to be considered by a hedger using a linear swap to shield his 

business risk is the size of the hedge. The optimum size (the one that minimises the variance 

of the basis risk) “is given by the regression coefficient obtained by regressing the business 

profits onto the weather index” (Stephen Jewson and Anders Brix, 2005). 
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To protect themselves against future high values of the index, companies could also make use 

of weather call options. The difference is that long calls involve the payment of a single, 

fixed upfront payment. The pricing of call options consists of determining that premium.  

The payoff (p(x)) determining the amount the seller of a long weather call option has to pay 

(or receive) depending on the value of the index can be expressed as: 

 𝑝(𝑥) = 𝐷 ∗ max	(𝑥 − 𝐾, 0) (3.5) 

On the other hand, if the hedger needs an insurance against low future values of the index He 

could take a long position on a weather put option. At the start of the contract, the buyer has 

to pay an upfront payment to the seller, who in turn, at the end, will pay (or receive) a certain 

amount on the basis of the payoff dependent on the value of the index.  

The payoff function (p(x)) in that case is: 

 𝑝(𝑥) = 𝐷 ∗ max	(𝐾 − 𝑥, 0) (3.6) 

The graphs representing the payoffs of these three weather contracts and the financial 

contracts of the same name are identical.  

4. TEMPERATURE MODELLING 

Temperature-based derivatives are the most frequently traded and, since they are the 

cornerstone of our study and we would like to price them, it is important to focus on another 

fundamental concept, useful for reaching that purpose: the daily temperature modelling, a 

stochastic process describing the temperature’s behaviour. Even if a single and precise model 

does not exist, the most commonly used is the one proposed by Peter Alaton (2002). In the 

following paragraphs, we will show the different steps characterizing this stochastic process, 
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as described by Alaton. After this first theoretical section, we will apply the model on a 

database with temperatures from the last 10 years from the De Bilt meteorological station.  

4.1 Mean Temperature 

If we plot a time series of temperatures, we could observe that it is strongly affected by 

seasonality. It should be possible to model such seasonal dependence with a sine-function, for 

example, that could be expressed as follows: 

 sin	(𝜔𝑡 + 𝜑) (4.1) 

where 𝑡 denotes the time (expressed in days) and 𝜔 = 2𝜋/365, given that the oscillation is 

one years and we are neglecting leap years. In addition to that, “because the yearly minimum 

and maximum mean temperatures do not usually occur at January 1 and July 1 respectively, 

we have to introduce a phase angle 𝜑” (Alaton, 2002).  

Furthermore, if we analyse the data more in depth we could notice a positive trend. The 

reasons for that are multiple: 

1) Random and predictable internal climate variability. The simplest explanation for an 

apparent trend is that it is part of the random internal variability of the climate system.  

2) Urbanisation. This phenomenon generally has a warming effect (not by chance, it is also 

called “urbanisation heating effect”) which is not only local: temperatures, indeed, tend to 

rise in areas nearby big cities, meaning that they warm the surroundings.  

3) Anthropogenic climate change. Man’s activities, mainly the release of carbon dioxide 

(CO2) into the atmosphere from burning fossil fuels, have had an effect on the climate system: 

for example, warming in some regions and cooling in others.  
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In our study, in order to catch this trend from data, we will assume, as a first approximation, 

that the warming trend is linear.  

Thus, summing up, we could express a deterministic model to describe the mean temperature 

at time t (𝑇JK) as follows: 

 𝑇JK = 𝐴 + 	𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜑) (4.2) 

where A, B, C and j have to be determined and chosen so that the curve will fit well the data.  

4.2 Is temperature deterministic? 

In the last paragraph we described temperature as a deterministic variable, but is it really 

deterministic? The answer is: “No”. Hence, to create a more realistic model able to describe 

better the temperature’s behaviour, we need to add a stochastic component, some sort of 

noise.  What Alaton discovered in his analysis was that the quadratic variation (𝜎JR ∈ 	𝑅/) of 

the temperature varies across the different months of the year, but it remains nearly constant 

within each month. Especially, during winter the quadratic variation is much higher than 

during the rest of the year. Therefore, we assume that 𝜎J is a piecewise constant function with 

a constant value during each month and it can be written as: 

𝜎J = 𝜎" 	,	𝑖 = 1, 2, … , 12	

𝜎J = W
𝜎8						, 𝑑𝑢𝑟𝑖𝑛𝑔	𝐽𝑎𝑛𝑢𝑎𝑟𝑦

⋮
𝜎8R	, 𝑑𝑢𝑟𝑖𝑛𝑔	𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟

	

Thus, such additional driving noise process of temperature would be defined as 𝜎J𝑊J	, 𝑡 ≥ 0, 

where 𝑊J  is a standard Brownian motion.  
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4.3 Mean reversion 

Another important aspect to take into account is that temperature cannot increase day by day 

for a long period, because we would get unrealistic values. Therefore, one solution to this 

problem could be to add a mean reverting component to our model in order to “not allow the 

temperature to deviate from its mean value for more than short periods of time” (Alaton, 

2002). Now, by mixing all the above assumptions, we get the following stochastic differential 

equation (SDE): 

 𝑑𝑇J = 𝑎(𝑇JK − 𝑇J)𝑑𝑡 + 𝜎J𝑑𝑊J  (4.3) 

where 𝑎 denotes the speed of mean reversion, the rate at which the process mean reverts (the 

larger will be the value of 𝑎, the faster will be the mean-reverting process).	The solution to 

this equation can be defined as “Ornstein-Uhlenbeck process”, a stationary, Gaussian, and 

Markovian process that satisfies the following stochastic differential equation:		

	 𝑑𝑋J = 𝛼(𝜇 − 𝑋J)𝑑𝑡 + 𝜎𝑑𝑊J	 (4.4) 

where 𝑊J is a Brownian motion, 𝛼 is a positive number representing the rate of mean 

reversion, 𝜇 is the long-term mean of the process, and 𝜎 is the volatility, per  square root time, 

of the random fluctuations that are modelled as Brownian motions. By looking at formula 

(4.4), “if we ignore the random fluctuations in the process due to 𝑑𝑊J, then we see that 𝑋J 

has an overall drift towards a mean value 𝜇. The process 𝑋J reverts to this mean 

exponentially, at rate 𝛼, with a magnitude in direct proportion to the distance between the 

current value of 𝑋J and 𝜇” (Planetmath.org). This can be seen by looking at the solution to the 

equation (4.4), without considering random fluctuations:  

 𝑋J = 𝜇 + (𝑋* − 𝜇)𝑒ij(JiJk). (4.5) 

For this reason, the Ornstein-Uhlenbeck process is also called a mean- reverting process.  
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Though, there is a problem with this stochastic differential equation: it does not reverse to 𝑇JK 

in the long run. To solve this issue, we need to add another term to the drift:  

 3lm
n

3J
= 𝐵 + 𝜔𝐶𝑐𝑜𝑠(𝜔𝑡 + 𝜑) . (4.6) 

Now, if we assume the starting point to be 𝑇p, we get the following model for temperature:  

 𝑑𝑇J = q3lm
n

3J
+ 𝑎(𝑇JK − 𝑇J)r 𝑑𝑡 + 𝜎J𝑑𝑊J	, 𝑡 > 𝑠. (4.7) 

Through the help of the Ito’s Lemma (used to determine the derivative of a time-dependent 

function of a stochastic process), we can find the solution to this differential equation, which 

is:  

 𝑇J = (𝑇p − 𝑇pK)𝑒it(Jip) + 𝑇JK + ∫ 𝑒it(Jiv)𝜎v𝑑𝑊v
J
p  , (4.8) 

where  

 𝑇JK = 𝐴 + 	𝐵𝑡 + 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜑).  

4.4 Parameters Estimation 

In this section we will follow the Alaton’s method to estimate the unknown parameters in 

equation (4.2). In order to do that we will fit the function:  

 𝑌J = 𝑎8 + 𝑎R𝑡 + 𝑎x 𝑠𝑖𝑛(𝜔𝑡) + 𝑎y𝑐𝑜𝑠	(𝜔𝑡) (4.9) 

to the temperature data using the method of least squares, meaning that we need to find a 

parameter vector 𝜉 = (𝑎8, 𝑎R, 𝑎x, 𝑎y) that solves 𝑚𝑖𝑛
{
‖𝒀 − 𝑿‖R, where Y is the vector with 

the elements contained in 𝑌J, while X is the temperature data vector. Hence, by applying this 

method, we will obtain the first four constants we were looking for: 

 𝐴 = 𝑎8 (4.10) 

 𝐵 = 𝑎R (4.11) 
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𝐶 = �𝑎xR + 𝑎yR 

(4.12) 

 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 �
𝑎y
𝑎x
� − 𝜋 (4.13) 

At this point, only the variation of temperatures and the speed of mean reversion are missing. 

Alaton (2005) proposes the following formulas to estimate them:  

 𝜎��R =
8

5�iR
∑ �𝑇�� − 𝑎�𝑇�i8K − (1 − 𝑎�)𝑇�i8�

R5�
�78  , (4.14) 

where, given a specific month µ = 1,2,…,12,  𝑇�� ≡ 𝑇� − (𝑇�K − 𝑇�i8K ) and a can be defined as 

𝑎�� = − 𝑙𝑜𝑔 � ∑ �����l�il�
n��

���
∑ �����l���il���

n ��
���

�, inside which 𝑌"i8 =
l���
n il���
����
�  (with 𝑖 = 1, 2, … , 𝑛), where 

𝜎"i8R = 𝜎�R =
8
5�
∑ �𝑇�/8 − 𝑇��

R5���
�7* . Now, we have everything to simulate trajectories of the 

Ornstein-Uhlenbeck process. 

5. WEATHER DERIVATIVES PRICING: THE ACTUARIAL PRICING METHOD 

The pricing of weather derivatives is a harsh topic of discussion in the academic literature and 

an adequate pricing model has not still been found. This makes it difficult to market this kind 

of products. Andreas Müller and Marcel Grandi (2000) assert that “the familiar option price 

model of Black - Scholes cannot be applied in the case of weather derivatives, simply because 

this model presupposes the existence of a negotiable underlying, or, in other words, derives 

the price of the derivative from the price of the actually existing underlying. This prerequisite 

is obviously not fulfilled in the case of weather derivatives - after all, what does weather 

cost?”. Also, the researchers Sean D. Campbell and Francis X. Diebold (2005) state that 

“standard approaches to arbitrage-free pricing are inapplicable in weather derivative 

contexts”, so again the Black-Scholes model cannot be applied. As a consequence, the best 

way to price weather derivatives is through stochastic processes modelling the underlying 

variable.  
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The researcher Hélène Hamisultane (2008) focuses attention on the actuarial pricing method 

(the most commonly used in the weather market) and asserts that it “evaluates the weather 

derivatives as being the conditional expectation of the future payment of these products, 

defined under the real probability of the underlying asset and to which is added a discounted 

compensation for the risk supported by the seller of the contract”. Thus, for example, the 

actuarial prices of weather call and put options and futures2 on a HDD index at time t can be 

expressed as follows:  

 𝐶𝑎𝑙𝑙(𝑡, 𝑇J, 𝐼J�) = 𝛿𝑒i�(liJ) �𝐸[max	(𝐼l� − 𝐾, 0)|𝐹J] + 𝜅𝜎Kt¢�£¤¥i¦,*�§ (5.1) 

 𝑃𝑢𝑡(𝑡, 𝑇J, 𝐼J�) = 𝛿𝑒i�(liJ) �𝐸[max	(𝐾 − 𝐼l�, 0)|𝐹J] + 𝜅𝜎Kt¢�¦i£¤¥,*�§ (5.2) 

 𝐹𝑢𝑡𝑢𝑟𝑒𝑠(𝑡, 𝑇J, 𝐼J�) = 𝛿 �𝐸[𝐼l�|𝐹J] + 𝜅𝜎£¤¥§ (5.3) 

where 𝛿 is the tick size, 𝐾 is the strike price (for the options), 𝑟 is the risk-free rate, 𝐹J 

indicates the available information about temperature until time t, and time T represents the 

maturity date of the contracts. Moreover, 𝜅𝜎Kt¢�£¤¥i¦,*�, 𝜅𝜎Kt¢�¦i£¤¥,*� and 𝜅𝜎£¤¥, the so-

called “risk loading” (Stephen Jewson and Anders Brix), represent the risk premiums, where 

𝜎Kt¢�£¤¥i¦,*�, 𝜎Kt¢�¦i£¤¥,*� and 𝜎£¤¥ measure the volatility of payoffs (in the case of options) 

and the volatility of the HDD index (in the case of futures). In our analysis, for sake of 

simplicity and given that we have not been able to find the market values of these instruments 

in order to derive 𝜅 , we will assume 𝜅 = 0 as Jewson and Brix did. In addition, as the 

researcher states in her paper, the actuarial method “is based on the law of large numbers 

which clarifies that by repeating a large number of times an experience, in an independent 

way, we obtain a more and more reliable estimate of the true value of the expectation of the 

observed phenomenon”. The expectation under the real probability can be computed in either 

 
2 As defined by Hélène Hamisultane (2008, equations 8 and 9) 
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of the two following ways: 1) by using historical data (“Burn Analysis”); 2) by using the 

technique of Monte Carlo simulation. With the first approach, we accumulate the degree days 

of a specific year, we estimate the payoff of the derivative for this year, and then we repeat 

the process for other years. Finally, the expected price of the derivative  will be defined by the 

average of annual payoffs. Instead, with Monte Carlo simulation technique, we use a model 

for daily average temperatures to generate a set of paths; for each of these paths we construct 

the HDD index which is used to calculate the payoff. Finally, the average of the payoffs from 

all the generated paths will be equivalent to the expectation of the derivative’s price.  

6. WEATHER DERIVATIVES PRICING: AN EMPIRICAL EXAMPLE WITH 

MONTE CARLO SIMULATION 

In this section, we will show how to price a HDD call and a HHD put for the month of 

November (2019): first, we will simulate the temperature trajectories through the Ornstein-

Uhlenbeck process, then we will price these financial products by means of Monte Carlo 

simulation. As already mentioned, this model is applied on a database with temperatures from 

the last 10 years from the De Bilt meteorological station, the main one in the Netherlands.  

6.1 Temperature trajectories simulation 

In order to create temperature simulations paths, first, we need to discretize equation3 (4.7). If 

we discretize 𝑑𝑇J to a time interval 𝛿 = 𝑇� − 𝑇�i8, we should obtain the following result:  

 𝛿𝑇 = 𝑇� − 𝑇�i8 = 𝛿𝑇K + 𝑎�𝑇�i8K − 𝑇©i8�𝛿𝑡 + 𝜎�𝜖√𝛿𝑡 (6.1) 

where 𝜖�785i8 represent independent standard normally distributed variables.  

 
3 As represented by Konstantina Kordi (2012, equation 4.1) 
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Now, if we assume that the time interval 𝛿𝑡 is equivalent to 1 day, equation (6.1) can be 

written as:  

 𝑇� = 𝑇�i8 + 𝛿𝑇K + 𝑎�𝑇�i8K − 𝑇©i8� + 𝜎�𝜖 

  = (1 − 𝑎)�𝑇�i8K − 𝑇©i8� + 𝑇�K + 𝜎�𝜖 

(6.2) 

where 𝑇�i8K = 𝐴 + 	𝐵(𝑗 − 1) + 𝐶𝑠𝑖𝑛(𝜔(𝑗 − 1) + 𝜑) and 𝑇�K = 𝐴 + 	𝐵(𝑗) + 𝐶𝑠𝑖𝑛(𝜔(𝑗) + 𝜑). 

Finally, by applying the Alaton’s suggested method in Excel, we can obtain the following 

parameters: 𝐴 =	9.89304, 𝐵 = 0.00046, 𝐶 = 7.49985, 𝜑 = −1.94611, 𝑎�� = 0.22197, 

𝜎5²³´Kµ´� = 3.991. Now, we just need to place them into equation (6.2) to obtain 

temperature trajectories.  

6.2 Monte Carlo simulation 

As we have already mentioned, in this section, we are going to calculate the prices of  HDD 

call and HDD put options by means of Monte Carlo simulation.  

The first step is to simulate the number of temperature trajectories for a certain period of time 

(starting from today’s temperature). Then we accumulate each path in order to build a HDD 

index for each of them and we calculate their payoffs at maturity ([𝑚𝑎𝑥	(𝐼l� − 𝐾, 0)] for the 

HDD call and [𝑚𝑎𝑥(𝐾 − 𝐼l�, 0)] for the HDD put). Thereafter, we approximate the 

expectations of the actuarial prices of a HDD call and a HDD put via Monte Carlo simulation: 

once we have determined all the possible payoffs, we calculate the related call and put prices 

using equations (5.1) and (5.2) and, finally, we compute their arithmetic means in order to 

obtain a single price for each of them.  

An important aspect to underlying is the strike price (K). In our study, since we have not been 

able to find a value of K from the CME, we create an “artificial strike price” through two 
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different methods: 1) we calculate the average of all past Novembers’ cumulative HDD 

indexes; 2) we determine the cumulative HDD index for each Ornstein-Uhlenbeck trajectory 

and then we calculate the average in order to find a single value. Thereafter, in order to 

analyse different scenarios, we also estimate, for each method, other two values of K: one by 

adding one standard deviation and the other one by subtracting it to the strike previously 

found. 

6.3 Empirical Results 

In order to replicate the aforementioned model, we use, first, Excel in order to find the 

parameters and to check the validity of such model, and then, we make use of Python to 

generate a Monte Carlo simulation that allow us to price a HDD call and a HDD put.  

First, let’s take a look at Figure 1. Here, we can observe how the simulated mean temperature, 

described in equation (4.2), fits the historical daily mean temperature’s path.  

 

                                     Figure 1: Historical daily mean temperatures vs simulated mean temperatures (01/01/2010-28/10/2019) 

Once we have found all parameters ( A, B, C, j, a, 𝜎") we can create the Ornstein-Uhlenbeck 

trajectories. In Figure 2, it is possible to see one trajectory we created in Excel: in this case 

too, the simulated temperatures (blue) seem to follow quite well the historical ones (orange) 

even with some spikes due to the presence of independent standard normally distributed 

variables. Later, in order to validate the model, first, we draw a graph to compare the 

historical temperatures and the simulated Ornstein-Uhlenbeckin trajectory for the month of 
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November 2018 (Figure 3 below), then, we calculate the Relative Standard Errors (RSE) for 

each observation, and we plot them. The RSE tells us how much an estimate deviates from 

the actual population and it is calculated as follows:  

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐸𝑟𝑟𝑜𝑟	(= 𝑂𝑏𝑠. 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑆𝑖𝑚. 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)
𝑂𝑏𝑠. 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  

(6.3) 

 
Estimates with a RSE of 25% or greater are subject to high sampling error and should be used 

carefully. Now, if we take a look at Figure 4, we can observe that even if half of the values 

are greater than 25%, the simulated temperatures seem to follow more or less the same path. 

 

                                          Figure 2: Historical temperatures vs Ornstein-Uhlenbeck trajectory (01/01/2010-28/10/2019) 

 

 

                                      Figure 3: Historical temperatures vs Ornstein-Uhlenbeck trajectory (November 2018) 
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                                     Figure 4: Relative Standard Error (November 2018) 

 

Now that our temperature model has been created, we can price both the HDD call and the 

HDD put for the month of November 2019. As we can observe in the Python codes (Appendix 

- “Empirical Analysis” ), we need other parameters for that purpose: 1) the one-month risk 

free rate of -0.443% (retrieved from the ECB website); 2) the tick size, equal to $20 per index 

point (as stated in the weather contracts section of the CME website); 3) the number of steps 

(N_Steps), which is the number of days in the month; 4) the number of simulations (N_Reps), 

to which we decided to assign a value of 10000; 5) the initial temperature, which is the one on 

the 31/10/2019 (𝑇* = 3.4	𝐶°); 6) the exchange rate on the 01/11/2019 (€/1.1168$) in order to 

convert the tick size from $ to €, since we are dealing with European weather derivatives. 

First, we create 10000 Ornstein-Uhlenbeck trajectories for the temperature of November 2019 

and then, for each path, we calculate the payoff at maturity (30/11/2019). Before that step, we 

need to determine the strike price by making use of the two different aforementioned 

approaches. Thereafter, by applying the formulas (5.1) for the call and (5.2) for the put we 

find 10000 prices for each financial instrument. Finally, by simply averaging all the prices we 

will determine a single price for the HDD call and the HDD put. In the table below, we can 

observe the strike price results arising from these two methods4.  

 
4 They can be observed respectively in Screen 1 and Screen 3 in the “Empirical Analysis” section of the Appendix.  
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METHOD 1 METHOD 2 
𝑲𝑷𝑨𝑺𝑻_𝟏 𝑲𝑷𝑨𝑺𝑻_𝟏 + 	𝝈 𝑲𝑷𝑨𝑺𝑻_𝟏 − 	𝝈 𝑲𝑬𝑿𝑷_𝟏 𝑲𝑬𝑿𝑷_𝟏 + 	𝝈 𝑲𝑬𝑿𝑷_𝟏 − 	𝝈 
326.31 330.30 322.32 349.96 353.95 345.97 

Table 1: Strike Prices 

In the following table, the different option prices are presented.  

 METHOD 1 METHOD 2 
 𝑲𝑷𝑨𝑺𝑻_𝟏 𝑲𝑷𝑨𝑺𝑻_𝟏 + 𝝈 𝑲𝑷𝑨𝑺𝑻_𝟏 − 𝝈 𝑲𝑬𝑿𝑷_𝟏 𝑲𝑬𝑿𝑷_𝟏 + 𝝈 𝑲𝑬𝑿𝑷_𝟏 − 𝝈 

HDD 
Call 

€ 2823.90 = 
$ 3153.73 

€ 2747.63 = 
$ 3068.55 

€ 2900.62 = 
$ 3239.42 

€ 2379.34 = 
$ 2657.24 

€ 2306.36 = 
$ 2575.76 

€ 2453.02 = 
$ 2739.53 

HDD 
Put 

€ 48.01 = 
$ 53.62 

€ 53.37= 
$ 59.61 

€ 43.09 = 
$ 48.13 

€ 87.08 = 
$ 97.25 

€ 95.75 = 
$ 106.93  

€ 79.13 = 
$ 88.38 

Table 2: HDD Call and Put prices 

Unfortunately, we did not find the market values to compare the results with, but we can say 

that they are reasonable. In fact, by looking at other papers, we noticed high values like ours 

(in case of call options). Furthermore, the huge difference between calls and puts is given by 

the fact that with the latter you are “gambling” on temperatures higher than 18°C, but it is 

very rare in the Netherlands during the period of November. The consequence is a payoff 

equal to zero in the majority of simulations, implying a low price. The opposite happens with 

call options.  

7. WEATHER RISK MANAGEMENT: SOME EXAMPLES OF WEATHER RISK 

HEDGING  

As we have seen until this point, the weather variable cannot be controlled, implying that “as 

long as an enterprise's fortune is subject to the mercy of mother nature, weather risk will be a 

crucial part of the overall risk to manage.” (Cao, Li and Wei, 2003) 

7.1 Weather risk management strategies using options 

Francisco Perez-Gonzalez and Hayong Yun (2010), using data from U.S. energy firms, found 

out that weather derivatives lead to higher market valuations, investments and leverage, 

demonstrating how risk management meaningfully affects valuation, investments, and 
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financing decisions. As can be observed in Table 3 (Appendix – “Tables”), there are four main 

weather hedging strategies using weather options traded at the CME. 

7.2 Weather exposed industries 

The industries dealing with a weather exposure may have an incentive in using weather 

derivatives: for soft drink producers, ski resorts, utility companies, construction companies 

and agriculture companies these instruments may prove beneficial for hedging weather 

exposure.  

In the following lines, we will develop a broad overview of how the volumetric risk, caused 

by weather variables,  could affect the energy sector and we will show some risk management 

strategies used to hedge against it.  

7.2.1 Energy Sector 

Weather has always been recognized as a source of risk in energy sector since it affects both 

energy consumption (in the short run) and energy production (in the long run). When we talk 

about energy consumption, temperature, for example, seems to have the highest effect on 

consumption of natural gas in winter and consumption of electricity mainly during summer. 

Regarding energy production, hydroelectric plants are strictly dependent on rainfall and wind 

power plants on wind speed. 

If we take a look at Figure 5 (Appendix– “Figures”), describing the relationship between the 

outdoor temperature and the residential energy consumption, it can be observed that it is not 

linear and has two branches. Temperature of 18°C plays the role of a threshold level since at 

that temperature the energy consumption is minimal: at lower temperatures the relationship is 

negative and there is a larger demand for heating, while at higher temperatures there is a 

positive relationship and the consumption of electricity is greater.  
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Now, let’s consider the energy production5. In wind power plants, for example, weather risk 

occurs in the form of too low or too high wind speeds. To have a clear image of that, Figure 6 

(Appendix– “Figures”) shows the relationship between wind speed (m/s) and power 

production (kW) for Vestas V90 wind turbine: as we may observe, the primary risk for wind 

power plants are unexpected wind speed variations generating lower than planned production 

outputs and consequently a lower than planned income.  

In the following paragraphs, we will illustrate a weather hedging strategy, applied in the 

energy sector: a long put HDD option that a gas supplier could use to protect itself against a 

warm winter.  

Let us assume that the company had analysed his historical sales and determined that 

November is the most volatile month, meaning that is the riskiest among the winter months. 

Thus, it is decided to buy an HDD option for November. Then, suppose that the strike value, 

calculated as historical average, is 120. The tick size of 1 HDD point is worth 1.000 monetary 

units of natural gas sales. Given that HDD index measures deviation of winter temperatures 

underneath 18°C, the higher the value of accumulated index the higher will be gas 

consumption. In other words, the company is worried about a drop in the accumulated HDD 

index under 120 points, so it takes a long position in put HDD option with strike of 120 

HDDs and tick size of 1.000 monetary units. For this protection, he has to pay an upfront 

premium to the trader who, thinking the accumulated HDD index will rise above 120, is 

selling it: let’s say, for example, 5.000 monetary units. Hence, the payoff formula for this 

weather option can be expressed by formula (6.3), implying that the profit function can be 

written as: 

 
5 As described by Ivana Stulec, Tomislav Bakovic and Domagoj Hruska (2012) 
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 𝑃Â = 𝑡𝑖𝑐𝑘	𝑠𝑖𝑧𝑒 ∗ 𝑚𝑎𝑥(K − HDD, 0) − 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 (7.1) 

	𝑃Â = 1.000 ∗ 𝑚𝑎𝑥(120 − 𝐻𝐷𝐷, 0) − 5.000  

where HDD represents the observed accumulated value of weather index during the covered 

time period. Now, let’s suppose that during November the HDD’s value accounted for 100, 

meaning 20 HDDs under historical average (20.000 monetary units of sales less than predicted 

by average). In such circumstances, the gas supplier will choose to exercise the option, thus 

receiving a net payment of 15.000 monetary units. This payment would, to some extent, cover 

the loss of reduced sales of natural gas caused by the mild winter. On the other hand, in case of 

cold winter, the gas company would reach higher sales of natural gas and would use these extra 

profits to cover the upfront premium paid to enter the option contract.  

9. CONCLUSION 

Weather derivatives are complex financial products and their market is not well developed yet 

(in Europe even less than in the U.S.). However, it has great potentials to increase, since 

climate change is a very important factor to take into account, an element that affects 

businesses more and more due to its unpredictability.  

Finally, let’s consider some aspects of the presented pricing model that could be improved. 

Maybe, the main issue when pricing weather derivatives is to find a good model able to 

describe the weather. Our model is a simplification of the reality even if it seems to work 

quite well. Hence, one thing that it could be nice to develop it would be a more sophisticated 

model that takes into account a changing volatility. In that way, a model including stochastic 

volatility should give us more realistic results. Another good improvement to consider would 

be to include a term describing the jumps affecting temperature paths.  
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APPENDIX 

 

1. FIGURES 

 

 
 

 
 

                                          Figure 5: Correlation between outdoor temperature and energy consumption          

                          

 
 

                                    Figure 6: Relationship between wind speed (m/s) and power production (kW) 
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2. TABLES 

 

Protection 
against 

Contract’s 
availability 

period 

Hedging 
Strategy 

Example of 
industry using it 

Cold winter 
months 

November to 
March Call HDD Construction 

company 

Warm winter 
months 

November to 
March Put HDD Utility company 

Cold summer 
months May to September Put CDD or 

Put CAT 
Beverage (or ice-
cream)  industry 

Warm summer 
months May to September Call CDD or 

Call CAT Agriculture 

                       Table 3: Weather risk management strategies using options 
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3. EMPIRICAL ANALYSIS 

 

 

Screen 1: Parameters and Temperature O-U paths simulation 
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Screen 2: HDD call and HDD put pricing method using a strike price based on the average of all past Novembers’ cumulative 
HDD indexes  
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Screen 3 : HDD call and HDD put pricing method using an artificial strike price based on O-U trajectories 


